aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/clifford.spad.pamphlet
blob: ecedf9ace78c4e4fc86e29d4afbf1bb9549d6965 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
\documentclass{article}
\usepackage{axiom}
\usepackage{amssymb}
\input{diagrams.tex}
\begin{document}
\title{\$SPAD/src/algebra clifford.spad}
\author{Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain QFORM QuadraticForm}
<<domain QFORM QuadraticForm>>=
)abbrev domain QFORM QuadraticForm
++ Author: Stephen M. Watt
++ Date Created: August 1988
++ Date Last Updated: May 17, 1991
++ Basic Operations: quadraticForm, elt
++ Related Domains: Matrix, SquareMatrix
++ Also See:
++ AMS Classifications:
++ Keywords: quadratic form
++ Examples:
++ References:
++
++ Description:
++   This domain provides modest support for quadratic forms.
QuadraticForm(n, K): T == Impl where
    n: PositiveInteger
    K: Field
    SM ==> SquareMatrix
    V  ==> DirectProduct
 
    T ==> AbelianGroup with
        quadraticForm: SM(n, K) -> %
            ++ quadraticForm(m) creates a quadratic form from a symmetric,
            ++ square matrix m.
        matrix: % -> SM(n, K)
            ++ matrix(qf) creates a square matrix from the quadratic form qf.
        elt: (%, V(n, K)) -> K
            ++ elt(qf,v) evaluates the quadratic form qf on the vector v, 
            ++ producing a scalar.
 
    Impl ==> SM(n,K) add
        Rep := SM(n,K)
 
        quadraticForm m ==
            not symmetric? m =>
                error "quadraticForm requires a symmetric matrix"
            m::%
        matrix q == q pretend SM(n,K)
        elt(q,v) == dot(v, (matrix q * v))

@
\section{domain CLIF CliffordAlgebra\cite{7,12}}
\subsection{Vector (linear) spaces}
This information is originally from Paul Leopardi's presentation on
the {\sl Introduction to Clifford Algebras} and is included here as
an outline with his permission. Further details are based on the book
by Doran and Lasenby called {\sl Geometric Algebra for Physicists}.

Consider the various kinds of products that can occur between vectors.
There are scalar and vector products from 3D geometry. There are the
complex and quaterion products. There is also
the {\sl outer} or {\sl exterior} product.

Vector addition commutes:
\[a + b = b + a\]
Vector addtion is associative:
\[a + (b + c) = (a + b) + c\]
The identity vector exists:
\[a + 0 = a\]
Every vector has an inverse:
\[a + (-a) = 0\]

If we consider vectors to be directed line segments, thus establishing
a geometric meaning for a vector, then each of these properties has a
geometric meaning.

A multiplication operator exists between scalars and vectors with
the properties:
\[\lambda(a + b) = \lambda a + \lambda b\]
\[(\lambda + \mu)a = \lambda a + \mu a\]
\[(\lambda\mu)a = \lambda(\mu a)\]
\[{\rm If\ }1\lambda = \lambda{\rm\ for\ all\ scalars\ }\lambda
{\rm\ then\ }1a=a{\rm\ for\ all\ vectors\ }a\]

These properties completely define a vector (linear) space. The
$+$ operation for scalar arithmetic is not the same as the $+$
operation for vectors.

{\bf Definition: Isomorphic} The vector space $A$ is isomorphic to
the vector space $B$ if their exists a one-to-one correspondence
between their elements which preserves sums and there is a one-to-one
correspondence between the scalars which preserves sums and products.

{\bf Definition: Subspace} Vector space $B$ is a subspace of vector
space $A$ if all of the elements of $B$ are contained in $A$ and
they share the same scalars.

