aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase1342
-rw-r--r--src/share/algebra/category.daase1130
-rw-r--r--src/share/algebra/compress.daase1285
-rw-r--r--src/share/algebra/interp.daase8416
-rw-r--r--src/share/algebra/operation.daase26270
5 files changed, 19219 insertions, 19224 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 61e51a5f..aa5e867a 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2243771 . 3429209006)
+(2242565 . 3429259028)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4267 . T) (-4265 . T) (-4264 . T) ((-4272 "*") . T) (-4263 . T) (-4268 . T) (-4262 . T) (-4087 . T))
+((-4266 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4100 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1345)
+(-31 R -1334)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
+((|HasAttribute| |#1| (QUOTE -4269)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,17 +78,17 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1345 UP UPUP -2113)
+(-39 -1334 UP UPUP -4076)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4263 |has| (-388 |#2|) (-344)) (-4268 |has| (-388 |#2|) (-344)) (-4262 |has| (-388 |#2|) (-344)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1476 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1476 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1476 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1476 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
-(-40 R -1345)
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1461 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1461 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1461 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+(-40 R -1334)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))))
@@ -102,23 +102,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-289))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4267 |has| |#1| (-522)) (-4265 . T) (-4264 . T))
+((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4270 . T) (-4271 . T))
-((-1476 (-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|))))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-1461 (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|))))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -126,7 +126,7 @@ NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1345)
+(-53 |Base| R -1334)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-59 -3901)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+(-59 -3907)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -3901)
+(-60 -3907)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -3901)
+(-61 -3907)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3901)
+(-62 -3907)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -3901)
+(-63 -3907)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3901)
+(-64 -3907)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3901)
+(-65 -3907)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3901)
+(-66 -3907)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3901)
+(-67 -3907)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -3901)
+(-68 -3907)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3901)
+(-69 -3907)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -3901)
+(-70 -3907)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -3901)
+(-71 -3907)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -3901)
+(-72 -3907)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3901)
+(-75 -3907)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -3901)
+(-76 -3907)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -3901)
+(-77 -3907)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3901)
+(-78 -3907)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3901)
+(-79 -3907)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3901)
+(-80 -3907)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3901)
+(-81 -3907)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -3901)
+(-82 -3907)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3901)
+(-83 -3907)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3901)
+(-84 -3907)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3901)
+(-85 -3907)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3901)
+(-86 -3907)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -3901)
+(-87 -3907)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-344))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-90 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4270 . T))
+((-4269 . T))
NIL
(-95)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4270 . T) ((-4272 "*") . T) (-4271 . T) (-4267 . T) (-4265 . T) (-4264 . T) (-4263 . T) (-4268 . T) (-4262 . T) (-4261 . T) (-4260 . T) (-4259 . T) (-4258 . T) (-4266 . T) (-4269 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4257 . T))
+((-4269 . T) ((-4271 "*") . T) (-4270 . T) (-4266 . T) (-4264 . T) (-4263 . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4260 . T) (-4259 . T) (-4258 . T) (-4257 . T) (-4265 . T) (-4268 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4256 . T))
NIL
(-96 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-97 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -330,15 +330,15 @@ NIL
NIL
(-100 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-101 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4272 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
(-102)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4270 . T))
+((-4269 . T))
NIL
(-103 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -346,12 +346,12 @@ NIL
NIL
(-104 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-105)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1476 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
(-106)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -362,11 +362,11 @@ NIL
NIL
(-108)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-804)))))
(-109 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-110)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -380,25 +380,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-113 -1345 UP)
+(-113 -1334 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-114 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-115 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-114 |#1|) (QUOTE (-850))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-114 |#1|) (QUOTE (-960))) (|HasCategory| (-114 |#1|) (QUOTE (-768))) (-1476 (|HasCategory| (-114 |#1|) (QUOTE (-768))) (|HasCategory| (-114 |#1|) (QUOTE (-795)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-1075))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-515))) (|HasCategory| (-114 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-114 |#1|) (QUOTE (-850))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-114 |#1|) (QUOTE (-960))) (|HasCategory| (-114 |#1|) (QUOTE (-768))) (-1461 (|HasCategory| (-114 |#1|) (QUOTE (-768))) (|HasCategory| (-114 |#1|) (QUOTE (-795)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-1075))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-515))) (|HasCategory| (-114 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
(-116 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)))
+((|HasAttribute| |#1| (QUOTE -4270)))
(-117 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-118 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -406,15 +406,15 @@ NIL
NIL
(-119 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-120 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-121)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-122 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -422,20 +422,20 @@ NIL
NIL
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-124 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-126)
((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127)))))) (-1476 (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027)))) (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127)))))) (-1461 (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027)))) (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804)))))
(-127)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -450,13 +450,13 @@ NIL
NIL
(-130)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4272 "*") . T))
+(((-4271 "*") . T))
NIL
-(-131 |minix| -3024 S T$)
+(-131 |minix| -3148 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-132 |minix| -3024 R)
+(-132 |minix| -3148 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -466,8 +466,8 @@ NIL
NIL
(-134)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4270 . T) (-4260 . T) (-4271 . T))
-((-1476 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4259 . T) (-4270 . T))
+((-1461 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
(-135 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -482,7 +482,7 @@ NIL
NIL
(-138)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-139 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -490,9 +490,9 @@ NIL
NIL
(-140)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4267 . T))
+((-4266 . T))
NIL
-(-141 -1345 UP UPUP)
+(-141 -1334 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -503,14 +503,14 @@ NIL
(-143 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasAttribute| |#1| (QUOTE -4270)))
+((|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasAttribute| |#1| (QUOTE -4269)))
(-144 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-145 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4265 . T) (-4264 . T) (-4267 . T))
+((-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-146)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -524,7 +524,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-149 R -1345)
+(-149 R -1334)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -551,10 +551,10 @@ NIL
(-155 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasAttribute| |#2| (QUOTE -4269)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-795))))
+((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4265)) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-795))))
(-156 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4263 -1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4266 |has| |#1| (-6 -4266)) (-4269 |has| |#1| (-6 -4269)) (-4136 . T) (-4087 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 -1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-4146 . T) (-4100 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-157 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -566,8 +566,8 @@ NIL
NIL
(-159 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4263 -1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4266 |has| |#1| (-6 -4266)) (-4269 |has| |#1| (-6 -4269)) (-4136 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-776)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#1| (QUOTE (-993))) (-12 (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-515))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasAttribute| |#1| (QUOTE -4266)) (|HasAttribute| |#1| (QUOTE -4269)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-330)))))
+((-4262 -1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-4146 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-776)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#1| (QUOTE (-993))) (-12 (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasAttribute| |#1| (QUOTE -4265)) (|HasAttribute| |#1| (QUOTE -4268)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-330)))))
(-160 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -578,11 +578,11 @@ NIL
NIL
(-162)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-163 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4272 "*") . T) (-4263 . T) (-4268 . T) (-4262 . T) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-164)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -616,7 +616,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-172 R -1345)
+(-172 R -1334)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -724,19 +724,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-199 -1345 UP UPUP R)
+(-199 -1334 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-200 -1345 FP)
+(-200 -1334 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-201)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1476 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
-(-202 R -1345)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+(-202 R -1334)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -750,19 +750,19 @@ NIL
NIL
(-205 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-206 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4267 . T))
+((-4266 . T))
NIL
-(-207 R -1345)
+(-207 R -1334)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-208)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4125 . T) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-209)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -770,15 +770,15 @@ NIL
NIL
(-210 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4272 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-211 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-212 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-213 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -786,7 +786,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))))
(-214 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-215 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -794,87 +794,87 @@ NIL
NIL
(-216)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-217 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
+((|HasAttribute| |#1| (QUOTE -4269)))
(-218 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-219)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-220 S -3024 R)
+(-220 S -3148 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasAttribute| |#3| (QUOTE -4267)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027))))
-(-221 -3024 R)
+((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027))))
+(-221 -3148 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4264 |has| |#2| (-984)) (-4265 |has| |#2| (-984)) (-4267 |has| |#2| (-6 -4267)) ((-4272 "*") |has| |#2| (-162)) (-4270 . T) (-4087 . T))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T) (-4100 . T))
NIL
-(-222 -3024 A B)
+(-222 -3148 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-223 -3024 R)
+(-223 -3148 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4264 |has| |#2| (-984)) (-4265 |has| |#2| (-984)) (-4267 |has| |#2| (-6 -4267)) ((-4272 "*") |has| |#2| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1476 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
(-224)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
(-225 S)
-((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
+((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
(-226)
-((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4263 . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
+((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-227 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-228 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-229 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-230 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4272 "*") |has| |#2| (-162)) (-4263 |has| |#2| (-522)) (-4268 |has| |#2| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-231)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-232 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4267 -1476 (-3340 (|has| |#4| (-984)) (|has| |#4| (-216))) (-3340 (|has| |#4| (-984)) (|has| |#4| (-841 (-1099)))) (|has| |#4| (-6 -4267)) (-3340 (|has| |#4| (-984)) (|has| |#4| (-593 (-530))))) (-4264 |has| |#4| (-984)) (-4265 |has| |#4| (-984)) ((-4272 "*") |has| |#4| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-344))) (-1476 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-984)))) (-1476 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (QUOTE (-741))) (-1476 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (QUOTE (-793)))) (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (QUOTE (-162))) (-1476 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-216)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-349)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-675)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-741)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-1476 (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-675))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (|HasCategory| |#4| (QUOTE (-984))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027)))) (-1476 (|HasAttribute| |#4| (QUOTE -4267)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4266 -1461 (-3380 (|has| |#4| (-984)) (|has| |#4| (-216))) (-3380 (|has| |#4| (-984)) (|has| |#4| (-841 (-1099)))) (|has| |#4| (-6 -4266)) (-3380 (|has| |#4| (-984)) (|has| |#4| (-593 (-530))))) (-4263 |has| |#4| (-984)) (-4264 |has| |#4| (-984)) ((-4271 "*") |has| |#4| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-344))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-984)))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (QUOTE (-741))) (-1461 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (QUOTE (-793)))) (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (QUOTE (-162))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-216)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-349)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-675)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-741)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-675))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (|HasCategory| |#4| (QUOTE (-984))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027)))) (-1461 (|HasAttribute| |#4| (QUOTE -4266)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-233 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4267 -1476 (-3340 (|has| |#3| (-984)) (|has| |#3| (-216))) (-3340 (|has| |#3| (-984)) (|has| |#3| (-841 (-1099)))) (|has| |#3| (-6 -4267)) (-3340 (|has| |#3| (-984)) (|has| |#3| (-593 (-530))))) (-4264 |has| |#3| (-984)) (-4265 |has| |#3| (-984)) ((-4272 "*") |has| |#3| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-344))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1476 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-675))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1476 (|HasAttribute| |#3| (QUOTE -4267)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4266 -1461 (-3380 (|has| |#3| (-984)) (|has| |#3| (-216))) (-3380 (|has| |#3| (-984)) (|has| |#3| (-841 (-1099)))) (|has| |#3| (-6 -4266)) (-3380 (|has| |#3| (-984)) (|has| |#3| (-593 (-530))))) (-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-344))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1461 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-675))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1461 (|HasAttribute| |#3| (QUOTE -4266)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
(-234 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-216))))
(-235 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-236 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-237)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -914,8 +914,8 @@ NIL
NIL
(-246 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-247 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -960,11 +960,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-258 R -1345)
+(-258 R -1334)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-259 R -1345)
+(-259 R -1334)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -986,7 +986,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
(-264 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-265 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1007,18 +1007,18 @@ NIL
(-269 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)))
+((|HasAttribute| |#1| (QUOTE -4270)))
(-270 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-271 S R |Mod| -4004 -3842 |exactQuo|)
+(-271 S R |Mod| -1920 -3683 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-272)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4263 . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-273)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1034,21 +1034,21 @@ NIL
NIL
(-276 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4267 -1476 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-984)) (-4265 |has| |#1| (-984)))
-((|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675)))) (|HasCategory| |#1| (QUOTE (-453))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-284))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-1476 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675)))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+((-4266 -1461 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4263 |has| |#1| (-984)) (-4264 |has| |#1| (-984)))
+((|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675)))) (|HasCategory| |#1| (QUOTE (-453))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-284))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-277 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-278)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-279 -1345 S)
+(-279 -1334 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-280 E -1345)
+(-280 E -1334)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1086,7 +1086,7 @@ NIL
NIL
(-289)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-290 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1096,7 +1096,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-292 -1345)
+(-292 -1334)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1106,8 +1106,8 @@ NIL
NIL
(-294 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-960))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (-1476 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1075))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-515))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138)))) (-1476 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138))))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-960))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (-1461 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1075))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-515))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138)))) (-1461 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138))))))
(-295 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1118,9 +1118,9 @@ NIL
NIL
(-297 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4267 -1476 (-3340 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-12 (|has| |#1| (-522)) (-1476 (-3340 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (|has| |#1| (-984)) (|has| |#1| (-453)))) (|has| |#1| (-984)) (|has| |#1| (-453))) (-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) ((-4272 "*") |has| |#1| (-522)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-522)) (-4262 |has| |#1| (-522)))
-((-1476 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-1476 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1476 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1476 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1476 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1476 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
-(-298 R -1345)
+((-4266 -1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-12 (|has| |#1| (-522)) (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (|has| |#1| (-984)) (|has| |#1| (-453)))) (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-522)) (-4261 |has| |#1| (-522)))
+((-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1461 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1461 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
+(-298 R -1334)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1130,8 +1130,8 @@ NIL
NIL
(-300 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-301 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1142,7 +1142,7 @@ NIL
NIL
(-303 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-740))))
(-304 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1158,19 +1158,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))))
(-307 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-308 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-309 S -1345)
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+(-309 S -1334)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))))
-(-310 -1345)
+(-310 -1334)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-311)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1188,15 +1188,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-315 S -1345 UP UPUP R)
+(-315 S -1334 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-316 -1345 UP UPUP R)
+(-316 -1334 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-317 -1345 UP UPUP R)
+(-317 -1334 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1210,32 +1210,32 @@ NIL
NIL
(-320 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-360)))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
(-321 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-322 S -1345 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+(-322 S -1334 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-344))))
-(-323 -1345 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4263 |has| (-388 |#2|) (-344)) (-4268 |has| (-388 |#2|) (-344)) (-4262 |has| (-388 |#2|) (-344)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+(-323 -1334 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-324 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-326 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-327 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1250,33 +1250,33 @@ NIL
NIL
(-330)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-331 R UP -1345)
+(-331 R UP -1334)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-332 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
(-333 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-334 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-335 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
(-336 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
-(-337 -1345 GF)
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-337 -1334 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1284,21 +1284,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-339 -1345 FP FPP)
+(-339 -1334 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-340 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-341 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-342 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-343 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1306,7 +1306,7 @@ NIL
NIL
(-344)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-345 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1322,7 +1322,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-522))))
(-348 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4267 |has| |#1| (-522)) (-4265 . T) (-4264 . T))
+((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
NIL
(-349)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1334,7 +1334,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-344))))
(-351 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-352 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1343,14 +1343,14 @@ NIL
(-353 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
(-354 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4270 . T) (-4087 . T))
+((-4269 . T) (-4100 . T))
NIL
(-355 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4265 . T) (-4264 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
NIL
(-356 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1362,7 +1362,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))))
(-358 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4267 . T))
+((-4266 . T))
NIL
(-359 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1370,7 +1370,7 @@ NIL
NIL
(-360)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4253 . T) (-4261 . T) (-4125 . T) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4252 . T) (-4260 . T) (-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-361 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1378,23 +1378,23 @@ NIL
NIL
(-362 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-162))))
(-363 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-364)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-365)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4087 . T))
+((-4100 . T))
NIL
(-366 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-162))))
(-367 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1402,7 +1402,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-795))))
(-368)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-369)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1414,13 +1414,13 @@ NIL
NIL
(-371 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-372)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-373 -1345 UP UPUP R)
+(-373 -1334 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1434,27 +1434,27 @@ NIL
NIL
(-376)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-377)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4087 . T))
+((-4100 . T))
NIL
(-378)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-379 -3901 |returnType| -2582 |symbols|)
+(-379 -3907 |returnType| -2739 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-380 -1345 UP)
+(-380 -1334 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-381 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-4087 . T))
+((-4100 . T))
NIL
(-382 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1462,15 +1462,15 @@ NIL
NIL
(-383)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-384 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4253)) (|HasAttribute| |#1| (QUOTE -4261)))
+((|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4260)))
(-385)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4125 . T) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-386 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1482,15 +1482,15 @@ NIL
NIL
(-388 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4257 -12 (|has| |#1| (-6 -4268)) (|has| |#1| (-432)) (|has| |#1| (-6 -4257))) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-768))) (-1476 (|HasCategory| |#1| (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-795)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1075))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-515))) (-12 (|HasAttribute| |#1| (QUOTE -4268)) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+((-4256 -12 (|has| |#1| (-6 -4267)) (|has| |#1| (-432)) (|has| |#1| (-6 -4256))) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-768))) (-1461 (|HasCategory| |#1| (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-795)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1075))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-515))) (-12 (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-389 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-390 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-391 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1504,11 +1504,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-394 R -1345 UP A)
+(-394 R -1334 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4267 . T))
+((-4266 . T))
NIL
-(-395 R -1345 UP A |ibasis|)
+(-395 R -1334 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -975) (|devaluate| |#2|))))
@@ -1522,12 +1522,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))))
(-398 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4267 |has| |#1| (-522)) (-4265 . T) (-4264 . T))
+((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
NIL
(-399 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-1139))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-432))))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-1139))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-432))))
(-400 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1554,17 +1554,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
(-406 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4270 . T) (-4260 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4259 . T) (-4270 . T) (-4100 . T))
NIL
-(-407 R -1345)
+(-407 R -1334)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-408 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4257 -12 (|has| |#1| (-6 -4257)) (|has| |#2| (-6 -4257))) (-4264 . T) (-4265 . T) (-4267 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4257)) (|HasAttribute| |#2| (QUOTE -4257))))
-(-409 R -1345)
+((-4256 -12 (|has| |#1| (-6 -4256)) (|has| |#2| (-6 -4256))) (-4263 . T) (-4264 . T) (-4266 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#2| (QUOTE -4256))))
+(-409 R -1334)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1574,17 +1574,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))))
(-411 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4267 -1476 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) ((-4272 "*") |has| |#1| (-522)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4087 . T))
+((-4266 -1461 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-522)) (-4261 |has| |#1| (-522)) (-4100 . T))
NIL
-(-412 R -1345)
+(-412 R -1334)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-413 R -1345)
+(-413 R -1334)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-414 R -1345)
+(-414 R -1334)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1592,7 +1592,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-416 R -1345 UP)
+(-416 R -1334 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-47)))))
@@ -1610,17 +1610,17 @@ NIL
NIL
(-420)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-421)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4087 . T))
+((-4100 . T))
NIL
(-422 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-423 R UP -1345)
+(-423 R UP -1334)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1658,16 +1658,16 @@ NIL
NIL
(-432)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-433 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4267 |has| (-388 (-893 |#1|)) (-522)) (-4265 . T) (-4264 . T))
+((-4266 |has| (-388 (-893 |#1|)) (-522)) (-4264 . T) (-4263 . T))
((|HasCategory| (-388 (-893 |#1|)) (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| (-388 (-893 |#1|)) (QUOTE (-522))))
(-434 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4272 "*") |has| |#2| (-162)) (-4263 |has| |#2| (-522)) (-4268 |has| |#2| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-435 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1694,7 +1694,7 @@ NIL
NIL
(-441 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-442 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1702,7 +1702,7 @@ NIL
NIL
(-443 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-444 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1732,59 +1732,59 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-451 |lv| -1345 R)
+(-451 |lv| -1334 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
(-452 S)
-((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
+((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
(-453)
-((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4267 . T))
+((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
+((-4266 . T))
NIL
(-454 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-455 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-456 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-457)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-458 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-459)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-460 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4272 "*") |has| |#2| (-162)) (-4263 |has| |#2| (-522)) (-4268 |has| |#2| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-461 -3024 S)
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-461 -3148 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4264 |has| |#2| (-984)) (-4265 |has| |#2| (-984)) (-4267 |has| |#2| (-6 -4267)) ((-4272 "*") |has| |#2| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1476 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
(-462)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Symbol|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|List| (|Symbol|))) "\\spad{headAst [f,{}x1,{}..,{}xn]} constructs a function definition header.")))
