1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
\documentclass{article}
\usepackage{axiom}
\title{src/algebra boolean.spad}
\author{Stephen M. Watt, Michael Monagan, Gabriel Dos~Reis}
\begin{document}
\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\eject
\section{category PROPLOG PropositionalLogic}
<<category PROPLOG PropositionalLogic>>=
)abbrev category PROPLOG PropositionalLogic
++ Author: Gabriel Dos Reis
++ Date Created: Januray 14, 2008
++ Date Last Modified: September 20, 2008
++ Description: This category declares the connectives of
++ Propositional Logic.
PropositionalLogic(): Category == SetCategory with
"not": % -> %
++ not p returns the logical negation of `p'.
"and": (%, %) -> %
++ p and q returns the logical conjunction of `p', `q'.
"or": (%, %) -> %
++ p or q returns the logical disjunction of `p', `q'.
implies: (%,%) -> %
++ implies(p,q) returns the logical implication of `q' by `p'.
equiv: (%,%) -> %
++ equiv(p,q) returns the logical equivalence of `p', `q'.
@
\section{domain PROPFRML PropositionalFormula}
<<domain PROPFRML PropositionalFormula>>=
)set mess autoload on
)abbrev domain PROPFRML PropositionalFormula
++ Author: Gabriel Dos Reis
++ Date Created: Januray 14, 2008
++ Date Last Modified: January 16, 2008
++ Description: This domain implements propositional formula build
++ over a term domain, that itself belongs to PropositionalLogic
PropositionalFormula(T: PropositionalLogic): PropositionalLogic with
coerce: T -> %
++ coerce(t) turns the term `t' into a propositional formula
coerce: Symbol -> %
++ coerce(t) turns the term `t' into a propositional variable.
variables: % -> Set Symbol
++ variables(p) returns the set of propositional variables
++ appearing in the proposition `p'.
term?: % -> Boolean
++ term? p returns true when `p' really is a term
term: % -> T
++ term p extracts the term value from `p'; otherwise errors.
variable?: % -> Boolean
++ variables? p returns true when `p' really is a variable.
variable: % -> Symbol
++ variable p extracts the variable name from `p'; otherwise errors.
not?: % -> Boolean
++ not? p is true when `p' is a logical negation
notOperand: % -> %
++ notOperand returns the operand to the logical `not' operator;
++ otherwise errors.
and?: % -> Boolean
++ and? p is true when `p' is a logical conjunction.
andOperands: % -> Pair(%, %)
++ andOperands p extracts the operands of the logical conjunction;
++ otherwise errors.
or?: % -> Boolean
++ or? p is true when `p' is a logical disjunction.
orOperands: % -> Pair(%,%)
++ orOperands p extracts the operands to the logical disjunction;
++ otherwise errors.
implies?: % -> Boolean
++ implies? p is true when `p' is a logical implication.
impliesOperands: % -> Pair(%,%)
++ impliesOperands p extracts the operands to the logical
++ implication; otherwise errors.
equiv?: % -> Boolean
++ equiv? p is true when `p' is a logical equivalence.
equivOperands: % -> Pair(%,%)
++ equivOperands p extracts the operands to the logical equivalence;
++ otherwise errors.
== add
FORMULA ==> Union(base: T, var: Symbol, unForm: %,
binForm: Record(op: Symbol, lhs: %, rhs: %))
per(f: FORMULA): % ==
f pretend %
rep(p: %): FORMULA ==
p pretend FORMULA
coerce(t: T): % ==
per [t]$FORMULA
coerce(s: Symbol): % ==
per [s]$FORMULA
not p ==
per [p]$FORMULA
binaryForm(o: Symbol, l: %, r: %): % ==
per [[o, l, r]$Record(op: Symbol, lhs: %, rhs: %)]$FORMULA
p and q ==
binaryForm('_and, p, q)
p or q ==
binaryForm('_or, p, q)
implies(p,q) ==
binaryForm('implies, p, q)
equiv(p,q) ==
binaryForm('equiv, p, q)
variables p ==
p' := rep p
p' case base => empty()$Set(Symbol)
p' case var => { p'.var }
p' case unForm => variables(p'.unForm)
p'' := p'.binForm
union(variables(p''.lhs), variables(p''.rhs))$Set(Symbol)
-- returns true if the proposition `p' is a formula of kind
-- indicated by `o'.
