1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra dhmatrix.spad}
\author{Richard Paul and Timothy Daly}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\mathchardef\bigp="3250
\mathchardef\bigq="3251
\mathchardef\bigslash="232C
\section{Homogeneous Transformations}
The study of robot manipulation is concerned with the relationship between
objects, and between objects and manipulators. In this chapter we will
develop the representation necessary to describe these relationships. Similar
problems of representation have already been solved in the field of computer
graphics, where the relationship between objects must also be described.
Homogeneous transformations are used in this field and in computer vision
[Duda] [Robserts63] [Roberts65]. These transformations were employed by
Denavit to describe linkages [Denavit] and are now used to describe
manipulators [Pieper] [Paul72] [Paul77b].
We will first establish notation for vectors and planes and then introduce
transformations on them. These transformations consist primarily of
translation and rotation. We will then show that these transformations
can also be considered as coordinate frames in which to represent
objects, including the manipulator. The inverse transformation will
then be introduced. A later section describes the general rotation
transformation representing a rotation about a vector. An algorithm is
then described to find the equivalent axis and angle of rotations
represented by any given transformation. A brief section on stretching
and scaling transforms is included together with a section on the
perspective transformation. The chapter concludes with a section on
transformation equations.
\section{Notation}
In describing the relationship between objects we will make use of
point vectors, planes, and coordinate frames. Point vectors are
denoted by lower case, bold face characters. Planes are denoted by
script characters, and coordinate frames by upper case, bold face
characters. For example:
\begin{tabular}{ll}
vectors & {\bf v}, {\bf x1}, {\bf x} \\
planes & $\bigp$, $\bigq$ \\
coordinate frames & {\bf I}, {\bf A}, {\bf CONV}\\
\end{tabular}\\
We will use point vectors, planes, and coordinate frames as variables
which have associated values. For example, a point vector has as value
its three Cartesian coordinate components.
If we wish to describe a point in space, which we will call {\sl p},
with respect to a coordinate frame {\bf E}, we will use a vector which
we will call {\bf v}. We will write this as
$$^E{\bf v}$$
\noindent
The leading superscript describes the defining coordinate frame.
We might also wish to describe this same point, {\sl p}, with respect
to a different coordinate frame, for example {\bf H}, using a vector
{\bf w} as
$$^H{\bf w}$$
\noindent
{\bf v} and {\bf w} are two vectors which probably have different
component values and ${\bf v} \ne {\bf w}$ even though both vectors
describe the same point {\sl p}. The case might also exist of a vector
{\bf a} describing a point 3 inches above any frame
$${^{F^1}}{\bf a}\qquad {^{F^2}}{\bf a}$$
\noindent
In this case the vectors are identical but describe different
points. Frequently, the defining frame will be obvious from the text
and the superscripts will be left off. In many cases the name of the
vector will be the same as the name of the object described, for
example, the tip of a pin might be described by a vector {\bf tip}
with respect to a frame {\bf BASE} as
$${^{BASE}}{\bf tip}$$
\noindent
If it were obvious from the text that we were describing the vector
with respect to {\bf BASE} then we might simply write
$${\bf tip}$$
If we also wish to describe this point with respect to another
coordinate frame say, {\bf HAND}, then we must use another vector to
describe this relationship, for example
$${^{HAND}{\bf tv}}$$
\noindent
${^{HAND}{\bf tv}}$ and {\bf tip} both describe the same feature but
have different values. In order to refer to individual components of
coordinate frames, point vectors, or planes, we add subscripts to
indicate the particular component. For example, the vector
${^{HAND}{\bf tv}}$ has components ${^{HAND}{\bf tv}}_{\bf x}$,
${^{HAND}{\bf tv}}_{\bf y}$, ${^{HAND}{\bf tv}}_{\bf z}$.
\section{Vectors}
The homogeneous coordinate representation of objects in $n$-space
is an $(n + 1)$-space entity such that a particular perspective
projection recreates the $n$-space. This can also be viewed as the
addition of an extra coordinate to each vector, a scale factor, such
that the vector has the same meaning if each component, including the
scale factor, is multiplied by a constant.
A point vector
$${\bf v} = a{\bf i} + b{\bf j} + c{\bf k}\eqno(1.1)$$
\noindent
where {\bf i}, {\bf j}, and {\bf k} are unit vectors along the $x$,
$y$, and $z$ coordinate axes, respectively, is represented in
homogeneous coordinates as a column matrix
$${\bf v} = \left[\matrix{{\bf x}\cr
{\bf y}\cr
{\bf z}\cr
{\bf w}\cr}
\right]\eqno(1.2)$$
\noindent
where
$${{\bf a} = {\bf x}/{\bf w}}$$
$${{\bf b} = {\bf y}/{\bf w}}\eqno(1.3)$$
$${{\bf c} = {\bf z}/{\bf w}}$$
\noindent
Thus the vector $3{\bf i} + 4{\bf j} + 5{\bf k}$ can be represented as
$[3,4,5,1]^{\rm T}$ or as $[6,8,10,2]^{\rm T}$ or again
as $[-30,-40,-50,-10]^{\rm T}$,
etc. The superscript $T$ indicates the transpose of the row vector
into a column vector. The vector at the origin, the null vector, is
represented as $[0,0,0,n]^{\rm T}$ where $n$ is any non-zero scale
factor. The vector $[0,0,0,0]^{\rm T}$ is undefined. Vectors of the form
$[a,b,c,0]^{\rm T}$ represent vectors at infinity and are used to represent
directions; the addition of any other finite vector does not change
their value in any way.