NIL
NIL
(-463 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-464 -1345 UP UPUP R)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+(-464 -1334 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1794,15 +1794,15 @@ NIL
NIL
(-466)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1476 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
(-467 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((|HasAttribute| |#1| (QUOTE -4269)) (|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
(-468 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-469)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
@@ -1816,33 +1816,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-472 -1345 UP |AlExt| |AlPol|)
+(-472 -1334 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-473)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
(-474 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-475 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-476 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-477 R UP -1345)
+(-477 R UP -1334)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-478 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-804)))))
(-479 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1856,7 +1856,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-482 -1345 |Expon| |VarSet| |DPoly|)
+(-482 -1334 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-1099)))))
@@ -1902,32 +1902,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-740))))
(-493 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-494 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| (-543 |#1|) (QUOTE (-138))) (|HasCategory| (-543 |#1|) (QUOTE (-349)))) (|HasCategory| (-543 |#1|) (QUOTE (-140))) (|HasCategory| (-543 |#1|) (QUOTE (-349))) (|HasCategory| (-543 |#1|) (QUOTE (-138))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| (-543 |#1|) (QUOTE (-138))) (|HasCategory| (-543 |#1|) (QUOTE (-349)))) (|HasCategory| (-543 |#1|) (QUOTE (-140))) (|HasCategory| (-543 |#1|) (QUOTE (-349))) (|HasCategory| (-543 |#1|) (QUOTE (-138))))
(-495 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-496 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-497 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4271)))
+((|HasAttribute| |#3| (QUOTE -4270)))
(-498 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4271)))
+((|HasAttribute| |#7| (QUOTE -4270)))
(-499 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4272 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-500 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1940,7 +1940,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-503 K -1345 |Par|)
+(-503 K -1334 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1960,7 +1960,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-508 K -1345 |Par|)
+(-508 K -1334 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1990,17 +1990,17 @@ NIL
NIL
(-515)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4268 . T) (-4269 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-516 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-517 R -1345)
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+(-517 R -1334)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-518 R0 -1345 UP UPUP R)
+(-518 R0 -1334 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2010,7 +2010,7 @@ NIL
NIL
(-520 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4125 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4136 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-521 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2018,9 +2018,9 @@ NIL
NIL
(-522)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-523 R -1345)
+(-523 R -1334)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2032,7 +2032,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-526 R -1345 L)
+(-526 R -1334 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -607) (|devaluate| |#2|))))
@@ -2040,31 +2040,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-528 -1345 UP UPUP R)
+(-528 -1334 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-529 -1345 UP)
+(-529 -1334 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-530)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4252 . T) (-4258 . T) (-4262 . T) (-4257 . T) (-4268 . T) (-4269 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4251 . T) (-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-531)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-532 R -1345 L)
+(-532 R -1334 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -607) (|devaluate| |#2|))))
-(-533 R -1345)
+(-533 R -1334)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-583)))))
-(-534 -1345 UP)
+(-534 -1334 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2072,53 +2072,53 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-536 -1345)
+(-536 -1334)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-537 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4125 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4136 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-538)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-539 R -1345)
+(-539 R -1334)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-266))) (|HasCategory| |#2| (QUOTE (-583))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-266)))) (|HasCategory| |#1| (QUOTE (-522))))
-(-540 -1345 UP)
+(-540 -1334 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-541 R -1345)
+(-541 R -1334)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-542 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-543 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
(-544)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-545 R -1345)
+(-545 R -1334)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-546 E -1345)
+(-546 E -1334)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-547 -1345)
+(-547 -1334)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1099)))))
(-548 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2142,19 +2142,19 @@ NIL
NIL
(-553 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-1476 (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-1461 (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
(-554 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-555 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))) (|HasCategory| (-530) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))) (|HasCategory| (-530) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))))
(-556 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4265 |has| |#1| (-522)) (-4264 |has| |#1| (-522)) ((-4272 "*") |has| |#1| (-522)) (-4263 |has| |#1| (-522)) (-4267 . T))
+((-4264 |has| |#1| (-522)) (-4263 |has| |#1| (-522)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-522))))
(-557 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-559 R -1345 FG)
+(-559 R -1334 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2174,15 +2174,15 @@ NIL
NIL
(-561 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-562 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-795))) (|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#3| (QUOTE (-1027))))
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasAttribute| |#1| (QUOTE -4269)) (|HasCategory| |#3| (QUOTE (-1027))))
(-563 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-564)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
@@ -2190,19 +2190,19 @@ NIL
NIL
(-565 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4267 -1476 (-3340 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4265 . T) (-4264 . T))
-((-1476 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+((-4266 -1461 (-3380 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4264 . T) (-4263 . T))
+((-1461 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
(-566 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-567 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-568 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-569 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2220,7 +2220,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-573 -1345 UP)
+(-573 -1334 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2230,19 +2230,19 @@ NIL
NIL
(-575 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-576 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-793))))
-(-577 R -1345)
+(-577 R -1334)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-578 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4265 . T) (-4264 . T) ((-4272 "*") . T) (-4263 . T) (-4267 . T))
+((-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4266 . T))
((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
(-579 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2254,7 +2254,7 @@ NIL
NIL
(-581 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-582 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2264,30 +2264,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-584 R -1345)
+(-584 R -1334)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-585 |lv| -1345)
+(-585 |lv| -1334)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-586)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1806) (QUOTE (-51))))))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-1082) (QUOTE (-795))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-1082) (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
(-587 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-344))))
(-588 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4265 . T) (-4264 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
NIL
(-589 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4267 -1476 (-3340 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4265 . T) (-4264 . T))
-((-1476 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+((-4266 -1461 (-3380 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4264 . T) (-4263 . T))
+((-1461 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
(-590 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2299,10 +2299,10 @@ NIL
(-592 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3694 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344))))
+((-3676 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344))))
(-593 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-594 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2318,12 +2318,12 @@ NIL
NIL
(-597 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-598 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-599 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2335,22 +2335,22 @@ NIL
(-601 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)))
+((|HasAttribute| |#1| (QUOTE -4270)))
(-602 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-4087 . T))
+((-4100 . T))
NIL
-(-603 R -1345 L)
+(-603 R -1334 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-604 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
(-605 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
(-606 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2358,15 +2358,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))))
(-607 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-608 -1345 UP)
+(-608 -1334 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-609 A -3955)
+(-609 A -2235)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
(-610 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2382,7 +2382,7 @@ NIL
NIL
(-613 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
((|HasCategory| |#1| (QUOTE (-739))))
(-614 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2390,7 +2390,7 @@ NIL
NIL
(-615 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4265 . T) (-4264 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-162))))
(-616 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2398,13 +2398,13 @@ NIL
NIL
(-617 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
-(-618 -1345)
+(-618 -1334)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-619 -1345 |Row| |Col| M)
+(-619 -1334 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2414,8 +2414,8 @@ NIL
NIL
(-621 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4267 . T) (-4270 . T) (-4264 . T) (-4265 . T))
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4272 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1476 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))) (-1476 (|HasAttribute| |#2| (QUOTE (-4272 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
+((-4266 . T) (-4269 . T) (-4263 . T) (-4264 . T))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))) (-1461 (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
(-622 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2426,12 +2426,12 @@ NIL
NIL
(-624 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-625 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-626 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2467,10 +2467,10 @@ NIL
(-634 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4272 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))))
+((|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))))
(-635 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-636 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2478,8 +2478,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))))
(-637 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4270 . T) (-4271 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4272 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-638 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2488,7 +2488,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-640 S -1345 FLAF FLAS)
+(-640 S -1334 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2498,11 +2498,11 @@ NIL
NIL
(-642)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4263 . T) (-4268 |has| (-647) (-344)) (-4262 |has| (-647) (-344)) (-4136 . T) (-4269 |has| (-647) (-6 -4269)) (-4266 |has| (-647) (-6 -4266)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-647) (QUOTE (-140))) (|HasCategory| (-647) (QUOTE (-138))) (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-349))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-216))) (-1476 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (LIST (QUOTE -268) (QUOTE (-647)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -291) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1476 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-647) (QUOTE (-960))) (|HasCategory| (-647) (QUOTE (-1121))) (-12 (|HasCategory| (-647) (QUOTE (-941))) (|HasCategory| (-647) (QUOTE (-1121)))) (-1476 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (-1476 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (|HasCategory| (-647) (QUOTE (-515))) (-12 (|HasCategory| (-647) (QUOTE (-993))) (|HasCategory| (-647) (QUOTE (-1121)))) (|HasCategory| (-647) (QUOTE (-993))) (-1476 (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850))) (-1476 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344)))) (-1476 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-522)))) (-12 (|HasCategory| (-647) (QUOTE (-216))) (|HasCategory| (-647) (QUOTE (-344)))) (-12 (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-795))) (|HasCategory| (-647) (QUOTE (-522))) (|HasAttribute| (-647) (QUOTE -4269)) (|HasAttribute| (-647) (QUOTE -4266)) (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-138)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-330)))))
+((-4262 . T) (-4267 |has| (-647) (-344)) (-4261 |has| (-647) (-344)) (-4146 . T) (-4268 |has| (-647) (-6 -4268)) (-4265 |has| (-647) (-6 -4265)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-647) (QUOTE (-140))) (|HasCategory| (-647) (QUOTE (-138))) (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-349))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-216))) (-1461 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (LIST (QUOTE -268) (QUOTE (-647)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -291) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1461 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-647) (QUOTE (-960))) (|HasCategory| (-647) (QUOTE (-1121))) (-12 (|HasCategory| (-647) (QUOTE (-941))) (|HasCategory| (-647) (QUOTE (-1121)))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (|HasCategory| (-647) (QUOTE (-515))) (-12 (|HasCategory| (-647) (QUOTE (-993))) (|HasCategory| (-647) (QUOTE (-1121)))) (|HasCategory| (-647) (QUOTE (-993))) (-1461 (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-522)))) (-12 (|HasCategory| (-647) (QUOTE (-216))) (|HasCategory| (-647) (QUOTE (-344)))) (-12 (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-795))) (|HasCategory| (-647) (QUOTE (-522))) (|HasAttribute| (-647) (QUOTE -4268)) (|HasAttribute| (-647) (QUOTE -4265)) (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-138)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-330)))))
(-643 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-644 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2512,13 +2512,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-646 OV E -1345 PG)
+(-646 OV E -1334 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-647)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4125 . T) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-648 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2526,7 +2526,7 @@ NIL
NIL
(-649)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4269 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4268 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-650 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2548,7 +2548,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-655 S -3286 I)
+(-655 S -3340 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2558,7 +2558,7 @@ NIL
NIL
(-657 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-658 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2568,25 +2568,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-660 R |Mod| -4004 -3842 |exactQuo|)
+(-660 R |Mod| -1920 -3683 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-661 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4266 |has| |#1| (-344)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-330))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-662 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-663 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) (-4267 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
-(-664 R |Mod| -4004 -3842 |exactQuo|)
+(-664 R |Mod| -1920 -3683 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4267 . T))
+((-4266 . T))
NIL
(-665 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2594,11 +2594,11 @@ NIL
NIL
(-666 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
-(-667 -1345)
+(-667 -1334)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-668 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2622,17 +2622,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-330))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))))
(-673 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4263 |has| |#1| (-344)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-674 S)
-((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
+((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
(-675)
-((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
+((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-676 -1345 UP)
+(-676 -1334 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2650,8 +2650,8 @@ NIL
NIL
(-680 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4272 "*") |has| |#2| (-162)) (-4263 |has| |#2| (-522)) (-4268 |has| |#2| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-681 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2666,15 +2666,15 @@ NIL
NIL
(-684 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) (-4267 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-795))))
(-685 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4260 . T) (-4271 . T) (-4087 . T))
+((-4259 . T) (-4270 . T) (-4100 . T))
NIL
(-686 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4270 . T) (-4260 . T) (-4271 . T))
+((-4269 . T) (-4259 . T) (-4270 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-687)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2686,7 +2686,7 @@ NIL
NIL
(-689 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4265 . T) (-4264 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-690 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2702,7 +2702,7 @@ NIL
NIL
(-693 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-694)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2784,15 +2784,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-714 -1345)
+(-714 -1334)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-715 P -1345)
+(-715 P -1334)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-716 UP -1345)
+(-716 UP -1334)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2806,9 +2806,9 @@ NIL
NIL
(-719)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4272 "*") . T))
+(((-4271 "*") . T))
NIL
-(-720 R -1345)
+(-720 R -1334)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2828,7 +2828,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-725 -1345 |ExtF| |SUEx| |ExtP| |n|)
+(-725 -1334 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2842,23 +2842,23 @@ NIL
NIL
(-728 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3694 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3694 (|HasCategory| |#1| (QUOTE (-515)))) (-3694 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3694 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530))))) (-3694 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3694 (|HasCategory| |#1| (LIST (QUOTE -932) (QUOTE (-530))))))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (QUOTE (-515)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530))))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -932) (QUOTE (-530))))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-729 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-730 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4266 |has| |#1| (-344)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-731 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
(-732 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-733 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -2910,25 +2910,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