isBinaryNode?(p: %, o: Symbol): Boolean ==
p' := rep p
p' case binForm and p'.binForm.op = o
-- returns the operands of a binary formula node
binaryOperands(p: %): Pair(%,%) ==
p' := (rep p).binForm
pair(p'.lhs,p'.rhs)$Pair(%,%)
term? p ==
rep p case base
term p ==
term? p => (rep p).base
userError "formula is not a term"
variable? p ==
rep p case var
variable p ==
variable? p => (rep p).var
userError "formula is not a variable"
not? p ==
rep p case unForm
notOperand p ==
not? p => (rep p).unForm
userError "formula is not a logical negation"
and? p ==
isBinaryNode?(p,'_and)
andOperands p ==
and? p => binaryOperands p
userError "formula is not a conjunction formula"
or? p ==
isBinaryNode?(p,'_or)
orOperands p ==
or? p => binaryOperands p
userError "formula is not a disjunction formula"
implies? p ==
isBinaryNode?(p, 'implies)
impliesOperands p ==
implies? p => binaryOperands p
userError "formula is not an implication formula"
equiv? p ==
isBinaryNode?(p,'equiv)
equivOperands p ==
equiv? p => binaryOperands p
userError "formula is not an equivalence equivalence"
-- Unparsing grammar.
--
-- Ideally, the following syntax would the external form
-- Formula:
-- EquivFormula
--
-- EquivFormula:
-- ImpliesFormula
-- ImpliesFormula <=> EquivFormula
--
-- ImpliesFormula:
-- OrFormula
-- OrFormula => ImpliesFormula
--
-- OrFormula:
-- AndFormula
-- AndFormula or OrFormula
--
-- AndFormula
-- NotFormula
-- NotFormula and AndFormula
--
-- NotFormula:
-- PrimaryFormula
-- not NotFormula
--
-- PrimaryFormula:
-- Term
-- ( Formula )
--
-- Note: Since the token '=>' already means a construct different
-- from what we would like to have as a notation for
-- propositional logic, we will output the formula `p => q'
-- as implies(p,q), which looks like a function call.
-- Similarly, we do not have the token `<=>' for logical
-- equivalence; so we unparser `p <=> q' as equiv(p,q).
--
-- So, we modify the nonterminal PrimaryFormula to read
-- PrimaryFormula:
-- Term
-- implies(Formula, Formula)
-- equiv(Formula, Formula)
formula: % -> OutputForm
coerce(p: %): OutputForm ==
formula p
primaryFormula(p: %): OutputForm ==
term? p => term(p)::OutputForm
variable? p => variable(p)::OutputForm
if rep p case binForm then
p' := (rep p).binForm
p'.op = 'implies or p'.op = 'equiv =>
return elt(outputForm p'.op,
[formula p'.lhs, formula p'.rhs])$OutputForm
paren(formula p)$OutputForm
notFormula(p: %): OutputForm ==
not? p =>
elt(outputForm '_not, [notFormula((rep p).unForm)])$OutputForm
primaryFormula p
andFormula(p: %): OutputForm ==
and? p =>
p' := (rep p).binForm
-- ??? idealy, we should be using `and$OutputForm' but
-- ??? a bug in the compiler currently prevents that.
infix(outputForm '_and, notFormula p'.lhs,
andFormula p'.rhs)$OutputForm
notFormula p
orFormula(p: %): OutputForm ==
or? p =>
p' := (rep p).binForm
-- ??? idealy, we should be using `or$OutputForm' but
-- ??? a bug in the compiler currently prevents that.
infix(outputForm '_or, andFormula p'.lhs,
orFormula p'.rhs)$OutputForm
andFormula p
formula p ==
-- Note: this should be equivFormula, but see the explanation above.
orFormula p
@
\section{domain REF Reference}
<<domain REF Reference>>=
)abbrev domain REF Reference
++ Author: Stephen M. Watt
++ Date Created:
++ Change History:
++ Basic Operations: deref, elt, ref, setelt, setref, =
++ Related Constructors:
++ Keywords: reference
++ Description: \spadtype{Reference} is for making a changeable instance
++ of something.
Reference(S:Type): Type with
ref : S -> %
++ ref(n) creates a pointer (reference) to the object n.
elt : % -> S
++ elt(n) returns the object n.
setelt: (%, S) -> S
++ setelt(n,m) changes the value of the object n to m.