We will also make use of the vector dot and cross products. Given two
vectors
$${\bf a} = a_x{\bf i} + a_y{\bf j} + a_z{\bf k}\eqno(1.4)$$
$${\bf b} = b_x{\bf i} + b_y{\bf j} + b_z{\bf k}$$
\noindent
we define the vector dot product, indicated by ``$\cdot$'' as
$${\bf a} \cdot {\bf b} = {a_x}{b_x} + {a_y}{b_y} + {a_z}{b_z}\eqno(1.5)$$
\noindent
The dot product of two vectors is a scalar. The cross product,
indicated by an ``$\times$'', is another vector perpendicular to the
plane formed by the vectors of the product and is defined by
$${\bf a} \times {\bf b} = ({a_y}{b_z} - {a_z}{b_y}){\bf i} +
({a_z}{b_x} - {a_x}{b_z}){\bf j} +
({a_x}{b_y} - {a_y}{b_x}){\bf k}\eqno(1.6)$$
\noindent
This definition is easily remembered as the expansion of the
determinant
$${\bf a} \times {\bf b} =
\left|\matrix{{\bf i}&{\bf j}&{\bf k}\cr
{a_x}&{a_y}&{a_z}\cr
{b_x}&{b_y}&{b_z}\cr}\right|\eqno(1.7)$$
\section{Planes}
A plane is represented as a row matrix
$$\bigp=[a,b,c,d]\eqno(1.8)$$
\noindent
such that if a point {\bf v} lies in a plane $\bigp$ the matrix
product
$$\bigp{\bf v} = 0\eqno(1.9)$$
\noindent
or in expanded form
$$xa + yb + zc + wd = 0\eqno(1.10)$$
\noindent
If we define a constant
$$m = +\sqrt{a^2 + b^2 + c^2}\eqno(1.11)$$
\noindent
and divide Equation 1.10 by $wm$ we obtain
$${x\over w}{a\over m} + {y\over w}{b\over m} + {z\over w}{c\over m}
= -{d\over m}\eqno(1.12)$$
\noindent
The left hand side of Equation 1.12 is the vector dot product of two
vectors $(x/w){\bf i} + (y/w){\bf j} + (z/w){\bf k}$ and
$(a/m){\bf i} + (b/m){\bf j} + (c/m){\bf k}$ and represents the
directed distance of the point
$(x/w){\bf i} + (y/w){\bf j} + (z/w){\bf k}$ along the vector\\
$(a/m){\bf i} + (b/m){\bf j} + (c/m){\bf k}$. The vector
$(a/m){\bf i} + (b/m){\bf j} + (c/m){\bf k}$ can be interpreted as the
outward pointing normal of a plane situated a distance $-d/m$ from the
origin in the direction of the normal. Thus a plane $\bigp$ parallel
to the $x$,$y$ plane, one unit along the $z$ axis, is represented as
$${\rm {\ \ \ \ \ \ \ \ \ }} \bigp = [0,0,1,-1]\eqno(1.13)$$
$${\rm {or\ as\ \ \ }} \bigp = [0,0,2,-2]\eqno(1.14)$$
$${\rm {\ \ \ \ \ or\ as\ \ \ }} \bigp = [0,0,-100,100]\eqno(1.15)$$
\noindent
A point ${\bf v} = [10,20,1,1]$ should lie in this plane
$$[0,0,-100,100]\left[\matrix{10\cr
20\cr
1\cr
1\cr}
\right]
= 0\eqno(1.16)$$
\noindent
or
$$[0,0,1,-1]\left[\matrix{ -5\cr
-10\cr
-.5\cr
-.5\cr}
\right]
= 0\eqno(1.17)$$
\noindent
The point ${\bf v} = [0,0,2,1]$ lies above the plane
$$[0,0,2,-2]\left[\matrix{0\cr
0\cr
2\cr
1\cr}
\right]
= 2\eqno(1.18)$$
and $\bigp{\bf v}$ is indeed positive, indicating that the point is
outside the plane in the direction of the outward pointing normal. A
point ${\bf v} = [0,0,0,1]$ lies below the plane
$$[0,0,1,-1]\left[\matrix{0\cr
0\cr
0\cr
1\cr}
\right]
= -1\eqno(1.19)$$
\noindent
The plane $[0,0,0,0]$ is undefined.
\section{Transformations}
\noindent
A transformation of the space {\bf H} is a 4x4 matrix and can
represent translation, rotation, stretching, and perspective
transformations. Given a point {\bf u}, its transformation {\bf v} is
represented by the matrix product
$${\bf v} = {\bf H}{\bf u}\eqno(1.20)$$
\noindent
The corresponding plane transformation $\bigp$ to $\bigq$ is
$$\bigq = \bigp{\bf H^{-1}}\eqno(1.21)$$
\noindent
as we requre that the condition
$$\bigq{\bf v} = \bigp{\bf u}\eqno(1.22)$$
\noindent
is invariant under all transformations. To verify this we substitute
from Equations 1.20 and 1.21 into the left hand side of 1.22 and we
obtain on the right hand side ${\bf H^{-1}}{\bf H}$ which is the
identity matrix {\bf I}
$$\bigp{\bf H^{-1}}{\bf H}{\bf u} = \bigp{\bf u}\eqno(1.23)$$
\section{Translation Transformation}
\noindent
The transformation {\bf H} corresponding to a translation by a vector
$a{\bf i} + b{\bf j} + c{\bf k}$ is
$${\bf H} = {\bf Trans(a,b,c)} =
\left[\matrix{1&0&0&a\cr
0&1&0&b\cr
0&0&1&c\cr
0&0&0&1\cr}
\right]\eqno(1.24)$$
\noindent
Given a vector ${\bf u} = [x,y,z,w]^{\rm T}$ the transformed vector {\bf v}
is given by
$${\bf H} = {\bf Trans(a,b,c)} =
\left[\matrix{1&0&0&a\cr
0&1&0&b\cr
0&0&1&c\cr
0&0&0&1\cr}
\right]
\left[\matrix{x\cr
y\cr
z\cr
w\cr}
\right]\eqno(1.25)$$
$${\bf v} = \left[\matrix{x + aw\cr
y + bw\cr
z + cw\cr
w\cr}
\right]
= \left[\matrix{x/w + a\cr
y/w + b\cr
z/w + c\cr
1\cr}
\right]\eqno(1.26)$$
\noindent
The translation may also be interpreted as the addition of the two
vectors $(x/w){\bf i} + (y/w){\bf j} + (z/w){\bf k}$ and
$a{\bf i} + b{\bf j} + c{\bf k}$.
Every element of a transformation matrix may be multiplied by a
non-zero constant without changing the transformation, in the same
manner as points and planes. Consider the vector $2{\bf i} + 3{\bf j}
+ 2{\bf k}$ translated by, or added to\\
4{\bf i} - 3{\bf j} + 7{\bf k}
$$\left[\matrix{6\cr
0\cr
9\cr
1\cr}
\right] =
\left[\matrix{1 & 0 & 0 & 4\cr
0 & 1 & 0 & -3\cr
0 & 0 & 1 & 7\cr
0 & 0 & 0 & 1\cr}
\right]
\left[\matrix{2\cr
3\cr
2\cr
1\cr}
\right]\eqno(1.27)$$
\noindent
If we multiply the transmation matrix elements by, say, -5, and the
vector elements by 2, we obtain
$$\left[\matrix{-60\cr
0\cr
-90\cr
-10\cr}
\right] =
\left[\matrix{-5 & 0 & 0 & -20\cr
0 & -5 & 0 & 15\cr
0 & 0 & -5 & -35\cr
0 & 0 & 0 & -5\cr}
\right]
\left[\matrix{4\cr
6\cr
4\cr
2\cr}
\right]\eqno(1.28)$$
\noindent
which corresponds to the vector $[6,0,9,1]^{\rm T}$ as before. The point
$[2,3,2,1]$ lies in the plane $[1,0,0,-2]$
$$[1,0,0,-2]\left[\matrix{2\cr
3\cr
2\cr
1\cr}
\right] = 0\eqno(1.29)$$
\noindent
The transformed point is, as we have already found, $[6,0,9,1]^{\rm T}$. We
will now compute the transformed plane. The inverse of the transform
is
$$\left[\matrix{1 & 0 & 0 & -4\cr
0 & 1 & 0 & 3\cr
0 & 0 & 1 & -7\cr
0 & 0 & 0 & 1\cr}\right]$$
\noindent
and the transformed plane
$$[1\ 0\ 0\ -6] = [1\ 0\ 0\ -2]\left[\matrix{1 & 0 & 0 & -4\cr
0 & 1 & 0 & 3\cr
0 & 0 & 1 & -7\cr
0 & 0 & 0 & 1\cr}
\right]\eqno(1.30)$$
\noindent
Once again the transformed point lies in the transformed plane
$$[1\ 0\ 0\ -6] \left[\matrix{6\cr
0\cr
9\cr
1\cr}\right] = 0\eqno(1.31)$$
The general translation operation can be represented in Axiom as
<<translate>>=
translate(x,y,z) ==
matrix(_
[[1,0,0,x],_
[0,1,0,y],_
[0,0,1,z],_
[0,0,0,1]])
@
\section{Rotation Transformations}
\noindent
