1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra gbintern.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GBINTERN GroebnerInternalPackage}
<<package GBINTERN GroebnerInternalPackage>>=
)abbrev package GBINTERN GroebnerInternalPackage
++ Author:
++ Date Created:
++ Date Last Updated:
++ Keywords:
++ Description
++ This package provides low level tools for Groebner basis computations
GroebnerInternalPackage(Dom, Expon, VarSet, Dpol): T == C where
Dom: GcdDomain
Expon: OrderedAbelianMonoidSup
VarSet: OrderedSet
Dpol: PolynomialCategory(Dom, Expon, VarSet)
NNI ==> NonNegativeInteger
------ Definition of Record critPair and Prinp
critPair ==> Record( lcmfij: Expon, totdeg: NonNegativeInteger,
poli: Dpol, polj: Dpol )
sugarPol ==> Record( totdeg: NonNegativeInteger, pol : Dpol)
Prinp ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
tc:Integer,rc:Dpol,trc:Integer,tF:Integer,tD:Integer)
Prinpp ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
tc:Integer,rc:Dpol,trc:Integer,tF:Integer,tDD:Integer,
tDF:Integer)
T== with
credPol: (Dpol, List(Dpol)) -> Dpol
++ credPol \undocumented
redPol: (Dpol, List(Dpol)) -> Dpol
++ redPol \undocumented
gbasis: (List(Dpol), Integer, Integer) -> List(Dpol)
++ gbasis \undocumented
critT: critPair -> Boolean
++ critT \undocumented
critM: (Expon, Expon) -> Boolean
++ critM \undocumented
critB: (Expon, Expon, Expon, Expon) -> Boolean
++ critB \undocumented
critBonD: (Dpol, List(critPair)) -> List(critPair)
++ critBonD \undocumented
critMTonD1: (List(critPair)) -> List(critPair)
++ critMTonD1 \undocumented
critMonD1: (Expon, List(critPair)) -> List(critPair)
++ critMonD1 \undocumented
redPo: (Dpol, List(Dpol) ) -> Record(poly:Dpol, mult:Dom)
++ redPo \undocumented
hMonic: Dpol -> Dpol
++ hMonic \undocumented
updatF: (Dpol, NNI, List(sugarPol) ) -> List(sugarPol)
++ updatF \undocumented
sPol: critPair -> Dpol
++ sPol \undocumented
updatD: (List(critPair), List(critPair)) -> List(critPair)
++ updatD \undocumented
minGbasis: List(Dpol) -> List(Dpol)
++ minGbasis \undocumented
lepol: Dpol -> Integer
++ lepol \undocumented
prinshINFO : Dpol -> Void
++ prinshINFO \undocumented
prindINFO: (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer
++ prindINFO \undocumented
fprindINFO: (critPair, Dpol, Dpol, Integer,Integer,Integer
,Integer) -> Integer
++ fprindINFO \undocumented
prinpolINFO: List(Dpol) -> Void
++ prinpolINFO \undocumented
prinb: Integer-> Void
++ prinb \undocumented
critpOrder: (critPair, critPair) -> Boolean
++ critpOrder \undocumented
makeCrit: (sugarPol, Dpol, NonNegativeInteger) -> critPair
++ makeCrit \undocumented
virtualDegree : Dpol -> NonNegativeInteger
++ virtualDegree \undocumented
C== add
Ex ==> OutputForm
import OutputForm
------ Definition of intermediate functions
if Dpol has totalDegree: Dpol -> NonNegativeInteger then
virtualDegree p == totalDegree p
else
virtualDegree p == 0
------ ordering of critpairs
critpOrder(cp1,cp2) ==
cp1.totdeg < cp2.totdeg => true
cp2.totdeg < cp1.totdeg => false
cp1.lcmfij < cp2.lcmfij
------ creating a critical pair
makeCrit(sp1, p2, totdeg2) ==
p1 := sp1.pol
deg := sup(degree(p1), degree(p2))
e1 := subtractIfCan(deg, degree(p1))::Expon
e2 := subtractIfCan(deg, degree(p2))::Expon
tdeg := max(sp1.totdeg + virtualDegree(monomial(1,e1)),
totdeg2 + virtualDegree(monomial(1,e2)))
[deg, tdeg, p1, p2]$critPair
------ calculate basis
gbasis(Pol: List(Dpol), xx1: Integer, xx2: Integer ) ==
D, D1: List(critPair)
--------- create D and Pol
Pol1:= sort(degree #1 > degree #2, Pol)
basPols:= updatF(hMonic(first Pol1),virtualDegree(first Pol1),[])
Pol1:= rest(Pol1)
D:= nil
while not null Pol1 repeat
h:= hMonic(first(Pol1))
Pol1:= rest(Pol1)
toth := virtualDegree h
D1:= [makeCrit(x,h,toth) for x in basPols]
D:= updatD(critMTonD1(sort(critpOrder, D1)),
critBonD(h,D))
basPols:= updatF(h,toth,basPols)
