1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra combinat.spad}
\author{Martin Brock, Robert Sutor, Michael Monagan}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package COMBINAT IntegerCombinatoricFunctions}
<<package COMBINAT IntegerCombinatoricFunctions>>=
)abbrev package COMBINAT IntegerCombinatoricFunctions
++ Authors: Martin Brock, Robert Sutor, Michael Monagan
++ Date Created: June 1987
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: integer, combinatoric function
++ Examples:
++ References:
++ Description:
++ The \spadtype{IntegerCombinatoricFunctions} package provides some
++ standard functions in combinatorics.
Z ==> Integer
N ==> NonNegativeInteger
SUP ==> SparseUnivariatePolynomial
IntegerCombinatoricFunctions(I:IntegerNumberSystem): with
binomial: (I, I) -> I
++ \spad{binomial(n,r)} returns the binomial coefficient
++ \spad{C(n,r) = n!/(r! (n-r)!)}, where \spad{n >= r >= 0}.
++ This is the number of combinations of n objects taken r at a time.
factorial: I -> I
++ \spad{factorial(n)} returns \spad{n!}. this is the product of all
++ integers between 1 and n (inclusive).
++ Note: \spad{0!} is defined to be 1.
multinomial: (I, List I) -> I
++ \spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial
++ coefficient \spad{n!/(m1! m2! ... mk!)}.
partition: I -> I
++ \spad{partition(n)} returns the number of partitions of the integer n.
++ This is the number of distinct ways that n can be written as
++ a sum of positive integers.
permutation: (I, I) -> I
++ \spad{permutation(n)} returns \spad{!P(n,r) = n!/(n-r)!}. This is
++ the number of permutations of n objects taken r at a time.
stirling1: (I, I) -> I
++ \spad{stirling1(n,m)} returns the Stirling number of the first kind
++ denoted \spad{S[n,m]}.
stirling2: (I, I) -> I
++ \spad{stirling2(n,m)} returns the Stirling number of the second kind
++ denoted \spad{SS[n,m]}.
== add
F : Record(Fn:I, Fv:I) := [0,1]
B : Record(Bn:I, Bm:I, Bv:I) := [0,0,0]
S : Record(Sn:I, Sp:SUP I) := [0,0]
P : IndexedFlexibleArray(I,0) := new(1,1)$IndexedFlexibleArray(I,0)
partition n ==
-- This is the number of ways of expressing n as a sum of positive
-- integers, without regard to order. For example partition 5 = 7
-- since 5 = 1+1+1+1+1 = 1+1+1+2 = 1+2+2 = 1+1+3 = 1+4 = 2+3 = 5 .
-- Uses O(sqrt n) term recurrence from Abramowitz & Stegun pp. 825
-- p(n) = sum (-1)**k p(n-j) where 0 < j := (3*k**2+-k) quo 2 <= n
minIndex(P) ~= 0 => error "Partition: must have minIndex of 0"
m := #P
n < 0 => error "partition is not defined for negative integers"
n < m::I => P(convert(n)@Z)
concat_!(P, new((convert(n+1)@Z - m)::N,0)$IndexedFlexibleArray(I,0))
for i in m..convert(n)@Z repeat
s:I := 1
t:I := 0
for k in 1.. repeat
l := (3*k*k-k) quo 2
l > i => leave
u := l+k
t := t + s * P(convert(i-l)@Z)
u > i => leave
t := t + s * P(convert(i-u)@Z)
s := -s
P.i := t
P(convert(n)@Z)
factorial n ==
s,f,t : I
n < 0 => error "factorial not defined for negative integers"
if n <= F.Fn then s := f := 1 else (s, f) := F
for k in convert(s+1)@Z .. convert(n)@Z by 2 repeat
if k::I = n then t := n else t := k::I * (k+1)::I
f := t * f
F.Fn := n
F.Fv := f
binomial(n, m) ==
s,b:I
n < 0 or m < 0 or m > n => 0
m = 0 => 1
n < 2*m => binomial(n, n-m)
(s,b) := (0,1)
if B.Bn = n then
B.Bm = m+1 =>
b := (B.Bv * (m+1)) quo (n-m)
B.Bn := n
B.Bm := m
return(B.Bv := b)
if m >= B.Bm then (s := B.Bm; b := B.Bv) else (s,b) := (0,1)
for k in convert(s+1)@Z .. convert(m)@Z repeat
b := (b*(n-k::I+1)) quo k::I
B.Bn := n
B.Bm := m
B.Bv := b
multinomial(n, m) ==
for t in m repeat t < 0 => return 0
n < _+/m => 0
s:I := 1
for t in m repeat s := s * factorial t
factorial n quo s
permutation(n, m) ==
t:I
m < 0 or n < m => 0
m := n-m
p:I := 1
for k in convert(m+1)@Z .. convert(n)@Z by 2 repeat
if k::I = n then t := n else t := (k*(k+1))::I
p := p * t
p
stirling1(n, m) ==
-- Definition: (-1)**(n-m) S[n,m] is the number of
-- permutations of n symbols which have m cycles.
n < 0 or m < 1 or m > n => 0
m = n => 1
S.Sn = n => coefficient(S.Sp, convert(m)@Z :: N)
x := monomial(1, 1)$SUP(I)
S.Sn := n
S.Sp := x
for k in 1 .. convert(n-1)@Z repeat S.Sp := S.Sp * (x - k::SUP(I))
coefficient(S.Sp, convert(m)@Z :: N)
stirling2(n, m) ==
-- definition: SS[n,m] is the number of ways of partitioning
-- a set of n elements into m non-empty subsets
n < 0 or m < 1 or m > n => 0
m = 1 or n = m => 1
s:I := if odd? m then -1 else 1
t:I := 0
for k in 1..convert(m)@Z repeat
s := -s
t := t + s * binomial(m, k::I) * k::I ** (convert(n)@Z :: N)
t quo factorial m
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package COMBINAT IntegerCombinatoricFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|