The transformations corresponding to rotations about the $x$, $y$, and
$z$ axes by an angle $\theta$ are
$${\bf Rot(x,\theta)} =
\left[\matrix{1 & 0 & 0 & 0\cr
0 & {cos\ \theta} & {-sin\ \theta} & 0\cr
0 & {sin\ \theta} & {cos\ \theta} & 0\cr
0 & 0 & 0 & 1}\right]
\eqno(1.32)$$
Rotations can be described in Axiom as functions that return
matrices. We can define a function for each of the rotation matrices
that correspond to the rotations about each axis. Note that the
sine and cosine functions in Axiom expect their argument to be in
radians rather than degrees. This conversion is
$$radians = {{degrees * \pi}\over{180}}$$
\noindent
The Axiom code for ${\bf Rot(x,degree)}$ is
<<rotatex>>=
rotatex(degree) ==
angle := degree * pi() / 180::R
cosAngle := cos(angle)
sinAngle := sin(angle)
matrix(_
[[1, 0, 0, 0], _
[0, cosAngle, -sinAngle, 0], _
[0, sinAngle, cosAngle, 0], _
[0, 0, 0, 1]])
@
$${\bf Rot(y,\theta)} =
\left[\matrix{{cos\ \theta} & 0 & {sin\ \theta} & 0\cr
0 & 1 & 0 & 0\cr
{-sin\ \theta} & 0 & {cos\ \theta} & 0\cr
0 & 0 & 0 & 1\cr}\right]
\eqno(1.33)$$
\noindent
The Axiom code for ${\bf Rot(y,degree)}$ is
<<rotatey>>=
rotatey(degree) ==
angle := degree * pi() / 180::R
cosAngle := cos(angle)
sinAngle := sin(angle)
matrix(_
[[ cosAngle, 0, sinAngle, 0], _
[ 0, 1, 0, 0], _
[-sinAngle, 0, cosAngle, 0], _
[ 0, 0, 0, 1]])
@
$${\bf Rot(z,\theta)} =
\left[\matrix{{cos\ \theta} & {-sin\ \theta} & 0 & 0\cr
{sin\ \theta} & {cos\ \theta} & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}\right]
\eqno(1.34)$$
\noindent
And the Axiom code for ${\bf Rot(z,degree)}$ is
<<rotatez>>=
rotatez(degree) ==
angle := degree * pi() / 180::R
cosAngle := cos(angle)
sinAngle := sin(angle)
matrix(_
[[cosAngle, -sinAngle, 0, 0], _
[sinAngle, cosAngle, 0, 0], _
[ 0, 0, 1, 0], _
[ 0, 0, 0, 1]])
@
\noindent
Let us interpret these rotations by means of an example. Given a point
${\bf u} = 7{\bf i} + 3{\bf j} + 2{\bf k}$ what is the effect of
rotating it $90^\circ$ about the ${\bf z}$ axis to ${\bf v}$? The
transform is obtained from Equation 1.34 with $sin\ \theta = 1$ and
$cos\ \theta = 0$.
$$\left[\matrix{-3\cr
7\cr
2\cr
1\cr}
\right] =
\left[\matrix{0 & -1 & 0 & 0\cr
1 & 0 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1\cr}
\right]
\left[\matrix{7\cr
3\cr
2\cr
1\cr}
\right]\eqno(1.35)$$
\noindent
Let us now rotate {\bf v} $90^\circ$ about the $y$ axis to
{\bf w}. The transform is obtained from Equation 1.33 and we have
$$\left[\matrix{2\cr
7\cr
3\cr
1\cr}
\right] =
\left[\matrix{ 0 & 0 & 1 & 0\cr
0 & 1 & 0 & 0\cr
-1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1\cr}
\right]
\left[\matrix{-3\cr
7\cr
2\cr
1\cr}
\right]\eqno(1.36)$$
\noindent
If we combine these two rotations we have
$${\rm \ \ \ \ \ \ \ } {\bf v} = {\bf Rot(z,90)}{\bf u}\eqno(1.37)$$
$${\rm and\ \ \ } {\bf w} = {\bf Rot(y,90)}{\bf v}\eqno(1.38)$$
\noindent
Substituting for {\bf v} from Equation 1.37 into Equation 1.38 we
obtain
$${\bf w} = {\bf Rot(y,90)}\ {\bf Rot(z,90)}\ {\bf u}\eqno(1.39)$$
$${\bf Rot(y,90)}\ {\bf Rot(z,90)} =
\left[\matrix{ 0 & 0 & 1 & 0\cr
0 & 1 & 0 & 0\cr
-1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{0 & -1 & 0 & 0\cr
1 & 0 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.40)$$
$${\bf Rot(y,90)}\ {\bf Rot(z,90)} =
\left[\matrix{0 & 0 & 1 & 0\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.41)$$
\noindent
thus
$${\bf w} = \left[\matrix{2\cr
7\cr
3\cr
1}\right]
= \left[\matrix{0 & 0 & 1 & 0\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}\right]
\left[\matrix{7\cr
3\cr
2\cr
1}\right]\eqno(1.42)$$
\noindent
as we obtained before.
If we reverse the order of rotations and first rotate $90^\circ$ about
the $y$ axis and then $90^\circ$ about the $z$ axis, we obtain a
different position
$${\bf Rot(z,90)}{\bf Rot(y,90)} =
\left[\matrix{0 & -1 & 0 & 0\cr
1 & 0 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{ 0 & 0 & 1 & 0\cr
0 & 1 & 0 & 0\cr
-1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
= \left[\matrix{ 0 & -1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
-1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.43)$$
\noindent
and the point {\bf u} transforms into {\bf w} as
$$\left[\matrix{-3\cr
2\cr
-7\cr
1}
\right]
= \left[\matrix{ 0 & -1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
-1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{7\cr
3\cr
2\cr
1}
\right]\eqno(1.44)$$
\noindent
We should expect this, as matrix multiplication is noncommutative.
$${\bf A}{\bf B} \ne {\bf B}{\bf A}\eqno(1.45)$$
We will now combine the original rotation with a translation
$4{\bf i}-3{\bf j}+7{\bf k}$. We obtain the translation from Equation
1.27 and the rotation from Equation 1.41. The matrix expression is
$${\bf Trans(4,-3,7)}{\bf Rot(y,90)}{\bf Rot(z,90)}
= \left[\matrix{1 & 0 & 0 & 4\cr
0 & 1 & 0 & -3\cr
0 & 0 & 1 & 7\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{0 & 0 & 1 & 0\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
= \left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & -3\cr
0 & 1 & 0 & 7\cr
0 & 0 & 0 & 1}
\right]\eqno(1.46)$$
\noindent
and our point ${\bf w} = 7{\bf i}+3{\bf j}+2{\bf k}$ transforms into
{\bf x} as
$$\left[\matrix{ 6\cr
4\cr
10\cr
1}
\right]
= \left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & -3\cr
0 & 1 & 0 & 7\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{7\cr
3\cr
2\cr
1}
\right]\eqno(1.47)$$
\section{Coordinate Frames}
\noindent
We can interpret the elements of the homogeneous transformation as
four vectors describing a second coordinate frame. The vector
$[0,0,0,1]^{\rm T}$ lies at the origin of the second coordinate frame. Its
transformation corresponds to the right hand column of the
transformation matrix. Consider the transform in Equation 1.47
$$\left[\matrix{ 4\cr
-3\cr
7\cr
1}
\right]
= \left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & -3\cr
0 & 1 & 0 & 7\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{0\cr
0\cr
0\cr
1}
\right]\eqno(1.48)$$
\noindent
The transform of the null vector is $[4,-3,7,1]^{\rm T}$, the right
hand column. If we transform vectors corresponding to unit vectors
along the $x$, $y$, and $z$ axes, we obtain $[4,-2,7,1]^{\rm T}$,
$[4,-3,8,1]^{\rm T}$, and $[5,-3,7,1]^{\rm T}$, respectively. Those
four vectors form a coordinate frame.
