aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/combfunc.spad.pamphlet
blob: 80be59fd29772d3b5051f9e3a56e8bacfb8e9806 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra combfunc.spad}
\author{Manuel Bronstein, Martin Rubey}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category COMBOPC CombinatorialOpsCategory}
<<category COMBOPC CombinatorialOpsCategory>>=
)abbrev category COMBOPC CombinatorialOpsCategory
++ Category for summations and products
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 22 February 1993 (JHD/BMT)
++ Description:
++   CombinatorialOpsCategory is the category obtaining by adjoining
++   summations and products to the usual combinatorial operations;
CombinatorialOpsCategory(): Category ==
  CombinatorialFunctionCategory with
    factorials : $ -> $
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : ($, Symbol) -> $
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : ($, Symbol)            -> $
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : ($, SegmentBinding $)  -> $
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : ($, Symbol)            -> $
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : ($, SegmentBinding  $) -> $
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;

@
The latest change allows Axiom to reduce
\begin{verbatim}
   sum(1/i,i=1..n)-sum(1/i,i=1..n) 
\end{verbatim}
to reduce to zero.
<<package COMBF CombinatorialFunction>>=
)abbrev package COMBF CombinatorialFunction
++ Provides the usual combinatorial functions
++ Author: Manuel Bronstein, Martin Rubey
++ Date Created: 2 Aug 1988
++ Date Last Updated: 30 October 2005
++ Description:
++   Provides combinatorial functions over an integral domain.
++ Keywords: combinatorial, function, factorial.
++ Examples:  )r COMBF INPUT



CombinatorialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol
  O   ==> OutputForm
  SMP ==> SparseMultivariatePolynomial(R, K)
  Z   ==> Integer

  POWER        ==> '%power
  OPEXP        ==> 'exp
  SPECIALDIFF  ==> "%specialDiff"
  SPECIALDISP  ==> "%specialDisp"
  SPECIALEQUAL ==> "%specialEqual"

  Exports ==> with
    belong?    : OP -> Boolean
      ++ belong?(op) is true if op is a combinatorial operator;
    operator   : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a combinatorial operator;
    **       : (F, F) -> F
      ++ a ** b is the formal exponential a**b;
    binomial   : (F, F) -> F
      ++ binomial(n, r) returns the number of subsets of r objects
      ++ taken among n objects, i.e. n!/(r! * (n-r)!);
    permutation: (F, F) -> F
      ++ permutation(n, r) returns the number of permutations of
      ++ n objects taken r at a time, i.e. n!/(n-r)!;
    factorial  : F -> F
      ++ factorial(n) returns the factorial of n, i.e. n!;
    factorials : F -> F
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;
    factorials : (F, SE) -> F
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;
    summation  : (F, SE) -> F
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);
    summation  : (F, SegmentBinding F)  -> F
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;
    product    : (F, SE) -> F
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);
    product    : (F, SegmentBinding  F) -> F
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;
    iifact     : F -> F
      ++ iifact(x) should be local but conditional;
    iibinom    : List F -> F
      ++ iibinom(l) should be local but conditional;
    iiperm     : List F -> F
      ++ iiperm(l) should be local but conditional;
    iipow      : List F -> F
      ++ iipow(l) should be local but conditional;
    iidsum     : List F -> F
      ++ iidsum(l) should be local but conditional;
    iidprod    : List F -> F
      ++ iidprod(l) should be local but conditional;
    ipow       : List F -> F
      ++ ipow(l) should be local but conditional;