-- alternates for when bugs don't allow the above
deref : % -> S
++ deref(n) is equivalent to \spad{elt(n)}.
setref: (%, S) -> S
++ setref(n,m) same as \spad{setelt(n,m)}.
_= : (%, %) -> Boolean
++ a=b tests if \spad{a} and b are equal.
if S has SetCategory then SetCategory
== add
Rep := Record(value: S)
p = q == EQ(p, q)$Lisp
ref v == [v]
elt p == p.value
setelt(p, v) == p.value := v
deref p == p.value
setref(p, v) == p.value := v
if S has SetCategory then
coerce p ==
prefix('ref::OutputForm, [p.value::OutputForm])
@
\section{category LOGIC Logic}
<<category LOGIC Logic>>=
)abbrev category LOGIC Logic
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations: ~, /\, \/
++ Related Constructors:
++ Keywords: boolean
++ Description:
++ `Logic' provides the basic operations for lattices,
++ e.g., boolean algebra.
Logic: Category == BasicType with
_~: % -> %
++ ~(x) returns the logical complement of x.
_/_\: (%, %) -> %
++ \spadignore { /\ }returns the logical `meet', e.g. `and'.
_\_/: (%, %) -> %
++ \spadignore{ \/ } returns the logical `join', e.g. `or'.
add
_\_/(x: %,y: %) == _~( _/_\(_~(x), _~(y)))
@
\section{domain BOOLEAN Boolean}
<<domain BOOLEAN Boolean>>=
)abbrev domain BOOLEAN Boolean
++ Author: Stephen M. Watt
++ Date Created:
++ Date Last Changed: September 20, 2008
++ Basic Operations: true, false, not, and, or, xor, nand, nor, implies
++ Related Constructors:
++ Keywords: boolean
++ Description: \spadtype{Boolean} is the elementary logic with 2 values:
++ true and false
Boolean(): Join(OrderedFinite, Logic, PropositionalLogic, ConvertibleTo InputForm) with
true: %
++ true is a logical constant.
false: %
++ false is a logical constant.
xor : (%, %) -> %
++ xor(a,b) returns the logical exclusive {\em or}
++ of Boolean \spad{a} and b.
nand : (%, %) -> %
++ nand(a,b) returns the logical negation of \spad{a} and b.
nor : (%, %) -> %
++ nor(a,b) returns the logical negation of \spad{a} or b.
test: % -> %
++ test(b) returns b and is provided for compatibility with the new compiler.
== add
test a == a
nt(a: %): % == NOT(a)$Lisp
true == 'T pretend %
false == NIL$Lisp
sample() == true
not b == nt b
_~ b == (b => false; true)
_and(a, b) == AND(a,b)$Lisp
_/_\(a, b) == AND(a,b)$Lisp
_or(a, b) == OR(a,b)$Lisp
_\_/(a, b) == OR(a,b)$Lisp
xor(a, b) == (a => nt b; b)
nor(a, b) == (a => false; nt b)
nand(a, b) == (a => nt b; true)
a = b == EQ(a, b)$Lisp
implies(a, b) == (a => b; true)
equiv(a,b) == EQ(a, b)$Lisp
a < b == (b => nt a; false)
size() == 2
index i ==
even?(i::Integer) => false
true
lookup a ==
a => 1
2
random() ==
even?(random()$Integer) => false
true
convert(x:%):InputForm ==
convert
x => 'true
'false
coerce(x:%):OutputForm ==
outputForm
x => 'true
'false
@
\section{domain IBITS IndexedBits}
<<domain IBITS IndexedBits>>=
)abbrev domain IBITS IndexedBits
++ Author: Stephen Watt and Michael Monagan
++ Date Created:
++ July 86
++ Change History:
++ Oct 87
++ Basic Operations: range
++ Related Constructors:
++ Keywords: indexed bits
++ Description: \spadtype{IndexedBits} is a domain to compactly represent
++ large quantities of Boolean data.
IndexedBits(mn:Integer): BitAggregate() with
-- temporaries until parser gets better
Not: % -> %
++ Not(n) returns the bit-by-bit logical {\em Not} of n.
Or : (%, %) -> %
++ Or(n,m) returns the bit-by-bit logical {\em Or} of
++ n and m.
And: (%, %) -> %
++ And(n,m) returns the bit-by-bit logical {\em And} of
++ n and m.