The direction of these unit vectors is formed by subtracting the
vector representing the origin of this coordinate frame and extending
the vectors to infinity by reducing their scale factors to zero. The
direction of the $x$, $y$, and $z$ axes of this frame are
$[0,1,0,0]^{\rm T}$, $[0,0,1,0]^{\rm T}$, and $[1,0,0,0]^{\rm T}$,
respectively. These direction vectors correspond to the first three
columns of the transformation matrix. The transformation matrix thus
describes the three axis directions and the position of the origin of
a coordinate frame rotated and translated away from the reference
coordinate frame. When a vector is transformed, as in Equation 1.47,
the original vector can be considered as a vector described in the
coordinate frame. The transformed vector is the same vector described
with respect to the reference coordinate frame.
\section{Relative Transformations}
\noindent
The rotations and translations we have been describing have all been
made with respect to the fixed reference coordinate frame. Thus, in
the example given,
$${\bf Trans(4,-3,7)}{\bf Rot(y,90)}{\bf Rot(z,90)}
= \left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & -3\cr
0 & 1 & 0 & 7\cr
0 & 0 & 0 & 1}
\right]\eqno(1.49)$$
\noindent
the frame is first rotated around the reference $z$ axis by
$90^\circ$, then rotated $90^\circ$ around the reference $y$ axis, and
finally translated by $4{\bf i}-3{\bf j}+7{\bf k}$. We may also
interpret the operation in the reverse order, from left to right, as
follows: the object is first translated by
$4{\bf i}-3{\bf j}+7{\bf k}$; it is then rotated $90^\circ$ around the
current frames axes, which in this case are the same as the reference
axes; it is then rotated $90^\circ$ about the newly rotated (current)
frames axes.
In general, if we postmultiply a transform representing a frame by a
second transformation describing a rotation and/or translation, we
make that translation and/or rotation with respect to the frame axes
described by the first transformation. If we premultiply the frame
transformation by a transformation representing a translation and/or
rotation, then that translation and/or rotation is made with respect to
the base reference coordinate frame. Thus, given a frame {\bf C} and a
transformation {\bf T}, corresponding to a rotation of $90^\circ$
about the $z$ axis, and a translation of 10 units in the $x$
direction, we obtain a new position {\bf X} when the change is made in
the base coordinates ${\bf X} = {\bf T} {\bf C}$
$$\left[\matrix{0 & 0 & 1 & 0\cr
1 & 0 & 0 & 20\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
= \left[\matrix{0 & -1 & 0 & 10\cr
1 & 0 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{1 & 0 & 0 & 20\cr
0 & 0 & -1 & 10\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.50)$$
\noindent
and a new position {\bf Y} when the change is made relative to the
frame axes as ${\bf Y} = {\bf C} {\bf T}$
$$\left[\matrix{0 & -1 & 0 & 30\cr
0 & 0 & -1 & 10\cr
1 & 0 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
= \left[\matrix{1 & 0 & 0 & 20\cr
0 & 0 & -1 & 10\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{0 & -1 & 0 & 10\cr
1 & 0 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.51)$$
\section{Objects}
\noindent
Transformations are used to describe the position and orientation of
objects. An object is described by six points with respect to a
coordinate frame fixed in the object.
If we rotate the object $90^\circ$ about the $z$ axis and then
$90^\circ$ about the $y$ axis, followed by a translation of four units
in the $x$ direction, we can describe the transformation as
$${\bf Trans(4,0,0)}{\bf Rot(y,90)}{\bf Rot(z,90)} =
\left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.52)$$
\noindent
The transformation matrix represents the operation of rotation and
translation on a coordinate frame originally aligned with the
reference coordinate frame. We may transform the six points of the
object as
$$\left[\matrix{4 & 4 & 6 & 6 & 4 & 4\cr
1 & -1 & -1 & 1 & 1 & -1\cr
0 & 0 & 0 & 0 & 4 & 4\cr
1 & 1 & 1 & 1 & 1 & 1}
\right]
= \left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{1 & -1 & -1 & 1 & 1 & -1\cr
0 & 0 & 0 & 0 & 4 & 4\cr
0 & 0 & 2 & 2 & 0 & 0\cr
1 & 1 & 1 & 1 & 1 & 1}
\right]\eqno(1.53)$$
It can be seen that the object described bears the same fixed
relationship to its coordinate frame, whose position and orientation
are described by the transformation. Given an object described by a
reference coordinate frame, and a transformation representing the
position and orientation of the object's axes, the object can be
simply reconstructed, without the necessity of transforming all the
points, by noting the direction and orientation of key features with
respect to the describing frame's coordinate axes. By drawing the
transformed coordinate frame, the object can be related to the new
axis directions.
\section{Inverse Transformations}
\noindent
We are now in a position to develop the inverse transformation as the
transform which carries the transformed coordinate frame back to the
original frame. This is simply the description of the reference
coordinate frame with respect to the transformed frame. Suppose the
direction of the reference frame $x$ axis is $[0,0,1,0]^{\rm T}$ with
respect to the transformed frame. The $y$ and $z$ axes are
$[1,0,0,0]^{\rm T}$ and $[0,1,0,0]^{\rm T}$, respectively. The
location of the origin is $[0,0,-4,1]^{\rm T}$ with respect to the
transformed frame and thus the inverse transformation is
$${\bf T^{-1}} = \left[\matrix{0 & 1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
1 & 0 & 0 & -4\cr
0 & 0 & 0 & 1}
\right]\eqno(1.54)$$
\noindent
That this is indeed the tranform inverse is easily verifyed by
multiplying it by the transform {\bf T} to obtain the identity
transform
$$\left[\matrix{1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]
= \left[\matrix{0 & 1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
1 & 0 & 0 & -4\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{0 & 0 & 1 & 4\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.55)$$
\noindent
In general, given a transform with elements
$${\bf T} = \left[\matrix{n_x & o_x & a_x & p_x\cr
n_y & o_y & a_y & p_y\cr
n_z & o_z & a_z & p_z\cr
0 & 0 & 0 & 1}
\right]\eqno(1.56)$$
\noindent
then the inverse is
$${\bf T^{-1}} = \left[\matrix{n_x & n_y & n_z & -{\bf p} \cdot {\bf n}\cr
o_x & o_y & o_z & -{\bf p} \cdot {\bf o}\cr
a_x & a_y & a_z & -{\bf p} \cdot {\bf a}\cr
0 & 0 & 0 & 1}
\right]\eqno(1.57)$$
\noindent
where {\bf p}, {\bf n}, {\bf o}, and {\bf a} are the four column
vectors and ``$\cdot$'' represents the vector dot product. This result
is easily verified by postmultiplying Equation 1.56 by Equation 1.57.