D:= sort(critpOrder, D)
xx:= xx2
-------- loop
redPols := [x.pol for x in basPols]
while not null D repeat
D0:= first D
s:= hMonic(sPol(D0))
D:= rest(D)
h:= hMonic(redPol(s,redPols))
if xx1 = 1 then
prinshINFO(h)
h = 0 =>
if xx2 = 1 then
prindINFO(D0,s,h,# basPols, # D,xx)
xx:= 2
" go to top of while "
degree(h) = 0 =>
D:= nil
if xx2 = 1 then
prindINFO(D0,s,h,# basPols, # D,xx)
xx:= 2
basPols:= updatF(h,0,[])
leave "out of while"
D1:= [makeCrit(x,h,D0.totdeg) for x in basPols]
D:= updatD(critMTonD1(sort(critpOrder, D1)),
critBonD(h,D))
basPols:= updatF(h,D0.totdeg,basPols)
redPols := concat(redPols,h)
if xx2 = 1 then
prindINFO(D0,s,h,# basPols, # D,xx)
xx:= 2
Pol := [x.pol for x in basPols]
if xx2 = 1 then
prinpolINFO(Pol)
messagePrint(" THE GROEBNER BASIS POLYNOMIALS")
if xx1 = 1 and xx2 ~= 1 then
messagePrint(" THE GROEBNER BASIS POLYNOMIALS")
Pol
--------------------------------------
--- erase multiple of e in D2 using crit M
critMonD1(e: Expon, D2: List(critPair))==
null D2 => nil
x:= first(D2)
critM(e, x.lcmfij) => critMonD1(e, rest(D2))
cons(x, critMonD1(e, rest(D2)))
----------------------------
--- reduce D1 using crit T and crit M
critMTonD1(D1: List(critPair))==
null D1 => nil
f1:= first(D1)
s1:= #(D1)
cT1:= critT(f1)
s1= 1 and cT1 => nil
s1= 1 => D1
e1:= f1.lcmfij
r1:= rest(D1)
e1 = (first r1).lcmfij =>
cT1 => critMTonD1(cons(f1, rest(r1)))
critMTonD1(r1)
D1 := critMonD1(e1, r1)
cT1 => critMTonD1(D1)
cons(f1, critMTonD1(D1))
-----------------------------
--- erase elements in D fullfilling crit B
critBonD(h:Dpol, D: List(critPair))==
null D => nil
x:= first(D)
critB(degree(h), x.lcmfij, degree(x.poli), degree(x.polj)) =>
critBonD(h, rest(D))
cons(x, critBonD(h, rest(D)))
-----------------------------
--- concat F and h and erase multiples of h in F
updatF(h: Dpol, deg:NNI, F: List(sugarPol)) ==
null F => [[deg,h]]
f1:= first(F)
critM(degree(h), degree(f1.pol)) => updatF(h, deg, rest(F))
cons(f1, updatF(h, deg, rest(F)))
-----------------------------
--- concat ordered critical pair lists D1 and D2
updatD(D1: List(critPair), D2: List(critPair)) ==
null D1 => D2
null D2 => D1
dl1:= first(D1)
dl2:= first(D2)
critpOrder(dl1,dl2) => cons(dl1, updatD(D1.rest, D2))
cons(dl2, updatD(D1, D2.rest))
-----------------------------
--- remove gcd from pair of coefficients
gcdCo(c1:Dom, c2:Dom):Record(co1:Dom,co2:Dom) ==
d:=gcd(c1,c2)
[(c1 exquo d)::Dom, (c2 exquo d)::Dom]
--- calculate S-polynomial of a critical pair
sPol(p:critPair)==
Tij := p.lcmfij
fi := p.poli
fj := p.polj
cc := gcdCo(leadingCoefficient fi, leadingCoefficient fj)
reductum(fi)*monomial(cc.co2,subtractIfCan(Tij, degree fi)::Expon) -
reductum(fj)*monomial(cc.co1,subtractIfCan(Tij, degree fj)::Expon)
----------------------------
--- reduce critpair polynomial mod F
--- iterative version
redPo(s: Dpol, F: List(Dpol)) ==
m:Dom := 1
Fh := F
while not ( s = 0 or null F ) repeat
f1:= first(F)
s1:= degree(s)
e: Union(Expon, "failed")
(e:= subtractIfCan(s1, degree(f1))) case Expon =>
cc:=gcdCo(leadingCoefficient f1, leadingCoefficient s)
s:=cc.co1*reductum(s) - monomial(cc.co2,e)*reductum(f1)
m := m*cc.co1
F:= Fh
F:= rest F
[s,m]
redPol(s: Dpol, F: List(Dpol)) == credPol(redPo(s,F).poly,F)
----------------------------
--- crit T true, if e1 and e2 are disjoint
critT(p: critPair) == p.lcmfij = (degree(p.poli) + degree(p.polj))
----------------------------
--- crit M - true, if lcm#2 multiple of lcm#1
critM(e1: Expon, e2: Expon) ==
en: Union(Expon, "failed")
(en:=subtractIfCan(e2, e1)) case Expon
----------------------------
--- crit B - true, if eik is a multiple of eh and eik not equal
--- lcm(eh,ei) and eik not equal lcm(eh,ek)
critB(eh:Expon, eik:Expon, ei:Expon, ek:Expon) ==
critM(eh, eik) and (eik ~= sup(eh, ei)) and (eik ~= sup(eh, ek))
----------------------------
--- make polynomial monic case Domain a Field
hMonic(p: Dpol) ==
p= 0 => p
