1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra carten.spad}
\author{Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category GRMOD GradedModule}
<<category GRMOD GradedModule>>=
)abbrev category GRMOD GradedModule
++ Author: Stephen M. Watt
++ Date Created: May 20, 1991
++ Date Last Updated: May 20, 1991
++ Basic Operations: +, *, degree
++ Related Domains: CartesianTensor(n,dim,R)
++ Also See:
++ AMS Classifications:
++ Keywords: graded module, tensor, multi-linear algebra
++ Examples:
++ References: Algebra 2d Edition, MacLane and Birkhoff, MacMillan 1979
++ Description:
++ GradedModule(R,E) denotes ``E-graded R-module'', i.e. collection of
++ R-modules indexed by an abelian monoid E.
++ An element \spad{g} of \spad{G[s]} for some specific \spad{s} in \spad{E}
++ is said to be an element of \spad{G} with {\em degree} \spad{s}.
++ Sums are defined in each module \spad{G[s]} so two elements of \spad{G}
++ have a sum if they have the same degree.
++
++ Morphisms can be defined and composed by degree to give the
++ mathematical category of graded modules.
GradedModule(R: CommutativeRing, E: AbelianMonoid): Category ==
SetCategory with
degree: % -> E
++ degree(g) names the degree of g. The set of all elements
++ of a given degree form an R-module.
0: constant -> %
++ 0 denotes the zero of degree 0.
*: (R, %) -> %
++ r*g is left module multiplication.
*: (%, R) -> %
++ g*r is right module multiplication.
-: % -> %
++ -g is the additive inverse of g in the module of elements
++ of the same grade as g.
+: (%, %) -> %
++ g+h is the sum of g and h in the module of elements of
++ the same degree as g and h. Error: if g and h
++ have different degrees.
-: (%, %) -> %
++ g-h is the difference of g and h in the module of elements of
++ the same degree as g and h. Error: if g and h
++ have different degrees.
add
(x: %) - (y: %) == x+(-y)
@
\section{category GRALG GradedAlgebra}
<<category GRALG GradedAlgebra>>=
)abbrev category GRALG GradedAlgebra
++ Author: Stephen M. Watt
++ Date Created: May 20, 1991
++ Date Last Updated: May 20, 1991
++ Basic Operations: +, *, degree
++ Related Domains: CartesianTensor(n,dim,R)
++ Also See:
++ AMS Classifications:
++ Keywords: graded module, tensor, multi-linear algebra
++ Examples:
++ References: Encyclopedic Dictionary of Mathematics, MIT Press, 1977
++ Description:
++ GradedAlgebra(R,E) denotes ``E-graded R-algebra''.
++ A graded algebra is a graded module together with a degree preserving
++ R-linear map, called the {\em product}.
++
++ The name ``product'' is written out in full so inner and outer products
++ with the same mapping type can be distinguished by name.
GradedAlgebra(R: CommutativeRing, E: AbelianMonoid): Category ==
Join(GradedModule(R, E),RetractableTo(R)) with
1: constant -> %
++ 1 is the identity for \spad{product}.
product: (%, %) -> %
++ product(a,b) is the degree-preserving R-linear product:
++
++ \spad{degree product(a,b) = degree a + degree b}
++ \spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}
++ \spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}
++ \spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}
++ \spad{product(a,product(b,c)) = product(product(a,b),c)}
add
if not (R is %) then
0: % == (0$R)::%
1: % == 1$R::%
(r: R)*(x: %) == product(r::%, x)
(x: %)*(r: R) == product(x, r::%)
@
\section{domain CARTEN CartesianTensor}
<<domain CARTEN CartesianTensor>>=
)abbrev domain CARTEN CartesianTensor
++ Author: Stephen M. Watt
++ Date Created: December 1986
++ Date Last Updated: May 15, 1991
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: tensor, graded algebra
++ Examples:
++ References:
++ Description:
++ CartesianTensor(minix,dim,R) provides Cartesian tensors with
++ components belonging to a commutative ring R. These tensors
++ can have any number of indices. Each index takes values from
++ \spad{minix} to \spad{minix + dim - 1}.