\section{General Rotation Transformation}
\noindent
We state the rotation transformations for rotations about the $x$,
$y$, and $z$ axes (Equations 1.32, 1.33 and 1.34). These
transformations have a simple geometric interpretation. For example,
in the case of a rotation about the $z$ axis, the column representing
the $z$ axis will remain constant, while the column elements
representing the $x$ and $y$ axes will vary.
\noindent
We will now develop the transformation matrix representing a rotation
around an arbitrary vector {\bf k} located at the origin. In order to
do this we will imagine that {\bf k} is the $z$ axis unit vector of a
coordinate frame {\bf C}
$${\bf C} = \left[\matrix{n_x & o_x & a_x & p_x\cr
n_y & o_y & a_y & p_y\cr
n_z & o_z & a_z & p_z\cr
0 & 0 & 0 & 1}
\right]\eqno(1.58)$$
$${\bf k} = a_x{\bf i} + a_y{\bf j} + a_z{\bf k}\eqno(1.59)$$
\noindent
Rotating around the vector {\bf k} is then equivalent to rotating
around the $z$ axis of the frame {\bf C}.
$${\bf Rot(k,\theta)} = {\bf Rot(^C{\bf z},\theta)}\eqno(1.60)$$
\noindent
If we are given a frame {\bf T} described with respect to the
reference coordinate frame, we can find a frame {\bf X} which
describes the same frame with respect to frame {\bf C} as
$${\bf T} = {\bf C} {\bf X}\eqno(1.61)$$
\noindent
where {\bf X} describes the position of {\bf T} with respect to frame
{\bf C}. Solving for {\bf X} we obtain
$${\bf X} = {\bf C^{-1}} {\bf T}\eqno(1.62)$$
\noindent
Rotation {\bf T} around {\bf k} is equivalent to rotating {\bf X}
around the $z$ axis of frame {\bf C}
$${\bf Rot(k,\theta)} {\bf T}
= {\bf C} {\bf Rot(z,\theta)} {\bf X}\eqno(1.63)$$
$${\bf Rot(k,\theta)} {\bf T}
= {\bf C} {\bf Rot(z,\theta)} {\bf C^{-1}} {\bf T}.\eqno(1.64)$$
\noindent
Thus
$${\bf Rot(k,\theta)}
= {\bf C} {\bf Rot(z,\theta)} {\bf C^{-1}}\eqno(1.65)$$
\noindent
However, we have only {\bf k}, the $z$ axis of the frame {\bf C}. By
expanding equation 1.65 we will discover that
${\bf C} {\bf Rot(z,\theta)} {\bf C^{-1}}$ is a function of {\bf k}
only.
Multiplying ${\bf Rot(z,\theta)}$ on the right by ${\bf C^{-1}}$ we
obtain
$${\bf Rot(z,\theta)} {\bf C^{-1}}
= \left[\matrix{cos \theta & -sin \theta & 0 & 0\cr
sin \theta & cos \theta & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{n_x & n_y & n_z & 0\cr
o_x & o_x & o_z & 0\cr
a_x & a_y & a_z & 0\cr
0 & 0 & 0 & 1}
\right]$$
$$ = \left[\matrix{n_x cos \theta - o_x sin \theta &
n_y cos \theta - o_y sin \theta &
n_z cos \theta - o_z sin \theta & 0\cr
n_x sin \theta + o_x cos \theta &
n_y sin \theta + o_y cos \theta &
n_z sin \theta + o_z cos \theta & 0\cr
a_x & a_y & a_z & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.66)$$
\noindent
premultiplying by
$${\bf C} = \left[\matrix{n_x & o_x & a_x & 0\cr
n_y & o_y & a_y & 0\cr
n_z & o_z & a_z & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.67)$$
\noindent
we obtain ${\bf C} {\bf Rot(z,\theta)} {\bf C^{-1}}$
$$\left[\matrix{
n_x n_x cos \theta - n_x o_x sin \theta + n_x o_x sin \theta + o_x o_x
cos \theta + a_x a_x\cr
n_y n_x cos \theta - n_y o_x sin \theta + n_x o_y sin \theta + o_x o_y
cos \theta + a_y a_x\cr
n_z n_x cos \theta - n_z o_x sin \theta + n_x o_z sin \theta + o_x o_z
cos \theta + a_z a_x\cr
0}
\right.$$
$$\matrix{
n_x n_y cos \theta - n_x o_y sin \theta + n_y o_x sin \theta + o_y o_x
cos \theta + a_x a_y\cr
n_y n_y cos \theta - n_y o_y sin \theta + n_y o_y sin \theta + o_y o_y
cos \theta + a_y a_y\cr
n_z n_y cos \theta - n_z o_y sin \theta + n_y o_z sin \theta + o_y o_z
cos \theta + a_z a_y\cr
0}\eqno(1.68)$$
$$\left.\matrix{
n_x n_z cos \theta - n_x o_z sin \theta + n_z o_x sin \theta + o_z o_x
cos \theta + a_x a_x & 0\cr
n_y n_z cos \theta - n_y o_z sin \theta + n_z o_y sin \theta + o_z o_y
cos \theta + a_y a_z & 0\cr
n_z n_z cos \theta - n_z o_z sin \theta + n_z o_z sin \theta + o_z o_z
cos \theta + a_z a_z & 0\cr
0 & 1}
\right]$$
\noindent
Simplifying, using the following relationships:\\
the dot product of any row or column of {\bf C} with any other row or
column is zero, as the vectors are orthogonal;\\
the dot product of any row or column of {\bf C} with itself is {\bf 1}
as the vectors are of unit magnitude;\\
the $z$ unit vector is the vector cross product of the $x$ and $y$
vectors or
$${\bf a} = {\bf n} \times {\bf o}\eqno(1.69)$$
\noindent
which has components
$$a_x = n_y o_z - n_z o_y$$
$$a_y = n_z o_x - n_x o_z$$
$$a_z = n_x o_y - n_y o_x$$
\noindent
the versine, abbreviated ${\bf vers \ \theta}$, is defined as
${\bf vers \ \theta} = (1 - cos \ \theta)$,
${k_x = a_x}$, ${k_y = a_y}$ and ${k_z = a_z}$.
We obtain ${\bf Rot(k,\theta)} =$
$$\left[\matrix{
k_x k_x vers \theta + cos \theta &
k_y k_x vers \theta - k_z sin \theta &
k_z k_x vers \theta + k_y sin \theta &
0\cr
k_x k_y vers \theta + k_z sin \theta &
k_y k_y vers \theta + cos \theta &
k_z k_y vers \theta - k_x sin \theta &
0\cr
k_x k_z vers \theta - k_y sin \theta &
k_y k_z vers \theta + k_x sin \theta &
k_z k_z vers \theta + cos \theta &
0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.70)$$
\noindent
This is an important result and should be thoroughly understood before
proceeding further.
From this general rotation transformation we can obtain each of the
elementary rotation transforms. For example ${\bf Rot(x,\theta)}$ is
${\bf Rot(k,\theta)}$ where ${k_x = 1}$, ${k_y = 0}$, and
${k_z = 0}$. Substituting these values of {\bf k} into Equation 1.70
we obtain
$${\bf Rot(x,\theta)} =
\left[\matrix{1 & 0 & 0 & 0\cr
0 & cos \theta & -sin \theta & 0\cr
0 & sin \theta & cos \theta & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.71)$$
\noindent
as before.