  Implementation ==> add
    ifact     : F -> F
    iiipow    : List F -> F
    iperm     : List F -> F
    ibinom    : List F -> F
    isum      : List F -> F
    idsum     : List F -> F
    iprod     : List F -> F
    idprod    : List F -> F
    dsum      : List F -> O
    ddsum     : List F -> O
    dprod     : List F -> O
    ddprod    : List F -> O
    equalsumprod  : (K, K) -> Boolean 
    equaldsumprod : (K, K) -> Boolean 
    fourth    : List F -> F
    dvpow1    : List F -> F
    dvpow2    : List F -> F
    summand   : List F -> F
    dvsum     : (List F, SE) -> F
    dvdsum    : (List F, SE) -> F
    dvprod    : (List F, SE) -> F
    dvdprod   : (List F, SE) -> F
    facts     : (F, List SE) -> F
    K2fact    : (K, List SE) -> F
    smpfact   : (SMP, List SE) -> F

    dummy == new()$SE :: F
@
This macro will be used in [[product]] and [[summation]], both the $5$ and $3$
argument forms. It is used to introduce a dummy variable in place of the
summation index within the summands. This in turn is necessary to keep the
indexing variable local, circumventing problems, for example, with
differentiation.

This works if we don't accidently use such a symbol as a bound of summation or
product.

Note that up to [[patch--25]] this used to read
\begin{verbatim}
    dummy := new()$SE :: F
\end{verbatim}
thus introducing the same dummy variable for all products and summations, which
caused nested products and summations to fail. (Issue~\#72)

<<package COMBF CombinatorialFunction>>=
    opfact  := operator('factorial)$CommonOperators
    opperm  := operator('permutation)$CommonOperators
    opbinom := operator('binomial)$CommonOperators
    opsum   := operator('summation)$CommonOperators
    opdsum  := operator('%defsum)$CommonOperators
    opprod  := operator('product)$CommonOperators
    opdprod := operator('%defprod)$CommonOperators
    oppow   := operator(POWER)$CommonOperators

    factorial x          == opfact x
    binomial(x, y)       == opbinom [x, y]
    permutation(x, y)    == opperm [x, y]

    import F
    import Kernel F

    number?(x:F):Boolean ==
      if R has RetractableTo(Z) then
        ground?(x) or
         ((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z))
      else
        ground?(x)

    x ** y               == 
      -- Do some basic simplifications
      is?(x,POWER) =>
        args : List F := argument first kernels x
        not(#args = 2) => error "Too many arguments to **"
        number?(first args) and number?(y) =>
          oppow [first(args)**y, second args]
        oppow [first args, (second args)* y]
      -- Generic case
      exp : Union(Record(val:F,exponent:Z),"failed") := isPower x
      exp case Record(val:F,exponent:Z) =>
        expr := exp::Record(val:F,exponent:Z)
        oppow [expr.val, (expr.exponent)*y]
      oppow [x, y]

    belong? op           == has?(op, 'comb)
    fourth l             == third rest l
    dvpow1 l             == second(l) * first(l) ** (second l - 1)
    factorials x         == facts(x, variables x)
    factorials(x, v)     == facts(x, [v])
    facts(x, l)          == smpfact(numer x, l) / smpfact(denom x, l)
    summand l            == eval(first l, retract(second l)@K, third l)

    product(x:F, i:SE) ==
      dm := dummy
      opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]

    summation(x:F, i:SE) ==
      dm := dummy
      opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]

@
These two operations return the product or the sum as unevaluated operators. A
dummy variable is introduced to make the indexing variable \lq local\rq.

<<package COMBF CombinatorialFunction>>=
    dvsum(l, x) ==
      opsum [differentiate(first l, x), second l, third l]

    dvdsum(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a sum cannot be differentiated with respect to a bound"
      else
        opdsum [differentiate(first l, x), second l, y, g, h]

@
The above two operations implement differentiation of sums with and without
bounds. Note that the function
$$n\mapsto\sum_{k=1}^n f(k,n)$$
is well defined only for integral values of $n$ greater than or equal to zero.
There is not even consensus how to define this function for $n<0$. Thus, it is
not differentiable. Therefore, we need to check whether we erroneously are
differentiating with respect to the upper bound or the lower bound, where the
same reasoning holds.