== add
range: (%, Integer) -> Integer
--++ range(j,i) returnes the range i of the boolean j.
minIndex u == mn
range(v, i) ==
i >= 0 and i < #v => i
error "Index out of range"
coerce(v):OutputForm ==
t:Character := char "1"
f:Character := char "0"
s := new(#v, space()$Character)$String
for i in minIndex(s)..maxIndex(s) for j in mn.. repeat
s.i := if v.j then t else f
s::OutputForm
new(n, b) == BVEC_-MAKE_-FULL(n,TRUTH_-TO_-BIT(b)$Lisp)$Lisp
empty() == BVEC_-MAKE_-FULL(0,0)$Lisp
copy v == BVEC_-COPY(v)$Lisp
#v == BVEC_-SIZE(v)$Lisp
v = u == BVEC_-EQUAL(v, u)$Lisp
v < u == BVEC_-GREATER(u, v)$Lisp
_and(u, v) == (#v=#u => BVEC_-AND(v,u)$Lisp; map("and",v,u))
_or(u, v) == (#v=#u => BVEC_-OR(v, u)$Lisp; map("or", v,u))
xor(v,u) == (#v=#u => BVEC_-XOR(v,u)$Lisp; map("xor",v,u))
setelt(v:%, i:Integer, f:Boolean) ==
BIT_-TO_-TRUTH(BVEC_-SETELT(v, range(v, i-mn),
TRUTH_-TO_-BIT(f)$Lisp)$Lisp)$Lisp
elt(v:%, i:Integer) ==
BIT_-TO_-TRUTH(BVEC_-ELT(v, range(v, i-mn))$Lisp)$Lisp
Not v == BVEC_-NOT(v)$Lisp
And(u, v) == (#v=#u => BVEC_-AND(v,u)$Lisp; map("and",v,u))
Or(u, v) == (#v=#u => BVEC_-OR(v, u)$Lisp; map("or", v,u))
@
\section{domain BITS Bits}
<<domain BITS Bits>>=
)abbrev domain BITS Bits
++ Author: Stephen M. Watt
++ Date Created:
++ Change History:
++ Basic Operations: And, Not, Or
++ Related Constructors:
++ Keywords: bits
++ Description: \spadtype{Bits} provides logical functions for Indexed Bits.
Bits(): Exports == Implementation where
Exports == BitAggregate() with
bits: (NonNegativeInteger, Boolean) -> %
++ bits(n,b) creates bits with n values of b
Implementation == IndexedBits(1) add
bits(n,b) == new(n,b)
@
\section{Kleene's Three-Valued Logic}
<<domain KTVLOGIC KleeneTrivalentLogic>>=
)abbrev domain KTVLOGIC KleeneTrivalentLogic
++ Author: Gabriel Dos Reis
++ Date Created: September 20, 2008
++ Date Last Modified: September 20, 2008
++ Description:
++ This domain implements Kleene's 3-valued propositional logic.
KleeneTrivalentLogic(): Public == Private where
Public == PropositionalLogic with
false: % ++ the definite falsehood value
unknown: % ++ the indefinite `unknown'
true: % ++ the definite truth value
_case: (%,[| false |]) -> Boolean
++ x case false holds if the value of `x' is `false'
_case: (%,[| unknown |]) -> Boolean
++ x case unknown holds if the value of `x' is `unknown'
_case: (%,[| true |]) -> Boolean
++ s case true holds if the value of `x' is `true'.
Private == add
Rep == Byte -- We need only 3 bits, in fact.
false == per(0::Byte)
unknown == per(1::Byte)
true == per(2::Byte)
x = y == rep x = rep y
x case true == x = true
x case false == x = false
x case unknown == x = unknown
not x ==
x case false => true
x case unknown => unknown
false
x and y ==
x case false => false
x case unknown =>
y case false => false
unknown
y
x or y ==
x case false => y
x case true => x
y case true => y
unknown
implies(x,y) ==
x case false => true
x case true => y
y case true => true
unknown
equiv(x,y) ==
x case unknown => x
x case true => y
not y
coerce(x: %): OutputForm ==
x case true => outputForm 'true
x case false => outputForm 'false
outputForm 'unknown
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2008, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain REF Reference>>
<<category LOGIC Logic>>
<<domain BOOLEAN Boolean>>
<<domain IBITS IndexedBits>>
<<domain BITS Bits>>
<<category PROPLOG PropositionalLogic>>
<<domain PROPFRML PropositionalFormula>>
<<domain KTVLOGIC KleeneTrivalentLogic>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|