aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/exprode.spad.pamphlet
blob: 2693eabf85a9ac83802846f2f860493da1e30e2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra exprode.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package EXPRODE ExpressionSpaceODESolver}
<<package EXPRODE ExpressionSpaceODESolver>>=
)abbrev package EXPRODE ExpressionSpaceODESolver
++ Taylor series solutions of ODE's
++ Author: Manuel Bronstein
++ Date Created: 5 Mar 1990
++ Date Last Updated: 30 September 1993
++ Description: Taylor series solutions of explicit ODE's;
++ Keywords: differential equation, ODE, Taylor series
ExpressionSpaceODESolver(R, F): Exports == Implementation where
  R: Join(OrderedSet, IntegralDomain, ConvertibleTo InputForm)
  F: FunctionSpace R

  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  OP  ==> BasicOperator
  SY  ==> Symbol
  UTS ==> UnivariateTaylorSeries(F, x, center)
  MKF ==> MakeUnaryCompiledFunction(F, UTS, UTS)
  MKL ==> MakeUnaryCompiledFunction(F, List UTS, UTS)
  A1  ==> AnyFunctions1(UTS)
  AL1 ==> AnyFunctions1(List UTS)
  EQ  ==> Equation F
  ODE ==> UnivariateTaylorSeriesODESolver(F, UTS)

  Exports ==> with
    seriesSolve: (EQ, OP, EQ, EQ) -> Any
      ++ seriesSolve(eq,y,x=a, y a = b) returns a Taylor series solution
      ++ of eq around x = a with initial condition \spad{y(a) = b}.
      ++ Note: eq must be of the form
      ++ \spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.
    seriesSolve: (EQ, OP, EQ, List F) -> Any
      ++ seriesSolve(eq,y,x=a,[b0,...,b(n-1)]) returns a Taylor series
      ++ solution of eq around \spad{x = a} with initial conditions
      ++ \spad{y(a) = b0}, \spad{y'(a) = b1},
      ++ \spad{y''(a) = b2}, ...,\spad{y(n-1)(a) = b(n-1)}
      ++ eq must be of the form
      ++ \spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) +
      ++ g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.
    seriesSolve: (List EQ, List OP, EQ, List EQ) -> Any
      ++ seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])
      ++ returns a taylor series solution of \spad{[eq1,...,eqn]} around
      ++ \spad{x = a} with initial conditions \spad{yi(a) = bi}.
      ++ Note: eqi must be of the form
      ++ \spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) +
      ++ gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.
    seriesSolve: (List EQ, List OP, EQ, List F) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,
      ++ [y1 a = b1,..., yn a = bn])}.
    seriesSolve: (List F, List OP, EQ, List F) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.
    seriesSolve: (List F, List OP, EQ, List EQ) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a,
      ++ [y1 a = b1,..., yn a = bn])}.
    seriesSolve: (EQ, OP, EQ, F) -> Any
      ++ seriesSolve(eq,y, x=a, b) is equivalent to
      ++ \spad{seriesSolve(eq, y, x=a, y a = b)}.
    seriesSolve: (F, OP, EQ, F) -> Any
      ++ seriesSolve(eq, y, x = a, b) is equivalent to
      ++ \spad{seriesSolve(eq = 0, y, x = a, y a = b)}.
    seriesSolve: (F, OP, EQ, EQ) -> Any
      ++ seriesSolve(eq, y, x = a, y a = b) is equivalent to
      ++ \spad{seriesSolve(eq=0, y, x=a, y a = b)}.
    seriesSolve: (F, OP, EQ, List F) -> Any
      ++ seriesSolve(eq, y, x = a, [b0,...,bn]) is equivalent to
      ++ \spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.

  Implementation ==> add
    checkCompat: (OP, EQ, EQ) -> F
    checkOrder1: (F, OP, K, SY, F) -> F
    checkOrderN: (F, OP, K, SY, F, NonNegativeInteger) -> F
    checkSystem: (F, List K, List F) -> F
    div2exquo  : F -> F
    smp2exquo  : P -> F
    k2exquo    : K -> F
    diffRhs    : (F, F) -> F
    diffRhsK   : (K, F) -> F
    findCompat : (F, List EQ) -> F
    findEq     : (K, SY, List F) -> F
    localInteger: F -> F

    opelt := operator('elt)$OP
    --opex  := operator('exquo)$OP
    opex  := operator('fixedPointExquo)$OP
    opint := operator('integer)$OP