CartesianTensor(minix, dim, R): Exports == Implementation where
NNI ==> NonNegativeInteger
I ==> Integer
DP ==> DirectProduct
SM ==> SquareMatrix
minix: Integer
dim: NNI
R: CommutativeRing
Exports ==> Join(GradedAlgebra(R, NNI), GradedModule(I, NNI),_
Eltable(I,R)) with
coerce: DP(dim, R) -> %
++ coerce(v) views a vector as a rank 1 tensor.
coerce: SM(dim, R) -> %
++ coerce(m) views a matrix as a rank 2 tensor.
coerce: List R -> %
++ coerce([r_1,...,r_dim]) allows tensors to be constructed
++ using lists.
coerce: List % -> %
++ coerce([t_1,...,t_dim]) allows tensors to be constructed
++ using lists.
rank: % -> NNI
++ rank(t) returns the tensorial rank of t (that is, the
++ number of indices). This is the same as the graded module
++ degree.
elt: (%) -> R
++ elt(t) gives the component of a rank 0 tensor.
elt: (%, I, I) -> R
++ elt(t,i,j) gives a component of a rank 2 tensor.
elt: (%, I, I, I) -> R
++ elt(t,i,j,k) gives a component of a rank 3 tensor.
elt: (%, I, I, I, I) -> R
++ elt(t,i,j,k,l) gives a component of a rank 4 tensor.
elt: (%, List I) -> R
++ elt(t,[i1,...,iN]) gives a component of a rank \spad{N} tensor.
-- This specializes the documentation from GradedAlgebra.
product: (%,%) -> %
++ product(s,t) is the outer product of the tensors s and t.
++ For example, if \spad{r = product(s,t)} for rank 2 tensors s and t,
++ then \spad{r} is a rank 4 tensor given by
++ \spad{r(i,j,k,l) = s(i,j)*t(k,l)}.
*: (%, %) -> %
++ s*t is the inner product of the tensors s and t which contracts
++ the last index of s with the first index of t, i.e.
++ \spad{t*s = contract(t,rank t, s, 1)}
++ \spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}
++ This is compatible with the use of \spad{M*v} to denote
++ the matrix-vector inner product.
contract: (%, Integer, %, Integer) -> %
++ contract(t,i,s,j) is the inner product of tenors s and t
++ which sums along the \spad{k1}-th index of
++ t and the \spad{k2}-th index of s.
++ For example, if \spad{r = contract(s,2,t,1)} for rank 3 tensors
++ rank 3 tensors \spad{s} and \spad{t}, then \spad{r} is
++ the rank 4 \spad{(= 3 + 3 - 2)} tensor given by
++ \spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.
contract: (%, Integer, Integer) -> %
++ contract(t,i,j) is the contraction of tensor t which
++ sums along the \spad{i}-th and \spad{j}-th indices.
++ For example, if
++ \spad{r = contract(t,1,3)} for a rank 4 tensor t, then
++ \spad{r} is the rank 2 \spad{(= 4 - 2)} tensor given by
++ \spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.
transpose: % -> %
++ transpose(t) exchanges the first and last indices of t.
++ For example, if \spad{r = transpose(t)} for a rank 4 tensor t, then
++ \spad{r} is the rank 4 tensor given by
++ \spad{r(i,j,k,l) = t(l,j,k,i)}.
transpose: (%, Integer, Integer) -> %
++ transpose(t,i,j) exchanges the \spad{i}-th and \spad{j}-th indices of t.
++ For example, if \spad{r = transpose(t,2,3)} for a rank 4 tensor t, then
++ \spad{r} is the rank 4 tensor given by
++ \spad{r(i,j,k,l) = t(i,k,j,l)}.
reindex: (%, List Integer) -> %
++ reindex(t,[i1,...,idim]) permutes the indices of t.
++ For example, if \spad{r = reindex(t, [4,1,2,3])}
++ for a rank 4 tensor t,
++ then \spad{r} is the rank for tensor given by
++ \spad{r(i,j,k,l) = t(l,i,j,k)}.
kroneckerDelta: () -> %
++ kroneckerDelta() is the rank 2 tensor defined by
++ \spad{kroneckerDelta()(i,j)}
++ \spad{= 1 if i = j}
++ \spad{= 0 if i \~= j}
leviCivitaSymbol: () -> %
++ leviCivitaSymbol() is the rank \spad{dim} tensor defined by
++ \spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1}
++ if \spad{i1,...,idim} is an even/is nota /is an odd permutation
++ of \spad{minix,...,minix+dim-1}.
ravel: % -> List R
++ ravel(t) produces a list of components from a tensor such that
++ \spad{unravel(ravel(t)) = t}.
unravel: List R -> %
++ unravel(t) produces a tensor from a list of
++ components such that
++ \spad{unravel(ravel(t)) = t}.
sample: () -> %
++ sample() returns an object of type %.