{\bf Definition: Linear Combination} Given vectors $a_1,\ldots,a_n$
the vector $b$ is a linear combination of the vectors if we can find
scalars $\lambda_i$ such that
\[b = \lambda_1 a_1+\ldots+\lambda_n a_n = \sum_{k=1}^n \lambda_i a_i\]

{\bf Definition: Linearly Independent} If there exists scalars $\lambda_i$
such that
\[\lambda_1 a_1 + \ldots + \lambda_n a_n = 0\]
and at least one of the $\lambda_i$ is not zero
then the vectors $a_1,\ldots,a_n$ are linearly dependent. If no such
scalars exist then the vectors are linearly independent.

{\bf Definition: Span} If every vector can be written as a linear
combination of a fixed set of vectors $a_1,\ldots,a_n$ then this set
of vectors is said to span the vector space.

{\bf Definition: Basis} If a set of vectors $a_1,\ldots,a_n$ is linearly
independent and spans a vector space $A$ then the vectors form a basis
for $A$.

{\bf Definition: Dimension} The dimension of a vector space is the 
number of basis elements, which is unique since all bases of a 
vector space have the same number of elements.
\subsection{Quadratic Forms\cite{1}}
For vector space $\mathbb{V}$ over field $\mathbb{F}$, characteristic 
$\ne 2$:
\begin{list}{}
\item Map $f:\mathbb{V} \rightarrow \mathbb{F}$, with
$$f(\lambda x)=\lambda^2f(x),\forall \lambda \in \mathbb{F}, x \in \mathbb{V}$$
\item $f(x) = b(x,x)$, where
$$b:\mathbb{V}{\rm\ x\ }\mathbb{V} \rightarrow \mathbb{F}{\rm\ ,given\ by\ }$$
$$b(x,y):=\frac{1}{2}(f(x+y)-f(x)=f(y))$$
is a symmetric bilinear form
\end{list}
\subsection{Quadratic spaces, Clifford Maps\cite{1,2}}
\begin{list}{}
\item A quadratic space is the pair($\mathbb{V}$,$f$), where $f$ is a 
quadratic form on $\mathbb{V}$
\item A Clifford map is a vector space homomorphism
$$\rho : \mathbb{V} \rightarrow \mathbb{A}$$
where $\mathbb{A}$ is an associated algebra, and
$$(\rho v)^2 = f(v),{\rm\ \ \ } \forall v \in \mathbb{V}$$
\end{list}
\subsection{Universal Clifford algebras\cite{1}}
\begin{list}{}
\item The {\sl universal Clifford algebra} $Cl(f)$ for the quadratic space
$(\mathbb{V},f)$ is the algebra generated by the image of the Clifford
map $\phi_f$ such that $Cl(f)$ is the universal initial object such
that $\forall$ suitable algebra $\mathbb{A}$ with Clifford map
$\phi_{\mathbb{A}} \exists$ a homomorphism
$$P_\mathbb{A}:Cl(f) \rightarrow \mathbb{A}$$
$$\rho_\mathbb{A} = P_\mathbb{A}\circ\rho_f$$
\end{list}
\subsection{Real Clifford algebras $\mathbb{R}_{p,q}$\cite{2}}
\begin{list}{}
\item The real quadratic space $\mathbb{R}^{p,q}$ is $\mathbb{R}^{p+q}$ with
$$\phi(x):=-\sum_{k:=-q}^{-1}{x_k^2}+\sum_{k=1}^p{x_k^2}$$
\item For each $p,q \in \mathbb{N}$, the real universal Clifford algebra
for $\mathbb{R}^{p,q}$ is called $\mathbb{R}_{p,q}$
\item $\mathbb{R}_{p,q}$ is isomorphic to some matrix algebra over one of:
$\mathbb{R}$,$\mathbb{R}\oplus\mathbb{R}$,$\mathbb{C}$,
$\mathbb{H}$,$\mathbb{H}\oplus\mathbb{H}$ 
\item For example, $\mathbb{R}_{1,1} \cong \mathbb{R}(2)$ 
\end{list}
\subsection{Notation for integer sets}
\begin{list}{}
\item For $S \subseteq \mathbb{Z}$, define
$$\sum_{k \in S}{f_k}:=\sum_{k={\rm min\ }S, k \in S}^{{\rm max\ } S}{f_k}$$
$$\prod_{k \in S}{f_k}:=\prod_{k={\rm min\ }S, k \in S}^{{\rm max\ } S}{f_k}$$
$$\mathbb{P}(S):={\rm\ the\ }\ power\ set\ {\rm\ of\ }S$$
\item For $m \le n \in \mathbb{Z}$, define
$$\zeta(m,n):=\{m,m+1,\ldots,n-1,n\}\backslash\{0\}$$