Differentiating a sum with respect to its indexing variable correctly gives
zero. This is due to the introduction of dummy variables in the internal
representation of a sum: the operator [[%defsum]] takes 5 arguments, namely

\begin{enumerate}
\item the summands, where each occurrence of the indexing variable is replaced
  by 
\item the dummy variable,
\item the indexing variable,
\item the lower bound, and
\item the upper bound.
\end{enumerate}

Note that up to [[patch--40]] the following incorrect code was used, which 
tried to parallel the known rules for integration: (Issue~\#180)

\begin{verbatim}
    dvdsum(l, x) ==
      x = retract(y := third l)@SE => 0
      k := retract(d := second l)@K
      differentiate(h := third rest rest l,x) * eval(f := first l, k, h)
        - differentiate(g := third rest l, x) * eval(f, k, g)
             + opdsum [differentiate(f, x), d, y, g, h]
\end{verbatim}

Up to [[patch--45]] a similar mistake could be found in the code for
differentiation of formal sums, which read
\begin{verbatim}
    dvsum(l, x) ==
      k  := retract(second l)@K
      differentiate(third l, x) * summand l
          + opsum [differentiate(first l, x), second l, third l]
\end{verbatim}

<<package COMBF CombinatorialFunction>>=
    dvprod(l, x) ==
      dm := retract(dummy)@SE
      f := eval(first l, retract(second l)@K, dm::F)
      p := product(f, dm)

      opsum [differentiate(first l, x)/first l * p, second l, third l]


    dvdprod(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a product cannot be differentiated with respect to a bound"
      else
        opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l 

@ 
The above two operations implement differentiation of products with and without
bounds. Note again, that we cannot even properly define products with bounds
that are not integral.

To differentiate the product, we use Leibniz rule:
$$\frac{d}{dx}\prod_{i=a}^b f(i,x) = 
  \sum_{i=a}^b \frac{\frac{d}{dx} f(i,x)}{f(i,x)}\prod_{i=a}^b f(i,x)
$$

There is one situation where this definition might produce wrong results,
namely when the product is zero, but axiom failed to recognize it: in this
case,
$$
  \frac{d}{dx} f(i,x)/f(i,x)  
$$
is undefined for some $i$. However, I was not able to come up with an
example. The alternative definition
$$
  \frac{d}{dx}\prod_{i=a}^b f(i,x) = 
  \sum_{i=a}^b \left(\frac{d}{dx} f(i,x)\right)\prod_{j=a,j\neq i}^b f(j,x)
$$
has the slight (display) problem that we would have to come up with a new index
variable, which looks very ugly. Furthermore, it seems to me that more
simplifications will occur with the first definition.

<<TEST COMBF>>=
  f := operator 'f
  D(product(f(i,x),i=1..m),x)
@

Note that up to [[patch--45]] these functions did not exist and products were
differentiated according to the usual chain rule, which gave incorrect
results. (Issue~\#211)

<<package COMBF CombinatorialFunction>>=
    dprod l ==
      prod(summand(l)::O, third(l)::O)

    ddprod l ==
      prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    dsum l ==
      sum(summand(l)::O, third(l)::O)

    ddsum l ==
      sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

@ 
These four operations handle the conversion of sums and products to
[[OutputForm]]. Note that up to [[patch--45]] the definitions for sums and
products without bounds were missing and output was illegible.

<<package COMBF CombinatorialFunction>>=
    equalsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      (eval(first l1, retract(second l1)@K, second l2) = first l2)

    equaldsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2

      ((third rest l1 = third rest l2) and
       (third rest rest l1 = third rest rest l2) and
       (eval(first l1, retract(second l1)@K, second l2) = first l2))

@ 
The preceding two operations handle the testing for equality of sums and
products. This functionality was missing up to [[patch--45]]. (Issue~\#213) The
corresponding property [[%specialEqual]] set below is checked in
[[Kernel]]. Note that we can assume that the operators are equal, since this is
checked in [[Kernel]] itself.
<<package COMBF CombinatorialFunction>>=
    product(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdprod [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    summation(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdsum [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

@
These two operations return the product or the sum as unevaluated operators. A
dummy variable is introduced to make the indexing variable \lq local\rq.