\section{Equivalent Angle and Axis of Rotation}
\noindent
Given any arbitrary rotational transformation, we can use Equation
1.70 to obtain an axis about which an equivalent rotation $\theta$ is
made as follows. Given a rotational transformation {\bf R}
$${\bf R} =
\left[\matrix{n_x & o_x & a_x & 0\cr
n_y & o_y & a_y & 0\cr
n_z & o_z & a_z & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.72)$$
\noindent
we may equate {\bf R} to {\bf Rot(k,$\theta$)}
$$\left[\matrix{n_x & o_x & a_x & 0\cr
n_y & o_y & a_y & 0\cr
n_z & o_z & a_z & 0\cr
0 & 0 & 0 & 1}
\right] = $$
$$\left[\matrix{
k_x k_x vers \theta + cos \theta &
k_y k_x vers \theta - k_z sin \theta &
k_z k_x vers \theta + k_y sin \theta &
0\cr
k_x k_y vers \theta + k_z sin \theta &
k_y k_y vers \theta + cos \theta &
k_z k_y vers \theta - k_x sin \theta &
0\cr
k_x k_z vers \theta - k_y sin \theta &
k_y k_z vers \theta + k_x sin \theta &
k_z k_z vers \theta + cos \theta &
0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.73)$$
\noindent
Summing the diagonal terms of Equation 1.73 we obtain
$$n_x+o_y+a_z+1=
k_x^2 vers \theta + cos \theta +
k_y^2 vers \theta + cos \theta +
k_z^2 vers \theta + cos \theta + 1\eqno(1.74)$$
$$\left.\matrix{ n_x+o_y+a_z & = &
(k_x^2+k_y^2+k_z^2)vers \theta + 3 cos \theta\cr
& = & 1 + 2 cos \theta}
\right.\eqno(1.75)$$
\noindent
and the cosine of the angle of rotation is
$$cos \theta = {1\over 2}(n_x+o_y+a_z-1)\eqno(1.76)$$
\noindent
Differencing pairs of off-diagonal terms in Equation 1.73 we obtain
$$o_z - a_y = 2 k_x sin \theta\eqno(1.77)$$
$$a_x - n_z = 2 k_y sin \theta\eqno(1.78)$$
$$n_y - o_x = 2 k_z sin \theta\eqno(1.79)$$
\noindent
Squaring and adding Equations 1.77-1.79 we obtain an expression for
$sin \theta$
$$(o_z - a_y)^2 + (a_x - n_z)^2 + (n_y - o_x)^2
= 4 sin^2 \theta\eqno(1.80)$$
\noindent
and the sine of the angle of rotation is
$$sin \ \theta =
\pm {1\over 2} \sqrt{(o_z - a_y)^2 + (a_x - n_z)^2 + (n_y - o_x)^2}
\eqno(1.81)$$
\noindent
We may define the rotation to be positive about the vector {\bf k}
such that $0 \leq \theta \leq 180^\circ$. In this case the $+$ sign
is appropriate in Equation 1.81 and thus the angle of rotation
$\theta$ is uniquely defined as
$$tan \ \theta =
{\sqrt{(o_z - a_y)^2 + (a_x - n_z)^2 + (n_y - o_x)^2}
\over
{(n_x + o_y + a_z -1)}}\eqno(1.82)$$
\noindent
The components of {\bf k} may be obtained from Equations 1.77-1.79 as
$$k_x = {{o_z - a_y}\over{2 sin \theta}}\eqno(1.83)$$
$$k_y = {{a_x - n_z}\over{2 sin \theta}}\eqno(1.84)$$
$$k_z = {{n_y - o_x}\over{2 sin \theta}}\eqno(1.85)$$
When the angle of rotation is very small, the axis of rotation is
physically not well defined due to the small magnitude of both
numerator and denominator in Equations 1.83-1.85. If the resulting
angle is small, the vector {\bf k} should be renormalized to ensure
that $\left|{\bf k}\right| = 1$. When the angle of rotation approaches
$180^\circ$ the vector {\bf k} is once again poorly defined by
Equation 1.83-1.85 as the magnitude of the sine is again
decreasing. The axis of rotation is, however, physically well defined
in this case. When $\theta < 150^\circ$, the denominator of
Equations 1.83-1.85 is less than 1. As the angle increases to
$180^\circ$ the rapidly decreasing magnitude of both numerator and
denominator leads to considerable inaccuracies in the determination of
{\bf k}. At $\theta = 180^\circ$, Equations 1.83-1.85 are of the form
$0/0$, yielding no information at all about a physically well defined
vector {\bf k}. If the angle of rotation is greater than $90^\circ$,
then we must follow a different approach in determining {\bf
k}. Equating the diagonal elements of Equation 1.73 we obtain
$$k_x^2 vers \theta + cos \theta = n_x\eqno(1.86)$$
$$k_y^2 vers \theta + cos \theta = o_y\eqno(1.87)$$
$$k_z^2 vers \theta + cos \theta = a_z\eqno(1.88)$$
Substituting for $cos \theta$ and $vers \theta$ from Equation 1.76 and
solving for the elements of {\bf k} we obtain further
$$k_x =
\pm \sqrt{{{n_x - cos \theta}\over{1 - cos \theta}}}\eqno(1.89)$$
$$k_y =
\pm \sqrt{{{o_y - cos \theta}\over{1 - cos \theta}}}\eqno(1.90)$$
$$k_z =
\pm \sqrt{{{a_z - cos \theta}\over{1 - cos \theta}}}\eqno(1.91)$$
\noindent
The largest component of {\bf k} defined by Equations 1.89-1.91
corresponds to the most positive component of $n_x$, $o_y$, and
$a_z$. For this largest element, the sign of the radical can be
obtained from Equations 1.77-1.79. As the sine of the angle of
rotation $\theta$ must be positive, then the sign of the component of
{\bf k} defined by Equations 1.77-1.79 must be the same as the sign of
the left hand side of these equations. Thus we may combine Equations
1.89-1.91 with the information contained in Equations 1.77-1.79 as
follows
$$k_x = sgn(o_z-a_y)\sqrt{{{(n_x-cos \theta)}
\over
{1-cos \theta}}}\eqno(1.92)$$
$$k_y = sgn(a_x-n_z)\sqrt{{{(o_y-cos \theta)}
\over
{1-cos \theta}}}\eqno(1.93)$$
$$k_z = sgn(n_y-o_x)\sqrt{{{(a_z-cos \theta)}
\over
{1-cos \theta}}}\eqno(1.94)$$
\noindent
where $sgn(e) = +1$ if $e \ge 0$ and $sgn(e) = -1$ if $e \le 0$.