\end{list}
\subsection{Frames for Clifford algebras\cite{9,10,11}}
\begin{list}{}
\item A {\sl frame} is an ordered basis $(\gamma_{-q},\ldots,\gamma_p)$
for $\mathbb{R}^{p,q}$ which puts a quadratic form into the canonical
form $\phi$
\item For $p,q \in \mathbb{N}$, embed the frame for $\mathbb{R}^{p,q}$
into $\mathbb{R}_{p,q}$ via the maps
$$\gamma:\zeta(-q,p) \rightarrow \mathbb{R}^{p,q}$$
$$\rho:\mathbb{R}^{p,q} \rightarrow \mathbb{R}_{p,q}$$
$$(\rho\gamma k)^2 = \phi\gamma k = {\rm\ sgn\ }k$$
\end{list}
\subsection{Real frame groups\cite{5,6}}
\begin{list}{}
\item For $p,q \in \mathbb{N}$, define the real {\sl frame group} $\mathbb{G}_{p,q}$
via the map
$$g:\zeta(-q,p) \rightarrow \mathbb{G}_{p,q}$$
with generators and relations
$$\langle \mu,g_k | \mu g_k = g_k \mu,{\rm\ \ \ }\mu^2 = 1,$$
$$(g_k)^2 = 
\left\{
\begin{array}{lcc}
\mu,&{\rm\ \ }&{\rm\ if\ }k < 0\\
1&{\rm\ \ }&{\rm\ if\ }k > 0
\end{array}
\right.$$
$$g_kg_m = \mu g_mg_k{\rm\ \ \ }\forall k \ne m\rangle$$
\end{list}
\subsection{Canonical products\cite{1,3,4}}
\begin{list}{}
\item The real frame group $\mathbb{G}_{p,q}$ has order $2^{p+q+1}$
\item Each member $w$ can be expressed as the canonically ordered product
$$w=\mu^a\prod_{k \in T}{g_k}$$
$$\ =\mu^a\prod_{k=-q,k\ne0}^p{g_k^{b_k}}$$
where $T \subseteq \zeta(-q,p),a,b_k \in \{0,1\}$
\end{list}
\subsection{Clifford algebra of frame group\cite{1,4,5,6}}
\begin{list}{}
\item For $p,q \in \mathbb{N}$ embed $\mathbb{G}_{p,q}$ into 
$\mathbb{R}_{p,q}$ via the map
$$\alpha  \mathbb{G}_{p,q} \rightarrow \mathbb{R}_{p,q}$$
$$\alpha 1 := 1,{\rm\ \ \ \ \ } \alpha\mu := -1$$
$$\alpha g_k := \rho\gamma_k, {\rm \ \ \ \ \ }
\alpha(gh) := (\alpha g)(\alpha h)$$
\item Define {\sl basis elements} via the map
$$e:\mathbb{P}\zeta(-q,p) \rightarrow \mathbb{R}_{p,q}, 
{\rm \ \ \ \ \ }e_T := \alpha \prod_{k \in T}{g_k}$$
\item Each $a \in \mathbb{R}_{p,q}$ can be expressed as
$$a = \sum_{T \subseteq \zeta(-q,p)}{a_T e_T}$$
\end{list} 
\subsection{Neutral matrix representations\cite{1,2,8}}
The {\sl representation map} $P_m$ and {\sl representation matrix} $R_m$
make the following diagram commute:
\begin{diagram}
\mathbb{R}_{m,m} & \rTo^{coord} & \mathbb{R}^{4^m}\\
\dTo^{P_m} & & \dTo_{R_m}\\
\mathbb{R}(2^m) & \rTo_{reshape} &  \mathbb{R}^{4^m}\\
\end{diagram}
<<domain CLIF CliffordAlgebra>>=
)abbrev domain CLIF CliffordAlgebra
++ Author: Stephen M. Watt
++ Date Created: August 1988
++ Date Last Updated: May 17, 1991
++ Basic Operations: wholeRadix, fractRadix, wholeRagits, fractRagits
++ Related Domains: QuadraticForm, Quaternion, Complex
++ Also See:
++ AMS Classifications:
++ Keywords: clifford algebra, grassman algebra, spin algebra
++ Examples:
++ References:
++
++ Description:
++  CliffordAlgebra(n, K, Q) defines a vector space of dimension \spad{2**n}
++  over K, given a quadratic form Q on \spad{K**n}.
++
++  If \spad{e[i]}, \spad{1<=i<=n} is a basis for \spad{K**n} then
++     1, \spad{e[i]} (\spad{1<=i<=n}), \spad{e[i1]*e[i2]} 
++  (\spad{1<=i1<i2<=n}),...,\spad{e[1]*e[2]*..*e[n]}
++  is a basis for the Clifford Algebra.
++
++  The algebra is defined by the relations
++     \spad{e[i]*e[j] = -e[j]*e[i]}  (\spad{i \~~= j}),
++     \spad{e[i]*e[i] = Q(e[i])}
++
++  Examples of Clifford Algebras are: gaussians, quaternions, exterior 
++  algebras and spin algebras.
 