<<package COMBF CombinatorialFunction>>=
    smpfact(p, l) ==
      map(K2fact(#1, l), #1::F, p)$PolynomialCategoryLifting(
        IndexedExponents K, K, R, SMP, F)

    K2fact(k, l) ==
      kf : F
      empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf
      empty?(args:List F := [facts(a, l) for a in argument k]) => kf
      is?(k, opperm) =>
        factorial(n := first args) / factorial(n - second args)
      is?(k, opbinom) =>
        n := first args
        p := second args
        factorial(n) / (factorial(p) * factorial(n-p))
      (operator k) args

    operator op ==
      is?(op,'factorial)   => opfact
      is?(op,'permutation) => opperm
      is?(op,'binomial)    => opbinom
      is?(op,'summation)   => opsum
      is?(op,'%defsum)     => opdsum
      is?(op,'product)     => opprod
      is?(op,'%defprod)    => opdprod
      is?(op, POWER)                 => oppow
      error "Not a combinatorial operator"

    iprod l ==
      zero? first l => 0
      one? first l => 1
      kernel(opprod, l)

    isum l ==
      zero? first l => 0
      kernel(opsum, l)

    idprod l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdprod, l)
      first(l) ** (fourth rest l - fourth l + 1)

    idsum l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdsum, l)
      first(l) * (fourth rest l - fourth l + 1)

    ifact x ==
      zero? x or one? x => 1
      kernel(opfact, x)

    ibinom l ==
      n := first l
      ((p := second l) = 0) or (p = n) => 1
      one? p or (p = n - 1) => n
      kernel(opbinom, l)

    iperm l ==
      zero? second l => 1
      kernel(opperm, l)

    if R has RetractableTo Z then
      iidsum l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idsum l
        +/[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iidprod l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idprod l
        */[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iiipow l ==
          (u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l)
          rec := u::Record(var: K, exponent: Z)
          y := first argument(rec.var)
          (r := retractIfCan(y)@Union(Fraction Z, "failed")) case
              "failed" => kernel(oppow, l)
          (operator(rec.var)) (rec.exponent * y * second l)

      if F has RadicalCategory then
        ipow l ==
          (r := retractIfCan(second l)@Union(Fraction Z,"failed"))
            case "failed" => iiipow l
          first(l) ** (r::Fraction(Z))
      else
        ipow l ==
          (r := retractIfCan(second l)@Union(Z, "failed"))
            case "failed" => iiipow l
          first(l) ** (r::Z)

    else
      ipow l ==
        zero?(x := first l) =>
          zero? second l => error "0 ** 0"
          0
        one? x or zero?(n := second l) => 1
        one? n => x
        (u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l)
        rec := u::Record(var: K, exponent: Z)
        one?(y := first argument(rec.var)) or y = -1 =>
            (operator(rec.var)) (rec.exponent * y * n)
        kernel(oppow, l)

    if R has CombinatorialFunctionCategory then
      iifact x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x
        factorial(r::R)::F

      iiperm l ==
        (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
            => iperm l
        permutation(r1::R, r2::R)::F

      if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then
         iibinom l ==
           (s:=retractIfCan(first l-second l)@Union(R,"failed")) case R and
             (t:=retractIfCan(s)@Union(Z,"failed")) case Z and positive? t =>
              ans:=1::F
              for i in 1..t repeat
                  ans:=ans*(second l+i::R::F)
              (1/factorial t) * ans
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

      else
         iibinom l ==
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

    else
      iifact x  == ifact x
      iibinom l == ibinom l
      iiperm l  == iperm l

    if R has ElementaryFunctionCategory then
      iipow l ==
        (r1:=retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2:=retractIfCan(second l)@Union(R,"failed")) case "failed"
            => ipow l
        (r1::R ** r2::R)::F
    else
      iipow l == ipow l

    if F has ElementaryFunctionCategory then
      dvpow2 l == if zero?(first l) then
                    0
                  else
                    log(first l) * first(l) ** second(l)