Only the largest element of {\bf k} is determined from Equations
1.92-1.94, corresponding to the most positive element of $n_x$, $o_y$,
and $a_z$. The remaining elements are more accurately determined by
the following equations formed by summing pairs of off-diagonal
elements of Equation 1.73
$$n_y + o_x = 2 k_x k_y vers \theta\eqno(1.95)$$
$$o_z + a_y = 2 k_y k_z vers \theta\eqno(1.96)$$
$$n_z + a_x = 2 k_z k_x vers \theta\eqno(1.97)$$
\noindent
If $k_x$ is largest then
$$k_y = {{n_y + o_x}\over{2 k_x vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.95}\eqno(1.98)$$
$$k_z = {{a_x + n_z}\over{2 k_x vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.97}\eqno(1.99)$$
\noindent
If $k_y$ is largest then
$$k_x = {{n_y + o_x}\over{2 k_y vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.95}\eqno(1.100)$$
$$k_z = {{o_z + a_y}\over{2 k_y vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.96}\eqno(1.101)$$
\noindent
If $k_z$ is largest then
$$k_x = {{a_x + n_z}\over{2 k_z vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.97}\eqno(1.102)$$
$$k_y = {{o_z + a_y}\over{2 k_z vers \theta}}
{\rm \ \ \ \ \ from \ Equation \ 1.96}\eqno(1.103)$$
\section{Example 1.1}
\noindent
Determine the equivalent axis and angle of rotation for the matrix
given in Equations 1.41
$${\bf Rot(y,90)}{\bf Rot(z,90)}
= \left[\matrix{0 & 0 & 1 & 0\cr
1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.104)$$
\noindent
We first determine ${\bf cos \ \theta}$ from Equation 1.76
$$cos \theta = {{1}\over{2}}(0 + 0 + 0 - 1)
= -{{1}\over{2}}\eqno(1.105)$$
\noindent
and $sin \ \theta$ from Equation 1.81
$$sin \theta = {{1}\over{2}}\sqrt{(1-0)^2+(1-0)^2+(1-0)^2}
= {{\sqrt3}\over{2}}\eqno(1.106)$$
\noindent
Thus
$$\theta = tan^{-1}\left({{\sqrt3}\over{2}}
\raise15pt\hbox{$\bigslash$}
{{-1}\over{2}}\right)
= 120^\circ\eqno(1.107)$$
\noindent
As $\theta > 90$, we determine the largest component of {\bf k}
corresponding to the largest element on the diagonal. As all diagonal
elements are equal in this example we may pick any one. We will pick
$k_x$ given by Equation 1.92
$$k_x = +\sqrt{(0 + {{1}\over{2}})
\raise15pt\hbox{$\bigslash$}
(1 + {{1}\over{2}})}
= {{1}\over{\sqrt{3}}}\eqno(1.108)$$
\noindent
As we have determined $k_x$ we may now determine $k_y$ and $k_z$ from
Equations 1.98 and 1.99, respectively
$$k_y = {{1+0}\over{\sqrt{3}}} = {{1}\over{\sqrt{3}}}\eqno(1.109)$$
$$k_z = {{1+0}\over{\sqrt{3}}} = {{1}\over{\sqrt{3}}}\eqno(1.110)$$
\noindent
In summary, then
$${\bf Rot(y,90)}{\bf Rot(z,90)} = {\bf Rot(k,120)}\eqno(1.111)$$
\noindent
where
$${\bf k} = {{1}\over{\sqrt{3}}} {\bf i}
+ {{1}\over{\sqrt{3}}} {\bf j}
+ {{1}\over{\sqrt{3}}} {\bf k}\eqno(1.112)$$
Any combination of rotations is always equivalent to a single rotation
about some axis {\bf k} by an angle $\theta$, an important result
that we will make use of later.
\section{Stretching and Scaling}
A transform {\bf T}
$${\bf T} = \left[\matrix{a & 0 & 0 & 0\cr
0 & b & 0 & 0\cr
0 & 0 & c & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.113)$$
\noindent
will stretch objects uniformly along the $x$ axis by a factor $a$,
along the $y$ axis by a factor $b$, and along the $z$ axis by a factor
$c$. Consider any point on an object $x{\bf i}+y{\bf j}+z{\bf k}$; its
tranform is
$$\left[\matrix{ax\cr
by\cr
cz\cr
1}
\right]
= \left[\matrix{a & 0 & 0 & 0\cr
0 & b & 0 & 0\cr
0 & 0 & c & 0\cr
0 & 0 & 0 & 1}
\right]
\left[\matrix{x\cr
y\cr
z\cr
1}
\right]\eqno(1.114)$$
\noindent
indicating stretching as stated. Thus a cube could be transformed into
a rectangular parallelepiped by such a transform.
The Axiom code to perform this scale change is:
<<scale>>=
scale(scalex, scaley, scalez) ==
matrix(_
[[scalex, 0 ,0 , 0], _
[0 , scaley ,0 , 0], _
[0 , 0, scalez, 0], _
[0 , 0, 0 , 1]])
@
\noindent
The transform {\bf S} where
$${\bf S} = \left[\matrix{s & 0 & 0 & 0\cr
0 & s & 0 & 0\cr
0 & 0 & s & 0\cr
0 & 0 & 0 & 1}
\right]\eqno(1.115)$$
\noindent
will scale any object by the factor $s$.
\section{Perspective Transformations}
\noindent
Consider the image formed of an object by a simple lens.
The axis of the lens is along the $y$ axis for convenience. An object
point $x$,$y$,$z$ is imaged at $x^\prime$,$y^\prime$,$z^\prime$ if the
lens has a focal length $f$ ($f$ is considered positive). $y^\prime$
represents the image distance and varies with object distance $y$. If
we plot points on a plane perpendicular to the $y$ axis located at
$y^\prime$ (the film plane in a camera), then a perspective image is
formed.
We will first obtain values of $x^\prime$, $y^\prime$, and $z^\prime$,
then introduce a perspective transformation and show that the same
values are obtained.
Based on the fact that a ray passing through the center of the lens is
undeviated we may write
$${\rm \ \ \ \ \ }{{z}\over{y}} = {{z^\prime}\over{y^\prime}}\eqno(1.116)$$
$${\rm and\ } {{x}\over{y}} = {{x^\prime}\over{y^\prime}}\eqno(1.117)$$
Based on the additional fact that a ray parallel to the lens axis
passes through the focal point $f$, we may write
$${\rm \ \ \ \ \ }{{z}\over{f}}
= {{z^\prime}\over{y^\prime + f}}\eqno(1.118)$$
$${\rm and\ } {{x}\over{f}}
= {{x^\prime}\over{y^\prime + f}}\eqno(1.119)$$
\noindent
Notice that $x^\prime$, $y^\prime$, and $z^\prime$ are negative and
that $f$ is positive. Eliminating $y^\prime$ between Equations 1.116
and 1.118 we obtain
$${{z}\over{f}}
= {{z^\prime}\over{({{z^\prime y}\over{z}} + f)}}\eqno(1.120)$$
\noindent
and solving for $z^\prime$ we obtain the result
$$z^\prime = {{z}\over{(1 - {{y}\over{f}})}}\eqno(1.121)$$
\noindent
Working with Equations 1.117 and 1.119 we can similarly obtain
$$x^\prime = {{x}\over{(1 - {{y}\over{f}})}}\eqno(1.122)$$
\noindent
In order to obtain the image distance $y^\prime$ we rewrite Equations
1.116 and 1.118 as
$${{z}\over{z^\prime}} = {{y}\over{y^\prime}}\eqno(1.123)$$
\noindent
and
$${{z}\over{z^\prime}} = {{f}\over{y^\prime + f}}\eqno(1.124)$$
\noindent
thus
$${{y}\over{y^\prime}} = {{f}\over{y^\prime + f}}\eqno(1.125)$$
\noindent
and solving for $y^\prime$ we obtain the result
$$y^\prime = {{y}\over{(1-{{y}\over{f}})}}\eqno(1.126)$$
The homogeneous transformation {\bf P} which produces the same result
is
$${\bf P} = \left[\matrix{1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & -{{1}\over{f}} & 0 & 1}
\right]\eqno(1.127)$$
\noindent
as any point $x{\bf i}+y{\bf j}+z{\bf k}$ transforms as
$$\left[\matrix{x\cr
y\cr
z\cr
{1 - {{{y}\over{f}}}}}
\right]
= \left[\matrix{1 & 0 & 0 & 0\cr
0 & 1 & 0 & 0\cr
0 & 0 & 1 & 0\cr
0 & -{{1}\over{f}} & 0 & 1}
\right]
\left[\matrix{x\cr
y\cr
z\cr
1}
\right]\eqno(1.128)$$
\noindent
The image point $x^\prime$, $y^\prime$,, $z^\prime$, obtained by
dividing through by the weight factor $(1 - {{y}\over{f}})$, is
$${{x}\over{(1 - {{y}\over{f}})}}{\bf i} +
{{y}\over{(1 - {{y}\over{f}})}}{\bf j} +
{{z}\over{(1 - {{y}\over{f}})}}{\bf k} \eqno(1.129)$$
\noindent
This is the same result that we obtained above.