(-745 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
-(-746 -1476 R OS S)
+(-746 -1461 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-747 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-1476 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
+((-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-1461 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
(-748)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-749 R -1345 L)
+(-749 R -1334 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-750 R -1345)
+(-750 R -1334)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2936,7 +2936,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-752 R -1345)
+(-752 R -1334)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2944,11 +2944,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-754 -1345 UP UPUP R)
+(-754 -1334 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-755 -1345 UP L LQ)
+(-755 -1334 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2956,41 +2956,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-757 -1345 UP L LQ)
+(-757 -1334 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-758 -1345 UP)
+(-758 -1334 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-759 -1345 L UP A LO)
+(-759 -1334 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-760 -1345 UP)
+(-760 -1334 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-761 -1345 LO)
+(-761 -1334 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-762 -1345 LODO)
+(-762 -1334 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-763 -3024 S |f|)
+(-763 -3148 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4264 |has| |#2| (-984)) (-4265 |has| |#2| (-984)) (-4267 |has| |#2| (-6 -4267)) ((-4272 "*") |has| |#2| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1476 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
(-764 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-765 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4272 "*") |has| |#2| (-344)) (-4263 |has| |#2| (-344)) (-4268 |has| |#2| (-344)) (-4262 |has| |#2| (-344)) (-4267 . T) (-4265 . T) (-4264 . T))
+(((-4271 "*") |has| |#2| (-344)) (-4262 |has| |#2| (-344)) (-4267 |has| |#2| (-344)) (-4261 |has| |#2| (-344)) (-4266 . T) (-4264 . T) (-4263 . T))
((|HasCategory| |#2| (QUOTE (-344))))
(-766 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3002,7 +3002,7 @@ NIL
NIL
(-768)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-769)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3030,7 +3030,7 @@ NIL
NIL
(-775 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-216))))
(-776)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3042,7 +3042,7 @@ NIL
NIL
(-778 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4270 . T) (-4260 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4259 . T) (-4270 . T) (-4100 . T))
NIL
(-779)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3054,11 +3054,11 @@ NIL
NIL
(-781 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4267 |has| |#1| (-793)))
-((|HasCategory| |#1| (QUOTE (-793))) (-1476 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1476 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4266 |has| |#1| (-793)))
+((|HasCategory| |#1| (QUOTE (-793))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
(-782 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) (-4267 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
(-783)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3082,13 +3082,13 @@ NIL
NIL
(-788 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4267 |has| |#1| (-793)))
-((|HasCategory| |#1| (QUOTE (-793))) (-1476 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1476 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4266 |has| |#1| (-793)))
+((|HasCategory| |#1| (QUOTE (-793))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
(-789)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-790 -3024 S)
+(-790 -3148 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3102,7 +3102,7 @@ NIL
NIL
(-793)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-794 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3118,19 +3118,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))))
(-797 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-798 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))))
-(-799 R |sigma| -1535)
+(-799 R |sigma| -2903)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
-(-800 |x| R |sigma| -1535)
+(-800 |x| R |sigma| -2903)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-344))))
(-801 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3158,7 +3158,7 @@ NIL
NIL
(-807 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) (-4267 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
(-808 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3170,24 +3170,24 @@ NIL
NIL
(-810 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-811 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-812 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-811 |#1|) (QUOTE (-850))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-140))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-811 |#1|) (QUOTE (-960))) (|HasCategory| (-811 |#1|) (QUOTE (-768))) (-1476 (|HasCategory| (-811 |#1|) (QUOTE (-768))) (|HasCategory| (-811 |#1|) (QUOTE (-795)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-1075))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-216))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -811) (|devaluate| |#1|)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (QUOTE (-289))) (|HasCategory| (-811 |#1|) (QUOTE (-515))) (|HasCategory| (-811 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (|HasCategory| (-811 |#1|) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-811 |#1|) (QUOTE (-850))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-140))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-811 |#1|) (QUOTE (-960))) (|HasCategory| (-811 |#1|) (QUOTE (-768))) (-1461 (|HasCategory| (-811 |#1|) (QUOTE (-768))) (|HasCategory| (-811 |#1|) (QUOTE (-795)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-1075))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-216))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -811) (|devaluate| |#1|)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (QUOTE (-289))) (|HasCategory| (-811 |#1|) (QUOTE (-515))) (|HasCategory| (-811 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (|HasCategory| (-811 |#1|) (QUOTE (-138)))))
(-813 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-768))) (-1476 (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-768))) (-1461 (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-814 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))))
(-815)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3243,7 +3243,7 @@ NIL
(-828 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3694 (|HasCategory| |#2| (QUOTE (-984)))) (-3694 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (-3694 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))
+((-12 (-3676 (|HasCategory| |#2| (QUOTE (-984)))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))
(-829 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3252,7 +3252,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-831 R -3286)
+(-831 R -3340)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3276,7 +3276,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-837 UP -1345)
+(-837 UP -1334)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3294,19 +3294,19 @@ NIL
NIL
(-841 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-842 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-843 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-844 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4267 . T))
+((-4266 . T))
NIL
(-845 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3314,8 +3314,8 @@ NIL
NIL
(-846 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4267 . T))
-((-1476 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795))))
+((-4266 . T))
+((-1461 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795))))
(-847 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3330,13 +3330,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-138))))
(-850)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-851 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
-(-852 R0 -1345 UP UPUP R)
+(-852 R0 -1334 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3350,7 +3350,7 @@ NIL
NIL
(-855 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-856 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3364,7 +3364,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-859 -1345)
+(-859 -1334)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3374,17 +3374,17 @@ NIL
NIL
(-861)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-862)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4272 "*") . T))
+(((-4271 "*") . T))
NIL
-(-863 -1345 P)
+(-863 -1334 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-864 |xx| -1345)
+(-864 |xx| -1334)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3408,7 +3408,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-870 R -1345)
+(-870 R -1334)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3420,7 +3420,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-873 S R -1345)
+(-873 S R -1334)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3440,11 +3440,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -827) (|devaluate| |#1|))))
-(-878 R -1345 -3286)
+(-878 R -1334 -3340)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-879 -3286)
+(-879 -3340)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3466,8 +3466,8 @@ NIL
NIL
(-884 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-885 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3487,12 +3487,12 @@ NIL
(-889 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-795))))
+((|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-795))))
(-890 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-891 E V R P -1345)
+(-891 E V R P -1334)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3502,9 +3502,9 @@ NIL
NIL
(-893 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-894 E V R P -1345)
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-894 E V R P -1334)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-432))))
@@ -3526,13 +3526,13 @@ NIL
NIL
(-899 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-900)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-901 -1345)
+(-901 -1334)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3546,12 +3546,12 @@ NIL
NIL
(-904 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-128)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-128)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)))
(-905 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4267 -12 (|has| |#2| (-453)) (|has| |#1| (-453))))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))))
+((-4266 -12 (|has| |#2| (-453)) (|has| |#1| (-453))))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))))
(-906)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3566,7 +3566,7 @@ NIL
NIL
(-909 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-910 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3582,7 +3582,7 @@ NIL
NIL
(-913 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-914)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3594,7 +3594,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-522))))
(-916 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4270 . T) (-4087 . T))
+((-4269 . T) (-4100 . T))
NIL
(-917 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3610,7 +3610,7 @@ NIL
NIL
(-920 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-921 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3628,7 +3628,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-925 K R UP -1345)
+(-925 K R UP -1334)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3658,7 +3658,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1075))))
(-932 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4087 . T) (-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4100 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-933 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3666,7 +3666,7 @@ NIL
NIL
(-934 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-935 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3674,7 +3674,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-272))))
(-936 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4263 |has| |#1| (-272)) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-937 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3682,12 +3682,12 @@ NIL
NIL
(-938 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4263 |has| |#1| (-272)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))))
+((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))))
(-939 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-940 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3696,14 +3696,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-942 -1345 UP UPUP |radicnd| |n|)
+(-942 -1334 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4263 |has| (-388 |#2|) (-344)) (-4268 |has| (-388 |#2|) (-344)) (-4262 |has| (-388 |#2|) (-344)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1476 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1476 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1476 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1476 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1461 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1461 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1461 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
(-943 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1476 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
(-944)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3723,10 +3723,10 @@ NIL
(-948 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-1027))))
+((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-1027))))
(-949 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-950 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
@@ -3734,21 +3734,21 @@ NIL
NIL
(-951)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4263 . T) (-4268 . T) (-4262 . T) (-4265 . T) (-4264 . T) ((-4272 "*") . T) (-4267 . T))
+((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
NIL
-(-952 R -1345)
+(-952 R -1334)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-953 R -1345)
+(-953 R -1334)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-954 -1345 UP)
+(-954 -1334 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-955 -1345 UP)
+(-955 -1334 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3778,9 +3778,9 @@ NIL
NIL
(-962 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4263 . T) (-4268 . T) (-4262 . T) (-4265 . T) (-4264 . T) ((-4272 "*") . T) (-4267 . T))
-((-1476 (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))))
-(-963 -1345 L)
+((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
+((-1461 (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))))
+(-963 -1334 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -3790,12 +3790,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1027))))
(-965 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-966 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4272 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
(-967 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -3816,14 +3816,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-972 -1345 |Expon| |VarSet| |FPol| |LFPol|)
+(-972 -1334 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-973)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1806) (QUOTE (-51))))))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
(-974 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
@@ -3854,7 +3854,7 @@ NIL
NIL
(-981 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -728) (|devaluate| |#1|) (LIST (QUOTE -806) (|devaluate| |#2|)))))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| (-806 |#2|) (QUOTE (-349))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-982)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -3866,9 +3866,9 @@ NIL
NIL
(-984)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4267 . T))
+((-4266 . T))
NIL
-(-985 |xx| -1345)
+(-985 |xx| -1334)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -3878,12 +3878,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-289))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-522))) (|HasCategory| |#4| (QUOTE (-162))))
(-987 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4270 . T) (-4087 . T) (-4265 . T) (-4264 . T))
+((-4269 . T) (-4100 . T) (-4264 . T) (-4263 . T))
NIL
(-988 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4270 . T) (-4265 . T) (-4264 . T))
-((-1476 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))))
+((-4269 . T) (-4264 . T) (-4263 . T))
+((-1461 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))))
(-989 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -3902,7 +3902,7 @@ NIL
NIL
(-993)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-994 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -3910,19 +3910,19 @@ NIL
NIL
(-995)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4258 . T) (-4262 . T) (-4257 . T) (-4268 . T) (-4269 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-996)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1806) (QUOTE (-51))))))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
(-997 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -932) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-1099)))))
(-998 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-999 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
@@ -3942,7 +3942,7 @@ NIL
NIL
(-1003 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1004 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -3952,11 +3952,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1006 |Base| R -1345)
+(-1006 |Base| R -1334)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1007 |Base| R -1345)
+(-1007 |Base| R -1334)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -3970,8 +3970,8 @@ NIL
NIL
(-1010 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4263 |has| |#1| (-344)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-330)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))))
+((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-330)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))))
(-1011 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -3994,8 +3994,8 @@ NIL
NIL
(-1016 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-1017 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4014,7 +4014,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-1027))))
(-1021 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1022 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
@@ -4022,7 +4022,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1027))))
(-1023 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1024 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
@@ -4030,7 +4030,7 @@ NIL
NIL
(-1025 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4260 . T) (-4087 . T))
+((-4259 . T) (-4100 . T))
NIL
(-1026 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4046,8 +4046,8 @@ NIL
NIL
(-1029 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4270 . T) (-4260 . T) (-4271 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4259 . T) (-4270 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1030 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4074,29 +4074,29 @@ NIL
NIL
(-1036 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1037)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
(-1038 S)
-((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
+((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
(-1039)
-((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
+((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
(-1040 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4264 |has| |#3| (-984)) (-4265 |has| |#3| (-984)) (-4267 |has| |#3| (-6 -4267)) ((-4272 "*") |has| |#3| (-162)) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#3| (QUOTE (-344))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1476 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1476 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1476 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1476 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-1476 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (|HasAttribute| |#3| (QUOTE -4267)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) (-4266 |has| |#3| (-6 -4266)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#3| (QUOTE (-344))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1461 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1041 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-432))))
-(-1042 R -1345)
+(-1042 R -1334)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4114,19 +4114,19 @@ NIL
NIL
(-1046)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4258 . T) (-4262 . T) (-4257 . T) (-4268 . T) (-4269 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1047 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4270 . T) (-4271 . T) (-4087 . T))
+((-4269 . T) (-4270 . T) (-4100 . T))
NIL
(-1048 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4272 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
+((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4271 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
(-1049 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4087 . T) (-4270 . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4100 . T) (-4269 . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1050 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4134,17 +4134,17 @@ NIL
NIL
(-1051 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-1052 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
(-1053 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
-(-1054 UP -1345)
+(-1054 UP -1334)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4190,19 +4190,19 @@ NIL
NIL
