1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{src/algebra algcat.spad}
\author{Barry Trager, Claude Quitte, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\eject
\section{category FINRALG FiniteRankAlgebra}
<<category FINRALG FiniteRankAlgebra>>=
import CommutativeRing
import Algebra
import UnivariatePolynomialCategory
import PositiveInteger
import Vector
import Matrix
)abbrev category FINRALG FiniteRankAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A FiniteRankAlgebra is an algebra over a commutative ring R which
++ is a free R-module of finite rank.
FiniteRankAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
Category == Algebra R with
rank : () -> PositiveInteger
++ rank() returns the rank of the algebra.
regularRepresentation : (% , Vector %) -> Matrix R
++ regularRepresentation(a,basis) returns the matrix of the
++ linear map defined by left multiplication by \spad{a} with respect
++ to the basis \spad{basis}.
trace : % -> R
++ trace(a) returns the trace of the regular representation
++ of \spad{a} with respect to any basis.
norm : % -> R
++ norm(a) returns the determinant of the regular representation
++ of \spad{a} with respect to any basis.
coordinates : (%, Vector %) -> Vector R
++ coordinates(a,basis) returns the coordinates of \spad{a} with
++ respect to the basis \spad{basis}.
coordinates : (Vector %, Vector %) -> Matrix R
++ coordinates([v1,...,vm], basis) returns the coordinates of the
++ vi's with to the basis \spad{basis}. The coordinates of vi are
++ contained in the ith row of the matrix returned by this
++ function.
represents : (Vector R, Vector %) -> %
++ represents([a1,..,an],[v1,..,vn]) returns \spad{a1*v1 + ... + an*vn}.
discriminant : Vector % -> R
++ discriminant([v1,..,vn]) returns
++ \spad{determinant(traceMatrix([v1,..,vn]))}.
traceMatrix : Vector % -> Matrix R
++ traceMatrix([v1,..,vn]) is the n-by-n matrix ( Tr(vi * vj) )
characteristicPolynomial: % -> UP
++ characteristicPolynomial(a) returns the characteristic
++ polynomial of the regular representation of \spad{a} with respect
++ to any basis.
if R has Field then minimalPolynomial : % -> UP
++ minimalPolynomial(a) returns the minimal polynomial of \spad{a}.
if R has CharacteristicZero then CharacteristicZero
if R has CharacteristicNonZero then CharacteristicNonZero
add
discriminant v == determinant traceMatrix v
coordinates(v:Vector %, b:Vector %) ==
m := new(#v, #b, 0)$Matrix(R)
for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
setRow_!(m, j, coordinates(qelt(v, i), b))
m
represents(v, b) ==
m := minIndex v - 1
_+/[v(i+m) * b(i+m) for i in 1..rank()]
traceMatrix v ==
matrix [[trace(v.i*v.j) for j in minIndex v..maxIndex v]$List(R)
for i in minIndex v .. maxIndex v]$List(List R)
regularRepresentation(x, b) ==
m := minIndex b - 1
matrix
[parts coordinates(x*b(i+m),b) for i in 1..rank()]$List(List R)
@
\section{category FRAMALG FramedAlgebra}
<<category FRAMALG FramedAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import Vector
)abbrev category FRAMALG FramedAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{FramedAlgebra} is a \spadtype{FiniteRankAlgebra} together
++ with a fixed R-module basis.
FramedAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
Category == FiniteRankAlgebra(R, UP) with
--operations
basis : () -> Vector %
++ basis() returns the fixed R-module basis.
coordinates : % -> Vector R
++ coordinates(a) returns the coordinates of \spad{a} with respect to the
++ fixed R-module basis.
coordinates : Vector % -> Matrix R
++ coordinates([v1,...,vm]) returns the coordinates of the
++ vi's with to the fixed basis. The coordinates of vi are
++ contained in the ith row of the matrix returned by this
++ function.
represents : Vector R -> %
++ represents([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
++ v1, ..., vn are the elements of the fixed basis.
convert : % -> Vector R
++ convert(a) returns the coordinates of \spad{a} with respect to the
++ fixed R-module basis.
convert : Vector R -> %
++ convert([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
++ v1, ..., vn are the elements of the fixed basis.
traceMatrix : () -> Matrix R
++ traceMatrix() is the n-by-n matrix ( \spad{Tr(vi * vj)} ), where
++ v1, ..., vn are the elements of the fixed basis.
discriminant : () -> R
++ discriminant() = determinant(traceMatrix()).
regularRepresentation : % -> Matrix R
++ regularRepresentation(a) returns the matrix of the linear
++ map defined by left multiplication by \spad{a} with respect
++ to the fixed basis.