CliffordAlgebra(n, K, Q): T == Impl where
    n: PositiveInteger
    K: Field
    Q: QuadraticForm(n, K)
 
    PI ==> PositiveInteger
    NNI==> NonNegativeInteger
 
    T ==> Join(Ring, Algebra(K), VectorSpace(K)) with
        e: PI -> %
          ++ e(n) produces the appropriate unit element.
        monomial: (K, List PI) -> %
          ++ monomial(c,[i1,i2,...,iN]) produces the value given by
          ++ \spad{c*e(i1)*e(i2)*...*e(iN)}.
        coefficient:  (%, List PI) -> K
          ++ coefficient(x,[i1,i2,...,iN])  extracts the coefficient of
          ++ \spad{e(i1)*e(i2)*...*e(iN)} in x.
        recip: % -> Union(%, "failed")
          ++ recip(x) computes the multiplicative inverse of x or "failed"
          ++ if x is not invertible.
 
    Impl ==> add
        Qeelist :=  [Q unitVector(i::PositiveInteger) for i in 1..n]
        dim     :=  2**n
 
        Rep     := PrimitiveArray K
 
        New     ==> new(dim, 0$K)$Rep
 
        x, y, z: %
        c: K
        m: Integer
 
        characteristic() == characteristic()$K
        dimension()      == dim::CardinalNumber
 
        x = y ==
            for i in 0..dim-1 repeat
                if x.i ~= y.i then return false
            true
 
        x + y == (z := New; for i in 0..dim-1 repeat z.i := x.i + y.i; z)
        x - y == (z := New; for i in 0..dim-1 repeat z.i := x.i - y.i; z)
        - x   == (z := New; for i in 0..dim-1 repeat z.i := - x.i; z)
        m * x == (z := New; for i in 0..dim-1 repeat z.i := m*x.i; z)
        c * x == (z := New; for i in 0..dim-1 repeat z.i := c*x.i; z)
 