@
This operation implements the differentiation of the power operator [[%power]]
with respect to its second argument, i.e., the exponent. It uses the formula
$$\frac{d}{dx} g(y)^x = \frac{d}{dx} e^{x\log g(y)} = \log g(y) g(y)^x.$$

If $g(y)$ equals zero, this formula is not valid, since the logarithm is not
defined there. Although strictly speaking $0^x$ is not differentiable at zero,
we return zero for convenience. 

Note that up to [[patch--25]] this used to read
\begin{verbatim}
    if F has ElementaryFunctionCategory then
      dvpow2 l == log(first l) * first(l) ** second(l)
\end{verbatim}
which caused differentiating $0^x$ to fail. (Issue~\#19)

<<package COMBF CombinatorialFunction>>=
    evaluate(opfact, iifact)$BasicOperatorFunctions1(F)
    evaluate(oppow, iipow)
    evaluate(opperm, iiperm)
    evaluate(opbinom, iibinom)
    evaluate(opsum, isum)
    evaluate(opdsum, iidsum)
    evaluate(opprod, iprod)
    evaluate(opdprod, iidprod)
    derivative(oppow, [dvpow1, dvpow2])
    setProperty(opsum,   SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None)
    setProperty(opdsum,  SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None)
    setProperty(opprod,  SPECIALDIFF, dvprod@((List F, SE)->F) pretend None)
    setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)
@
The last four properties define special differentiation rules for sums and
products. Note that up to [[patch--45]] the rules for products were missing.
Thus products were differentiated according the usual chain-rule, which gave
incorrect results.

<<package COMBF CombinatorialFunction>>=
    setProperty(opsum,   SPECIALDISP, dsum@(List F -> O) pretend None)
    setProperty(opdsum,  SPECIALDISP, ddsum@(List F -> O) pretend None)
    setProperty(opprod,  SPECIALDISP, dprod@(List F -> O) pretend None)
    setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None)
    setProperty(opsum,   SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdsum,  SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opprod,  SPECIALEQUAL, equalsumprod@((K,K) -> Boolean) pretend None)
    setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean) pretend None)

@ 
Finally, we set the properties for displaying sums and products and testing for
equality.


\section{package FSPECF FunctionalSpecialFunction}
<<package FSPECF FunctionalSpecialFunction>>=
)abbrev package FSPECF FunctionalSpecialFunction
++ Provides the special functions
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Date Last Updated: 4 October 1993
++ Description: Provides some special functions over an integral domain.
++ Keywords: special, function.
FunctionalSpecialFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol

  Exports ==> with
    belong? : OP -> Boolean
      ++ belong?(op) is true if op is a special function operator;
    operator: OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a special function operator
    abs     : F -> F
      ++ abs(f) returns the absolute value operator applied to f
    Gamma   : F -> F
      ++ Gamma(f) returns the formal Gamma function applied to f
    Gamma   : (F,F) -> F
      ++ Gamma(a,x) returns the incomplete Gamma function applied to a and x
    Beta:      (F,F) -> F
      ++ Beta(x,y) returns the beta function applied to x and y
    digamma:   F->F
      ++ digamma(x) returns the digamma function applied to x 
    polygamma: (F,F) ->F
      ++ polygamma(x,y) returns the polygamma function applied to x and y
    besselJ:   (F,F) -> F
      ++ besselJ(x,y) returns the besselj function applied to x and y
    besselY:   (F,F) -> F
      ++ besselY(x,y) returns the bessely function applied to x and y
    besselI:   (F,F) -> F
      ++ besselI(x,y) returns the besseli function applied to x and y
    besselK:   (F,F) -> F
      ++ besselK(x,y) returns the besselk function applied to x and y
    airyAi:    F -> F
      ++ airyAi(x) returns the airyai function applied to x 
    airyBi:    F -> F
      ++ airyBi(x) returns the airybi function applied to x

    iiGamma : F -> F
      ++ iiGamma(x) should be local but conditional;
    iiabs     : F -> F
      ++ iiabs(x) should be local but conditional;