Implementation ==> add
PERM ==> Vector Integer -- 1-based entries from 1..n
INDEX ==> Vector Integer -- 1-based entries from minix..minix+dim-1
get ==> elt$Rep
set! ==> setelt$Rep
-- Use row-major order:
-- x[h,i,j] <-> x[(h-minix)*dim**2+(i-minix)*dim+(j-minix)]
Rep := IndexedVector(R,0)
n: Integer
---- Local stuff
dim2: NNI := dim**2
dim3: NNI := dim**3
dim4: NNI := dim**4
sample()==kroneckerDelta()$%
int2index(n: Integer, indv: INDEX): INDEX ==
negative? n => error "Index error (too small)"
rnk := #indv
for i in 1..rnk repeat
qr := divide(n, dim)
n := qr.quotient
indv.((rnk-i+1) pretend NNI) := qr.remainder + minix
n ~= 0 => error "Index error (too big)"
indv
index2int(indv: INDEX): Integer ==
n: I := 0
for i in 1..#indv repeat
ix := indv.i - minix
negative? ix or ix>dim-1 => error "Index error (out of range)"
n := dim*n + ix
n
lengthRankOrElse(v: Integer): NNI ==
v = 1 => 0
v = dim => 1
v = dim2 => 2
v = dim3 => 3
v = dim4 => 4
rx := 0
while v ~= 0 repeat
qr := divide(v, dim)
v := qr.quotient
if v ~= 0 then
qr.remainder ~= 0 => error "Rank is not a whole number"
rx := rx + 1
rx
-- l must be a list of the numbers 1..#l
mkPerm(n: NNI, l: List Integer): PERM ==
#l ~= n =>
error "The list is not a permutation."
p: PERM := new(n, 0)
seen: Vector Boolean := new(n, false)
for i in 1..n for e in l repeat
e < 1 or e > n => error "The list is not a permutation."
p.i := e
seen.e := true
for e in 1..n repeat
not seen.e => error "The list is not a permutation."
p
-- permute s according to p into result t.
permute!(t: INDEX, s: INDEX, p: PERM): INDEX ==
for i in 1..#p repeat t.i := s.(p.i)
t
-- permsign!(v) = 1, 0, or -1 according as
-- v is an even, is not, or is an odd permutation of minix..minix+#v-1.
permsign!(v: INDEX): Integer ==
-- sum minix..minix+#v-1.
maxix := minix+#v-1
psum := (((maxix+1)*maxix - minix*(minix-1)) exquo 2)::Integer
-- +/v ~= psum => 0
n := 0
for i in 1..#v repeat n := n + v.i
n ~= psum => 0
-- Bubble sort! This is pretty grotesque.
totTrans: Integer := 0
nTrans: Integer := 1
while nTrans ~= 0 repeat
nTrans := 0
for i in 1..#v-1 for j in 2..#v repeat
if v.i > v.j then
nTrans := nTrans + 1
e := v.i; v.i := v.j; v.j := e
totTrans := totTrans + nTrans
for i in 1..dim repeat
if v.i ~= minix+i-1 then return 0
odd? totTrans => -1
1
---- Exported functions
ravel x ==
[get(x,i) for i in 0..#x-1]
unravel l ==
-- lengthRankOrElse #l gives sytnax error
nz: NNI := # l
lengthRankOrElse nz
z := new(nz, 0)
for i in 0..nz-1 for r in l repeat set!(z, i, r)
z
kroneckerDelta() ==
z := new(dim2, 0)
for i in 1..dim for zi in 0.. by (dim+1) repeat set!(z, zi, 1)
z
leviCivitaSymbol() ==
nz := dim**dim
z := new(nz, 0)
indv: INDEX := new(dim, 0)
for i in 0..nz-1 repeat
set!(z, i, permsign!(int2index(i, indv))::R)
z
-- from GradedModule
degree x ==
rank x
rank x ==
n := #x
lengthRankOrElse n
elt(x: %) ==
not one?(#x) => error "Index error (the rank is not 0)"
get(x,0)
elt(x: %, i: I) ==