        0            == New
        1            == (z := New; z.0 := 1; z)
        coerce(m): % == (z := New; z.0 := m::K; z)
        coerce(c): % == (z := New; z.0 := c; z)
 
        e b ==
            b::NNI > n => error "No such basis element"
            iz := 2**((b-1)::NNI)
            z := New; z.iz := 1; z
 
        -- The ei*ej products could instead be precomputed in
        -- a (2**n)**2 multiplication table.
        addMonomProd(c1: K, b1: NNI, c2: K, b2: NNI, z: %): % ==
            c  := c1 * c2
            bz := b2
            for i in 0..n-1 | bit?(b1,i) repeat
                -- Apply rule  ei*ej = -ej*ei for i~=j
                k := 0
                for j in i+1..n-1 | bit?(b1, j) repeat k := k+1
                for j in 0..i-1   | bit?(bz, j) repeat k := k+1
                if odd? k then c := -c
                -- Apply rule  ei**2 = Q(ei)
                if bit?(bz,i) then
                    c := c * Qeelist.(i+1)
                    bz:= (bz - 2**i)::NNI
                else
                    bz:= bz + 2**i
            z.bz := z.bz + c
            z
 
        x * y ==
            z := New
            for ix in 0..dim-1 repeat
                if x.ix ~= 0 then for iy in 0..dim-1 repeat
                    if y.iy ~= 0 then addMonomProd(x.ix,ix,y.iy,iy,z)
            z
 
        canonMonom(c: K, lb: List PI): Record(coef: K, basel: NNI) ==
            -- 0. Check input
            for b in lb repeat b > n => error "No such basis element"
 
            -- 1. Apply identity ei*ej = -ej*ei, i~=j.
            -- The Rep assumes n is small so bubble sort is ok.
            -- Using bubble sort keeps the exchange info obvious.
            wasordered   := false
            exchanges := 0
            while not wasordered repeat
                wasordered := true
                for i in 1..#lb-1 repeat
                    if lb.i > lb.(i+1) then
                        t := lb.i; lb.i := lb.(i+1); lb.(i+1) := t
                        exchanges := exchanges + 1
                        wasordered := false
            if odd? exchanges then c := -c
 
            -- 2. Prepare the basis element
            -- Apply identity ei*ei = Q(ei).
            bz := 0
            for b in lb repeat
                bn := (b-1)::NNI
                if bit?(bz, bn) then
                    c := c * Qeelist bn
                    bz:= ( bz - 2**bn )::NNI
                else
                    bz:= bz + 2**bn
            [c, bz::NNI]
 
        monomial(c, lb) ==
            r := canonMonom(c, lb)
            z := New
            z r.basel := r.coef
            z
        coefficient(z, lb) ==
            r := canonMonom(1, lb)
            r.coef = 0 => error "Cannot take coef of 0"
            z r.basel/r.coef
 
        Ex ==> OutputForm
 
        coerceMonom(c: K, b: NNI): Ex ==
            b = 0 => c::Ex
            ml := [sub("e"::Ex, i::Ex) for i in 1..n | bit?(b,i-1)]
            be := reduce("*", ml)
            c = 1 => be
            c::Ex * be
        coerce(x): Ex ==
            tl := [coerceMonom(x.i,i) for i in 0..dim-1 | x.i~=0]
            null tl => "0"::Ex
            reduce("+", tl)


	localPowerSets(j:NNI): List(List(PI)) ==
	  l: List List PI := list []
	  j = 0 => l
	  Sm := localPowerSets((j-1)::NNI)
          Sn: List List PI := []
	  for x in Sm repeat Sn := cons(cons(j pretend PI, x),Sn)
	  append(Sn, Sm)

	powerSets(j:NNI):List List PI == map(reverse, localPowerSets j)