  Implementation ==> add
    iabs     : F -> F
    iGamma:     F -> F

    opabs       := operator('abs)$CommonOperators
    opGamma     := operator('Gamma)$CommonOperators
    opGamma2    := operator('Gamma2)$CommonOperators
    opBeta      := operator('Beta)$CommonOperators
    opdigamma   := operator('digamma)$CommonOperators
    oppolygamma := operator('polygamma)$CommonOperators
    opBesselJ   := operator('besselJ)$CommonOperators
    opBesselY   := operator('besselY)$CommonOperators
    opBesselI   := operator('besselI)$CommonOperators
    opBesselK   := operator('besselK)$CommonOperators
    opAiryAi    := operator('airyAi)$CommonOperators
    opAiryBi    := operator('airyBi)$CommonOperators

    abs x         == opabs x
    Gamma(x)      == opGamma(x)
    Gamma(a,x)    == opGamma2(a,x)
    Beta(x,y)     == opBeta(x,y)
    digamma x     == opdigamma(x)
    polygamma(k,x)== oppolygamma(k,x)
    besselJ(a,x)  == opBesselJ(a,x)
    besselY(a,x)  == opBesselY(a,x)
    besselI(a,x)  == opBesselI(a,x)
    besselK(a,x)  == opBesselK(a,x)
    airyAi(x)     == opAiryAi(x)
    airyBi(x)     == opAiryBi(x)

    belong? op == has?(op, 'special)

    operator op ==
      is?(op,'abs)      => opabs
      is?(op,'Gamma)    => opGamma
      is?(op,'Gamma2)   => opGamma2
      is?(op,'Beta)     => opBeta
      is?(op,'digamma)  => opdigamma
      is?(op,'polygamma)=> oppolygamma
      is?(op,'besselJ)  => opBesselJ
      is?(op,'besselY)  => opBesselY
      is?(op,'besselI)  => opBesselI
      is?(op,'besselK)  => opBesselK
      is?(op,'airyAi)   => opAiryAi
      is?(op,'airyBi)   => opAiryBi

      error "Not a special operator"

    -- Could put more unconditional special rules for other functions here
    iGamma x ==
      one? x => x
      kernel(opGamma, x)

    iabs x ==
      zero? x => 0
      is?(x, opabs) => x
      before?(x,0) => kernel(opabs, -x)
      kernel(opabs, x)

    -- Could put more conditional special rules for other functions here

    if R has abs : R -> R then
      iiabs x ==
        (r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
          case "failed" => iabs x
        f := r::Fraction Polynomial R
        (a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
          (b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
        abs(a::R)::F / abs(b::R)::F

    else iiabs x == iabs x

    if R has SpecialFunctionCategory then
      iiGamma x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
        Gamma(r::R)::F

    else
      if R has RetractableTo Integer then
        iiGamma x ==
          (r := retractIfCan(x)@Union(Integer, "failed")) case Integer
            and (r::Integer >= 1) => factorial(r::Integer - 1)::F
          iGamma x
      else
        iiGamma x == iGamma x

