aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/defintef.spad.pamphlet
blob: d413046091db734c331e967d45d2a7004d2dd2c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra defintef.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DEFINTEF ElementaryFunctionDefiniteIntegration}
<<package DEFINTEF ElementaryFunctionDefiniteIntegration>>=
)abbrev package DEFINTEF ElementaryFunctionDefiniteIntegration
++ Definite integration of elementary functions.
++ Author: Manuel Bronstein
++ Date Created: 14 April 1992
++ Date Last Updated: 2 February 1993
++ Description:
++   \spadtype{ElementaryFunctionDefiniteIntegration}
++   provides functions to compute definite
++   integrals of elementary functions.
ElementaryFunctionDefiniteIntegration(R, F): Exports == Implementation where
  R : Join(EuclideanDomain, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory,
           AlgebraicallyClosedFunctionSpace R)

  B   ==> Boolean
  SE  ==> Symbol
  Z   ==> Integer
  P   ==> SparseMultivariatePolynomial(R, K)
  K   ==> Kernel F
  UP  ==> SparseUnivariatePolynomial F
  OFE ==> OrderedCompletion F
  U   ==> Union(f1:OFE, f2:List OFE, fail:"failed", pole:"potentialPole")

  Exports ==> with
    integrate: (F, SegmentBinding OFE) -> U
      ++ integrate(f, x = a..b) returns the integral of
      ++ \spad{f(x)dx} from a to b.
      ++ Error: if f has a pole for x between a and b.
    integrate: (F, SegmentBinding OFE, String) -> U
      ++ integrate(f, x = a..b, "noPole") returns the
      ++ integral of \spad{f(x)dx} from a to b.
      ++ If it is not possible to check whether f has a pole for x
      ++ between a and b (because of parameters), then this function
      ++ will assume that f has no such pole.
      ++ Error: if f has a pole for x between a and b or
      ++ if the last argument is not "noPole".
    innerint: (F, SE, OFE, OFE, B) -> U
      ++ innerint(f, x, a, b, ignore?) should be local but conditional

  Implementation ==> add
    import ElementaryFunctionSign(R, F)
    import DefiniteIntegrationTools(R, F)
    import FunctionSpaceIntegration(R, F)

    polyIfCan   : (P, K) -> Union(UP, "failed")
    int         : (F, SE, OFE, OFE, B) -> U
    nopole      : (F, SE, K, OFE, OFE) -> U
    checkFor0   : (P, K, OFE, OFE) -> Union(B, "failed")
    checkSMP    : (P, SE, K, OFE, OFE) -> Union(B, "failed")
    checkForPole: (F, SE, K, OFE, OFE) -> Union(B, "failed")
    posit       : (F, SE, K, OFE, OFE) -> Union(B, "failed")
    negat       : (F, SE, K, OFE, OFE) -> Union(B, "failed")
    moreThan    : (OFE, Fraction Z) -> Union(B, "failed")

    if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
      and F has SpecialFunctionCategory then
        import PatternMatchIntegration(R, F)

        innerint(f, x, a, b, ignor?) ==
          ((u := int(f, x, a, b, ignor?)) case f1) or (u case f2)
            or ((v := pmintegrate(f, x, a, b)) case "failed") => u
          [v::F::OFE]

    else
      innerint(f, x, a, b, ignor?) == int(f, x, a, b, ignor?)

    integrate(f:F, s:SegmentBinding OFE) ==
      innerint(f, variable s, lo segment s, hi segment s, false)

    integrate(f:F, s:SegmentBinding OFE, str:String) ==
      innerint(f, variable s, lo segment s, hi segment s, ignore? str)

    int(f, x, a, b, ignor?) ==
      a = b => [0::OFE]
      k := kernel(x)@Kernel(F)
      (z := checkForPole(f, x, k, a, b)) case "failed" =>
        ignor? => nopole(f, x, k, a, b)
        ["potentialPole"]
      z::B => error "integrate: pole in path of integration"
      nopole(f, x, k, a, b)

    checkForPole(f, x, k, a, b) ==
      ((u := checkFor0(d := denom f, k, a, b)) case "failed") or (u::B) => u
      ((u := checkSMP(d, x, k, a, b)) case "failed") or (u::B) => u
      checkSMP(numer f, x, k, a, b)

-- true if p has a zero between a and b exclusive
    checkFor0(p, x, a, b) ==
      (u := polyIfCan(p, x)) case UP => checkForZero(u::UP, a, b, false)
      (v := isTimes p) case List(P) =>
         for t in v::List(P) repeat
           ((w := checkFor0(t, x, a, b)) case "failed") or (w::B) => return w
         false
      (z := isExpt p) case "failed" => "failed"
      k := z.var
-- functions with no real zeros
      is?(k, 'exp) or is?(k, 'acot) or is?(k, 'cosh) => false
-- special case for log
      is?(k, 'log) =>
        (w := moreThan(b, 1)) case "failed" or not(w::B) => w
        moreThan(-a, -1)
      "failed"