(-1065 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))) (-1476 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))))) (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))) (-1461 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))))) (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))))
(-1066 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4267 . T) (-4259 |has| |#2| (-6 (-4272 "*"))) (-4270 . T) (-4264 . T) (-4265 . T))
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4272 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1476 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (-1476 (|HasAttribute| |#2| (QUOTE (-4272 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
+((-4266 . T) (-4258 |has| |#2| (-6 (-4271 "*"))) (-4269 . T) (-4263 . T) (-4264 . T))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
(-1067 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1068)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1069 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4210,24 +4210,24 @@ NIL
NIL
(-1070 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1071 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1072 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
(-1073 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1074 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-1075)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4250,20 +4250,20 @@ NIL
NIL
(-1080 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4271 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1081)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1082)
NIL
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
(-1083 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#1|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#1|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-1084 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4290,9 +4290,9 @@ NIL
NIL
(-1090 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4272 "*") -1476 (-3340 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3340 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4263 -1476 (-3340 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3340 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1091 R -1345)
+(((-4271 "*") -1461 (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4262 -1461 (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1091 R -1334)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4310,16 +4310,16 @@ NIL
NIL
(-1095 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4266 |has| |#1| (-344)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4268)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-1096 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-1097 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-1098)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4334,8 +4334,8 @@ NIL
NIL
(-1101 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-6 -4268)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| (-911) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4268)))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| (-911) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)))
(-1102)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4366,8 +4366,8 @@ NIL
NIL
(-1109 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4270 . T) (-4271 . T))
-((-12 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2940) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1806) (|devaluate| |#2|)))))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1476 (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4269 . T) (-4270 . T))
+((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
(-1110 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4378,7 +4378,7 @@ NIL
NIL
(-1112 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4271 . T) (-4087 . T))
+((-4270 . T) (-4100 . T))
NIL
(-1113 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4418,8 +4418,8 @@ NIL
NIL
(-1122 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4271 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1123 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4428,7 +4428,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1125 R -1345)
+(-1125 R -1334)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4436,7 +4436,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1127 R -1345)
+(-1127 R -1334)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -827) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -827) (|devaluate| |#1|)))))
@@ -4446,12 +4446,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-349))))
(-1129 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1130 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
(-1131 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4464,13 +4464,13 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
((|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1134 -1345)
+(-1134 -1334)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1135)
((|constructor| (NIL "The fundamental Type.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1136 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
@@ -4486,7 +4486,7 @@ NIL
NIL
(-1139)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
@@ -4494,7 +4494,7 @@ NIL
NIL
(-1141 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1142 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4502,16 +4502,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))))
(-1143 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4087 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4100 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1144 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-1476 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-1461 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))))
(-1145 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4272 "*") -1476 (-3340 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3340 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4263 -1476 (-3340 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3340 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4271 "*") -1461 (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4262 -1461 (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-1146 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4546,8 +4546,8 @@ NIL
NIL
(-1154 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4272 "*") |has| |#2| (-162)) (-4263 |has| |#2| (-522)) (-4266 |has| |#2| (-344)) (-4268 |has| |#2| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1476 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1476 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1476 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4265 |has| |#2| (-344)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-1155 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4558,15 +4558,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1075))))
(-1157 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4266 |has| |#1| (-344)) (-4268 |has| |#1| (-6 -4268)) (-4265 . T) (-4264 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-1158 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2258) (LIST (|devaluate| |#2|) (QUOTE (-1099))))))
+((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2366) (LIST (|devaluate| |#2|) (QUOTE (-1099))))))
(-1159 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1160 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4578,7 +4578,7 @@ NIL
NIL
(-1162 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1163 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
@@ -4586,27 +4586,27 @@ NIL
NIL
(-1164 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1165 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4268 |has| |#1| (-344)) (-4262 |has| |#1| (-344)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1476 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-1167 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4272 "*") |has| (-1166 |#2| |#3| |#4|) (-162)) (-4263 |has| (-1166 |#2| |#3| |#4|) (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-432))) (-1476 (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-522))))
+(((-4271 "*") |has| (-1166 |#2| |#3| |#4|) (-162)) (-4262 |has| (-1166 |#2| |#3| |#4|) (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-432))) (-1461 (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-522))))
(-1168 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4271)))
+((|HasAttribute| |#1| (QUOTE -4270)))
(-1169 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1170 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
@@ -4615,26 +4615,26 @@ NIL
(-1171 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-900))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1637) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-900))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1545) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))))
(-1172 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1173 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4272 "*") |has| |#1| (-162)) (-4263 |has| |#1| (-522)) (-4264 . T) (-4265 . T) (-4267 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1476 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2258) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1476 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1637) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2596) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
(-1174 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1175 -1345 UP L UTS)
+(-1175 -1334 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-522))))
(-1176)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-4087 . T))
+((-4100 . T))
NIL
(-1177 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
@@ -4646,7 +4646,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1179 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4271 . T) (-4270 . T) (-4087 . T))
+((-4270 . T) (-4269 . T) (-4100 . T))
NIL
(-1180 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -4654,8 +4654,8 @@ NIL
NIL
(-1181 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4271 . T) (-4270 . T))
-((-1476 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1476 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1476 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 . T) (-4269 . T))
+((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1182)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -4682,68 +4682,68 @@ NIL
NIL
(-1188 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4265 . T) (-4264 . T))
+((-4264 . T) (-4263 . T))
NIL
(-1189 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1190 K R UP -1345)
+(-1190 K R UP -1334)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
(-1191 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4265 |has| |#1| (-162)) (-4264 |has| |#1| (-162)) (-4267 . T))
+((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
(-1192 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4271 . T) (-4270 . T))
+((-4270 . T) (-4269 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
(-1193 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4264 . T) (-4265 . T) (-4267 . T))
+((-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1194 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4267 . T) (-4263 |has| |#2| (-6 -4263)) (-4265 . T) (-4264 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4263)))
+((-4266 . T) (-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
(-1195 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1196 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4263 |has| |#2| (-6 -4263)) (-4265 . T) (-4264 . T) (-4267 . T))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
-(-1197 S -1345)
+(-1197 S -1334)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))))
-(-1198 -1345)
+(-1198 -1334)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4262 . T) (-4268 . T) (-4263 . T) ((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
(-1199 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4263 |has| |#2| (-6 -4263)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -666) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasAttribute| |#2| (QUOTE -4263)))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -666) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasAttribute| |#2| (QUOTE -4262)))
(-1200 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4263 |has| |#2| (-6 -4263)) (-4265 . T) (-4264 . T) (-4267 . T))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
NIL
(-1201 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4263 |has| |#1| (-6 -4263)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4263)))
+((-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4262)))
(-1202 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4267 . T) (-4268 |has| |#1| (-6 -4268)) (-4263 |has| |#1| (-6 -4263)) (-4265 . T) (-4264 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4268)) (|HasAttribute| |#1| (QUOTE -4263)))
+((-4266 . T) (-4267 |has| |#1| (-6 -4267)) (-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4266)) (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4262)))
(-1203 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4263 |has| |#2| (-6 -4263)) (-4265 . T) (-4264 . T) (-4267 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4263)))
+((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
(-1204 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -4758,7 +4758,7 @@ NIL
NIL
(-1207 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4272 "*") . T) (-4264 . T) (-4265 . T) (-4267 . T))
+(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
NIL
NIL
NIL
@@ -4776,4 +4776,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2243751 2243756 2243761 2243766) (-2 NIL 2243731 2243736 2243741 2243746) (-1 NIL 2243711 2243716 2243721 2243726) (0 NIL 2243691 2243696 2243701 2243706) (-1207 "ZMOD.spad" 2243500 2243513 2243629 2243686) (-1206 "ZLINDEP.spad" 2242544 2242555 2243490 2243495) (-1205 "ZDSOLVE.spad" 2232393 2232415 2242534 2242539) (-1204 "YSTREAM.spad" 2231886 2231897 2232383 2232388) (-1203 "XRPOLY.spad" 2231106 2231126 2231742 2231811) (-1202 "XPR.spad" 2228835 2228848 2230824 2230923) (-1201 "XPOLY.spad" 2228390 2228401 2228691 2228760) (-1200 "XPOLYC.spad" 2227707 2227723 2228316 2228385) (-1199 "XPBWPOLY.spad" 2226144 2226164 2227487 2227556) (-1198 "XF.spad" 2224605 2224620 2226046 2226139) (-1197 "XF.spad" 2223046 2223063 2224489 2224494) (-1196 "XFALG.spad" 2220070 2220086 2222972 2223041) (-1195 "XEXPPKG.spad" 2219321 2219347 2220060 2220065) (-1194 "XDPOLY.spad" 2218935 2218951 2219177 2219246) (-1193 "XALG.spad" 2218533 2218544 2218891 2218930) (-1192 "WUTSET.spad" 2214372 2214389 2218179 2218206) (-1191 "WP.spad" 2213386 2213430 2214230 2214297) (-1190 "WFFINTBS.spad" 2210949 2210971 2213376 2213381) (-1189 "WEIER.spad" 2209163 2209174 2210939 2210944) (-1188 "VSPACE.spad" 2208836 2208847 2209131 2209158) (-1187 "VSPACE.spad" 2208529 2208542 2208826 2208831) (-1186 "VOID.spad" 2208119 2208128 2208519 2208524) (-1185 "VIEW.spad" 2205741 2205750 2208109 2208114) (-1184 "VIEWDEF.spad" 2200938 2200947 2205731 2205736) (-1183 "VIEW3D.spad" 2184773 2184782 2200928 2200933) (-1182 "VIEW2D.spad" 2172510 2172519 2184763 2184768) (-1181 "VECTOR.spad" 2171187 2171198 2171438 2171465) (-1180 "VECTOR2.spad" 2169814 2169827 2171177 2171182) (-1179 "VECTCAT.spad" 2167702 2167713 2169770 2169809) (-1178 "VECTCAT.spad" 2165411 2165424 2167481 2167486) (-1177 "VARIABLE.spad" 2165191 2165206 2165401 2165406) (-1176 "UTYPE.spad" 2164825 2164834 2165171 2165186) (-1175 "UTSODETL.spad" 2164118 2164142 2164781 2164786) (-1174 "UTSODE.spad" 2162306 2162326 2164108 2164113) (-1173 "UTS.spad" 2157095 2157123 2160773 2160870) (-1172 "UTSCAT.spad" 2154546 2154562 2156993 2157090) (-1171 "UTSCAT.spad" 2151641 2151659 2154090 2154095) (-1170 "UTS2.spad" 2151234 2151269 2151631 2151636) (-1169 "URAGG.spad" 2145856 2145867 2151214 2151229) (-1168 "URAGG.spad" 2140452 2140465 2145812 2145817) (-1167 "UPXSSING.spad" 2138098 2138124 2139536 2139669) (-1166 "UPXS.spad" 2135125 2135153 2136230 2136379) (-1165 "UPXSCONS.spad" 2132882 2132902 2133257 2133406) (-1164 "UPXSCCA.spad" 2131340 2131360 2132728 2132877) (-1163 "UPXSCCA.spad" 2129940 2129962 2131330 2131335) (-1162 "UPXSCAT.spad" 2128521 2128537 2129786 2129935) (-1161 "UPXS2.spad" 2128062 2128115 2128511 2128516) (-1160 "UPSQFREE.spad" 2126474 2126488 2128052 2128057) (-1159 "UPSCAT.spad" 2124067 2124091 2126372 2126469) (-1158 "UPSCAT.spad" 2121366 2121392 2123673 2123678) (-1157 "UPOLYC.spad" 2116344 2116355 2121208 2121361) (-1156 "UPOLYC.spad" 2111214 2111227 2116080 2116085) (-1155 "UPOLYC2.spad" 2110683 2110702 2111204 2111209) (-1154 "UP.spad" 2107728 2107743 2108236 2108389) (-1153 "UPMP.spad" 2106618 2106631 2107718 2107723) (-1152 "UPDIVP.spad" 2106181 2106195 2106608 2106613) (-1151 "UPDECOMP.spad" 2104418 2104432 2106171 2106176) (-1150 "UPCDEN.spad" 2103625 2103641 2104408 2104413) (-1149 "UP2.spad" 2102987 2103008 2103615 2103620) (-1148 "UNISEG.spad" 2102340 2102351 2102906 2102911) (-1147 "UNISEG2.spad" 2101833 2101846 2102296 2102301) (-1146 "UNIFACT.spad" 2100934 2100946 2101823 2101828) (-1145 "ULS.spad" 2091493 2091521 2092586 2093015) (-1144 "ULSCONS.spad" 2085536 2085556 2085908 2086057) (-1143 "ULSCCAT.spad" 2083133 2083153 2085356 2085531) (-1142 "ULSCCAT.spad" 2080864 2080886 2083089 2083094) (-1141 "ULSCAT.spad" 2079080 2079096 2080710 2080859) (-1140 "ULS2.spad" 2078592 2078645 2079070 2079075) (-1139 "UFD.spad" 2077657 2077666 2078518 2078587) (-1138 "UFD.spad" 2076784 2076795 2077647 2077652) (-1137 "UDVO.spad" 2075631 2075640 2076774 2076779) (-1136 "UDPO.spad" 2073058 2073069 2075587 2075592) (-1135 "TYPE.spad" 2072980 2072989 2073038 2073053) (-1134 "TWOFACT.spad" 2071630 2071645 2072970 2072975) (-1133 "TUPLE.spad" 2071016 2071027 2071529 2071534) (-1132 "TUBETOOL.spad" 2067853 2067862 2071006 2071011) (-1131 "TUBE.spad" 2066494 2066511 2067843 2067848) (-1130 "TS.spad" 2065083 2065099 2066059 2066156) (-1129 "TSETCAT.spad" 2052198 2052215 2065039 2065078) (-1128 "TSETCAT.spad" 2039311 2039330 2052154 2052159) (-1127 "TRMANIP.spad" 2033677 2033694 2039017 2039022) (-1126 "TRIMAT.spad" 2032636 2032661 2033667 2033672) (-1125 "TRIGMNIP.spad" 2031153 2031170 2032626 2032631) (-1124 "TRIGCAT.spad" 2030665 2030674 2031143 2031148) (-1123 "TRIGCAT.spad" 2030175 2030186 2030655 2030660) (-1122 "TREE.spad" 2028746 2028757 2029782 2029809) (-1121 "TRANFUN.spad" 2028577 2028586 2028736 2028741) (-1120 "TRANFUN.spad" 2028406 2028417 2028567 2028572) (-1119 "TOPSP.spad" 2028080 2028089 2028396 2028401) (-1118 "TOOLSIGN.spad" 2027743 2027754 2028070 2028075) (-1117 "TEXTFILE.spad" 2026300 2026309 2027733 2027738) (-1116 "TEX.spad" 2023317 2023326 2026290 2026295) (-1115 "TEX1.spad" 2022873 2022884 2023307 2023312) (-1114 "TEMUTL.spad" 2022428 2022437 2022863 2022868) (-1113 "TBCMPPK.spad" 2020521 2020544 2022418 2022423) (-1112 "TBAGG.spad" 2019545 2019568 2020489 2020516) (-1111 "TBAGG.spad" 2018589 2018614 2019535 2019540) (-1110 "TANEXP.spad" 2017965 2017976 2018579 2018584) (-1109 "TABLE.spad" 2016376 2016399 2016646 2016673) (-1108 "TABLEAU.spad" 2015857 2015868 2016366 2016371) (-1107 "TABLBUMP.spad" 2012640 2012651 2015847 2015852) (-1106 "SYSTEM.spad" 2011914 2011923 2012630 2012635) (-1105 "SYSSOLP.spad" 2009387 2009398 2011904 2011909) (-1104 "SYNTAX.spad" 2005579 2005588 2009377 2009382) (-1103 "SYMTAB.spad" 2003635 2003644 2005569 2005574) (-1102 "SYMS.spad" 1999620 1999629 2003625 2003630) (-1101 "SYMPOLY.spad" 1998630 1998641 1998712 1998839) (-1100 "SYMFUNC.spad" 1998105 1998116 1998620 1998625) (-1099 "SYMBOL.spad" 1995441 1995450 1998095 1998100) (-1098 "SWITCH.spad" 1992198 1992207 1995431 1995436) (-1097 "SUTS.spad" 1989097 1989125 1990665 1990762) (-1096 "SUPXS.spad" 1986111 1986139 1987229 1987378) (-1095 "SUP.spad" 1982883 1982894 1983664 1983817) (-1094 "SUPFRACF.spad" 1981988 1982006 1982873 1982878) (-1093 "SUP2.spad" 1981378 1981391 1981978 1981983) (-1092 "SUMRF.spad" 1980344 1980355 1981368 1981373) (-1091 "SUMFS.spad" 1979977 1979994 1980334 1980339) (-1090 "SULS.spad" 1970523 1970551 1971629 1972058) (-1089 "SUCH.spad" 1970203 1970218 1970513 1970518) (-1088 "SUBSPACE.spad" 1962210 1962225 1970193 1970198) (-1087 "SUBRESP.spad" 1961370 1961384 1962166 1962171) (-1086 "STTF.spad" 1957469 1957485 1961360 1961365) (-1085 "STTFNC.spad" 1953937 1953953 1957459 1957464) (-1084 "STTAYLOR.spad" 1946335 1946346 1953818 1953823) (-1083 "STRTBL.spad" 1944840 1944857 1944989 1945016) (-1082 "STRING.spad" 1944249 1944258 1944263 1944290) (-1081 "STRICAT.spad" 1944025 1944034 1944205 1944244) (-1080 "STREAM.spad" 1940793 1940804 1943550 1943565) (-1079 "STREAM3.spad" 1940338 1940353 1940783 1940788) (-1078 "STREAM2.spad" 1939406 1939419 1940328 1940333) (-1077 "STREAM1.spad" 1939110 1939121 1939396 1939401) (-1076 "STINPROD.spad" 1938016 1938032 1939100 1939105) (-1075 "STEP.spad" 1937217 1937226 1938006 1938011) (-1074 "STBL.spad" 1935743 1935771 1935910 1935925) (-1073 "STAGG.spad" 1934808 1934819 1935723 1935738) (-1072 "STAGG.spad" 1933881 1933894 1934798 1934803) (-1071 "STACK.spad" 1933232 1933243 1933488 1933515) (-1070 "SREGSET.spad" 1930936 1930953 1932878 1932905) (-1069 "SRDCMPK.spad" 1929481 1929501 1930926 1930931) (-1068 "SRAGG.spad" 1924566 1924575 1929437 1929476) (-1067 "SRAGG.spad" 1919683 1919694 1924556 1924561) (-1066 "SQMATRIX.spad" 1917309 1917327 1918217 1918304) (-1065 "SPLTREE.spad" 1911861 1911874 1916745 1916772) (-1064 "SPLNODE.spad" 1908449 1908462 1911851 1911856) (-1063 "SPFCAT.spad" 1907226 1907235 1908439 1908444) (-1062 "SPECOUT.spad" 1905776 1905785 1907216 1907221) (-1061 "spad-parser.spad" 1905241 1905250 1905766 1905771) (-1060 "SPACEC.spad" 1889254 1889265 1905231 1905236) (-1059 "SPACE3.spad" 1889030 1889041 1889244 1889249) (-1058 "SORTPAK.spad" 1888575 1888588 1888986 1888991) (-1057 "SOLVETRA.spad" 1886332 1886343 1888565 1888570) (-1056 "SOLVESER.spad" 1884852 1884863 1886322 1886327) (-1055 "SOLVERAD.spad" 1880862 1880873 1884842 1884847) (-1054 "SOLVEFOR.spad" 1879282 1879300 1880852 1880857) (-1053 "SNTSCAT.spad" 1878870 1878887 1879238 1879277) (-1052 "SMTS.spad" 1877130 1877156 1878435 1878532) (-1051 "SMP.spad" 1874572 1874592 1874962 1875089) (-1050 "SMITH.spad" 1873415 1873440 1874562 