    Rint? := R has IntegerNumberSystem

    localInteger n == (Rint? => n; opint n)
    diffRhs(f, g) == diffRhsK(retract(f)@K, g)

    k2exquo k ==
      is?(op := operator k,'%diff) =>
        error "Improper differential equation"
      kernel(op, [div2exquo f for f in argument k]$List(F))

    smp2exquo p ==
      map(k2exquo,#1::F,p)$PolynomialCategoryLifting(IndexedExponents K,
                                                             K, R, P, F)

    div2exquo f ==
      one?(d := denom f) => f
      opex(smp2exquo numer f, smp2exquo d)

-- if g is of the form a * k + b, then return -b/a
    diffRhsK(k, g) ==
      h := univariate(g, k)
      (degree(numer h) <= 1) and ground? denom h =>
        - coefficient(numer h, 0) / coefficient(numer h, 1)
      error "Improper differential equation"

    checkCompat(y, eqx, eqy) ==
      lhs(eqy) =$F y(rhs eqx) => rhs eqy
      error "Improper initial value"

    findCompat(yx, l) ==
      for eq in l repeat
        yx =$F lhs eq => return rhs eq
      error "Improper initial value"

    findEq(k, x, sys) ==
      k := retract(differentiate(k::F, x))@K
      for eq in sys repeat
        member?(k, kernels eq) => return eq
      error "Improper differential equation"

    checkOrder1(diffeq, y, yx, x, sy) ==
      div2exquo subst(diffRhs(differentiate(yx::F,x),diffeq),[yx],[sy])

    checkOrderN(diffeq, y, yx, x, sy, n) ==
      zero? n => error "No initial value(s) given"
      m     := (minIndex(l := [retract(f := yx::F)@K]$List(K)))::F
      lv    := [opelt(sy, localInteger m)]$List(F)
      for i in 2..n repeat
        l  := concat(retract(f := differentiate(f, x))@K, l)
        lv := concat(opelt(sy, localInteger(m := m + 1)), lv)
      div2exquo subst(diffRhs(differentiate(f, x), diffeq), l, lv)

    checkSystem(diffeq, yx, lv) ==
      for k in kernels diffeq repeat
        is?(k, "%diff"::SY) =>
          return div2exquo subst(diffRhsK(k, diffeq), yx, lv)
      0

    seriesSolve(l:List EQ, y:List OP, eqx:EQ, eqy:List EQ) ==
      seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, eqy)

    seriesSolve(l:List EQ, y:List OP, eqx:EQ, y0:List F) ==
      seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, y0)

    seriesSolve(l:List F, ly:List OP, eqx:EQ, eqy:List EQ) ==
      seriesSolve(l, ly, eqx,
                  [findCompat(y rhs eqx, eqy) for y in ly]$List(F))

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, eqy:EQ) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, eqy)

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:F) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0)

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:List F) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0)

    seriesSolve(diffeq:F, y:OP, eqx:EQ, eqy:EQ) ==
      seriesSolve(diffeq, y, eqx, checkCompat(y, eqx, eqy))

    seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:F) ==
      x      := symbolIfCan(retract(lhs eqx)@K)::SY
      sy     := name y
      yx     := retract(y lhs eqx)@K
      f      := checkOrder1(diffeq, y, yx, x, sy::F)
      center := rhs eqx
      coerce(ode1(compiledFunction(f, sy)$MKF, y0)$ODE)$A1

    seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:List F) ==
      x      := symbolIfCan(retract(lhs eqx)@K)::SY
      sy     := new()$SY
      yx     := retract(y lhs eqx)@K
      f      := checkOrderN(diffeq, y, yx, x, sy::F, #y0)
      center := rhs eqx
      coerce(ode(compiledFunction(f, sy)$MKL, y0)$ODE)$A1

    seriesSolve(sys:List F, ly:List OP, eqx:EQ, l0:List F) ==
      x      := symbolIfCan(kx := retract(lhs eqx)@K)::SY
      fsy    := (sy := new()$SY)::F
      m      := (minIndex(l0) - 1)::F
      yx     := concat(kx, [retract(y lhs eqx)@K for y in ly]$List(K))
      lelt   := [opelt(fsy, localInteger(m := m+1)) for k in yx]$List(F)
      sys    := [findEq(k, x, sys) for k in rest yx]
      l      := [checkSystem(eq, yx, lelt) for eq in sys]$List(F)
      center := rhs eqx
      coerce(mpsode(l0,[compiledFunction(f,sy)$MKL for f in l])$ODE)$AL1

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package EXPRODE ExpressionSpaceODESolver>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}