-- returns true if a > b, false if a < b, "failed" if can't decide
    moreThan(a, b) ==
      (r := retractIfCan(a)@Union(F, "failed")) case "failed" =>  -- infinite
        whatInfinity(a) > 0
      (u := retractIfCan(r::F)@Union(Fraction Z, "failed")) case "failed" =>
        "failed"
      u::Fraction(Z) > b

-- true if p has a pole between a and b
    checkSMP(p, x, k, a, b) ==
      (u := polyIfCan(p, k)) case UP => false
      (v := isTimes p) case List(P) =>
         for t in v::List(P) repeat
           ((w := checkSMP(t, x, k, a, b)) case "failed") or (w::B) => return w
         false
      (v := isPlus p) case List(P) =>
         n := 0              -- number of summand having a pole
         for t in v::List(P) repeat
           (w := checkSMP(t, x, k, a, b)) case "failed" => return w
           if w::B then n := n + 1
         zero? n => false    -- no summand has a pole
         one? n => true      -- only one summand has a pole
         "failed"            -- at least 2 summands have a pole
      (z := isExpt p) case "failed" => "failed"
      kk := z.var
      -- nullary operators have no poles
      nullary? operator kk => false
      f := first argument kk
      -- functions which are defined over all the reals:
      is?(kk, 'exp) or is?(kk, 'sin) or is?(kk, 'cos)
        or is?(kk, 'sinh) or is?(kk, 'cosh) or is?(kk, 'tanh)
          or is?(kk, 'sech) or is?(kk, 'atan) or is?(kk, 'acot)
            or is?(kk, 'asinh) => checkForPole(f, x, k, a, b)
      -- functions which are defined on (-1,+1):
      is?(kk, 'asin) or is?(kk, 'acos) or is?(kk, 'atanh) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        ((w := posit(f - 1, x, k, a, b)) case "failed") or (w::B) => w
        negat(f + 1, x, k, a, b)
      -- functions which are defined on (+1, +infty):
      is?(kk, 'acosh) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        negat(f - 1, x, k, a, b)
      -- functions which are defined on (0, +infty):
      is?(kk, 'log) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        negat(f, x, k, a, b)
      "failed"

-- returns true if it is certain that f takes at least one strictly positive
-- value for x in (a,b), false if it is certain that f takes no strictly
-- positive value in (a,b), "failed" otherwise
-- f must be known to have no poles in (a,b)
    posit(f, x, k, a, b) ==
      z :=
        (r := retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a)
        sign(f, x, r::F, "right")
      (b1 := z case Z) and z::Z > 0 => true
      z :=
        (r := retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b)
        sign(f, x, r::F, "left")
      (b2 := z case Z) and z::Z > 0 => true
      b1 and b2 =>
        ((w := checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed"
        false
      "failed"

-- returns true if it is certain that f takes at least one strictly negative
-- value for x in (a,b), false if it is certain that f takes no strictly
-- negative value in (a,b), "failed" otherwise
-- f must be known to have no poles in (a,b)
    negat(f, x, k, a, b) ==
      z :=
        (r := retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a)
        sign(f, x, r::F, "right")
      (b1 := z case Z) and z::Z < 0 => true
      z :=
        (r := retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b)
        sign(f, x, r::F, "left")
      (b2 := z case Z) and z::Z < 0 => true
      b1 and b2 =>
        ((w := checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed"
        false
      "failed"

-- returns a UP if p is only a poly w.r.t. the kernel x
    polyIfCan(p, x) ==
      q := univariate(p, x)
      ans:UP := 0
      while q ~= 0 repeat
        member?(x, tower(c := leadingCoefficient(q)::F)) => return "failed"
        ans := ans + monomial(c, degree q)
        q := reductum q
      ans

-- integrate f for x between a and b assuming that f has no pole in between
    nopole(f, x, k, a, b) ==
      (u := integrate(f, x)) case F =>
        (v := computeInt(k, u::F, a, b, false)) case "failed" => ["failed"]
        [v::OFE]
      ans := empty()$List(OFE)
      for g in u::List(F) repeat
        (v := computeInt(k, g, a, b, false)) case "failed" => return ["failed"]
        ans := concat_!(ans, [v::OFE])
      [ans]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package DEFINTEF ElementaryFunctionDefiniteIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}