1874567) (-1049 "SMATCAT.spad" 1871513 1871543 1873347 1873410) (-1048 "SMATCAT.spad" 1869555 1869587 1871391 1871396) (-1047 "SKAGG.spad" 1868504 1868515 1869511 1869550) (-1046 "SINT.spad" 1866812 1866821 1868370 1868499) (-1045 "SIMPAN.spad" 1866540 1866549 1866802 1866807) (-1044 "SIG.spad" 1866137 1866146 1866530 1866535) (-1043 "SIGNRF.spad" 1865245 1865256 1866127 1866132) (-1042 "SIGNEF.spad" 1864514 1864531 1865235 1865240) (-1041 "SHP.spad" 1862432 1862447 1864470 1864475) (-1040 "SHDP.spad" 1853468 1853495 1853977 1854106) (-1039 "SGROUP.spad" 1852934 1852943 1853458 1853463) (-1038 "SGROUP.spad" 1852398 1852409 1852924 1852929) (-1037 "SGCF.spad" 1845279 1845288 1852388 1852393) (-1036 "SFRTCAT.spad" 1844195 1844212 1845235 1845274) (-1035 "SFRGCD.spad" 1843258 1843278 1844185 1844190) (-1034 "SFQCMPK.spad" 1837895 1837915 1843248 1843253) (-1033 "SFORT.spad" 1837330 1837344 1837885 1837890) (-1032 "SEXOF.spad" 1837173 1837213 1837320 1837325) (-1031 "SEX.spad" 1837065 1837074 1837163 1837168) (-1030 "SEXCAT.spad" 1834169 1834209 1837055 1837060) (-1029 "SET.spad" 1832469 1832480 1833590 1833629) (-1028 "SETMN.spad" 1830903 1830920 1832459 1832464) (-1027 "SETCAT.spad" 1830388 1830397 1830893 1830898) (-1026 "SETCAT.spad" 1829871 1829882 1830378 1830383) (-1025 "SETAGG.spad" 1826380 1826391 1829839 1829866) (-1024 "SETAGG.spad" 1822909 1822922 1826370 1826375) (-1023 "SEGXCAT.spad" 1822021 1822034 1822889 1822904) (-1022 "SEG.spad" 1821834 1821845 1821940 1821945) (-1021 "SEGCAT.spad" 1820653 1820664 1821814 1821829) (-1020 "SEGBIND.spad" 1819725 1819736 1820608 1820613) (-1019 "SEGBIND2.spad" 1819421 1819434 1819715 1819720) (-1018 "SEG2.spad" 1818846 1818859 1819377 1819382) (-1017 "SDVAR.spad" 1818122 1818133 1818836 1818841) (-1016 "SDPOL.spad" 1815515 1815526 1815806 1815933) (-1015 "SCPKG.spad" 1813594 1813605 1815505 1815510) (-1014 "SCOPE.spad" 1812739 1812748 1813584 1813589) (-1013 "SCACHE.spad" 1811421 1811432 1812729 1812734) (-1012 "SAOS.spad" 1811293 1811302 1811411 1811416) (-1011 "SAERFFC.spad" 1811006 1811026 1811283 1811288) (-1010 "SAE.spad" 1809184 1809200 1809795 1809930) (-1009 "SAEFACT.spad" 1808885 1808905 1809174 1809179) (-1008 "RURPK.spad" 1806526 1806542 1808875 1808880) (-1007 "RULESET.spad" 1805967 1805991 1806516 1806521) (-1006 "RULE.spad" 1804171 1804195 1805957 1805962) (-1005 "RULECOLD.spad" 1804023 1804036 1804161 1804166) (-1004 "RSETGCD.spad" 1800401 1800421 1804013 1804018) (-1003 "RSETCAT.spad" 1790173 1790190 1800357 1800396) (-1002 "RSETCAT.spad" 1779977 1779996 1790163 1790168) (-1001 "RSDCMPK.spad" 1778429 1778449 1779967 1779972) (-1000 "RRCC.spad" 1776813 1776843 1778419 1778424) (-999 "RRCC.spad" 1775196 1775227 1776803 1776808) (-998 "RPOLCAT.spad" 1754557 1754571 1775064 1775191) (-997 "RPOLCAT.spad" 1733633 1733649 1754142 1754147) (-996 "ROUTINE.spad" 1729497 1729505 1732280 1732307) (-995 "ROMAN.spad" 1728730 1728738 1729363 1729492) (-994 "ROIRC.spad" 1727811 1727842 1728720 1728725) (-993 "RNS.spad" 1726715 1726723 1727713 1727806) (-992 "RNS.spad" 1725705 1725715 1726705 1726710) (-991 "RNG.spad" 1725441 1725449 1725695 1725700) (-990 "RMODULE.spad" 1725080 1725090 1725431 1725436) (-989 "RMCAT2.spad" 1724489 1724545 1725070 1725075) (-988 "RMATRIX.spad" 1723169 1723187 1723656 1723695) (-987 "RMATCAT.spad" 1718691 1718721 1723113 1723164) (-986 "RMATCAT.spad" 1714115 1714147 1718539 1718544) (-985 "RINTERP.spad" 1714004 1714023 1714105 1714110) (-984 "RING.spad" 1713362 1713370 1713984 1713999) (-983 "RING.spad" 1712728 1712738 1713352 1713357) (-982 "RIDIST.spad" 1712113 1712121 1712718 1712723) (-981 "RGCHAIN.spad" 1710693 1710708 1711598 1711625) (-980 "RF.spad" 1708308 1708318 1710683 1710688) (-979 "RFFACTOR.spad" 1707771 1707781 1708298 1708303) (-978 "RFFACT.spad" 1707507 1707518 1707761 1707766) (-977 "RFDIST.spad" 1706496 1706504 1707497 1707502) (-976 "RETSOL.spad" 1705914 1705926 1706486 1706491) (-975 "RETRACT.spad" 1705264 1705274 1705904 1705909) (-974 "RETRACT.spad" 1704612 1704624 1705254 1705259) (-973 "RESULT.spad" 1702673 1702681 1703259 1703286) (-972 "RESRING.spad" 1702021 1702067 1702611 1702668) (-971 "RESLATC.spad" 1701346 1701356 1702011 1702016) (-970 "REPSQ.spad" 1701076 1701086 1701336 1701341) (-969 "REP.spad" 1698629 1698637 1701066 1701071) (-968 "REPDB.spad" 1698335 1698345 1698619 1698624) (-967 "REP2.spad" 1687908 1687918 1698177 1698182) (-966 "REP1.spad" 1681899 1681909 1687858 1687863) (-965 "REGSET.spad" 1679697 1679713 1681545 1681572) (-964 "REF.spad" 1679027 1679037 1679652 1679657) (-963 "REDORDER.spad" 1678204 1678220 1679017 1679022) (-962 "RECLOS.spad" 1676994 1677013 1677697 1677790) (-961 "REALSOLV.spad" 1676127 1676135 1676984 1676989) (-960 "REAL.spad" 1676000 1676008 1676117 1676122) (-959 "REAL0Q.spad" 1673283 1673297 1675990 1675995) (-958 "REAL0.spad" 1670112 1670126 1673273 1673278) (-957 "RDIV.spad" 1669764 1669788 1670102 1670107) (-956 "RDIST.spad" 1669328 1669338 1669754 1669759) (-955 "RDETRS.spad" 1668125 1668142 1669318 1669323) (-954 "RDETR.spad" 1666233 1666250 1668115 1668120) (-953 "RDEEFS.spad" 1665307 1665323 1666223 1666228) (-952 "RDEEF.spad" 1664304 1664320 1665297 1665302) (-951 "RCFIELD.spad" 1661491 1661499 1664206 1664299) (-950 "RCFIELD.spad" 1658764 1658774 1661481 1661486) (-949 "RCAGG.spad" 1656667 1656677 1658744 1658759) (-948 "RCAGG.spad" 1654507 1654519 1656586 1656591) (-947 "RATRET.spad" 1653868 1653878 1654497 1654502) (-946 "RATFACT.spad" 1653561 1653572 1653858 1653863) (-945 "RANDSRC.spad" 1652881 1652889 1653551 1653556) (-944 "RADUTIL.spad" 1652636 1652644 1652871 1652876) (-943 "RADIX.spad" 1649429 1649442 1651106 1651199) (-942 "RADFF.spad" 1647846 1647882 1647964 1648120) (-941 "RADCAT.spad" 1647440 1647448 1647836 1647841) (-940 "RADCAT.spad" 1647032 1647042 1647430 1647435) (-939 "QUEUE.spad" 1646375 1646385 1646639 1646666) (-938 "QUAT.spad" 1644961 1644971 1645303 1645368) (-937 "QUATCT2.spad" 1644580 1644598 1644951 1644956) (-936 "QUATCAT.spad" 1642745 1642755 1644510 1644575) (-935 "QUATCAT.spad" 1640662 1640674 1642429 1642434) (-934 "QUAGG.spad" 1639476 1639486 1640618 1640657) (-933 "QFORM.spad" 1638939 1638953 1639466 1639471) (-932 "QFCAT.spad" 1637630 1637640 1638829 1638934) (-931 "QFCAT.spad" 1635927 1635939 1637128 1637133) (-930 "QFCAT2.spad" 1635618 1635634 1635917 1635922) (-929 "QEQUAT.spad" 1635175 1635183 1635608 1635613) (-928 "QCMPACK.spad" 1629922 1629941 1635165 1635170) (-927 "QALGSET.spad" 1625997 1626029 1629836 1629841) (-926 "QALGSET2.spad" 1623993 1624011 1625987 1625992) (-925 "PWFFINTB.spad" 1621303 1621324 1623983 1623988) (-924 "PUSHVAR.spad" 1620632 1620651 1621293 1621298) (-923 "PTRANFN.spad" 1616758 1616768 1620622 1620627) (-922 "PTPACK.spad" 1613846 1613856 1616748 1616753) (-921 "PTFUNC2.spad" 1613667 1613681 1613836 1613841) (-920 "PTCAT.spad" 1612749 1612759 1613623 1613662) (-919 "PSQFR.spad" 1612056 1612080 1612739 1612744) (-918 "PSEUDLIN.spad" 1610914 1610924 1612046 1612051) (-917 "PSETPK.spad" 1596347 1596363 1610792 1610797) (-916 "PSETCAT.spad" 1590255 1590278 1596315 1596342) (-915 "PSETCAT.spad" 1584149 1584174 1590211 1590216) (-914 "PSCURVE.spad" 1583132 1583140 1584139 1584144) (-913 "PSCAT.spad" 1581899 1581928 1583030 1583127) (-912 "PSCAT.spad" 1580756 1580787 1581889 1581894) (-911 "PRTITION.spad" 1579599 1579607 1580746 1580751) (-910 "PRS.spad" 1569161 1569178 1579555 1579560) (-909 "PRQAGG.spad" 1568580 1568590 1569117 1569156) (-908 "PROPLOG.spad" 1567983 1567991 1568570 1568575) (-907 "PROPFRML.spad" 1565847 1565858 1567919 1567924) (-906 "PROPERTY.spad" 1565341 1565349 1565837 1565842) (-905 "PRODUCT.spad" 1563021 1563033 1563307 1563362) (-904 "PR.spad" 1561410 1561422 1562115 1562242) (-903 "PRINT.spad" 1561162 1561170 1561400 1561405) (-902 "PRIMES.spad" 1559413 1559423 1561152 1561157) (-901 "PRIMELT.spad" 1557394 1557408 1559403 1559408) (-900 "PRIMCAT.spad" 1557017 1557025 1557384 1557389) (-899 "PRIMARR.spad" 1556022 1556032 1556200 1556227) (-898 "PRIMARR2.spad" 1554745 1554757 1556012 1556017) (-897 "PREASSOC.spad" 1554117 1554129 1554735 1554740) (-896 "PPCURVE.spad" 1553254 1553262 1554107 1554112) (-895 "PORTNUM.spad" 1553029 1553037 1553244 1553249) (-894 "POLYROOT.spad" 1551801 1551823 1552985 1552990) (-893 "POLY.spad" 1549101 1549111 1549618 1549745) (-892 "POLYLIFT.spad" 1548362 1548385 1549091 1549096) (-891 "POLYCATQ.spad" 1546464 1546486 1548352 1548357) (-890 "POLYCAT.spad" 1539870 1539891 1546332 1546459) (-889 "POLYCAT.spad" 1532578 1532601 1539042 1539047) (-888 "POLY2UP.spad" 1532026 1532040 1532568 1532573) (-887 "POLY2.spad" 1531621 1531633 1532016 1532021) (-886 "POLUTIL.spad" 1530562 1530591 1531577 1531582) (-885 "POLTOPOL.spad" 1529310 1529325 1530552 1530557) (-884 "POINT.spad" 1528151 1528161 1528238 1528265) (-883 "PNTHEORY.spad" 1524817 1524825 1528141 1528146) (-882 "PMTOOLS.spad" 1523574 1523588 1524807 1524812) (-881 "PMSYM.spad" 1523119 1523129 1523564 1523569) (-880 "PMQFCAT.spad" 1522706 1522720 1523109 1523114) (-879 "PMPRED.spad" 1522175 1522189 1522696 1522701) (-878 "PMPREDFS.spad" 1521619 1521641 1522165 1522170) (-877 "PMPLCAT.spad" 1520689 1520707 1521551 1521556) (-876 "PMLSAGG.spad" 1520270 1520284 1520679 1520684) (-875 "PMKERNEL.spad" 1519837 1519849 1520260 1520265) (-874 "PMINS.spad" 1519413 1519423 1519827 1519832) (-873 "PMFS.spad" 1518986 1519004 1519403 1519408) (-872 "PMDOWN.spad" 1518272 1518286 1518976 1518981) (-871 "PMASS.spad" 1517284 1517292 1518262 1518267) (-870 "PMASSFS.spad" 1516253 1516269 1517274 1517279) (-869 "PLOTTOOL.spad" 1516033 1516041 1516243 1516248) (-868 "PLOT.spad" 1510864 1510872 1516023 1516028) (-867 "PLOT3D.spad" 1507284 1507292 1510854 1510859) (-866 "PLOT1.spad" 1506425 1506435 1507274 1507279) (-865 "PLEQN.spad" 1493641 1493668 1506415 1506420) (-864 "PINTERP.spad" 1493257 1493276 1493631 1493636) (-863 "PINTERPA.spad" 1493039 1493055 1493247 1493252) (-862 "PI.spad" 1492646 1492654 1493013 1493034) (-861 "PID.spad" 1491602 1491610 1492572 1492641) (-860 "PICOERCE.spad" 1491259 1491269 1491592 1491597) (-859 "PGROEB.spad" 1489856 1489870 1491249 1491254) (-858 "PGE.spad" 1481109 1481117 1489846 1489851) (-857 "PGCD.spad" 1479991 1480008 1481099 1481104) (-856 "PFRPAC.spad" 1479134 1479144 1479981 1479986) (-855 "PFR.spad" 1475791 1475801 1479036 1479129) (-854 "PFOTOOLS.spad" 1475049 1475065 1475781 1475786) (-853 "PFOQ.spad" 1474419 1474437 1475039 1475044) (-852 "PFO.spad" 1473838 1473865 1474409 1474414) (-851 "PF.spad" 1473412 1473424 1473643 1473736) (-850 "PFECAT.spad" 1471078 1471086 1473338 1473407) (-849 "PFECAT.spad" 1468772 1468782 1471034 1471039) (-848 "PFBRU.spad" 1466642 1466654 1468762 1468767) (-847 "PFBR.spad" 1464180 1464203 1466632 1466637) (-846 "PERM.spad" 1459861 1459871 1464010 1464025) (-845 "PERMGRP.spad" 1454597 1454607 1459851 1459856) (-844 "PERMCAT.spad" 1453149 1453159 1454577 1454592) (-843 "PERMAN.spad" 1451681 1451695 1453139 1453144) (-842 "PENDTREE.spad" 1450954 1450964 1451310 1451315) (-841 "PDRING.spad" 1449445 1449455 1450934 1450949) (-840 "PDRING.spad" 1447944 1447956 1449435 1449440) (-839 "PDEPROB.spad" 1446901 1446909 1447934 1447939) (-838 "PDEPACK.spad" 1440903 1440911 1446891 1446896) (-837 "PDECOMP.spad" 1440365 1440382 1440893 1440898) (-836 "PDECAT.spad" 1438719 1438727 1440355 1440360) (-835 "PCOMP.spad" 1438570 1438583 1438709 1438714) (-834 "PBWLB.spad" 1437152 1437169 1438560 1438565) (-833 "PATTERN.spad" 1431583 1431593 1437142 1437147) (-832 "PATTERN2.spad" 1431319 1431331 1431573 1431578) (-831 "PATTERN1.spad" 1429621 1429637 1431309 1431314) (-830 "PATRES.spad" 1427168 1427180 1429611 1429616) (-829 "PATRES2.spad" 1426830 1426844 1427158 1427163) (-828 "PATMATCH.spad" 1424992 1425023 1426543 1426548) (-827 "PATMAB.spad" 1424417 1424427 1424982 1424987) (-826 "PATLRES.spad" 1423501 1423515 1424407 1424412) (-825 "PATAB.spad" 1423265 1423275 1423491 1423496) (-824 "PARTPERM.spad" 1420627 1420635 1423255 1423260) (-823 "PARSURF.spad" 1420055 1420083 1420617 1420622) (-822 "PARSU2.spad" 1419850 1419866 1420045 1420050) (-821 "script-parser.spad" 1419370 1419378 1419840 1419845) (-820 "PARSCURV.spad" 1418798 1418826 1419360 1419365) (-819 "PARSC2.spad" 1418587 1418603 1418788 1418793) (-818 "PARPCURV.spad" 1418045 1418073 1418577 1418582) (-817 "PARPC2.spad" 1417834 1417850 1418035 1418040) (-816 "PAN2EXPR.spad" 1417246 1417254 1417824 1417829) (-815 "PALETTE.spad" 1416216 1416224 1417236 1417241) (-814 "PAIR.spad" 1415199 1415212 1415804 1415809) (-813 "PADICRC.spad" 1412532 1412550 1413707 1413800) (-812 "PADICRAT.spad" 1410550 1410562 1410771 1410864) (-811 "PADIC.spad" 1410245 1410257 1410476 1410545) (-810 "PADICCT.spad" 1408786 1408798 1410171 1410240) (-809 "PADEPAC.spad" 1407465 1407484 1408776 1408781) (-808 "PADE.spad" 1406205 1406221 1407455 1407460) (-807 "OWP.spad" 1405189 1405219 1406063 1406130) (-806 "OVAR.spad" 1404970 1404993 1405179 1405184) (-805 "OUT.spad" 1404054 1404062 1404960 1404965) (-804 "OUTFORM.spad" 1393468 1393476 1404044 1404049) (-803 "OSI.spad" 1392943 1392951 1393458 1393463) (-802 "OSGROUP.spad" 1392861 1392869 1392933 1392938) (-801 "ORTHPOL.spad" 1391322 1391332 1392778 1392783) (-800 "OREUP.spad" 1390682 1390710 1391004 1391043) (-799 "ORESUP.spad" 1389983 1390007 1390364 1390403) (-798 "OREPCTO.spad" 1387802 1387814 1389903 1389908) (-797 "OREPCAT.spad" 1381859 1381869 1387758 1387797) (-796 "OREPCAT.spad" 1375806 1375818 1381707 1381712) (-795 "ORDSET.spad" 1374972 1374980 1375796 1375801) (-794 "ORDSET.spad" 1374136 1374146 1374962 1374967) (-793 "ORDRING.spad" 1373526 1373534 1374116 1374131) (-792 "ORDRING.spad" 1372924 1372934 1373516 1373521) (-791 "ORDMON.spad" 1372779 1372787 1372914 1372919) (-790 "ORDFUNS.spad" 1371905 1371921 1372769 1372774) (-789 "ORDFIN.spad" 1371839 1371847 1371895 1371900) (-788 "ORDCOMP.spad" 1370307 1370317 1371389 1371418) (-787 "ORDCOMP2.spad" 1369592 1369604 1370297 1370302) (-786 "OPTPROB.spad" 1368172 1368180 1369582 1369587) (-785 "OPTPACK.spad" 1360557 1360565 1368162 1368167) (-784 "OPTCAT.spad" 1358232 1358240 1360547 1360552) (-783 "OPQUERY.spad" 1357781 1357789 1358222 1358227) (-782 "OP.spad" 1357523 1357533 1357603 1357670) (-781 "ONECOMP.spad" 1356271 1356281 1357073 1357102) (-780 "ONECOMP2.spad" 1355689 1355701 1356261 1356266) (-779 "OMSERVER.spad" 1354691 1354699 1355679 1355684) (-778 "OMSAGG.spad" 1354467 1354477 1354635 1354686) (-777 "OMPKG.spad" 1353079 1353087 1354457 1354462) (-776 "OM.spad" 1352044 1352052 1353069 1353074) (-775 "OMLO.spad" 1351469 1351481 1351930 1351969) (-774 "OMEXPR.spad" 1351303 1351313 1351459 1351464) (-773 "OMERR.spad" 1350846 1350854 1351293 1351298) (-772 "OMERRK.spad" 1349880 1349888 1350836 1350841) (-771 "OMENC.spad" 1349224 1349232 1349870 1349875) (-770 "OMDEV.spad" 1343513 1343521 1349214 1349219) (-769 "OMCONN.spad" 1342922 1342930 1343503 1343508) (-768 "OINTDOM.spad" 1342685 1342693 1342848 1342917) (-767 "OFMONOID.spad" 1338872 1338882 1342675 1342680) (-766 "ODVAR.spad" 1338133 1338143 1338862 1338867) (-765 "ODR.spad" 1337581 1337607 1337945 1338094) (-764 "ODPOL.spad" 1334930 1334940 1335270 1335397) (-763 "ODP.spad" 1326102 1326122 1326475 1326604) (-762 "ODETOOLS.spad" 1324685 1324704 1326092 1326097) (-761 "ODESYS.spad" 1322335 1322352 1324675 1324680) (-760 "ODERTRIC.spad" 1318276 1318293 1322292 1322297) (-759 "ODERED.spad" 1317663 1317687 1318266 1318271) (-758 "ODERAT.spad" 1315214 1315231 1317653 1317658) (-757 "ODEPRRIC.spad" 1312105 1312127 1315204 1315209) (-756 "ODEPROB.spad" 1311304 1311312 1312095 1312100) (-755 "ODEPRIM.spad" 1308578 1308600 1311294 1311299) (-754 "ODEPAL.spad" 1307954 1307978 1308568 1308573) (-753 "ODEPACK.spad" 1294556 1294564 1307944 1307949) (-752 "ODEINT.spad" 1293987 1294003 1294546 1294551) (-751 "ODEIFTBL.spad" 1291382 1291390 1293977 1293982) (-750 "ODEEF.spad" 1286749 1286765 1291372 1291377) (-749 "ODECONST.spad" 1286268 1286286 1286739 1286744) (-748 "ODECAT.spad" 1284864 1284872 1286258 1286263) (-747 "OCT.spad" 1283011 1283021 1283727 1283766) (-746 "OCTCT2.spad" 1282655 1282676 1283001 1283006) (-745 "OC.spad" 1280429 1280439 1282611 1282650) (-744 "OC.spad" 1277929 1277941 1280113 1280118) (-743 "OCAMON.spad" 1277777 1277785 1277919 1277924) (-742 "OASGP.spad" 1277592 1277600 1277767 1277772) (-741 "OAMONS.spad" 1277112 1277120 1277582 1277587) (-740 "OAMON.spad" 1276973 1276981 1277102 1277107) (-739 "OAGROUP.spad" 1276835 1276843 1276963 1276968) (-738 "NUMTUBE.spad" 1276422 1276438 1276825 1276830) (-737 "NUMQUAD.spad" 1264284 1264292 1276412 1276417) (-736 "NUMODE.spad" 1255420 1255428 1264274 1264279) (-735 "NUMINT.spad" 1252978 1252986 1255410 1255415) (-734 "NUMFMT.spad" 1251818 1251826 1252968 1252973) (-733 "NUMERIC.spad" 1243891 1243901 1251624 1251629) (-732 "NTSCAT.spad" 1242381 1242397 1243847 1243886) (-731 "NTPOLFN.spad" 1241926 1241936 1242298 1242303) (-730 "NSUP.spad" 1234939 1234949 1239479 1239632) (-729 "NSUP2.spad" 1234331 1234343 1234929 1234934) (-728 "NSMP.spad" 1230530 1230549 1230838 1230965) (-727 "NREP.spad" 1228902 1228916 1230520 1230525) (-726 "NPCOEF.spad" 1228148 1228168 1228892 1228897) (-725 "NORMRETR.spad" 1227746 1227785 1228138 1228143) (-724 "NORMPK.spad" 1225648 1225667 1227736 1227741) (-723 "NORMMA.spad" 1225336 1225362 1225638 1225643) (-722 "NONE.spad" 1225077 1225085 1225326 1225331) (-721 "NONE1.spad" 1224753 1224763 1225067 1225072) (-720 "NODE1.spad" 1224222 1224238 1224743 1224748) (-719 "NNI.spad" 1223109 1223117 1224196 1224217) (-718 "NLINSOL.spad" 1221731 1221741 1223099 1223104) (-717 "NIPROB.spad" 1220214 1220222 1221721 1221726) (-716 "NFINTBAS.spad" 1217674 1217691 1220204 1220209) (-715 "NCODIV.spad" 1215872 1215888 1217664 1217669) (-714 "NCNTFRAC.spad" 1215514 1215528 1215862 1215867) (-713 "NCEP.spad" 1213674 1213688 1215504 1215509) (-712 "NASRING.spad" 1213270 1213278 1213664 1213669) (-711 "NASRING.spad" 1212864 1212874 1213260 1213265) (-710 "NARNG.spad" 1212208 1212216 1212854 1212859) (-709 "NARNG.spad" 1211550 1211560 1212198 1212203) (-708 "NAGSP.spad" 1210623 1210631 1211540 1211545) (-707 "NAGS.spad" 1200148 1200156 1210613 1210618) (-706 "NAGF07.spad" 1198541 1198549 1200138 1200143) (-705 "NAGF04.spad" 1192773 1192781 1198531 1198536) (-704 "NAGF02.spad" 1186582 1186590 1192763 1192768) (-703 "NAGF01.spad" 1182185 1182193 1186572 1186577) (-702 "NAGE04.spad" 1175645 1175653 1182175 1182180) (-701 "NAGE02.spad" 1165987 1165995 1175635 1175640) (-700 "NAGE01.spad" 1161871 1161879 1165977 1165982) (-699 "NAGD03.spad" 1159791 1159799 1161861 1161866) (-698 "NAGD02.spad" 1152322 1152330 1159781 1159786) (-697 "NAGD01.spad" 1146435 1146443 1152312 1152317) (-696 "NAGC06.spad" 1142222 1142230 1146425 1146430) (-695 "NAGC05.spad" 1140691 1140699 1142212 1142217) (-694 "NAGC02.spad" 1139946 1139954 1140681 1140686) (-693 "NAALG.spad" 1139481 1139491 1139914 1139941) (-692 "NAALG.spad" 1139036 1139048 1139471 1139476) (-691 "MULTSQFR.spad" 1135994 1136011 1139026 1139031) (-690 "MULTFACT.spad" 1135377 1135394 1135984 1135989) (-689 "MTSCAT.spad" 1133411 1133432 1135275 1135372) (-688 "MTHING.spad" 1133068 1133078 1133401 1133406) (-687 "MSYSCMD.spad" 1132502 1132510 1133058 1133063) (-686 "MSET.spad" 1130444 1130454 1132208 1132247) (-685 "MSETAGG.spad" 1130277 1130287 1130400 1130439) (-684 "MRING.spad" 1127248 1127260 1129985 1130052) (-683 "MRF2.spad" 1126816 1126830 1127238 1127243) (-682 "MRATFAC.spad" 1126362 1126379 1126806 1126811) (-681 "MPRFF.spad" 1124392 1124411 1126352 1126357) (-680 "MPOLY.spad" 1121830 1121845 1122189 1122316) (-679 "MPCPF.spad" 1121094 1121113 1121820 1121825) (-678 "MPC3.spad" 1120909 1120949 1121084 1121089) (-677 "MPC2.spad" 1120551 1120584 1120899 1120904) (-676 "MONOTOOL.spad" 1118886 1118903 1120541 1120546) (-675 "MONOID.spad" 1118060 1118068 1118876 1118881) (-674 "MONOID.spad" 1117232 1117242 1118050 1118055) (-673 "MONOGEN.spad" 1115978 1115991 1117092 1117227) (-672 "MONOGEN.spad" 1114746 1114761 1115862 1115867) (-671 "MONADWU.spad" 1112760 1112768 1114736 1114741) (-670 "MONADWU.spad" 1110772 1110782 1112750 1112755) (-669 "MONAD.spad" 1109916 1109924 1110762 1110767) (-668 "MONAD.spad" 1109058 1109068 1109906 1109911) (-667 "MOEBIUS.spad" 1107744 1107758 1109038 1109053) (-666 "MODULE.spad" 1107614 1107624 1107712 1107739) (-665 "MODULE.spad" 1107504 1107516 1107604 1107609) (-664 "MODRING.spad" 1106835 1106874 1107484 1107499) (-663 "MODOP.spad" 1105494 1105506 1106657 1106724) (-662 "MODMONOM.spad" 1105026 1105044 1105484 1105489) (-661 "MODMON.spad" 1101731 1101747 1102507 1102660) (-660 "MODFIELD.spad" 1101089 1101128 1101633 1101726) (-659 "MMLFORM.spad" 1099949 1099957 1101079 1101084) (-658 "MMAP.spad" 1099689 1099723 1099939 1099944) (-657 "MLO.spad" 1098116 1098126 1099645 1099684) (-656 "MLIFT.spad" 1096688 1096705 1098106 1098111) (-655 "MKUCFUNC.spad" 1096221 1096239 1096678 1096683) (-654 "MKRECORD.spad" 1095823 1095836 1096211 1096216) (-653 "MKFUNC.spad" 1095204 1095214 1095813 1095818) (-652 "MKFLCFN.spad" 1094160 1094170 1095194 1095199) (-651 "MKCHSET.spad" 1093936 1093946 1094150 1094155) (-650 "MKBCFUNC.spad" 1093421 1093439 1093926 1093931) (-649 "MINT.spad" 1092860 1092868 1093323 1093416) (-648 "MHROWRED.spad" 1091361 1091371 1092850 1092855) (-647 "MFLOAT.spad" 1089806 1089814 1091251 1091356) (-646 "MFINFACT.spad" 1089206 1089228 1089796 1089801) (-645 "MESH.spad" 1086938 1086946 1089196 1089201) (-644 "MDDFACT.spad" 1085131 1085141 1086928 1086933) (-643 "MDAGG.spad" 1084406 1084416 1085099 1085126) (-642 "MCMPLX.spad" 1080386 1080394 1081000 1081201) (-641 "MCDEN.spad" 1079594 1079606 1080376 1080381) (-640 "MCALCFN.spad" 1076696 1076722 1079584 1079589) (-639 "MAYBE.spad" 1075945 1075956 1076686 1076691) (-638 "MATSTOR.spad" 1073221 1073231 1075935 1075940) (-637 "MATRIX.spad" 1071925 1071935 1072409 1072436) (-636 "MATLIN.spad" 1069251 1069275 1071809 1071814) (-635 "MATCAT.spad" 1060824 1060846 1069207 1069246) (-634 "MATCAT.spad" 1052281 1052305 1060666 1060671) (-633 "MATCAT2.spad" 1051549 1051597 1052271 1052276) (-632 "MAPPKG3.spad" 1050448 1050462 1051539 1051544) (-631 "MAPPKG2.spad" 1049782 1049794 1050438 1050443) (-630 "MAPPKG1.spad" 1048600 1048610 1049772 1049777) (-629 "MAPHACK3.spad" 1048408 1048422 1048590 1048595) (-628 "MAPHACK2.spad" 1048173 1048185 1048398 1048403) (-627 "MAPHACK1.spad" 1047803 1047813 1048163 1048168) (-626 "MAGMA.spad" 1045593 1045610 1047793 1047798) (-625 "M3D.spad" 1043291 1043301 1044973 1044978) (-624 "LZSTAGG.spad" 1040509 1040519 1043271 1043286) (-623 "LZSTAGG.spad" 1037735 1037747 1040499 1040504) (-622 "LWORD.spad" 1034440 1034457 1037725 1037730) (-621 "LSQM.spad" 1032668 1032682 1033066 1033117) (-620 "LSPP.spad" 1032201 1032218 1032658 1032663) (-619 "LSMP.spad" 1031041 1031069 1032191 1032196) (-618 "LSMP1.spad" 1028845 1028859 1031031 1031036) (-617 "LSAGG.spad" 1028502 1028512 1028801 1028840) (-616 "LSAGG.spad" 1028191 1028203 1028492 1028497) (-615 "LPOLY.spad" 1027145 1027164 1028047 1028116) (-614 "LPEFRAC.spad" 1026402 1026412 1027135 1027140) (-613 "LO.spad" 1025803 1025817 1026336 1026363) (-612 "LOGIC.spad" 1025405 1025413 1025793 1025798) (-611 "LOGIC.spad" 1025005 1025015 1025395 1025400) (-610 "LODOOPS.spad" 1023923 1023935 1024995 1025000) (-609 "LODO.spad" 1023309 1023325 1023605 1023644) (-608 "LODOF.spad" 1022353 1022370 1023266 1023271) (-607 "LODOCAT.spad" 1021011 1021021 1022309 1022348) (-606 "LODOCAT.spad" 1019667 1019679 1020967 1020972) (-605 "LODO2.spad" 1018942 1018954 1019349 1019388) (-604 "LODO1.spad" 1018344 1018354 1018624 1018663) (-603 "LODEEF.spad" 1017116 1017134 1018334 1018339) (-602 "LNAGG.spad" 1012908 1012918 1017096 1017111) (-601 "LNAGG.spad" 1008674 1008686 1012864 1012869) (-600 "LMOPS.spad" 1005410 1005427 1008664 1008669) (-599 "LMODULE.spad" 1005052 1005062 1005400 1005405) (-598 "LMDICT.spad" 1004335 1004345 1004603 1004630) (-597 "LIST.spad" 1002053 1002063 1003482 1003509) (-596 "LIST3.spad" 1001344 1001358 1002043 1002048) (-595 "LIST2.spad" 999984 999996 1001334 1001339) (-594 "LIST2MAP.spad" 996861 996873 999974 999979) (-593 "LINEXP.spad" 996293 996303 996841 996856) (-592 "LINDEP.spad" 995070 995082 996205 996210) (-591 "LIMITRF.spad" 992984 992994 995060 995065) (-590 "LIMITPS.spad" 991867 991880 992974 992979) (-589 "LIE.spad" 989881 989893 991157 991302) (-588 "LIECAT.spad" 989357 989367 989807 989876) (-587 "LIECAT.spad" 988861 988873 989313 989318) (-586 "LIB.spad" 986909 986917 987520 987535) (-585 "LGROBP.spad" 984262 984281 986899 986904) (-584 "LF.spad" 983181 983197 984252 984257) (-583 "LFCAT.spad" 982200 982208 983171 983176) (-582 "LEXTRIPK.spad" 977703 977718 982190 982195) (-581 "LEXP.spad" 975706 975733 977683 977698) (-580 "LEADCDET.spad" 974090 974107 975696 975701) (-579 "LAZM3PK.spad" 972794 972816 974080 974085) (-578 "LAUPOL.spad" 971485 971498 972389 972458) (-577 "LAPLACE.spad" 971058 971074 971475 971480) (-576 "LA.spad" 970498 970512 970980 971019) (-575 "LALG.spad" 970274 970284 970478 970493) (-574 "LALG.spad" 970058 970070 970264 970269) (-573 "KOVACIC.spad" 968771 968788 970048 970053) (-572 "KONVERT.spad" 968493 968503 968761 968766) (-571 "KOERCE.spad" 968230 968240 968483 968488) (-570 "KERNEL.spad" 966765 966775 968014 968019) (-569 "KERNEL2.spad" 966468 966480 966755 966760) (-568 "KDAGG.spad" 965559 965581 966436 966463) (-567 "KDAGG.spad" 964670 964694 965549 965554) (-566 "KAFILE.spad" 963633 963649 963868 963895) (-565 "JORDAN.spad" 961460 961472 962923 963068) (-564 "JAVACODE.spad" 961226 961234 961450 961455) (-563 "IXAGG.spad" 959339 959363 961206 961221) (-562 "IXAGG.spad" 957317 957343 959186 959191) (-561 "IVECTOR.spad" 956090 956105 956245 956272) (-560 "ITUPLE.spad" 955235 955245 956080 956085) (-559 "ITRIGMNP.spad" 954046 954065 955225 955230) (-558 "ITFUN3.spad" 953540 953554 954036 954041) (-557 "ITFUN2.spad" 953270 953282 953530 953535) (-556 "ITAYLOR.spad" 951062 951077 953106 953231) (-555 "ISUPS.spad" 943473 943488 950036 950133) (-554 "ISUMP.spad" 942970 942986 943463 943468) (-553 "ISTRING.spad" 941973 941986 942139 942166) (-552 "IRURPK.spad" 940686 940705 941963 941968) (-551 "IRSN.spad" 938646 938654 940676 940681) (-550 "IRRF2F.spad" 937121 937131 938602 938607) (-549 "IRREDFFX.spad" 936722 936733 937111 937116) (-548 "IROOT.spad" 935053 935063 936712 936717) (-547 "IR.spad" 932843 932857 934909 934936) (-546 "IR2.spad" 931863 931879 932833 932838) (-545 "IR2F.spad" 931063 931079 931853 931858) (-544 "IPRNTPK.spad" 930823 930831 931053 931058) (-543 "IPF.spad" 930388 930400 930628 930721) (-542 "IPADIC.spad" 930149 930175 930314 930383) (-541 "INVLAPLA.spad" 929794 929810 930139 930144) (-540 "INTTR.spad" 923040 923057 929784 929789) (-539 "INTTOOLS.spad" 920752 920768 922615 922620) (-538 "INTSLPE.spad" 920058 920066 920742 920747) (-537 "INTRVL.spad" 919624 919634 919972 920053) (-536 "INTRF.spad" 917988 918002 919614 919619) (-535 "INTRET.spad" 917420 917430 917978 917983) (-534 "INTRAT.spad" 916095 916112 917410 917415) (-533 "INTPM.spad" 914458 914474 915738 915743) (-532 "INTPAF.spad" 912226 912244 914390 914395) (-531 "INTPACK.spad" 902536 902544 912216 912221) (-530 "INT.spad" 901897 901905 902390 902531) (-529 "INTHERTR.spad" 901163 901180 901887 901892) (-528 "INTHERAL.spad" 900829 900853 901153 901158) (-527 "INTHEORY.spad" 897242 897250 900819 900824) (-526 "INTG0.spad" 890705 890723 897174 897179) (-525 "INTFTBL.spad" 884734 884742 890695 890700) (-524 "INTFACT.spad" 883793 883803 884724 884729) (-523 "INTEF.spad" 882108 882124 883783 883788) (-522 "INTDOM.spad" 880723 880731 882034 882103) (-521 "INTDOM.spad" 879400 879410 880713 880718) (-520 "INTCAT.spad" 877653 877663 879314 879395) (-519 "INTBIT.spad" 877156 877164 877643 877648) (-518 "INTALG.spad" 876338 876365 877146 877151) (-517 "INTAF.spad" 875830 875846 876328 876333) (-516 "INTABL.spad" 874348 874379 874511 874538) (-515 "INS.spad" 871744 871752 874250 874343) (-514 "INS.spad" 869226 869236 871734 871739) (-513 "INPSIGN.spad" 868660 868673 869216 869221) (-512 "INPRODPF.spad" 867726 867745 868650 868655) (-511 "INPRODFF.spad" 866784 866808 867716 867721) (-510 "INNMFACT.spad" 865755 865772 866774 866779) (-509 "INMODGCD.spad" 865239 865269 865745 865750) (-508 "INFSP.spad" 863524 863546 865229 865234) (-507 "INFPROD0.spad" 862574 862593 863514 863519) (-506 "INFORM.spad" 859842 859850 862564 862569) (-505 "INFORM1.spad" 859467 859477 859832 859837) (-504 "INFINITY.spad" 859019 859027 859457 859462) (-503 "INEP.spad" 857551 857573 859009 859014) (-502 "INDE.spad" 857280 857297 857541 857546) (-501 "INCRMAPS.spad" 856701 856711 857270 857275) (-500 "INBFF.spad" 852471 852482 856691 856696) (-499 "IMATRIX.spad" 851416 851442 851928 851955) (-498 "IMATQF.spad" 850510 850554 851372 851377) (-497 "IMATLIN.spad" 849115 849139 850466 850471) (-496 "ILIST.spad" 847771 847786 848298 848325) (-495 "IIARRAY2.spad" 847159 847197 847378 847405) (-494 "IFF.spad" 846569 846585 846840 846933) (-493 "IFARRAY.spad" 844056 844071 845752 845779) (-492 "IFAMON.spad" 843918 843935 844012 844017) (-491 "IEVALAB.spad" 843307 843319 843908 843913) (-490 "IEVALAB.spad" 842694 842708 843297 843302) (-489 "IDPO.spad" 842492 842504 842684 842689) (-488 "IDPOAMS.spad" 842248 842260 842482 842487) (-487 "IDPOAM.spad" 841968 841980 842238 842243) (-486 "IDPC.spad" 840902 840914 841958 841963) (-485 "IDPAM.spad" 840647 840659 840892 840897) (-484 "IDPAG.spad" 840394 840406 840637 840642) (-483 "IDECOMP.spad" 837631 837649 840384 840389) (-482 "IDEAL.spad" 832554 832593 837566 837571) (-481 "ICDEN.spad" 831705 831721 832544 832549) (-480 "ICARD.spad" 830894 830902 831695 831700) (-479 "IBPTOOLS.spad" 829487 829504 830884 830889) (-478 "IBITS.spad" 828686 828699 829123 829150) (-477 "IBATOOL.spad" 825561 825580 828676 828681) (-476 "IBACHIN.spad" 824048 824063 825551 825556) (-475 "IARRAY2.spad" 823036 823062 823655 823682) (-474 "IARRAY1.spad" 822081 822096 822219 822246) (-473 "IAN.spad" 820296 820304 821899 821992) (-472 "IALGFACT.spad" 819897 819930 820286 820291) (-471 "HYPCAT.spad" 819321 819329 819887 819892) (-470 "HYPCAT.spad" 818743 818753 819311 819316) (-469 "HOSTNAME.spad" 818551 818559 818733 818738) (-468 "HOAGG.spad" 815809 815819 818531 818546) (-467 "HOAGG.spad" 812852 812864 815576 815581) (-466 "HEXADEC.spad" 810724 810732 811322 811415) (-465 "HEUGCD.spad" 809739 809750 810714 810719) (-464 "HELLFDIV.spad" 809329 809353 809729 809734) (-463 "HEAP.spad" 808721 808731 808936 808963) (-462 "HEADAST.spad" 808280 808288 808711 808716) (-461 "HDP.spad" 799448 799464 799825 799954) (-460 "HDMP.spad" 796627 796642 797245 797372) (-459 "HB.spad" 794864 794872 796617 796622) (-458 "HASHTBL.spad" 793334 793365 793545 793572) (-457 "HACKPI.spad" 792817 792825 793236 793329) (-456 "GTSET.spad" 791756 791772 792463 792490) (-455 "GSTBL.spad" 790275 790310 790449 790464) (-454 "GSERIES.spad" 787442 787469 788407 788556) (-453 "GROUP.spad" 786616 786624 787422 787437) (-452 "GROUP.spad" 785798 785808 786606 786611) (-451 "GROEBSOL.spad" 784286 784307 785788 785793) (-450 "GRMOD.spad" 782857 782869 784276 784281) (-449 "GRMOD.spad" 781426 781440 782847 782852) (-448 "GRIMAGE.spad" 774031 774039 781416 781421) (-447 "GRDEF.spad" 772410 772418 774021 774026) (-446 "GRAY.spad" 770869 770877 772400 772405) (-445 "GRALG.spad" 769916 769928 770859 770864) (-444 "GRALG.spad" 768961 768975 769906 769911) (-443 "GPOLSET.spad" 768415 768438 768643 768670) (-442 "GOSPER.spad" 767680 767698 768405 768410) (-441 "GMODPOL.spad" 766818 766845 767648 767675) (-440 "GHENSEL.spad" 765887 765901 766808 766813) (-439 "GENUPS.spad" 761988 762001 765877 765882) (-438 "GENUFACT.spad" 761565 761575 761978 761983) (-437 "GENPGCD.spad" 761149 761166 761555 761560) (-436 "GENMFACT.spad" 760601 760620 761139 761144) (-435 "GENEEZ.spad" 758540 758553 760591 760596) (-434 "GDMP.spad" 755561 755578 756337 756464) (-433 "GCNAALG.spad" 749456 749483 755355 755422) (-432 "GCDDOM.spad" 748628 748636 749382 749451) (-431 "GCDDOM.spad" 747862 747872 748618 748623) (-430 "GB.spad" 745380 745418 747818 747823) (-429 "GBINTERN.spad" 741400 741438 745370 745375) (-428 "GBF.spad" 737157 737195 741390 741395) (-427 "GBEUCLID.spad" 735031 735069 737147 737152) (-426 "GAUSSFAC.spad" 734328 734336 735021 735026) (-425 "GALUTIL.spad" 732650 732660 734284 734289) (-424 "GALPOLYU.spad" 731096 731109 732640 732645) (-423 "GALFACTU.spad" 729261 729280 731086 731091) (-422 "GALFACT.spad" 719394 719405 729251 729256) (-421 "FVFUN.spad" 716407 716415 719374 719389) (-420 "FVC.spad" 715449 715457 716387 716402) (-419 "FUNCTION.spad" 715298 715310 715439 715444) (-418 "FT.spad" 713510 713518 715288 715293) (-417 "FTEM.spad" 712673 712681 713500 713505) (-416 "FSUPFACT.spad" 711574 711593 712610 712615) (-415 "FST.spad" 709660 709668 711564 711569) (-414 "FSRED.spad" 709138 709154 709650 709655) (-413 "FSPRMELT.spad" 707962 707978 709095 709100) (-412 "FSPECF.spad" 706039 706055 707952 707957) (-411 "FS.spad" 700090 700100 705803 706034) (-410 "FS.spad" 693932 693944 699647 699652) (-409 "FSINT.spad" 693590 693606 693922 693927) (-408 "FSERIES.spad" 692777 692789 693410 693509) (-407 "FSCINT.spad" 692090 692106 692767 692772) (-406 "FSAGG.spad" 691195 691205 692034 692085) (-405 "FSAGG.spad" 690274 690286 691115 691120) (-404 "FSAGG2.spad" 688973 688989 690264 690269) (-403 "FS2UPS.spad" 683362 683396 688963 688968) (-402 "FS2.spad" 683007 683023 683352 683357) (-401 "FS2EXPXP.spad" 682130 682153 682997 683002) (-400 "FRUTIL.spad" 681072 681082 682120 682125) (-399 "FR.spad" 674769 674779 680099 680168) (-398 "FRNAALG.spad" 669856 669866 674711 674764) (-397 "FRNAALG.spad" 664955 664967 669812 669817) (-396 "FRNAAF2.spad" 664409 664427 664945 664950) (-395 "FRMOD.spad" 663804 663834 664341 664346) (-394 "FRIDEAL.spad" 662999 663020 663784 663799) (-393 "FRIDEAL2.spad" 662601 662633 662989 662994) (-392 "FRETRCT.spad" 662112 662122 662591 662596) (-391 "FRETRCT.spad" 661491 661503 661972 661977) (-390 "FRAMALG.spad" 659819 659832 661447 661486) (-389 "FRAMALG.spad" 658179 658194 659809 659814) (-388 "FRAC.spad" 655282 655292 655685 655858) (-387 "FRAC2.spad" 654885 654897 655272 655277) (-386 "FR2.spad" 654219 654231 654875 654880) (-385 "FPS.spad" 651028 651036 654109 654214) (-384 "FPS.spad" 647865 647875 650948 650953) (-383 "FPC.spad" 646907 646915 647767 647860) (-382 "FPC.spad" 646035 646045 646897 646902) (-381 "FPATMAB.spad" 645787 645797 646015 646030) (-380 "FPARFRAC.spad" 644260 644277 645777 645782) (-379 "FORTRAN.spad" 642766 642809 644250 644255) (-378 "FORT.spad" 641695 641703 642756 642761) (-377 "FORTFN.spad" 638855 638863 641675 641690) (-376 "FORTCAT.spad" 638529 638537 638835 638850) (-375 "FORMULA.spad" 635867 635875 638519 638524) (-374 "FORMULA1.spad" 635346 635356 635857 635862) (-373 "FORDER.spad" 635037 635061 635336 635341) (-372 "FOP.spad" 634238 634246 635027 635032) (-371 "FNLA.spad" 633662 633684 634206 634233) (-370 "FNCAT.spad" 631990 631998 633652 633657) (-369 "FNAME.spad" 631882 631890 631980 631985) (-368 "FMTC.spad" 631680 631688 631808 631877) (-367 "FMONOID.spad" 628735 628745 631636 631641) (-366 "FM.spad" 628430 628442 628669 628696) (-365 "FMFUN.spad" 625450 625458 628410 628425) (-364 "FMC.spad" 624492 624500 625430 625445) (-363 "FMCAT.spad" 622146 622164 624460 624487) (-362 "FM1.spad" 621503 621515 622080 622107) (-361 "FLOATRP.spad" 619224 619238 621493 621498) (-360 "FLOAT.spad" 612388 612396 619090 619219) (-359 "FLOATCP.spad" 609805 609819 612378 612383) (-358 "FLINEXP.spad" 609517 609527 609785 609800) (-357 "FLINEXP.spad" 609183 609195 609453 609458) (-356 "FLASORT.spad" 608503 608515 609173 609178) (-355 "FLALG.spad" 606149 606168 608429 608498) (-354 "FLAGG.spad" 603155 603165 606117 606144) (-353 "FLAGG.spad" 600074 600086 603038 603043) (-352 "FLAGG2.spad" 598755 598771 600064 600069) (-351 "FINRALG.spad" 596784 596797 598711 598750) (-350 "FINRALG.spad" 594739 594754 596668 596673) (-349 "FINITE.spad" 593891 593899 594729 594734) (-348 "FINAALG.spad" 582872 582882 593833 593886) (-347 "FINAALG.spad" 571865 571877 582828 582833) (-346 "FILE.spad" 571448 571458 571855 571860) (-345 "FILECAT.spad" 569966 569983 571438 571443) (-344 "FIELD.spad" 569372 569380 569868 569961) (-343 "FIELD.spad" 568864 568874 569362 569367) (-342 "FGROUP.spad" 567473 567483 568844 568859) (-341 "FGLMICPK.spad" 566260 566275 567463 567468) (-340 "FFX.spad" 565635 565650 565976 566069) (-339 "FFSLPE.spad" 565124 565145 565625 565630) (-338 "FFPOLY.spad" 556376 556387 565114 565119) (-337 "FFPOLY2.spad" 555436 555453 556366 556371) (-336 "FFP.spad" 554833 554853 555152 555245) (-335 "FF.spad" 554281 554297 554514 554607) (-334 "FFNBX.spad" 552793 552813 553997 554090) (-333 "FFNBP.spad" 551306 551323 552509 552602) (-332 "FFNB.spad" 549771 549792 550987 551080) (-331 "FFINTBAS.spad" 547185 547204 549761 549766) (-330 "FFIELDC.spad" 544760 544768 547087 547180) (-329 "FFIELDC.spad" 542421 542431 544750 544755) (-328 "FFHOM.spad" 541169 541186 542411 542416) (-327 "FFF.spad" 538604 538615 541159 541164) (-326 "FFCGX.spad" 537451 537471 538320 538413) (-325 "FFCGP.spad" 536340 536360 537167 537260) (-324 "FFCG.spad" 535132 535153 536021 536114) (-323 "FFCAT.spad" 528033 528055 534971 535127) (-322 "FFCAT.spad" 521013 521037 527953 527958) (-321 "FFCAT2.spad" 520758 520798 521003 521008) (-320 "FEXPR.spad" 512471 512517 520518 520557) (-319 "FEVALAB.spad" 512177 512187 512461 512466) (-318 "FEVALAB.spad" 511668 511680 511954 511959) (-317 "FDIV.spad" 511110 511134 511658 511663) (-316 "FDIVCAT.spad" 509152 509176 511100 511105) (-315 "FDIVCAT.spad" 507192 507218 509142 509147) (-314 "FDIV2.spad" 506846 506886 507182 507187) (-313 "FCPAK1.spad" 505399 505407 506836 506841) (-312 "FCOMP.spad" 504778 504788 505389 505394) (-311 "FC.spad" 494603 494611 504768 504773) (-310 "FAXF.spad" 487538 487552 494505 494598) (-309 "FAXF.spad" 480525 480541 487494 487499) (-308 "FARRAY.spad" 478671 478681 479708 479735) (-307 "FAMR.spad" 476791 476803 478569 478666) (-306 "FAMR.spad" 474895 474909 476675 476680) (-305 "FAMONOID.spad" 474545 474555 474849 474854) (-304 "FAMONC.spad" 472767 472779 474535 474540) (-303 "FAGROUP.spad" 472373 472383 472663 472690) (-302 "FACUTIL.spad" 470569 470586 472363 472368) (-301 "FACTFUNC.spad" 469745 469755 470559 470564) (-300 "EXPUPXS.spad" 466578 466601 467877 468026) (-299 "EXPRTUBE.spad" 463806 463814 466568 466573) (-298 "EXPRODE.spad" 460678 460694 463796 463801) (-297 "EXPR.spad" 455980 455990 456694 457097) (-296 "EXPR2UPS.spad" 452072 452085 455970 455975) (-295 "EXPR2.spad" 451775 451787 452062 452067) (-294 "EXPEXPAN.spad" 448716 448741 449350 449443) (-293 "EXIT.spad" 448387 448395 448706 448711) (-292 "EVALCYC.spad" 447845 447859 448377 448382) (-291 "EVALAB.spad" 447409 447419 447835 447840) (-290 "EVALAB.spad" 446971 446983 447399 447404) (-289 "EUCDOM.spad" 444513 444521 446897 446966) (-288 "EUCDOM.spad" 442117 442127 444503 444508) (-287 "ESTOOLS.spad" 433957 433965 442107 442112) (-286 "ESTOOLS2.spad" 433558 433572 433947 433952) (-285 "ESTOOLS1.spad" 433243 433254 433548 433553) (-284 "ES.spad" 425790 425798 433233 433238) (-283 "ES.spad" 418245 418255 425690 425695) (-282 "ESCONT.spad" 415018 415026 418235 418240) (-281 "ESCONT1.spad" 414767 414779 415008 415013) (-280 "ES2.spad" 414262 414278 414757 414762) (-279 "ES1.spad" 413828 413844 414252 414257) (-278 "ERROR.spad" 411149 411157 413818 413823) (-277 "EQTBL.spad" 409621 409643 409830 409857) (-276 "EQ.spad" 404505 404515 407304 407413) (-275 "EQ2.spad" 404221 404233 404495 404500) (-274 "EP.spad" 400535 400545 404211 404216) (-273 "ENV.spad" 399237 399245 400525 400530) (-272 "ENTIRER.spad" 398905 398913 399181 399232) (-271 "EMR.spad" 398106 398147 398831 398900) (-270 "ELTAGG.spad" 396346 396365 398096 398101) (-269 "ELTAGG.spad" 394550 394571 396302 396307) (-268 "ELTAB.spad" 393997 394015 394540 394545) (-267 "ELFUTS.spad" 393376 393395 393987 393992) (-266 "ELEMFUN.spad" 393065 393073 393366 393371) (-265 "ELEMFUN.spad" 392752 392762 393055 393060) (-264 "ELAGG.spad" 390683 390693 392720 392747) (-263 "ELAGG.spad" 388563 388575 390602 390607) (-262 "ELABEXPR.spad" 387494 387502 388553 388558) (-261 "EFUPXS.spad" 384270 384300 387450 387455) (-260 "EFULS.spad" 381106 381129 384226 384231) (-259 "EFSTRUC.spad" 379061 379077 381096 381101) (-258 "EF.spad" 373827 373843 379051 379056) (-257 "EAB.spad" 372103 372111 373817 373822) (-256 "E04UCFA.spad" 371639 371647 372093 372098) (-255 "E04NAFA.spad" 371216 371224 371629 371634) (-254 "E04MBFA.spad" 370796 370804 371206 371211) (-253 "E04JAFA.spad" 370332 370340 370786 370791) (-252 "E04GCFA.spad" 369868 369876 370322 370327) (-251 "E04FDFA.spad" 369404 369412 369858 369863) (-250 "E04DGFA.spad" 368940 368948 369394 369399) (-249 "E04AGNT.spad" 364782 364790 368930 368935) (-248 "DVARCAT.spad" 361467 361477 364772 364777) (-247 "DVARCAT.spad" 358150 358162 361457 361462) (-246 "DSMP.spad" 355584 355598 355889 356016) (-245 "DROPT.spad" 349529 349537 355574 355579) (-244 "DROPT1.spad" 349192 349202 349519 349524) (-243 "DROPT0.spad" 344019 344027 349182 349187) (-242 "DRAWPT.spad" 342174 342182 344009 344014) (-241 "DRAW.spad" 334774 334787 342164 342169) (-240 "DRAWHACK.spad" 334082 334092 334764 334769) (-239 "DRAWCX.spad" 331524 331532 334072 334077) (-238 "DRAWCURV.spad" 331061 331076 331514 331519) (-237 "DRAWCFUN.spad" 320233 320241 331051 331056) (-236 "DQAGG.spad" 318389 318399 320189 320228) (-235 "DPOLCAT.spad" 313730 313746 318257 318384) (-234 "DPOLCAT.spad" 309157 309175 313686 313691) (-233 "DPMO.spad" 302507 302523 302645 302941) (-232 "DPMM.spad" 295870 295888 295995 296291) (-231 "DOMAIN.spad" 295141 295149 295860 295865) (-230 "DMP.spad" 292366 292381 292938 293065) (-229 "DLP.spad" 291714 291724 292356 292361) (-228 "DLIST.spad" 290126 290136 290897 290924) (-227 "DLAGG.spad" 288527 288537 290106 290121) (-226 "DIVRING.spad" 287974 287982 288471 288522) (-225 "DIVRING.spad" 287465 287475 287964 287969) (-224 "DISPLAY.spad" 285645 285653 287455 287460) (-223 "DIRPROD.spad" 276550 276566 277190 277319) (-222 "DIRPROD2.spad" 275358 275376 276540 276545) (-221 "DIRPCAT.spad" 274290 274306 275212 275353) (-220 "DIRPCAT.spad" 272962 272980 273886 273891) (-219 "DIOSP.spad" 271787 271795 272952 272957) (-218 "DIOPS.spad" 270759 270769 271755 271782) (-217 "DIOPS.spad" 269717 269729 270715 270720) (-216 "DIFRING.spad" 269009 269017 269697 269712) (-215 "DIFRING.spad" 268309 268319 268999 269004) (-214 "DIFEXT.spad" 267468 267478 268289 268304) (-213 "DIFEXT.spad" 266544 266556 267367 267372) (-212 "DIAGG.spad" 266162 266172 266512 266539) (-211 "DIAGG.spad" 265800 265812 266152 266157) (-210 "DHMATRIX.spad" 264104 264114 265257 265284) (-209 "DFSFUN.spad" 257512 257520 264094 264099) (-208 "DFLOAT.spad" 254035 254043 257402 257507) (-207 "DFINTTLS.spad" 252244 252260 254025 254030) (-206 "DERHAM.spad" 250154 250186 252224 252239) (-205 "DEQUEUE.spad" 249472 249482 249761 249788) (-204 "DEGRED.spad" 249087 249101 249462 249467) (-203 "DEFINTRF.spad" 246612 246622 249077 249082) (-202 "DEFINTEF.spad" 245108 245124 246602 246607) (-201 "DECIMAL.spad" 242992 243000 243578 243671) (-200 "DDFACT.spad" 240791 240808 242982 242987) (-199 "DBLRESP.spad" 240389 240413 240781 240786) (-198 "DBASE.spad" 238961 238971 240379 240384) (-197 "DATABUF.spad" 238449 238462 238951 238956) (-196 "D03FAFA.spad" 238277 238285 238439 238444) (-195 "D03EEFA.spad" 238097 238105 238267 238272) (-194 "D03AGNT.spad" 237177 237185 238087 238092) (-193 "D02EJFA.spad" 236639 236647 237167 237172) (-192 "D02CJFA.spad" 236117 236125 236629 236634) (-191 "D02BHFA.spad" 235607 235615 236107 236112) (-190 "D02BBFA.spad" 235097 235105 235597 235602) (-189 "D02AGNT.spad" 229901 229909 235087 235092) (-188 "D01WGTS.spad" 228220 228228 229891 229896) (-187 "D01TRNS.spad" 228197 228205 228210 228215) (-186 "D01GBFA.spad" 227719 227727 228187 228192) (-185 "D01FCFA.spad" 227241 227249 227709 227714) (-184 "D01ASFA.spad" 226709 226717 227231 227236) (-183 "D01AQFA.spad" 226155 226163 226699 226704) (-182 "D01APFA.spad" 225579 225587 226145 226150) (-181 "D01ANFA.spad" 225073 225081 225569 225574) (-180 "D01AMFA.spad" 224583 224591 225063 225068) (-179 "D01ALFA.spad" 224123 224131 224573 224578) (-178 "D01AKFA.spad" 223649 223657 224113 224118) (-177 "D01AJFA.spad" 223172 223180 223639 223644) (-176 "D01AGNT.spad" 219231 219239 223162 223167) (-175 "CYCLOTOM.spad" 218737 218745 219221 219226) (-174 "CYCLES.spad" 215569 215577 218727 218732) (-173 "CVMP.spad" 214986 214996 215559 215564) (-172 "CTRIGMNP.spad" 213476 213492 214976 214981) (-171 "CTORCALL.spad" 213064 213072 213466 213471) (-170 "CSTTOOLS.spad" 212307 212320 213054 213059) (-169 "CRFP.spad" 206011 206024 212297 212302) (-168 "CRAPACK.spad" 205054 205064 206001 206006) (-167 "CPMATCH.spad" 204554 204569 204979 204984) (-166 "CPIMA.spad" 204259 204278 204544 204549) (-165 "COORDSYS.spad" 199152 199162 204249 204254) (-164 "CONTOUR.spad" 198554 198562 199142 199147) (-163 "CONTFRAC.spad" 194166 194176 198456 198549) (-162 "COMRING.spad" 193840 193848 194104 194161) (-161 "COMPPROP.spad" 193354 193362 193830 193835) (-160 "COMPLPAT.spad" 193121 193136 193344 193349) (-159 "COMPLEX.spad" 187154 187164 187398 187659) (-158 "COMPLEX2.spad" 186867 186879 187144 187149) (-157 "COMPFACT.spad" 186469 186483 186857 186862) (-156 "COMPCAT.spad" 184525 184535 186191 186464) (-155 "COMPCAT.spad" 182288 182300 183956 183961) (-154 "COMMUPC.spad" 182034 182052 182278 182283) (-153 "COMMONOP.spad" 181567 181575 182024 182029) (-152 "COMM.spad" 181376 181384 181557 181562) (-151 "COMBOPC.spad" 180281 180289 181366 181371) (-150 "COMBINAT.spad" 179026 179036 180271 180276) (-149 "COMBF.spad" 176394 176410 179016 179021) (-148 "COLOR.spad" 175231 175239 176384 176389) (-147 "CMPLXRT.spad" 174940 174957 175221 175226) (-146 "CLIP.spad" 171032 171040 174930 174935) (-145 "CLIF.spad" 169671 169687 170988 171027) (-144 "CLAGG.spad" 166146 166156 169651 169666) (-143 "CLAGG.spad" 162502 162514 166009 166014) (-142 "CINTSLPE.spad" 161827 161840 162492 162497) (-141 "CHVAR.spad" 159905 159927 161817 161822) (-140 "CHARZ.spad" 159820 159828 159885 159900) (-139 "CHARPOL.spad" 159328 159338 159810 159815) (-138 "CHARNZ.spad" 159081 159089 159308 159323) (-137 "CHAR.spad" 156949 156957 159071 159076) (-136 "CFCAT.spad" 156265 156273 156939 156944) (-135 "CDEN.spad" 155423 155437 156255 156260) (-134 "CCLASS.spad" 153572 153580 154834 154873) (-133 "CATEGORY.spad" 153351 153359 153562 153567) (-132 "CARTEN.spad" 148454 148478 153341 153346) (-131 "CARTEN2.spad" 147840 147867 148444 148449) (-130 "CARD.spad" 145129 145137 147814 147835) (-129 "CACHSET.spad" 144751 144759 145119 145124) (-128 "CABMON.spad" 144304 144312 144741 144746) (-127 "BYTE.spad" 143698 143706 144294 144299) (-126 "BYTEARY.spad" 142773 142781 142867 142894) (-125 "BTREE.spad" 141842 141852 142380 142407) (-124 "BTOURN.spad" 140845 140855 141449 141476) (-123 "BTCAT.spad" 140221 140231 140801 140840) (-122 "BTCAT.spad" 139629 139641 140211 140216) (-121 "BTAGG.spad" 138739 138747 139585 139624) (-120 "BTAGG.spad" 137881 137891 138729 138734) (-119 "BSTREE.spad" 136616 136626 137488 137515) (-118 "BRILL.spad" 134811 134822 136606 136611) (-117 "BRAGG.spad" 133725 133735 134791 134806) (-116 "BRAGG.spad" 132613 132625 133681 133686) (-115 "BPADICRT.spad" 130597 130609 130852 130945) (-114 "BPADIC.spad" 130261 130273 130523 130592) (-113 "BOUNDZRO.spad" 129917 129934 130251 130256) (-112 "BOP.spad" 125381 125389 129907 129912) (-111 "BOP1.spad" 122767 122777 125337 125342) (-110 "BOOLEAN.spad" 122091 122099 122757 122762) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2242545 2242550 2242555 2242560) (-2 NIL 2242525 2242530 2242535 2242540) (-1 NIL 2242505 2242510 2242515 2242520) (0 NIL 2242485 2242490 2242495 2242500) (-1207 "ZMOD.spad" 2242294 2242307 2242423 2242480) (-1206 "ZLINDEP.spad" 2241338 2241349 2242284 2242289) (-1205 "ZDSOLVE.spad" 2231187 2231209 2241328 2241333) (-1204 "YSTREAM.spad" 2230680 2230691 2231177 2231182) (-1203 "XRPOLY.spad" 2229900 2229920 2230536 2230605) (-1202 "XPR.spad" 2227629 2227642 2229618 2229717) (-1201 "XPOLY.spad" 2227184 2227195 2227485 2227554) (-1200 "XPOLYC.spad" 2226501 2226517 2227110 2227179) (-1199 "XPBWPOLY.spad" 2224938 2224958 2226281 2226350) (-1198 "XF.spad" 2223399 2223414 2224840 2224933) (-1197 "XF.spad" 2221840 2221857 2223283 2223288) (-1196 "XFALG.spad" 2218864 2218880 2221766 2221835) (-1195 "XEXPPKG.spad" 2218115 2218141 2218854 2218859) (-1194 "XDPOLY.spad" 2217729 2217745 2217971 2218040) (-1193 "XALG.spad" 2217327 2217338 2217685 2217724) (-1192 "WUTSET.spad" 2213166 2213183 2216973 2217000) (-1191 "WP.spad" 2212180 2212224 2213024 2213091) (-1190 "WFFINTBS.spad" 2209743 2209765 2212170 2212175) (-1189 "WEIER.spad" 2207957 2207968 2209733 2209738) (-1188 "VSPACE.spad" 2207630 2207641 2207925 2207952) (-1187 "VSPACE.spad" 2207323 2207336 2207620 2207625) (-1186 "VOID.spad" 2206913 2206922 2207313 2207318) (-1185 "VIEW.spad" 2204535 2204544 2206903 2206908) (-1184 "VIEWDEF.spad" 2199732 2199741 2204525 2204530) (-1183 "VIEW3D.spad" 2183567 2183576 2199722 2199727) (-1182 "VIEW2D.spad" 2171304 2171313 2183557 2183562) (-1181 "VECTOR.spad" 2169981 2169992 2170232 2170259) (-1180 "VECTOR2.spad" 2168608 2168621 2169971 2169976) (-1179 "VECTCAT.spad" 2166496 2166507 2168564 2168603) (-1178 "VECTCAT.spad" 2164205 2164218 2166275 2166280) (-1177 "VARIABLE.spad" 2163985 2164000 2164195 2164200) (-1176 "UTYPE.spad" 2163619 2163628 2163965 2163980) (-1175 "UTSODETL.spad" 2162912 2162936 2163575 2163580) (-1174 "UTSODE.spad" 2161100 2161120 2162902 2162907) (-1173 "UTS.spad" 2155889 2155917 2159567 2159664) (-1172 "UTSCAT.spad" 2153340 2153356 2155787 2155884) (-1171 "UTSCAT.spad" 2150435 2150453 2152884 2152889) (-1170 "UTS2.spad" 2150028 2150063 2150425 2150430) (-1169 "URAGG.spad" 2144650 2144661 2150008 2150023) (-1168 "URAGG.spad" 2139246 2139259 2144606 2144611) (-1167 "UPXSSING.spad" 2136892 2136918 2138330 2138463) (-1166 "UPXS.spad" 2133919 2133947 2135024 2135173) (-1165 "UPXSCONS.spad" 2131676 2131696 2132051 2132200) (-1164 "UPXSCCA.spad" 2130134 2130154 2131522 2131671) (-1163 "UPXSCCA.spad" 2128734 2128756 2130124 2130129) (-1162 "UPXSCAT.spad" 2127315 2127331 2128580 2128729) (-1161 "UPXS2.spad" 2126856 2126909 2127305 2127310) (-1160 "UPSQFREE.spad" 2125268 2125282 2126846 2126851) (-1159 "UPSCAT.spad" 2122861 2122885 2125166 2125263) (-1158 "UPSCAT.spad" 2120160 2120186 2122467 2122472) (-1157 "UPOLYC.spad" 2115138 2115149 2120002 2120155) (-1156 "UPOLYC.spad" 2110008 2110021 2114874 2114879) (-1155 "UPOLYC2.spad" 2109477 2109496 2109998 2110003) (-1154 "UP.spad" 2106522 2106537 2107030 2107183) (-1153 "UPMP.spad" 2105412 2105425 2106512 2106517) (-1152 "UPDIVP.spad" 2104975 2104989 2105402 2105407) (-1151 "UPDECOMP.spad" 2103212 2103226 2104965 2104970) (-1150 "UPCDEN.spad" 2102419 2102435 2103202 2103207) (-1149 "UP2.spad" 2101781 2101802 2102409 2102414) (-1148 "UNISEG.spad" 2101134 2101145 2101700 2101705) (-1147 "UNISEG2.spad" 2100627 2100640 2101090 2101095) (-1146 "UNIFACT.spad" 2099728 2099740 2100617 2100622) (-1145 "ULS.spad" 2090287 2090315 2091380 2091809) (-1144 "ULSCONS.spad" 2084330 2084350 2084702 2084851) (-1143 "ULSCCAT.spad" 2081927 2081947 2084150 2084325) (-1142 "ULSCCAT.spad" 2079658 2079680 2081883 2081888) (-1141 "ULSCAT.spad" 2077874 2077890 2079504 2079653) (-1140 "ULS2.spad" 2077386 2077439 2077864 2077869) (-1139 "UFD.spad" 2076451 2076460 2077312 2077381) (-1138 "UFD.spad" 2075578 2075589 2076441 2076446) (-1137 "UDVO.spad" 2074425 2074434 2075568 2075573) (-1136 "UDPO.spad" 2071852 2071863 2074381 2074386) (-1135 "TYPE.spad" 2071774 2071783 2071832 2071847) (-1134 "TWOFACT.spad" 2070424 2070439 2071764 2071769) (-1133 "TUPLE.spad" 2069810 2069821 2070323 2070328) (-1132 "TUBETOOL.spad" 2066647 2066656 2069800 2069805) (-1131 "TUBE.spad" 2065288 2065305 2066637 2066642) (-1130 "TS.spad" 2063877 2063893 2064853 2064950) (-1129 "TSETCAT.spad" 2050992 2051009 2063833 2063872) (-1128 "TSETCAT.spad" 2038105 2038124 2050948 2050953) (-1127 "TRMANIP.spad" 2032471 2032488 2037811 2037816) (-1126 "TRIMAT.spad" 2031430 2031455 2032461 2032466) (-1125 "TRIGMNIP.spad" 2029947 2029964 2031420 2031425) (-1124 "TRIGCAT.spad" 2029459 2029468 2029937 2029942) (-1123 "TRIGCAT.spad" 2028969 2028980 2029449 2029454) (-1122 "TREE.spad" 2027540 2027551 2028576 2028603) (-1121 "TRANFUN.spad" 2027371 2027380 2027530 2027535) (-1120 "TRANFUN.spad" 2027200 2027211 2027361 2027366) (-1119 "TOPSP.spad" 2026874 2026883 2027190 2027195) (-1118 "TOOLSIGN.spad" 2026537 2026548 2026864 2026869) (-1117 "TEXTFILE.spad" 2025094 2025103 2026527 2026532) (-1116 "TEX.spad" 2022111 2022120 2025084 2025089) (-1115 "TEX1.spad" 2021667 2021678 2022101 2022106) (-1114 "TEMUTL.spad" 2021222 2021231 2021657 2021662) (-1113 "TBCMPPK.spad" 2019315 2019338 2021212 2021217) (-1112 "TBAGG.spad" 2018339 2018362 2019283 2019310) (-1111 "TBAGG.spad" 2017383 2017408 2018329 2018334) (-1110 "TANEXP.spad" 2016759 2016770 2017373 2017378) (-1109 "TABLE.spad" 2015170 2015193 2015440 2015467) (-1108 "TABLEAU.spad" 2014651 2014662 2015160 2015165) (-1107 "TABLBUMP.spad" 2011434 2011445 2014641 2014646) (-1106 "SYSTEM.spad" 2010708 2010717 2011424 2011429) (-1105 "SYSSOLP.spad" 2008181 2008192 2010698 2010703) (-1104 "SYNTAX.spad" 2004373 2004382 2008171 2008176) (-1103 "SYMTAB.spad" 2002429 2002438 2004363 2004368) (-1102 "SYMS.spad" 1998414 1998423 2002419 2002424) (-1101 "SYMPOLY.spad" 1997424 1997435 1997506 1997633) (-1100 "SYMFUNC.spad" 1996899 1996910 1997414 1997419) (-1099 "SYMBOL.spad" 1994235 1994244 1996889 1996894) (-1098 "SWITCH.spad" 1990992 1991001 1994225 1994230) (-1097 "SUTS.spad" 1987891 1987919 1989459 1989556) (-1096 "SUPXS.spad" 1984905 1984933 1986023 1986172) (-1095 "SUP.spad" 1981677 1981688 1982458 1982611) (-1094 "SUPFRACF.spad" 1980782 1980800 1981667 1981672) (-1093 "SUP2.spad" 1980172 1980185 1980772 1980777) (-1092 "SUMRF.spad" 1979138 1979149 1980162 1980167) (-1091 "SUMFS.spad" 1978771 1978788 1979128 1979133) (-1090 "SULS.spad" 1969317 1969345 1970423 1970852) (-1089 "SUCH.spad" 1968997 1969012 1969307 1969312) (-1088 "SUBSPACE.spad" 1961004 1961019 1968987 1968992) (-1087 "SUBRESP.spad" 1960164 1960178 1960960 1960965) (-1086 "STTF.spad" 1956263 1956279 1960154 1960159) (-1085 "STTFNC.spad" 1952731 1952747 1956253 1956258) (-1084 "STTAYLOR.spad" 1945129 1945140 1952612 1952617) (-1083 "STRTBL.spad" 1943634 1943651 1943783 1943810) (-1082 "STRING.spad" 1943043 1943052 1943057 1943084) (-1081 "STRICAT.spad" 1942819 1942828 1942999 1943038) (-1080 "STREAM.spad" 1939587 1939598 1942344 1942359) (-1079 "STREAM3.spad" 1939132 1939147 1939577 1939582) (-1078 "STREAM2.spad" 1938200 1938213 1939122 1939127) (-1077 "STREAM1.spad" 1937904 1937915 1938190 1938195) (-1076 "STINPROD.spad" 1936810 1936826 1937894 1937899) (-1075 "STEP.spad" 1936011 1936020 1936800 1936805) (-1074 "STBL.spad" 1934537 1934565 1934704 1934719) (-1073 "STAGG.spad" 1933602 1933613 1934517 1934532) (-1072 "STAGG.spad" 1932675 1932688 1933592 1933597) (-1071 "STACK.spad" 1932026 1932037 1932282 1932309) (-1070 "SREGSET.spad" 1929730 1929747 1931672 1931699) (-1069 "SRDCMPK.spad" 1928275 1928295 1929720 1929725) (-1068 "SRAGG.spad" 1923360 1923369 1928231 1928270) (-1067 "SRAGG.spad" 1918477 1918488 1923350 1923355) (-1066 "SQMATRIX.spad" 1916103 1916121 1917011 1917098) (-1065 "SPLTREE.spad" 1910655 1910668 1915539 1915566) (-1064 "SPLNODE.spad" 1907243 1907256 1910645 1910650) (-1063 "SPFCAT.spad" 1906020 1906029 1907233 1907238) (-1062 "SPECOUT.spad" 1904570 1904579 1906010 1906015) (-1061 "spad-parser.spad" 1904035 1904044 1904560 1904565) (-1060 "SPACEC.spad" 1888048 1888059 1904025 1904030) (-1059 "SPACE3.spad" 1887824 1887835 1888038 1888043) (-1058 "SORTPAK.spad" 1887369 1887382 1887780 1887785) (-1057 "SOLVETRA.spad" 1885126 1885137 1887359 1887364) (-1056 "SOLVESER.spad" 1883646 1883657 1885116 1885121) (-1055 "SOLVERAD.spad" 1879656 1879667 1883636 1883641) (-1054 "SOLVEFOR.spad" 1878076 1878094 1879646 1879651) (-1053 "SNTSCAT.spad" 1877664 1877681 1878032 1878071) (-1052 "SMTS.spad" 1875924 1875950 1877229 1877326) (-1051 "SMP.spad" 1873366 1873386 1873756 1873883) (-1050 "SMITH.spad" 1872209 1872234 1873356 1873361) (-1049 "SMATCAT.spad" 1870307 1870337 1872141 1872204) (-1048 "SMATCAT.spad" 1868349 1868381 1870185 1870190) (-1047 "SKAGG.spad" 1867298 1867309 1868305 1868344) (-1046 "SINT.spad" 1865606 1865615 1867164 1867293) (-1045 "SIMPAN.spad" 1865334 1865343 1865596 1865601) (-1044 "SIG.spad" 1864931 1864940 1865324 1865329) (-1043 "SIGNRF.spad" 1864039 1864050 1864921 1864926) (-1042 "SIGNEF.spad" 1863308 1863325 1864029 1864034) (-1041 "SHP.spad" 1861226 1861241 1863264 1863269) (-1040 "SHDP.spad" 1852262 1852289 1852771 1852900) (-1039 "SGROUP.spad" 1851870 1851879 1852252 1852257) (-1038 "SGROUP.spad" 1851476 1851487 1851860 1851865) (-1037 "SGCF.spad" 1844357 1844366 1851466 1851471) (-1036 "SFRTCAT.spad" 1843273 1843290 1844313 1844352) (-1035 "SFRGCD.spad" 1842336 1842356 1843263 1843268) (-1034 "SFQCMPK.spad" 1836973 1836993 1842326 1842331) (-1033 "SFORT.spad" 1836408 1836422 1836963 1836968) (-1032 "SEXOF.spad" 1836251 1836291 1836398 1836403) (-1031 "SEX.spad" 1836143 1836152 1836241 1836246) (-1030 "SEXCAT.spad" 1833247 1833287 1836133 1836138) (-1029 "SET.spad" 1831547 1831558 1832668 1832707) (-1028 "SETMN.spad" 1829981 1829998 1831537 1831542) (-1027 "SETCAT.spad" 1829466 1829475 1829971 1829976) (-1026 "SETCAT.spad" 1828949 1828960 1829456 1829461) (-1025 "SETAGG.spad" 1825458 1825469 1828917 1828944) (-1024 "SETAGG.spad" 1821987 1822000 1825448 1825453) (-1023 "SEGXCAT.spad" 1821099 1821112 1821967 1821982) (-1022 "SEG.spad" 1820912 1820923 1821018 1821023) (-1021 "SEGCAT.spad" 1819731 1819742 1820892 1820907) (-1020 "SEGBIND.spad" 1818803 1818814 1819686 1819691) (-1019 "SEGBIND2.spad" 1818499 1818512 1818793 1818798) (-1018 "SEG2.spad" 1817924 1817937 1818455 1818460) (-1017 "SDVAR.spad" 1817200 1817211 1817914 1817919) (-1016 "SDPOL.spad" 1814593 1814604 1814884 1815011) (-1015 "SCPKG.spad" 1812672 1812683 1814583 1814588) (-1014 "SCOPE.spad" 1811817 1811826 1812662 1812667) (-1013 "SCACHE.spad" 1810499 1810510 1811807 1811812) (-1012 "SAOS.spad" 1810371 1810380 1810489 1810494) (-1011 "SAERFFC.spad" 1810084 1810104 1810361 1810366) (-1010 "SAE.spad" 1808262 1808278 1808873 1809008) (-1009 "SAEFACT.spad" 1807963 1807983 1808252 1808257) (-1008 "RURPK.spad" 1805604 1805620 1807953 1807958) (-1007 "RULESET.spad" 1805045 1805069 1805594 1805599) (-1006 "RULE.spad" 1803249 1803273 1805035 1805040) (-1005 "RULECOLD.spad" 1803101 1803114 1803239 1803244) (-1004 "RSETGCD.spad" 1799479 1799499 1803091 1803096) (-1003 "RSETCAT.spad" 1789251 1789268 1799435 1799474) (-1002 "RSETCAT.spad" 1779055 1779074 1789241 1789246) (-1001 "RSDCMPK.spad" 1777507 1777527 1779045 1779050) (-1000 "RRCC.spad" 1775891 1775921 1777497 1777502) (-999 "RRCC.spad" 1774274 1774305 1775881 1775886) (-998 "RPOLCAT.spad" 1753635 1753649 1774142 1774269) (-997 "RPOLCAT.spad" 1732711 1732727 1753220 1753225) (-996 "ROUTINE.spad" 1728575 1728583 1731358 1731385) (-995 "ROMAN.spad" 1727808 1727816 1728441 1728570) (-994 "ROIRC.spad" 1726889 1726920 1727798 1727803) (-993 "RNS.spad" 1725793 1725801 1726791 1726884) (-992 "RNS.spad" 1724783 1724793 1725783 1725788) (-991 "RNG.spad" 1724519 1724527 1724773 1724778) (-990 "RMODULE.spad" 1724158 1724168 1724509 1724514) (-989 "RMCAT2.spad" 1723567 1723623 1724148 1724153) (-988 "RMATRIX.spad" 1722247 1722265 1722734 1722773) (-987 "RMATCAT.spad" 1717769 1717799 1722191 1722242) (-986 "RMATCAT.spad" 1713193 1713225 1717617 1717622) (-985 "RINTERP.spad" 1713082 1713101 1713183 1713188) (-984 "RING.spad" 1712440 1712448 1713062 1713077) (-983 "RING.spad" 1711806 1711816 1712430 1712435) (-982 "RIDIST.spad" 1711191 1711199 1711796 1711801) (-981 "RGCHAIN.spad" 1709771 1709786 1710676 1710703) (-980 "RF.spad" 1707386 1707396 1709761 1709766) (-979 "RFFACTOR.spad" 1706849 1706859 1707376 1707381) (-978 "RFFACT.spad" 1706585 1706596 1706839 1706844) (-977 "RFDIST.spad" 1705574 1705582 1706575 1706580) (-976 "RETSOL.spad" 1704992 1705004 1705564 1705569) (-975 "RETRACT.spad" 1704342 1704352 1704982 1704987) (-974 "RETRACT.spad" 1703690 1703702 1704332 1704337) (-973 "RESULT.spad" 1701751 1701759 1702337 1702364) (-972 "RESRING.spad" 1701099 1701145 1701689 1701746) (-971 "RESLATC.spad" 1700424 1700434 1701089 1701094) (-970 "REPSQ.spad" 1700154 1700164 1700414 1700419) (-969 "REP.spad" 1697707 1697715 1700144 1700149) (-968 "REPDB.spad" 1697413 1697423 1697697 1697702) (-967 "REP2.spad" 1686986 1686996 1697255 1697260) (-966 "REP1.spad" 1680977 1680987 1686936 1686941) (-965 "REGSET.spad" 1678775 1678791 1680623 1680650) (-964 "REF.spad" 1678105 1678115 1678730 1678735) (-963 "REDORDER.spad" 1677282 1677298 1678095 1678100) (-962 "RECLOS.spad" 1676072 1676091 1676775 1676868) (-961 "REALSOLV.spad" 1675205 1675213 1676062 1676067) (-960 "REAL.spad" 1675078 1675086 1675195 1675200) (-959 "REAL0Q.spad" 1672361 1672375 1675068 1675073) (-958 "REAL0.spad" 1669190 1669204 1672351 1672356) (-957 "RDIV.spad" 1668842 1668866 1669180 1669185) (-956 "RDIST.spad" 1668406 1668416 1668832 1668837) (-955 "RDETRS.spad" 1667203 1667220 1668396 1668401) (-954 "RDETR.spad" 1665311 1665328 1667193 1667198) (-953 "RDEEFS.spad" 1664385 1664401 1665301 1665306) (-952 "RDEEF.spad" 1663382 1663398 1664375 1664380) (-951 "RCFIELD.spad" 1660569 1660577 1663284 1663377) (-950 "RCFIELD.spad" 1657842 1657852 1660559 1660564) (-949 "RCAGG.spad" 1655745 1655755 1657822 1657837) (-948 "RCAGG.spad" 1653585 1653597 1655664 1655669) (-947 "RATRET.spad" 1652946 1652956 1653575 1653580) (-946 "RATFACT.spad" 1652639 1652650 1652936 1652941) (-945 "RANDSRC.spad" 1651959 1651967 1652629 1652634) (-944 "RADUTIL.spad" 1651714 1651722 1651949 1651954) (-943 "RADIX.spad" 1648507 1648520 1650184 1650277) (-942 "RADFF.spad" 1646924 1646960 1647042 1647198) (-941 "RADCAT.spad" 1646518 1646526 1646914 1646919) (-940 "RADCAT.spad" 1646110 1646120 1646508 1646513) (-939 "QUEUE.spad" 1645453 1645463 1645717 1645744) (-938 "QUAT.spad" 1644039 1644049 1644381 1644446) (-937 "QUATCT2.spad" 1643658 1643676 1644029 1644034) (-936 "QUATCAT.spad" 1641823 1641833 1643588 1643653) (-935 "QUATCAT.spad" 1639740 1639752 1641507 1641512) (-934 "QUAGG.spad" 1638554 1638564 1639696 1639735) (-933 "QFORM.spad" 1638017 1638031 1638544 1638549) (-932 "QFCAT.spad" 1636708 1636718 1637907 1638012) (-931 "QFCAT.spad" 1635005 1635017 1636206 1636211) (-930 "QFCAT2.spad" 1634696 1634712 1634995 1635000) (-929 "QEQUAT.spad" 1634253 1634261 1634686 1634691) (-928 "QCMPACK.spad" 1629000 1629019 1634243 1634248) (-927 "QALGSET.spad" 1625075 1625107 1628914 1628919) (-926 "QALGSET2.spad" 1623071 1623089 1625065 1625070) (-925 "PWFFINTB.spad" 1620381 1620402 1623061 1623066) (-924 "PUSHVAR.spad" 1619710 1619729 1620371 1620376) (-923 "PTRANFN.spad" 1615836 1615846 1619700 1619705) (-922 "PTPACK.spad" 1612924 1612934 1615826 1615831) (-921 "PTFUNC2.spad" 1612745 1612759 1612914 1612919) (-920 "PTCAT.spad" 1611827 1611837 1612701 1612740) (-919 "PSQFR.spad" 1611134 1611158 1611817 1611822) (-918 "PSEUDLIN.spad" 1609992 1610002 1611124 1611129) (-917 "PSETPK.spad" 1595425 1595441 1609870 1609875) (-916 "PSETCAT.spad" 1589333 1589356 1595393 1595420) (-915 "PSETCAT.spad" 1583227 1583252 1589289 1589294) (-914 "PSCURVE.spad" 1582210 1582218 1583217 1583222) (-913 "PSCAT.spad" 1580977 1581006 1582108 1582205) (-912 "PSCAT.spad" 1579834 1579865 1580967 1580972) (-911 "PRTITION.spad" 1578677 1578685 1579824 1579829) (-910 "PRS.spad" 1568239 1568256 1578633 1578638) (-909 "PRQAGG.spad" 1567658 1567668 1568195 1568234) (-908 "PROPLOG.spad" 1567061 1567069 1567648 1567653) (-907 "PROPFRML.spad" 1564925 1564936 1566997 1567002) (-906 "PROPERTY.spad" 1564419 1564427 1564915 1564920) (-905 "PRODUCT.spad" 1562099 1562111 1562385 1562440) (-904 "PR.spad" 1560488 1560500 1561193 1561320) (-903 "PRINT.spad" 1560240 1560248 1560478 1560483) (-902 "PRIMES.spad" 1558491 1558501 1560230 1560235) (-901 "PRIMELT.spad" 1556472 1556486 1558481 1558486) (-900 "PRIMCAT.spad" 1556095 1556103 1556462 1556467) (-899 "PRIMARR.spad" 1555100 1555110 1555278 1555305) (-898 "PRIMARR2.spad" 1553823 1553835 1555090 1555095) (-897 "PREASSOC.spad" 1553195 1553207 1553813 1553818) (-896 "PPCURVE.spad" 1552332 1552340 1553185 1553190) (-895 "PORTNUM.spad" 1552107 1552115 1552322 1552327) (-894 "POLYROOT.spad" 1550879 1550901 1552063 1552068) (-893 "POLY.spad" 1548179 1548189 1548696 1548823) (-892 "POLYLIFT.spad" 1547440 1547463 1548169 1548174) (-891 "POLYCATQ.spad" 1545542 1545564 1547430 1547435) (-890 "POLYCAT.spad" 1538948 1538969 1545410 1545537) (-889 "POLYCAT.spad" 1531656 1531679 1538120 1538125) (-888 "POLY2UP.spad" 1531104 1531118 1531646 1531651) (-887 "POLY2.spad" 1530699 1530711 1531094 1531099) (-886 "POLUTIL.spad" 1529640 1529669 1530655 1530660) (-885 "POLTOPOL.spad" 1528388 1528403 1529630 1529635) (-884 "POINT.spad" 1527229 1527239 1527316 1527343) (-883 "PNTHEORY.spad" 1523895 1523903 1527219 1527224) (-882 "PMTOOLS.spad" 1522652 1522666 1523885 1523890) (-881 "PMSYM.spad" 1522197 1522207 1522642 1522647) (-880 "PMQFCAT.spad" 1521784 1521798 1522187 1522192) (-879 "PMPRED.spad" 1521253 1521267 1521774 1521779) (-878 "PMPREDFS.spad" 1520697 1520719 1521243 1521248) (-877 "PMPLCAT.spad" 1519767 1519785 1520629 1520634) (-876 "PMLSAGG.spad" 1519348 1519362 1519757 1519762) (-875 "PMKERNEL.spad" 1518915 1518927 1519338 1519343) (-874 "PMINS.spad" 1518491 1518501 1518905 1518910) (-873 "PMFS.spad" 1518064 1518082 1518481 1518486) (-872 "PMDOWN.spad" 1517350 1517364 1518054 1518059) (-871 "PMASS.spad" 1516362 1516370 1517340 1517345) (-870 "PMASSFS.spad" 1515331 1515347 1516352 1516357) (-869 "PLOTTOOL.spad" 1515111 1515119 1515321 1515326) (-868 "PLOT.spad" 1509942 1509950 1515101 1515106) (-867 "PLOT3D.spad" 1506362 1506370 1509932 1509937) (-866 "PLOT1.spad" 1505503 1505513 1506352 1506357) (-865 "PLEQN.spad" 1492719 1492746 1505493 1505498) (-864 "PINTERP.spad" 1492335 1492354 1492709 1492714) (-863 "PINTERPA.spad" 1492117 1492133 1492325 1492330) (-862 "PI.spad" 1491724 1491732 1492091 1492112) (-861 "PID.spad" 1490680 1490688 1491650 1491719) (-860 "PICOERCE.spad" 1490337 1490347 1490670 1490675) (-859 "PGROEB.spad" 1488934 1488948 1490327 1490332) (-858 "PGE.spad" 1480187 1480195 1488924 1488929) (-857 "PGCD.spad" 1479069 1479086 1480177 1480182) (-856 "PFRPAC.spad" 1478212 1478222 1479059 1479064) (-855 "PFR.spad" 1474869 1474879 1478114 1478207) (-854 "PFOTOOLS.spad" 1474127 1474143 1474859 1474864) (-853 "PFOQ.spad" 1473497 1473515 1474117 1474122) (-852 "PFO.spad" 1472916 1472943 1473487 1473492) (-851 "PF.spad" 1472490 1472502 1472721 1472814) (-850 "PFECAT.spad" 1470156 1470164 1472416 1472485) (-849 "PFECAT.spad" 1467850 1467860 1470112 1470117) (-848 "PFBRU.spad" 1465720 1465732 1467840 