#x ~= dim => error "Index error (the rank is not 1)"
get(x,(i-minix))
elt(x: %, i: I, j: I) ==
#x ~= dim2 => error "Index error (the rank is not 2)"
get(x,(dim*(i-minix) + (j-minix)))
elt(x: %, i: I, j: I, k: I) ==
#x ~= dim3 => error "Index error (the rank is not 3)"
get(x,(dim2*(i-minix) + dim*(j-minix) + (k-minix)))
elt(x: %, i: I, j: I, k: I, l: I) ==
#x ~= dim4 => error "Index error (the rank is not 4)"
get(x,(dim3*(i-minix) + dim2*(j-minix) + dim*(k-minix) + (l-minix)))
elt(x: %, i: List I) ==
#i ~= rank x => error "Index error (wrong rank)"
n: I := 0
for ii in i repeat
ix := ii - minix
negative? ix or ix>dim-1 => error "Index error (out of range)"
n := dim*n + ix
get(x,n)
coerce(lr: List R): % ==
#lr ~= dim => error "Incorrect number of components"
z := new(dim, 0)
for r in lr for i in 0..dim-1 repeat set!(z, i, r)
z
coerce(lx: List %): % ==
#lx ~= dim => error "Incorrect number of slices"
rx := rank first lx
for x in lx repeat
rank x ~= rx => error "Inhomogeneous slice ranks"
nx := # first lx
z := new(dim * nx, 0)
for x in lx for offz in 0.. by nx repeat
for i in 0..nx-1 repeat set!(z, offz + i, get(x,i))
z
retractIfCan(x:%):Union(R,"failed") ==
zero? rank(x) => x()
"failed"
Outf ==> OutputForm
mkOutf(x:%, i0:I, rnk:NNI): Outf ==
odd? rnk =>
rnk1 := (rnk-1) pretend NNI
nskip := dim**rnk1
[mkOutf(x, i0+nskip*i, rnk1) for i in 0..dim-1]::Outf
rnk = 0 =>
get(x,i0)::Outf
rnk1 := (rnk-2) pretend NNI
nskip := dim**rnk1
matrix [[mkOutf(x, i0+nskip*(dim*i + j), rnk1)
for j in 0..dim-1] for i in 0..dim-1]
coerce(x): Outf ==
mkOutf(x, 0, rank x)
0 == 0$R::Rep
1 == 1$R::Rep
--coerce(n: I): % == new(1, n::R)
coerce(r: R): % == new(1,r)
coerce(v: DP(dim,R)): % ==
z := new(dim, 0)
for i in 0..dim-1 for j in minIndex v .. maxIndex v repeat
set!(z, i, v.j)
z
coerce(m: SM(dim,R)): % ==
z := new(dim**2, 0)
offz := 0
for i in 0..dim-1 repeat
for j in 0..dim-1 repeat
set!(z, offz + j, m(i+1,j+1))
offz := offz + dim
z
x = y ==
#x ~= #y => false
for i in 0..#x-1 repeat
if get(x,i) ~= get(y,i) then return false
true
x + y ==
#x ~= #y => error "Rank mismatch"
-- z := [xi + yi for xi in x for yi in y]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, get(x,i) + get(y,i))
z
x - y ==
#x ~= #y => error "Rank mismatch"
-- [xi - yi for xi in x for yi in y]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, get(x,i) - get(y,i))
z
- x ==
-- [-xi for xi in x]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, -get(x,i))
z
n: Integer * x: % ==
-- [n * xi for xi in x]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, n * get(x,i))
z
x: % * n: Integer ==
-- [n * xi for xi in x]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, n* get(x,i)) -- Commutative!!
z
r: R * x: % ==
-- [r * xi for xi in x]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, r * get(x,i))
z
x: % * r: R ==
-- [xi*r for xi in x]
z := new(#x, 0)
for i in 0..#x-1 repeat set!(z, i, r* get(x,i)) -- Commutative!!