A transform similar to {\bf P} but with $-{{1}\over{f}}$ at the bottom
of the first column produces a perspective transformation along the
$x$ axis. If the $-{{1}\over{f}}$ term is in the third column then the
projection is along the $z$ axis.
\section{Transform Equations}
\noindent We will frequently be required to deal with transform
equations in which a coordinate frame is described in two or more
ways. A manipulator is positioned with respect to base coordinates by
a transform {\bf Z}. The end of the manipulator is described by a
transform $^Z{\bf T}_6$, and the end effector is described by
$^{T_6}{\bf E}$. An object is positioned with respect to base
coordinates by a transform {\bf B}, and finally the manipulator end
effector is positioned with respect to the object by $^B{\bf G}$. We
have two descriptions of the position of the end effector, one with
respect to the object and one with respect to the manipulator. As both
positions are the same, we may equate the two descriptions
$${\bf Z}{^Z{\bf T}_6}{^{T_6}{\bf E}}
= {\bf B}{^B{\bf G}}\eqno(1.130)$$
If we wish to solve Equation 1.130 for the manipulator transform
${\bf T}_6$ we must premultiply Equation 1.130 by ${\bf Z}^{-1}$ and
postmultiply by ${\bf E}^{-1}$ to obtain
$${\bf T}_6
= {{\bf Z}^{-1}} {\bf B} {\bf G} {{\bf E}^{-1}}\eqno(1.131)$$
\noindent
As a further example, consider that the position of the object {\bf B}
is unknown, but that the manipulator is moved such that the end
effector is positioned over the object correctly. We may then solve
for {\bf B} from Equation 1.130 by postmultiplying by ${\bf G}^{-1}$.
$${\bf B} = {\bf Z}{{\bf T}_6}{\bf E}{{\bf G}^{-1}}\eqno(1.133)$$
\section{Summary}
\noindent
Homogeneous transformations may be readily used to describe the
positions and orientations of coordinate frames in space. If a
coordinate frame is embedded in an object then the position and
orientation of the object are also readily described.
The description of object A in terms of object B by means of a
homogeneous transformation may be inverted to obtain the description
of object B in terms of object A. This is not a property of a simple
vector description of the relative displacement of one object with
respect to another.
Transformations may be interpreted as a product of rotation and
translation transformations. If they are intrepreted from left to
right, then the rotations and translations are in terms of the
currently defined coordinate frame. If they are interpreted from right
to left, then the rotations and translations are described with
respect to the reference coordinate frame.
Homogeneous transformations describe coordinate frames in terms of
rectangular components, which are the sines and cosines of
angles. This description may be related to rotations in which case the
description is in terms of a vector and angle of rotation.
\section{Denavit-Hartenberg Matrices}
<<domain DHMATRIX DenavitHartenbergMatrix>>=
--Copyright The Numerical Algorithms Group Limited 1991.
++ 4x4 Matrices for coordinate transformations
++ Author: Timothy Daly
++ Date Created: June 26, 1991
++ Date Last Updated: 26 June 1991
++ Description:
++ This package contains functions to create 4x4 matrices
++ useful for rotating and transforming coordinate systems.
++ These matrices are useful for graphics and robotics.
++ (Reference: Robot Manipulators Richard Paul MIT Press 1981)
)abbrev domain DHMATRIX DenavitHartenbergMatrix
--% DHMatrix
DenavitHartenbergMatrix(R): Exports == Implementation where
++ A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:
++ \spad{nx ox ax px}
++ \spad{ny oy ay py}
++ \spad{nz oz az pz}
++ \spad{0 0 0 1}
++ (n, o, and a are the direction cosines)
R : Join(Field, TranscendentalFunctionCategory)
-- for the implementation of dhmatrix
minrow ==> 1
mincolumn ==> 1
--
nx ==> x(1,1)::R
ny ==> x(2,1)::R
nz ==> x(3,1)::R
ox ==> x(1,2)::R
oy ==> x(2,2)::R
oz ==> x(3,2)::R
ax ==> x(1,3)::R
ay ==> x(2,3)::R
az ==> x(3,3)::R
px ==> x(1,4)::R
py ==> x(2,4)::R
pz ==> x(3,4)::R
row ==> Vector(R)
col ==> Vector(R)
radians ==> pi()/180
Exports ==> MatrixCategory(R,row,col) with
"*": (%, Point R) -> Point R
++ t*p applies the dhmatrix t to point p
identity: () -> %
++ identity() create the identity dhmatrix
rotatex: R -> %
++ rotatex(r) returns a dhmatrix for rotation about axis X for r degrees
rotatey: R -> %
++ rotatey(r) returns a dhmatrix for rotation about axis Y for r degrees
rotatez: R -> %
++ rotatez(r) returns a dhmatrix for rotation about axis Z for r degrees
scale: (R,R,R) -> %
++ scale(sx,sy,sz) returns a dhmatrix for scaling in the X, Y and Z
++ directions
translate: (R,R,R) -> %
++ translate(X,Y,Z) returns a dhmatrix for translation by X, Y, and Z
Implementation ==> Matrix(R) add
identity() == matrix([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
-- inverse(x) == (inverse(x pretend (Matrix R))$Matrix(R)) pretend %
-- dhinverse(x) == matrix( _
-- [[nx,ny,nz,-(px*nx+py*ny+pz*nz)],_
-- [ox,oy,oz,-(px*ox+py*oy+pz*oz)],_
-- [ax,ay,az,-(px*ax+py*ay+pz*az)],_
-- [ 0, 0, 0, 1]])
d:% * p: Point(R) ==
v := p pretend Vector R
v := concat(v, 1$R)
v := d * v
point ([v.1, v.2, v.3]$List(R))
<<rotatex>>
<<rotatey>>
<<rotatez>>
<<scale>>
<<translate>>
@
\section{License}
<<license>>=
--Portions Copyright (c) Richard Paul
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain DHMATRIX DenavitHartenbergMatrix>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} Paul, Richard,
{\sl Robot Manipulators},
MIT Press, Cambridge, Mass.,
(1981)
\end{thebibliography}
\end{document}
|