	Pn:List List PI := powerSets(n)

	recip(x: %): Union(%, "failed") ==
	  one:% := 1
	  -- tmp:c := x*yC - 1$C
	  rhsEqs : List K := []
	  lhsEqs: List List K := []
	  lhsEqi: List K
	  for pi in Pn repeat
	    rhsEqs := cons(coefficient(one, pi), rhsEqs)

	    lhsEqi := []
	    for pj in Pn repeat
		lhsEqi := cons(coefficient(x*monomial(1,pj),pi),lhsEqi)
	    lhsEqs := cons(reverse(lhsEqi),lhsEqs)
	  ans := particularSolution(matrix(lhsEqs),
            vector(rhsEqs))$LinearSystemMatrixPackage(K, Vector K, Vector K, Matrix K)
          ans case "failed" => "failed"
	  ansP := parts(ans)
	  ansC:% := 0
	  for pj in Pn repeat
	    cj:= first ansP
	    ansP := rest ansP
	    ansC := ansC + cj*monomial(1,pj)
	  ansC

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain QFORM QuadraticForm>> 
<<domain CLIF CliffordAlgebra>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} Lounesto, P.
"Clifford algebras and spinors",
2nd edition, Cambridge University Press (2001)
\bibitem{2} Porteous, I.,
"Clifford algebras and the classical groups",
Cambridge University Press (1995)
Van Nostrand Reinhold, (1969)
\bibitem{3} Bergdolt, G.
"Orthonormal basis sets in Clifford algebras",
in \cite{16} (1996)
\bibitem{4} Dorst, Leo, 
"Honing geometric algebra for its use in the computer sciences",
pp127-152 from \cite{15} (2001)
\bibitem{5} Braden, H.W., 
"N-dimensional spinors: Their properties in terms of finite groups",
American Institute of Physics,
J. Math. Phys. 26(4), April 1985
\bibitem{6} Lam, T.Y. and Smith, Tara L.,
"On the Clifford-Littlewood-Eckmann groups: a new look at periodicity mod 8",
Rocky Mountains Journal of Mathematics, vol 19, no. 3, (Summer 1989)
\bibitem{7} Leopardi, Paul "Quick Introduction to Clifford Algebras"\\
{\bf http://web.maths.unsw.edu.au/~leopardi/clifford-2003-06-05.pdf}
\bibitem{8} Cartan, Elie and Study, Eduard
"Nombres Complexes",
Encyclopaedia Sciences Math\'ematique, \'edition fran\c caise, 15, (1908),
d'apr\`es l'article allemand de Eduard Study, pp329-468. Reproduced as
pp107-246 of \cite{17} 
\bibitem{9} Hestenes, David and Sobczyck, Garret
"Clifford algebra to geometric calculus: a unified language for 
mathematics and physics", D. Reidel, (1984)
\bibitem{10} Wene, G.P.,
"The Idempotent structure of an infinite dimensional Clifford algebra",
pp161-164 of \cite{13} (1995)
\bibitem{11} Ashdown, M. 
"GA Package for Maple V",\\
http://www.mrao.cam.ac.uk/~clifford/software/GA/GAhelp5.html
\bibitem{12} Doran, Chris and Lasenby, Anthony, 
"Geometric Algebra for Physicists" 
Cambridge University Press (2003) ISBN 0-521-48022-1
\bibitem{13} Micali, A., Boudet, R., Helmstetter, J. (eds),
"Clifford algebras and their applications in mathematical physics:
proceedings of second workshop held at Montpellier, France, 1989",
Kluwer Academic Publishers (1992)
\bibitem{14} Porteous, I.,
"Topological geometry"
Van Nostrand Reinhold, (1969)
\bibitem{15} Sommer, G. (editor),
"Geometric Computing with Clifford Algebras",
Springer, (2001)
\bibitem{16} Ablamowicz, R., Lounesto, P., Parra, J.M. (eds)
"Clifford algebras with numeric and symbolic computations",
Birkh\"auser (1996)
\bibitem{17} Cartan, Elie and Montel, P. (eds), 
"\OE uvres Compl\`etes" Gauthier-Villars, (1953)
\end{thebibliography}
\end{document}