aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/gb.spad.pamphlet
blob: 895480fd4b8fd3a5e796c6f8ed6c356d4cfe427b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra gb.spad}
\author{Rudiger Gebauer, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
--------- GROEBNER PACKAGE DRAFT 06         12/01/1986
---------
---------    Example to call groebner:
---------
---------  s1:DMP[w,p,z,t,s,b]RN:= 45*p + 35*s - 165*b - 36
---------  s2:DMP[w,p,z,t,s,b]RN:= 35*p + 40*z + 25*t - 27*s
---------  s3:DMP[w,p,z,t,s,b]RN:= 15*w + 25*p*s + 30*z - 18*t - 165*b**2
---------  s4:DMP[w,p,z,t,s,b]RN:= -9*w + 15*p*t + 20*z*s
---------  s5:DMP[w,p,z,t,s,b]RN:= w*p + 2*z*t - 11*b**3
---------  s6:DMP[w,p,z,t,s,b]RN:= 99*w - 11*b*s + 3*b**2
---------  s7:DMP[w,p,z,t,s,b]RN:= b**2 + 33/50*b + 2673/10000
---------
---------  sn7:=[s1,s2,s3,s4,s5,s6,s7]
---------
---------  groebner(sn7,info)
---------
-------------------------------------------------------------------------
---------
---------    groebner   ->  calculate minimal Groebner Basis
---------
---------    all reductions are TOTAL reductions
---------
---------    use string " redcrit "  and you get the reduced critpairs
---------                            printed
---------
---------    use string " info "     and you get information about
---------
---------        ci  =>  Leading monomial  for critpair calculation
---------        tci =>  Number of terms of polynomial i
---------        cj  =>  Leading monomial  for critpair calculation
---------        tcj =>  Number of terms of polynomial j
---------        c   =>  Leading monomial of critpair polynomial
---------        tc  =>  Number of terms of critpair polynomial
---------        rc  =>  Leading monomial of redcritpair polynomial
---------        trc =>  Number of terms of redcritpair polynomial
---------        tF  =>  Number of polynomials in reduction list F
---------        tD  =>  Number of critpairs still to do
---------
\end{verbatim}
\section{package GB GroebnerPackage}
<<package GB GroebnerPackage>>=
)abbrev package GB GroebnerPackage
++ Authors: Gebauer, Trager
++ Date Created: 12-1-86
++ Date Last Updated: 2-28-91
++ Basic Functions: groebner normalForm
++ Related Constructors: Ideal, IdealDecompositionPackage
++ Also See:
++ AMS Classifications:
++ Keywords: groebner basis, polynomial ideal
++ References:
++ Description: \spadtype{GroebnerPackage} computes groebner
++ bases for polynomial ideals. The basic computation provides
++ a distinguished set of generators for polynomial ideals over fields.
++ This basis allows an easy test for membership: the operation \spadfun{normalForm}
++ returns zero on ideal members. When the provided coefficient domain, Dom,
++ is not a field, the result is equivalent to considering the extended
++ ideal with \spadtype{Fraction(Dom)} as coefficients, but considerably more efficient
++ since all calculations are performed in Dom. Additional argument "info" and "redcrit"
++ can be given to provide incremental information during
++ computation. Argument "info" produces a computational summary for each s-polynomial.
++ Argument "redcrit" prints out the reduced critical pairs. The term ordering
++ is determined by the polynomial type used. Suggested types include
++ \spadtype{DistributedMultivariatePolynomial},
++ \spadtype{HomogeneousDistributedMultivariatePolynomial},
++ \spadtype{GeneralDistributedMultivariatePolynomial}.
 
GroebnerPackage(Dom, Expon, VarSet, Dpol): T == C where
 
 Dom:   GcdDomain
 Expon: OrderedAbelianMonoidSup
 VarSet: OrderedSet
 Dpol:  PolynomialCategory(Dom, Expon, VarSet)
 
 T== with
 
     groebner: List(Dpol) -> List(Dpol)
       ++ groebner(lp) computes a groebner basis for a polynomial ideal
       ++ generated by the list of polynomials lp.
     groebner: ( List(Dpol), String ) -> List(Dpol)
       ++ groebner(lp, infoflag) computes a groebner basis 
       ++ for a polynomial ideal
       ++ generated by the list of polynomials lp.
       ++ Argument infoflag is used to get information on the computation.
       ++ If infoflag is "info", then summary information
       ++ is displayed for each s-polynomial generated.
       ++ If infoflag is "redcrit", the reduced critical pairs are displayed.
       ++ If infoflag is any other string, no information is printed during computation.
     groebner: ( List(Dpol), String, String ) -> List(Dpol)
       ++ groebner(lp, "info", "redcrit") computes a groebner basis
       ++ for a polynomial ideal generated by the list of polynomials lp,
       ++ displaying both a summary of the critical pairs considered ("info")
       ++ and the result of reducing each critical pair ("redcrit").
       ++ If the second or third arguments have any other string value,
       ++ the indicated information is suppressed.
       
     if Dom has Field then
       normalForm: (Dpol, List(Dpol))  -> Dpol
          ++ normalForm(poly,gb) reduces the polynomial poly modulo the
          ++ precomputed groebner basis gb giving a canonical representative
          ++ of the residue class.
 C== add
   import OutputForm
   import GroebnerInternalPackage(Dom,Expon,VarSet,Dpol)
 
   if Dom has Field then
     monicize(p: Dpol):Dpol ==
       one?(lc := leadingCoefficient p) => p
       inv(lc)*p

     normalForm(p : Dpol, l : List(Dpol)) : Dpol ==
       redPol(p,map(monicize,l))
 
   ------    MAIN ALGORITHM GROEBNER ------------------------
 
   groebner( Pol: List(Dpol) ) ==
     Pol=[] => Pol
     Pol:=[x for x in Pol | x ~= 0]
     Pol=[] => [0]
     minGbasis(sort( degree #1 > degree #2, gbasis(Pol,0,0)))
 
   groebner( Pol: List(Dpol), xx1: String) ==
     Pol=[] => Pol
     Pol:=[x for x in Pol | x ~= 0]
     Pol=[] => [0]
     xx1 = "redcrit" =>
       minGbasis(sort( degree #1 > degree #2, gbasis(Pol,1,0)))
     xx1 = "info" =>
       minGbasis(sort( degree #1 > degree #2, gbasis(Pol,2,1)))
     messagePrint("   ")
     messagePrint("WARNING: options are - redcrit and/or info - ")
     messagePrint("         you didn't type them correct")
     messagePrint("         please try again")
     messagePrint("   ")
     []
 
   groebner( Pol: List(Dpol), xx1: String, xx2: String) ==
     Pol=[] => Pol
     Pol:=[x for x in Pol | x ~= 0]
     Pol=[] => [0]
     (xx1 = "redcrit" and xx2 = "info") or
      (xx1 = "info" and xx2 = "redcrit")   =>
       minGbasis(sort( degree #1 > degree #2, gbasis(Pol,1,1)))
     xx1 = "redcrit" and xx2 = "redcrit" =>
       minGbasis(sort( degree #1 > degree #2, gbasis(Pol,1,0)))
     xx1 = "info" and xx2 = "info" =>
       minGbasis(sort( degree #1 > degree #2, gbasis(Pol,2,1)))
     messagePrint("   ")
     messagePrint("WARNING:  options are - redcrit and/or info - ")
     messagePrint("          you didn't type them correctly")
     messagePrint("          please try again ")
     messagePrint("   ")
     []

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package GB GroebnerPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}