    -- Default behaviour is to build a kernel
    evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)
    evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)

    import Fraction Integer
    ahalf:  F    := recip(2::F)::F
    athird: F    := recip(2::F)::F
    twothirds: F := 2*recip(3::F)::F

    lzero(l: List F): F == 0

    iBesselJGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselJ (n-1,x) - besselJ (n+1,x))
    iBesselYGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselY (n-1,x) - besselY (n+1,x))
    iBesselIGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (besselI (n-1,x) + besselI (n+1,x))
    iBesselKGrad(l: List F): F ==
        n := first l; x := second l
        ahalf * (-besselK (n-1,x) - besselK (n+1,x))
    ipolygammaGrad(l: List F): F ==
        n := first l; x := second l
        polygamma(n+1, x)
    iBetaGrad1(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma x - digamma(x+y))
    iBetaGrad2(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma y - digamma(x+y))

    if F has ElementaryFunctionCategory then
      iGamma2Grad(l: List F):F ==
        a := first l; x := second l
        - x ** (a - 1) * exp(-x)
      derivative(opGamma2, [lzero, iGamma2Grad])

    derivative(opabs,       abs(#1) * inv(#1))
    derivative(opGamma,     digamma #1 * Gamma #1)
    derivative(opBeta,      [iBetaGrad1, iBetaGrad2])
    derivative(opdigamma,   polygamma(1, #1))
    derivative(oppolygamma, [lzero, ipolygammaGrad])
    derivative(opBesselJ,   [lzero, iBesselJGrad])
    derivative(opBesselY,   [lzero, iBesselYGrad])
    derivative(opBesselI,   [lzero, iBesselIGrad])
    derivative(opBesselK,   [lzero, iBesselKGrad])

@
\section{package SUMFS FunctionSpaceSum}
<<package SUMFS FunctionSpaceSum>>=
)abbrev package SUMFS FunctionSpaceSum
++ Top-level sum function
++ Author: Manuel Bronstein
++ Date Created: ???
++ Date Last Updated: 19 April 1991
++ Description: computes sums of top-level expressions;
FunctionSpaceSum(R, F): Exports == Implementation where
  R: Join(IntegralDomain,
          RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F: Join(FunctionSpace R, CombinatorialOpsCategory,
          AlgebraicallyClosedField, TranscendentalFunctionCategory)

  SE  ==> Symbol
  K   ==> Kernel F

  Exports ==> with
    sum: (F, SE) -> F
      ++ sum(a(n), n) returns A(n) such that A(n+1) - A(n) = a(n);
    sum: (F, SegmentBinding F) -> F
      ++ sum(f(n), n = a..b) returns f(a) + f(a+1) + ... + f(b);

  Implementation ==> add
    import ElementaryFunctionStructurePackage(R, F)
    import GosperSummationMethod(IndexedExponents K, K, R,
                                 SparseMultivariatePolynomial(R, K), F)

    innersum: (F, K) -> Union(F, "failed")
    notRF?  : (F, K) -> Boolean
    newk    : () -> K

    newk() == kernel(new()$SE)

    sum(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)@K
      (u := innersum(x, k)) case "failed" => summation(x, s)
      eval(u::F, k, 1 + hi segment s) - eval(u::F, k, lo segment s)

    sum(x:F, v:SE) ==
      (u := innersum(x, kernel(v)@K)) case "failed" => summation(x,v)
      u::F

    notRF?(f, k) ==
      for kk in tower f repeat
        member?(k, tower(kk::F)) and (symbolIfCan(kk) case "failed") =>
          return true
      false

    innersum(x, k) ==
      zero? x => 0
      notRF?(f := normalize(x / (x1 := eval(x, k, k::F - 1))), k) =>
        "failed"
      (u := GospersMethod(f, k, newk)) case "failed" => "failed"
      x1 * eval(u::F, k, k::F - 1)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  function  funcpkgs  manip  algfunc
--   elemntry  constant  funceval  COMBFUNC  fe

<<category COMBOPC CombinatorialOpsCategory>>
<<package COMBF CombinatorialFunction>>
<<package FSPECF FunctionalSpecialFunction>>
<<package SUMFS FunctionSpaceSum>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}