z
product(x, y) ==
nx := #x; ny := #y
z := new(nx * ny, 0)
for i in 0..nx-1 for ioff in 0.. by ny repeat
for j in 0..ny-1 repeat
set!(z, ioff + j, get(x,i) * get(y,j))
z
x: % * y: % ==
rx := rank x
ry := rank y
rx = 0 => get(x,0) * y
ry = 0 => x * get(y,0)
contract(x, rx, y, 1)
contract(x, i, j) ==
rx := rank x
i < 1 or i > rx or j < 1 or j > rx or i = j =>
error "Improper index for contraction"
if i > j then (i,j) := (j,i)
rl:= (rx- j) pretend NNI; nl:= dim**rl; zol:= 1; xol:= zol
rm:= (j-i-1) pretend NNI; nm:= dim**rm; zom:= nl; xom:= zom*dim
rh:= (i - 1) pretend NNI; nh:= dim**rh; zoh:= nl*nm
xoh:= zoh*dim**2
xok := nl*(1 + nm*dim)
z := new(nl*nm*nh, 0)
for h in 1..nh _
for xh in 0.. by xoh for zh in 0.. by zoh repeat
for m in 1..nm _
for xm in xh.. by xom for zm in zh.. by zom repeat
for l in 1..nl _
for xl in xm.. by xol for zl in zm.. by zol repeat
set!(z, zl, 0)
for k in 1..dim for xk in xl.. by xok repeat
set!(z, zl, get(z,zl) + get(x,xk))
z
contract(x, i, y, j) ==
rx := rank x
ry := rank y
i < 1 or i > rx or j < 1 or j > ry =>
error "Improper index for contraction"
rly:= (ry-j) pretend NNI; nly:= dim**rly; oly:= 1; zoly:= 1
rhy:= (j -1) pretend NNI; nhy:= dim**rhy
ohy:= nly*dim; zohy:= zoly*nly
rlx:= (rx-i) pretend NNI; nlx:= dim**rlx
olx:= 1; zolx:= zohy*nhy
rhx:= (i -1) pretend NNI; nhx:= dim**rhx
ohx:= nlx*dim; zohx:= zolx*nlx
z := new(nlx*nhx*nly*nhy, 0)
for dxh in 1..nhx _
for xh in 0.. by ohx for zhx in 0.. by zohx repeat
for dxl in 1..nlx _
for xl in xh.. by olx for zlx in zhx.. by zolx repeat
for dyh in 1..nhy _
for yh in 0.. by ohy for zhy in zlx.. by zohy repeat
for dyl in 1..nly _
for yl in yh.. by oly for zly in zhy.. by zoly repeat
set!(z, zly, 0)
for k in 1..dim _
for xk in xl.. by nlx for yk in yl.. by nly repeat
set!(z, zly, get(z,zly)+get(x,xk)*get(y,yk))
z
transpose x ==
transpose(x, 1, rank x)
transpose(x, i, j) ==
rx := rank x
i < 1 or i > rx or j < 1 or j > rx or i = j =>
error "Improper indicies for transposition"
if i > j then (i,j) := (j,i)
rl:= (rx- j) pretend NNI; nl:= dim**rl; zol:= 1; zoi := zol*nl
rm:= (j-i-1) pretend NNI; nm:= dim**rm; zom:= nl*dim; zoj := zom*nm
rh:= (i - 1) pretend NNI; nh:= dim**rh; zoh:= nl*nm*dim**2
z := new(#x, 0)
for h in 1..nh for zh in 0.. by zoh repeat _
for m in 1..nm for zm in zh.. by zom repeat _
for l in 1..nl for zl in zm.. by zol repeat _
for p in 1..dim _
for zp in zl.. by zoi for xp in zl.. by zoj repeat
for q in 1..dim _
for zq in zp.. by zoj for xq in xp.. by zoi repeat
set!(z, zq, get(x,xq))
z
reindex(x, l) ==
nx := #x
z: % := new(nx, 0)
rx := rank x
p := mkPerm(rx, l)
xiv: INDEX := new(rx, 0)
ziv: INDEX := new(rx, 0)
-- Use permutation
for i in 0..#x-1 repeat
pi := index2int(permute!(ziv, int2index(i,xiv),p))
set!(z, pi, get(x,i))
z
@
\section{package CARTEN2 CartesianTensorFunctions2}
<<package CARTEN2 CartesianTensorFunctions2>>=
)abbrev package CARTEN2 CartesianTensorFunctions2
++ Author: Stephen M. Watt
++ Date Created: December 1986
++ Date Last Updated: May 30, 1991
++ Basic Operations: reshape, map
++ Related Domains: CartesianTensor
++ Also See:
++ AMS Classifications:
++ Keywords: tensor
++ Examples:
++ References:
++ Description:
++ This package provides functions to enable conversion of tensors
++ given conversion of the components.
CartesianTensorFunctions2(minix, dim, S, T): CTPcat == CTPdef where
minix: Integer
dim: NonNegativeInteger
S, T: CommutativeRing
CS ==> CartesianTensor(minix, dim, S)
CT ==> CartesianTensor(minix, dim, T)
CTPcat == with
reshape: (List T, CS) -> CT
++ reshape(lt,ts) organizes the list of components lt into
++ a tensor with the same shape as ts.
map: (S->T, CS) -> CT
++ map(f,ts) does a componentwise conversion of the tensor ts
++ to a tensor with components of type T.
CTPdef == add
reshape(l, s) == unravel l
map(f, s) == unravel [f e for e in ravel s]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category GRMOD GradedModule>>
<<category GRALG GradedAlgebra>>
<<domain CARTEN CartesianTensor>>
<<package CARTEN2 CartesianTensorFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|