-- inv(leadingCoefficient(p))*p
primitivePart p
-----------------------------
--- reduce all terms of h mod F (iterative version )
credPol(h: Dpol, F: List(Dpol) ) ==
null F => h
h0:Dpol:= monomial(leadingCoefficient h, degree h)
while (h:=reductum h) ~= 0 repeat
hred:= redPo(h, F)
h := hred.poly
h0:=(hred.mult)*h0 + monomial(leadingCoefficient(h),degree h)
h0
-------------------------------
---- calculate minimal basis for ordered F
minGbasis(F: List(Dpol)) ==
null F => nil
newbas := minGbasis rest F
cons(hMonic credPol( first(F), newbas),newbas)
-------------------------------
---- calculate number of terms of polynomial
lepol(p1:Dpol)==
n: Integer
n:= 0
while p1 ~= 0 repeat
n:= n + 1
p1:= reductum(p1)
n
---- print blanc lines
prinb(n: Integer)==
for x in 1..n repeat
messagePrint(" ")
---- print reduced critpair polynom
prinshINFO(h: Dpol)==
prinb(2)
messagePrint(" reduced Critpair - Polynom :")
prinb(2)
print(h::Ex)
prinb(2)
-------------------------------
---- print info string
prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
i2:Integer, n:Integer) ==
ll: List Prinp
a: Dom
cpi:= cp.poli
cpj:= cp.polj
if n = 1 then
prinb(1)
messagePrint("you choose option -info- ")
messagePrint("abbrev. for the following information strings are")
messagePrint(" ci => Leading monomial for critpair calculation")
messagePrint(" tci => Number of terms of polynomial i")
messagePrint(" cj => Leading monomial for critpair calculation")
messagePrint(" tcj => Number of terms of polynomial j")
messagePrint(" c => Leading monomial of critpair polynomial")
messagePrint(" tc => Number of terms of critpair polynomial")
messagePrint(" rc => Leading monomial of redcritpair polynomial")
messagePrint(" trc => Number of terms of redcritpair polynomial")
messagePrint(" tF => Number of polynomials in reduction list F")
messagePrint(" tD => Number of critpairs still to do")
prinb(4)
n:= 2
prinb(1)
a:= 1
ph = 0 =>
ps = 0 =>
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),
lepol(cpj),ps,0,ph,0,i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps), ph,0,i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
-------------------------------
---- print the groebner basis polynomials
prinpolINFO(pl: List(Dpol))==
n:Integer
n:= # pl
prinb(1)
n = 1 =>
messagePrint(" There is 1 Groebner Basis Polynomial ")
prinb(2)
messagePrint(" There are ")
prinb(1)
print(n::Ex)
prinb(1)
messagePrint(" Groebner Basis Polynomials. ")
prinb(2)
fprindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
i2:Integer, i3:Integer, n: Integer) ==
ll: List Prinpp
a: Dom
cpi:= cp.poli
cpj:= cp.polj
if n = 1 then
prinb(1)
messagePrint("you choose option -info- ")
messagePrint("abbrev. for the following information strings are")
messagePrint(" ci => Leading monomial for critpair calculation")
messagePrint(" tci => Number of terms of polynomial i")
messagePrint(" cj => Leading monomial for critpair calculation")
messagePrint(" tcj => Number of terms of polynomial j")
messagePrint(" c => Leading monomial of critpair polynomial")
messagePrint(" tc => Number of terms of critpair polynomial")
messagePrint(" rc => Leading monomial of redcritpair polynomial")
messagePrint(" trc => Number of terms of redcritpair polynomial")
messagePrint(" tF => Number of polynomials in reduction list F")
messagePrint(" tD => Number of critpairs still to do")
messagePrint(" tDF => Number of subproblems still to do")
prinb(4)
n:= 2
prinb(1)
a:= 1
ph = 0 =>
ps = 0 =>
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),
lepol(cpj),ps,0,ph,0,i1,i2,i3]$Prinpp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps), ph,0,i1,i2,i3]$Prinpp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2,i3]$Prinpp]
print(ll::Ex)
prinb(1)
n
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package GBINTERN GroebnerInternalPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|