--attributes
--separable <=> discriminant() ~= 0
add
convert(x:%):Vector(R) == coordinates(x)
convert(v:Vector R):% == represents(v)
traceMatrix() == traceMatrix basis()
discriminant() == discriminant basis()
coordinates(x:%) == coordinates(x, basis())
represents x == represents(x, basis())
coordinates(v:Vector %) ==
m := new(#v, rank(), 0)$Matrix(R)
for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
setRow_!(m, j, coordinates qelt(v, i))
m
regularRepresentation x ==
m := new(n := rank(), n, 0)$Matrix(R)
b := basis()
for i in minIndex b .. maxIndex b for j in minRowIndex m .. repeat
setRow_!(m, j, coordinates(x * qelt(b, i)))
m
characteristicPolynomial x ==
mat00 := (regularRepresentation x)
mat0 := map(#1 :: UP,mat00)$MatrixCategoryFunctions2(R, Vector R,
Vector R, Matrix R, UP, Vector UP,Vector UP, Matrix UP)
mat1 : Matrix UP := scalarMatrix(rank(),monomial(1,1)$UP)
determinant(mat1 - mat0)
if R has Field then
-- depends on the ordering of results from nullSpace, also see FFP
minimalPolynomial(x:%):UP ==
y:%:=1
n:=rank()
m:Matrix R:=zero(n,n+1)
for i in 1..n+1 repeat
setColumn_!(m,i,coordinates(y))
y:=y*x
v:=first nullSpace(m)
+/[monomial(v.(i+1),i) for i in 0..#v-1]
@
\section{category MONOGEN MonogenicAlgebra}
<<category MONOGEN MonogenicAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import FramedAlgebra
import FullyRetractableTo
import FullyLinearlyExplicitRingOver
)abbrev category MONOGEN MonogenicAlgebra
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{MonogenicAlgebra} is an algebra of finite rank which
++ can be generated by a single element.
MonogenicAlgebra(R:CommutativeRing, UP:UnivariatePolynomialCategory R):
Category ==
Join(FramedAlgebra(R, UP), CommutativeRing, ConvertibleTo UP,
FullyRetractableTo R, FullyLinearlyExplicitRingOver R) with
generator : () -> %
++ generator() returns the generator for this domain.
definingPolynomial: () -> UP
++ definingPolynomial() returns the minimal polynomial which
++ \spad{generator()} satisfies.
reduce : UP -> %
++ reduce(up) converts the univariate polynomial up to an algebra
++ element, reducing by the \spad{definingPolynomial()} if necessary.
convert : UP -> %
++ convert(up) converts the univariate polynomial up to an algebra
++ element, reducing by the \spad{definingPolynomial()} if necessary.
lift : % -> UP
++ lift(z) returns a minimal degree univariate polynomial up such that
++ \spad{z=reduce up}.
if R has Finite then Finite
if R has Field then
Field
DifferentialExtension R
reduce : Fraction UP -> Union(%, "failed")
++ reduce(frac) converts the fraction frac to an algebra element.
derivationCoordinates: (Vector %, R -> R) -> Matrix R
++ derivationCoordinates(b, ') returns M such that \spad{b' = M b}.
if R has FiniteFieldCategory then FiniteFieldCategory
add
convert(x:%):UP == lift x
convert(p:UP):% == reduce p
generator() == reduce monomial(1, 1)$UP
norm x == resultant(definingPolynomial(), lift x)
retract(x:%):R == retract lift x
retractIfCan(x:%):Union(R, "failed") == retractIfCan lift x
basis() ==
[reduce monomial(1,i)$UP for i in 0..(rank()-1)::NonNegativeInteger]
characteristicPolynomial(x:%):UP ==
characteristicPolynomial(x)$CharacteristicPolynomialInMonogenicalAlgebra(R,UP,%)
if R has Finite then
size() == size()$R ** rank()
random() == represents [random()$R for i in 1..rank()]$Vector(R)
if R has Field then
reduce(x:Fraction UP) == reduce(numer x) exquo reduce(denom x)
differentiate(x:%, d:R -> R) ==
p := definingPolynomial()
yprime := - reduce(map(d, p)) / reduce(differentiate p)
reduce(map(d, lift x)) + yprime * reduce differentiate lift x
derivationCoordinates(b, d) ==
coordinates(map(differentiate(#1, d), b), b)
recip x ==
(bc := extendedEuclidean(lift x, definingPolynomial(), 1))
case "failed" => "failed"
reduce(bc.coef1)
@
\section{package CPIMA CharacteristicPolynomialInMonogenicalAlgebra}
<<package CPIMA CharacteristicPolynomialInMonogenicalAlgebra>>=
import CommutativeRing
import UnivariatePolynomialCategory
import MonogenicAlgebra
)abbrev package CPIMA CharacteristicPolynomialInMonogenicalAlgebra
++ Author: Claude Quitte
++ Date Created: 10/12/93
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package implements characteristicPolynomials for monogenic algebras
++ using resultants
CharacteristicPolynomialInMonogenicalAlgebra(R : CommutativeRing,
PolR : UnivariatePolynomialCategory(R),
E : MonogenicAlgebra(R, PolR)): with
characteristicPolynomial : E -> PolR
++ characteristicPolynomial(e) returns the characteristic polynomial
++ of e using resultants
== add
Pol ==> SparseUnivariatePolynomial
import UnivariatePolynomialCategoryFunctions2(R, PolR, PolR, Pol(PolR))
XtoY(Q : PolR) : Pol(PolR) == map(monomial(#1, 0), Q)
P : Pol(PolR) := XtoY(definingPolynomial()$E)
X : Pol(PolR) := monomial(monomial(1, 1)$PolR, 0)
characteristicPolynomial(x : E) : PolR ==
Qx : PolR := lift(x)
-- on utilise le fait que resultant_Y (P(Y), X - Qx(Y))
return resultant(P, X - XtoY(Qx))
@
\section{package NORMMA NormInMonogenicAlgebra}
<<package NORMMA NormInMonogenicAlgebra>>=
import GcdDomain
import UnivariatePolynomialCategory
import MonogenicAlgebra
)abbrev package NORMMA NormInMonogenicAlgebra
++ Author: Manuel Bronstein
++ Date Created: 23 February 1995
++ Date Last Updated: 23 February 1995
++ Basic Functions: norm
++ Description:
++ This package implements the norm of a polynomial with coefficients
++ in a monogenic algebra (using resultants)
NormInMonogenicAlgebra(R, PolR, E, PolE): Exports == Implementation where
R: GcdDomain
PolR: UnivariatePolynomialCategory R
E: MonogenicAlgebra(R, PolR)
PolE: UnivariatePolynomialCategory E
SUP ==> SparseUnivariatePolynomial
Exports ==> with
norm: PolE -> PolR
++ norm q returns the norm of q,
++ i.e. the product of all the conjugates of q.
Implementation ==> add
import UnivariatePolynomialCategoryFunctions2(R, PolR, PolR, SUP PolR)
PolR2SUP: PolR -> SUP PolR
PolR2SUP q == map(#1::PolR, q)
defpol := PolR2SUP(definingPolynomial()$E)
norm q ==
p:SUP PolR := 0
while q ~= 0 repeat
p := p + monomial(1,degree q)$PolR * PolR2SUP lift leadingCoefficient q
q := reductum q
primitivePart resultant(p, defpol)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category FINRALG FiniteRankAlgebra>>
<<category FRAMALG FramedAlgebra>>
<<category MONOGEN MonogenicAlgebra>>
<<package CPIMA CharacteristicPolynomialInMonogenicalAlgebra>>
<<package NORMMA NormInMonogenicAlgebra>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|