1467845) (-847 "PFBR.spad" 1463258 1463281 1465710 1465715) (-846 "PERM.spad" 1458939 1458949 1463088 1463103) (-845 "PERMGRP.spad" 1453675 1453685 1458929 1458934) (-844 "PERMCAT.spad" 1452227 1452237 1453655 1453670) (-843 "PERMAN.spad" 1450759 1450773 1452217 1452222) (-842 "PENDTREE.spad" 1450032 1450042 1450388 1450393) (-841 "PDRING.spad" 1448523 1448533 1450012 1450027) (-840 "PDRING.spad" 1447022 1447034 1448513 1448518) (-839 "PDEPROB.spad" 1445979 1445987 1447012 1447017) (-838 "PDEPACK.spad" 1439981 1439989 1445969 1445974) (-837 "PDECOMP.spad" 1439443 1439460 1439971 1439976) (-836 "PDECAT.spad" 1437797 1437805 1439433 1439438) (-835 "PCOMP.spad" 1437648 1437661 1437787 1437792) (-834 "PBWLB.spad" 1436230 1436247 1437638 1437643) (-833 "PATTERN.spad" 1430661 1430671 1436220 1436225) (-832 "PATTERN2.spad" 1430397 1430409 1430651 1430656) (-831 "PATTERN1.spad" 1428699 1428715 1430387 1430392) (-830 "PATRES.spad" 1426246 1426258 1428689 1428694) (-829 "PATRES2.spad" 1425908 1425922 1426236 1426241) (-828 "PATMATCH.spad" 1424070 1424101 1425621 1425626) (-827 "PATMAB.spad" 1423495 1423505 1424060 1424065) (-826 "PATLRES.spad" 1422579 1422593 1423485 1423490) (-825 "PATAB.spad" 1422343 1422353 1422569 1422574) (-824 "PARTPERM.spad" 1419705 1419713 1422333 1422338) (-823 "PARSURF.spad" 1419133 1419161 1419695 1419700) (-822 "PARSU2.spad" 1418928 1418944 1419123 1419128) (-821 "script-parser.spad" 1418448 1418456 1418918 1418923) (-820 "PARSCURV.spad" 1417876 1417904 1418438 1418443) (-819 "PARSC2.spad" 1417665 1417681 1417866 1417871) (-818 "PARPCURV.spad" 1417123 1417151 1417655 1417660) (-817 "PARPC2.spad" 1416912 1416928 1417113 1417118) (-816 "PAN2EXPR.spad" 1416324 1416332 1416902 1416907) (-815 "PALETTE.spad" 1415294 1415302 1416314 1416319) (-814 "PAIR.spad" 1414277 1414290 1414882 1414887) (-813 "PADICRC.spad" 1411610 1411628 1412785 1412878) (-812 "PADICRAT.spad" 1409628 1409640 1409849 1409942) (-811 "PADIC.spad" 1409323 1409335 1409554 1409623) (-810 "PADICCT.spad" 1407864 1407876 1409249 1409318) (-809 "PADEPAC.spad" 1406543 1406562 1407854 1407859) (-808 "PADE.spad" 1405283 1405299 1406533 1406538) (-807 "OWP.spad" 1404267 1404297 1405141 1405208) (-806 "OVAR.spad" 1404048 1404071 1404257 1404262) (-805 "OUT.spad" 1403132 1403140 1404038 1404043) (-804 "OUTFORM.spad" 1392546 1392554 1403122 1403127) (-803 "OSI.spad" 1392021 1392029 1392536 1392541) (-802 "OSGROUP.spad" 1391939 1391947 1392011 1392016) (-801 "ORTHPOL.spad" 1390400 1390410 1391856 1391861) (-800 "OREUP.spad" 1389760 1389788 1390082 1390121) (-799 "ORESUP.spad" 1389061 1389085 1389442 1389481) (-798 "OREPCTO.spad" 1386880 1386892 1388981 1388986) (-797 "OREPCAT.spad" 1380937 1380947 1386836 1386875) (-796 "OREPCAT.spad" 1374884 1374896 1380785 1380790) (-795 "ORDSET.spad" 1374050 1374058 1374874 1374879) (-794 "ORDSET.spad" 1373214 1373224 1374040 1374045) (-793 "ORDRING.spad" 1372604 1372612 1373194 1373209) (-792 "ORDRING.spad" 1372002 1372012 1372594 1372599) (-791 "ORDMON.spad" 1371857 1371865 1371992 1371997) (-790 "ORDFUNS.spad" 1370983 1370999 1371847 1371852) (-789 "ORDFIN.spad" 1370917 1370925 1370973 1370978) (-788 "ORDCOMP.spad" 1369385 1369395 1370467 1370496) (-787 "ORDCOMP2.spad" 1368670 1368682 1369375 1369380) (-786 "OPTPROB.spad" 1367250 1367258 1368660 1368665) (-785 "OPTPACK.spad" 1359635 1359643 1367240 1367245) (-784 "OPTCAT.spad" 1357310 1357318 1359625 1359630) (-783 "OPQUERY.spad" 1356859 1356867 1357300 1357305) (-782 "OP.spad" 1356601 1356611 1356681 1356748) (-781 "ONECOMP.spad" 1355349 1355359 1356151 1356180) (-780 "ONECOMP2.spad" 1354767 1354779 1355339 1355344) (-779 "OMSERVER.spad" 1353769 1353777 1354757 1354762) (-778 "OMSAGG.spad" 1353545 1353555 1353713 1353764) (-777 "OMPKG.spad" 1352157 1352165 1353535 1353540) (-776 "OM.spad" 1351122 1351130 1352147 1352152) (-775 "OMLO.spad" 1350547 1350559 1351008 1351047) (-774 "OMEXPR.spad" 1350381 1350391 1350537 1350542) (-773 "OMERR.spad" 1349924 1349932 1350371 1350376) (-772 "OMERRK.spad" 1348958 1348966 1349914 1349919) (-771 "OMENC.spad" 1348302 1348310 1348948 1348953) (-770 "OMDEV.spad" 1342591 1342599 1348292 1348297) (-769 "OMCONN.spad" 1342000 1342008 1342581 1342586) (-768 "OINTDOM.spad" 1341763 1341771 1341926 1341995) (-767 "OFMONOID.spad" 1337950 1337960 1341753 1341758) (-766 "ODVAR.spad" 1337211 1337221 1337940 1337945) (-765 "ODR.spad" 1336659 1336685 1337023 1337172) (-764 "ODPOL.spad" 1334008 1334018 1334348 1334475) (-763 "ODP.spad" 1325180 1325200 1325553 1325682) (-762 "ODETOOLS.spad" 1323763 1323782 1325170 1325175) (-761 "ODESYS.spad" 1321413 1321430 1323753 1323758) (-760 "ODERTRIC.spad" 1317354 1317371 1321370 1321375) (-759 "ODERED.spad" 1316741 1316765 1317344 1317349) (-758 "ODERAT.spad" 1314292 1314309 1316731 1316736) (-757 "ODEPRRIC.spad" 1311183 1311205 1314282 1314287) (-756 "ODEPROB.spad" 1310382 1310390 1311173 1311178) (-755 "ODEPRIM.spad" 1307656 1307678 1310372 1310377) (-754 "ODEPAL.spad" 1307032 1307056 1307646 1307651) (-753 "ODEPACK.spad" 1293634 1293642 1307022 1307027) (-752 "ODEINT.spad" 1293065 1293081 1293624 1293629) (-751 "ODEIFTBL.spad" 1290460 1290468 1293055 1293060) (-750 "ODEEF.spad" 1285827 1285843 1290450 1290455) (-749 "ODECONST.spad" 1285346 1285364 1285817 1285822) (-748 "ODECAT.spad" 1283942 1283950 1285336 1285341) (-747 "OCT.spad" 1282089 1282099 1282805 1282844) (-746 "OCTCT2.spad" 1281733 1281754 1282079 1282084) (-745 "OC.spad" 1279507 1279517 1281689 1281728) (-744 "OC.spad" 1277007 1277019 1279191 1279196) (-743 "OCAMON.spad" 1276855 1276863 1276997 1277002) (-742 "OASGP.spad" 1276670 1276678 1276845 1276850) (-741 "OAMONS.spad" 1276190 1276198 1276660 1276665) (-740 "OAMON.spad" 1276051 1276059 1276180 1276185) (-739 "OAGROUP.spad" 1275913 1275921 1276041 1276046) (-738 "NUMTUBE.spad" 1275500 1275516 1275903 1275908) (-737 "NUMQUAD.spad" 1263362 1263370 1275490 1275495) (-736 "NUMODE.spad" 1254498 1254506 1263352 1263357) (-735 "NUMINT.spad" 1252056 1252064 1254488 1254493) (-734 "NUMFMT.spad" 1250896 1250904 1252046 1252051) (-733 "NUMERIC.spad" 1242969 1242979 1250702 1250707) (-732 "NTSCAT.spad" 1241459 1241475 1242925 1242964) (-731 "NTPOLFN.spad" 1241004 1241014 1241376 1241381) (-730 "NSUP.spad" 1234017 1234027 1238557 1238710) (-729 "NSUP2.spad" 1233409 1233421 1234007 1234012) (-728 "NSMP.spad" 1229608 1229627 1229916 1230043) (-727 "NREP.spad" 1227980 1227994 1229598 1229603) (-726 "NPCOEF.spad" 1227226 1227246 1227970 1227975) (-725 "NORMRETR.spad" 1226824 1226863 1227216 1227221) (-724 "NORMPK.spad" 1224726 1224745 1226814 1226819) (-723 "NORMMA.spad" 1224414 1224440 1224716 1224721) (-722 "NONE.spad" 1224155 1224163 1224404 1224409) (-721 "NONE1.spad" 1223831 1223841 1224145 1224150) (-720 "NODE1.spad" 1223300 1223316 1223821 1223826) (-719 "NNI.spad" 1222187 1222195 1223274 1223295) (-718 "NLINSOL.spad" 1220809 1220819 1222177 1222182) (-717 "NIPROB.spad" 1219292 1219300 1220799 1220804) (-716 "NFINTBAS.spad" 1216752 1216769 1219282 1219287) (-715 "NCODIV.spad" 1214950 1214966 1216742 1216747) (-714 "NCNTFRAC.spad" 1214592 1214606 1214940 1214945) (-713 "NCEP.spad" 1212752 1212766 1214582 1214587) (-712 "NASRING.spad" 1212348 1212356 1212742 1212747) (-711 "NASRING.spad" 1211942 1211952 1212338 1212343) (-710 "NARNG.spad" 1211286 1211294 1211932 1211937) (-709 "NARNG.spad" 1210628 1210638 1211276 1211281) (-708 "NAGSP.spad" 1209701 1209709 1210618 1210623) (-707 "NAGS.spad" 1199226 1199234 1209691 1209696) (-706 "NAGF07.spad" 1197619 1197627 1199216 1199221) (-705 "NAGF04.spad" 1191851 1191859 1197609 1197614) (-704 "NAGF02.spad" 1185660 1185668 1191841 1191846) (-703 "NAGF01.spad" 1181263 1181271 1185650 1185655) (-702 "NAGE04.spad" 1174723 1174731 1181253 1181258) (-701 "NAGE02.spad" 1165065 1165073 1174713 1174718) (-700 "NAGE01.spad" 1160949 1160957 1165055 1165060) (-699 "NAGD03.spad" 1158869 1158877 1160939 1160944) (-698 "NAGD02.spad" 1151400 1151408 1158859 1158864) (-697 "NAGD01.spad" 1145513 1145521 1151390 1151395) (-696 "NAGC06.spad" 1141300 1141308 1145503 1145508) (-695 "NAGC05.spad" 1139769 1139777 1141290 1141295) (-694 "NAGC02.spad" 1139024 1139032 1139759 1139764) (-693 "NAALG.spad" 1138559 1138569 1138992 1139019) (-692 "NAALG.spad" 1138114 1138126 1138549 1138554) (-691 "MULTSQFR.spad" 1135072 1135089 1138104 1138109) (-690 "MULTFACT.spad" 1134455 1134472 1135062 1135067) (-689 "MTSCAT.spad" 1132489 1132510 1134353 1134450) (-688 "MTHING.spad" 1132146 1132156 1132479 1132484) (-687 "MSYSCMD.spad" 1131580 1131588 1132136 1132141) (-686 "MSET.spad" 1129522 1129532 1131286 1131325) (-685 "MSETAGG.spad" 1129355 1129365 1129478 1129517) (-684 "MRING.spad" 1126326 1126338 1129063 1129130) (-683 "MRF2.spad" 1125894 1125908 1126316 1126321) (-682 "MRATFAC.spad" 1125440 1125457 1125884 1125889) (-681 "MPRFF.spad" 1123470 1123489 1125430 1125435) (-680 "MPOLY.spad" 1120908 1120923 1121267 1121394) (-679 "MPCPF.spad" 1120172 1120191 1120898 1120903) (-678 "MPC3.spad" 1119987 1120027 1120162 1120167) (-677 "MPC2.spad" 1119629 1119662 1119977 1119982) (-676 "MONOTOOL.spad" 1117964 1117981 1119619 1119624) (-675 "MONOID.spad" 1117283 1117291 1117954 1117959) (-674 "MONOID.spad" 1116600 1116610 1117273 1117278) (-673 "MONOGEN.spad" 1115346 1115359 1116460 1116595) (-672 "MONOGEN.spad" 1114114 1114129 1115230 1115235) (-671 "MONADWU.spad" 1112128 1112136 1114104 1114109) (-670 "MONADWU.spad" 1110140 1110150 1112118 1112123) (-669 "MONAD.spad" 1109284 1109292 1110130 1110135) (-668 "MONAD.spad" 1108426 1108436 1109274 1109279) (-667 "MOEBIUS.spad" 1107112 1107126 1108406 1108421) (-666 "MODULE.spad" 1106982 1106992 1107080 1107107) (-665 "MODULE.spad" 1106872 1106884 1106972 1106977) (-664 "MODRING.spad" 1106203 1106242 1106852 1106867) (-663 "MODOP.spad" 1104862 1104874 1106025 1106092) (-662 "MODMONOM.spad" 1104394 1104412 1104852 1104857) (-661 "MODMON.spad" 1101099 1101115 1101875 1102028) (-660 "MODFIELD.spad" 1100457 1100496 1101001 1101094) (-659 "MMLFORM.spad" 1099317 1099325 1100447 1100452) (-658 "MMAP.spad" 1099057 1099091 1099307 1099312) (-657 "MLO.spad" 1097484 1097494 1099013 1099052) (-656 "MLIFT.spad" 1096056 1096073 1097474 1097479) (-655 "MKUCFUNC.spad" 1095589 1095607 1096046 1096051) (-654 "MKRECORD.spad" 1095191 1095204 1095579 1095584) (-653 "MKFUNC.spad" 1094572 1094582 1095181 1095186) (-652 "MKFLCFN.spad" 1093528 1093538 1094562 1094567) (-651 "MKCHSET.spad" 1093304 1093314 1093518 1093523) (-650 "MKBCFUNC.spad" 1092789 1092807 1093294 1093299) (-649 "MINT.spad" 1092228 1092236 1092691 1092784) (-648 "MHROWRED.spad" 1090729 1090739 1092218 1092223) (-647 "MFLOAT.spad" 1089174 1089182 1090619 1090724) (-646 "MFINFACT.spad" 1088574 1088596 1089164 1089169) (-645 "MESH.spad" 1086306 1086314 1088564 1088569) (-644 "MDDFACT.spad" 1084499 1084509 1086296 1086301) (-643 "MDAGG.spad" 1083774 1083784 1084467 1084494) (-642 "MCMPLX.spad" 1079754 1079762 1080368 1080569) (-641 "MCDEN.spad" 1078962 1078974 1079744 1079749) (-640 "MCALCFN.spad" 1076064 1076090 1078952 1078957) (-639 "MAYBE.spad" 1075313 1075324 1076054 1076059) (-638 "MATSTOR.spad" 1072589 1072599 1075303 1075308) (-637 "MATRIX.spad" 1071293 1071303 1071777 1071804) (-636 "MATLIN.spad" 1068619 1068643 1071177 1071182) (-635 "MATCAT.spad" 1060192 1060214 1068575 1068614) (-634 "MATCAT.spad" 1051649 1051673 1060034 1060039) (-633 "MATCAT2.spad" 1050917 1050965 1051639 1051644) (-632 "MAPPKG3.spad" 1049816 1049830 1050907 1050912) (-631 "MAPPKG2.spad" 1049150 1049162 1049806 1049811) (-630 "MAPPKG1.spad" 1047968 1047978 1049140 1049145) (-629 "MAPHACK3.spad" 1047776 1047790 1047958 1047963) (-628 "MAPHACK2.spad" 1047541 1047553 1047766 1047771) (-627 "MAPHACK1.spad" 1047171 1047181 1047531 1047536) (-626 "MAGMA.spad" 1044961 1044978 1047161 1047166) (-625 "M3D.spad" 1042659 1042669 1044341 1044346) (-624 "LZSTAGG.spad" 1039877 1039887 1042639 1042654) (-623 "LZSTAGG.spad" 1037103 1037115 1039867 1039872) (-622 "LWORD.spad" 1033808 1033825 1037093 1037098) (-621 "LSQM.spad" 1032036 1032050 1032434 1032485) (-620 "LSPP.spad" 1031569 1031586 1032026 1032031) (-619 "LSMP.spad" 1030409 1030437 1031559 1031564) (-618 "LSMP1.spad" 1028213 1028227 1030399 1030404) (-617 "LSAGG.spad" 1027870 1027880 1028169 1028208) (-616 "LSAGG.spad" 1027559 1027571 1027860 1027865) (-615 "LPOLY.spad" 1026513 1026532 1027415 1027484) (-614 "LPEFRAC.spad" 1025770 1025780 1026503 1026508) (-613 "LO.spad" 1025171 1025185 1025704 1025731) (-612 "LOGIC.spad" 1024773 1024781 1025161 1025166) (-611 "LOGIC.spad" 1024373 1024383 1024763 1024768) (-610 "LODOOPS.spad" 1023291 1023303 1024363 1024368) (-609 "LODO.spad" 1022677 1022693 1022973 1023012) (-608 "LODOF.spad" 1021721 1021738 1022634 1022639) (-607 "LODOCAT.spad" 1020379 1020389 1021677 1021716) (-606 "LODOCAT.spad" 1019035 1019047 1020335 1020340) (-605 "LODO2.spad" 1018310 1018322 1018717 1018756) (-604 "LODO1.spad" 1017712 1017722 1017992 1018031) (-603 "LODEEF.spad" 1016484 1016502 1017702 1017707) (-602 "LNAGG.spad" 1012276 1012286 1016464 1016479) (-601 "LNAGG.spad" 1008042 1008054 1012232 1012237) (-600 "LMOPS.spad" 1004778 1004795 1008032 1008037) (-599 "LMODULE.spad" 1004420 1004430 1004768 1004773) (-598 "LMDICT.spad" 1003703 1003713 1003971 1003998) (-597 "LIST.spad" 1001421 1001431 1002850 1002877) (-596 "LIST3.spad" 1000712 1000726 1001411 1001416) (-595 "LIST2.spad" 999352 999364 1000702 1000707) (-594 "LIST2MAP.spad" 996229 996241 999342 999347) (-593 "LINEXP.spad" 995661 995671 996209 996224) (-592 "LINDEP.spad" 994438 994450 995573 995578) (-591 "LIMITRF.spad" 992352 992362 994428 994433) (-590 "LIMITPS.spad" 991235 991248 992342 992347) (-589 "LIE.spad" 989249 989261 990525 990670) (-588 "LIECAT.spad" 988725 988735 989175 989244) (-587 "LIECAT.spad" 988229 988241 988681 988686) (-586 "LIB.spad" 986277 986285 986888 986903) (-585 "LGROBP.spad" 983630 983649 986267 986272) (-584 "LF.spad" 982549 982565 983620 983625) (-583 "LFCAT.spad" 981568 981576 982539 982544) (-582 "LEXTRIPK.spad" 977071 977086 981558 981563) (-581 "LEXP.spad" 975074 975101 977051 977066) (-580 "LEADCDET.spad" 973458 973475 975064 975069) (-579 "LAZM3PK.spad" 972162 972184 973448 973453) (-578 "LAUPOL.spad" 970853 970866 971757 971826) (-577 "LAPLACE.spad" 970426 970442 970843 970848) (-576 "LA.spad" 969866 969880 970348 970387) (-575 "LALG.spad" 969642 969652 969846 969861) (-574 "LALG.spad" 969426 969438 969632 969637) (-573 "KOVACIC.spad" 968139 968156 969416 969421) (-572 "KONVERT.spad" 967861 967871 968129 968134) (-571 "KOERCE.spad" 967598 967608 967851 967856) (-570 "KERNEL.spad" 966133 966143 967382 967387) (-569 "KERNEL2.spad" 965836 965848 966123 966128) (-568 "KDAGG.spad" 964927 964949 965804 965831) (-567 "KDAGG.spad" 964038 964062 964917 964922) (-566 "KAFILE.spad" 963001 963017 963236 963263) (-565 "JORDAN.spad" 960828 960840 962291 962436) (-564 "JAVACODE.spad" 960594 960602 960818 960823) (-563 "IXAGG.spad" 958707 958731 960574 960589) (-562 "IXAGG.spad" 956685 956711 958554 958559) (-561 "IVECTOR.spad" 955458 955473 955613 955640) (-560 "ITUPLE.spad" 954603 954613 955448 955453) (-559 "ITRIGMNP.spad" 953414 953433 954593 954598) (-558 "ITFUN3.spad" 952908 952922 953404 953409) (-557 "ITFUN2.spad" 952638 952650 952898 952903) (-556 "ITAYLOR.spad" 950430 950445 952474 952599) (-555 "ISUPS.spad" 942841 942856 949404 949501) (-554 "ISUMP.spad" 942338 942354 942831 942836) (-553 "ISTRING.spad" 941341 941354 941507 941534) (-552 "IRURPK.spad" 940054 940073 941331 941336) (-551 "IRSN.spad" 938014 938022 940044 940049) (-550 "IRRF2F.spad" 936489 936499 937970 937975) (-549 "IRREDFFX.spad" 936090 936101 936479 936484) (-548 "IROOT.spad" 934421 934431 936080 936085) (-547 "IR.spad" 932211 932225 934277 934304) (-546 "IR2.spad" 931231 931247 932201 932206) (-545 "IR2F.spad" 930431 930447 931221 931226) (-544 "IPRNTPK.spad" 930191 930199 930421 930426) (-543 "IPF.spad" 929756 929768 929996 930089) (-542 "IPADIC.spad" 929517 929543 929682 929751) (-541 "INVLAPLA.spad" 929162 929178 929507 929512) (-540 "INTTR.spad" 922408 922425 929152 929157) (-539 "INTTOOLS.spad" 920120 920136 921983 921988) (-538 "INTSLPE.spad" 919426 919434 920110 920115) (-537 "INTRVL.spad" 918992 919002 919340 919421) (-536 "INTRF.spad" 917356 917370 918982 918987) (-535 "INTRET.spad" 916788 916798 917346 917351) (-534 "INTRAT.spad" 915463 915480 916778 916783) (-533 "INTPM.spad" 913826 913842 915106 915111) (-532 "INTPAF.spad" 911594 911612 913758 913763) (-531 "INTPACK.spad" 901904 901912 911584 911589) (-530 "INT.spad" 901265 901273 901758 901899) (-529 "INTHERTR.spad" 900531 900548 901255 901260) (-528 "INTHERAL.spad" 900197 900221 900521 900526) (-527 "INTHEORY.spad" 896610 896618 900187 900192) (-526 "INTG0.spad" 890073 890091 896542 896547) (-525 "INTFTBL.spad" 884102 884110 890063 890068) (-524 "INTFACT.spad" 883161 883171 884092 884097) (-523 "INTEF.spad" 881476 881492 883151 883156) (-522 "INTDOM.spad" 880091 880099 881402 881471) (-521 "INTDOM.spad" 878768 878778 880081 880086) (-520 "INTCAT.spad" 877021 877031 878682 878763) (-519 "INTBIT.spad" 876524 876532 877011 877016) (-518 "INTALG.spad" 875706 875733 876514 876519) (-517 "INTAF.spad" 875198 875214 875696 875701) (-516 "INTABL.spad" 873716 873747 873879 873906) (-515 "INS.spad" 871112 871120 873618 873711) (-514 "INS.spad" 868594 868604 871102 871107) (-513 "INPSIGN.spad" 868028 868041 868584 868589) (-512 "INPRODPF.spad" 867094 867113 868018 868023) (-511 "INPRODFF.spad" 866152 866176 867084 867089) (-510 "INNMFACT.spad" 865123 865140 866142 866147) (-509 "INMODGCD.spad" 864607 864637 865113 865118) (-508 "INFSP.spad" 862892 862914 864597 864602) (-507 "INFPROD0.spad" 861942 861961 862882 862887) (-506 "INFORM.spad" 859210 859218 861932 861937) (-505 "INFORM1.spad" 858835 858845 859200 859205) (-504 "INFINITY.spad" 858387 858395 858825 858830) (-503 "INEP.spad" 856919 856941 858377 858382) (-502 "INDE.spad" 856648 856665 856909 856914) (-501 "INCRMAPS.spad" 856069 856079 856638 856643) (-500 "INBFF.spad" 851839 851850 856059 856064) (-499 "IMATRIX.spad" 850784 850810 851296 851323) (-498 "IMATQF.spad" 849878 849922 850740 850745) (-497 "IMATLIN.spad" 848483 848507 849834 849839) (-496 "ILIST.spad" 847139 847154 847666 847693) (-495 "IIARRAY2.spad" 846527 846565 846746 846773) (-494 "IFF.spad" 845937 845953 846208 846301) (-493 "IFARRAY.spad" 843424 843439 845120 845147) (-492 "IFAMON.spad" 843286 843303 843380 843385) (-491 "IEVALAB.spad" 842675 842687 843276 843281) (-490 "IEVALAB.spad" 842062 842076 842665 842670) (-489 "IDPO.spad" 841860 841872 842052 842057) (-488 "IDPOAMS.spad" 841616 841628 841850 841855) (-487 "IDPOAM.spad" 841336 841348 841606 841611) (-486 "IDPC.spad" 840270 840282 841326 841331) (-485 "IDPAM.spad" 840015 840027 840260 840265) (-484 "IDPAG.spad" 839762 839774 840005 840010) (-483 "IDECOMP.spad" 836999 837017 839752 839757) (-482 "IDEAL.spad" 831922 831961 836934 836939) (-481 "ICDEN.spad" 831073 831089 831912 831917) (-480 "ICARD.spad" 830262 830270 831063 831068) (-479 "IBPTOOLS.spad" 828855 828872 830252 830257) (-478 "IBITS.spad" 828054 828067 828491 828518) (-477 "IBATOOL.spad" 824929 824948 828044 828049) (-476 "IBACHIN.spad" 823416 823431 824919 824924) (-475 "IARRAY2.spad" 822404 822430 823023 823050) (-474 "IARRAY1.spad" 821449 821464 821587 821614) (-473 "IAN.spad" 819664 819672 821267 821360) (-472 "IALGFACT.spad" 819265 819298 819654 819659) (-471 "HYPCAT.spad" 818689 818697 819255 819260) (-470 "HYPCAT.spad" 818111 818121 818679 818684) (-469 "HOSTNAME.spad" 817919 817927 818101 818106) (-468 "HOAGG.spad" 815177 815187 817899 817914) (-467 "HOAGG.spad" 812220 812232 814944 814949) (-466 "HEXADEC.spad" 810092 810100 810690 810783) (-465 "HEUGCD.spad" 809107 809118 810082 810087) (-464 "HELLFDIV.spad" 808697 808721 809097 809102) (-463 "HEAP.spad" 808089 808099 808304 808331) (-462 "HEADAST.spad" 807648 807656 808079 808084) (-461 "HDP.spad" 798816 798832 799193 799322) (-460 "HDMP.spad" 795995 796010 796613 796740) (-459 "HB.spad" 794232 794240 795985 795990) (-458 "HASHTBL.spad" 792702 792733 792913 792940) (-457 "HACKPI.spad" 792185 792193 792604 792697) (-456 "GTSET.spad" 791124 791140 791831 791858) (-455 "GSTBL.spad" 789643 789678 789817 789832) (-454 "GSERIES.spad" 786810 786837 787775 787924) (-453 "GROUP.spad" 786079 786087 786790 786805) (-452 "GROUP.spad" 785356 785366 786069 786074) (-451 "GROEBSOL.spad" 783844 783865 785346 785351) (-450 "GRMOD.spad" 782415 782427 783834 783839) (-449 "GRMOD.spad" 780984 780998 782405 782410) (-448 "GRIMAGE.spad" 773589 773597 780974 780979) (-447 "GRDEF.spad" 771968 771976 773579 773584) (-446 "GRAY.spad" 770427 770435 771958 771963) (-445 "GRALG.spad" 769474 769486 770417 770422) (-444 "GRALG.spad" 768519 768533 769464 769469) (-443 "GPOLSET.spad" 767973 767996 768201 768228) (-442 "GOSPER.spad" 767238 767256 767963 767968) (-441 "GMODPOL.spad" 766376 766403 767206 767233) (-440 "GHENSEL.spad" 765445 765459 766366 766371) (-439 "GENUPS.spad" 761546 761559 765435 765440) (-438 "GENUFACT.spad" 761123 761133 761536 761541) (-437 "GENPGCD.spad" 760707 760724 761113 761118) (-436 "GENMFACT.spad" 760159 760178 760697 760702) (-435 "GENEEZ.spad" 758098 758111 760149 760154) (-434 "GDMP.spad" 755119 755136 755895 756022) (-433 "GCNAALG.spad" 749014 749041 754913 754980) (-432 "GCDDOM.spad" 748186 748194 748940 749009) (-431 "GCDDOM.spad" 747420 747430 748176 748181) (-430 "GB.spad" 744938 744976 747376 747381) (-429 "GBINTERN.spad" 740958 740996 744928 744933) (-428 "GBF.spad" 736715 736753 740948 740953) (-427 "GBEUCLID.spad" 734589 734627 736705 736710) (-426 "GAUSSFAC.spad" 733886 733894 734579 734584) (-425 "GALUTIL.spad" 732208 732218 733842 733847) (-424 "GALPOLYU.spad" 730654 730667 732198 732203) (-423 "GALFACTU.spad" 728819 728838 730644 730649) (-422 "GALFACT.spad" 718952 718963 728809 728814) (-421 "FVFUN.spad" 715965 715973 718932 718947) (-420 "FVC.spad" 715007 715015 715945 715960) (-419 "FUNCTION.spad" 714856 714868 714997 715002) (-418 "FT.spad" 713068 713076 714846 714851) (-417 "FTEM.spad" 712231 712239 713058 713063) (-416 "FSUPFACT.spad" 711132 711151 712168 712173) (-415 "FST.spad" 709218 709226 711122 711127) (-414 "FSRED.spad" 708696 708712 709208 709213) (-413 "FSPRMELT.spad" 707520 707536 708653 708658) (-412 "FSPECF.spad" 705597 705613 707510 707515) (-411 "FS.spad" 699648 699658 705361 705592) (-410 "FS.spad" 693490 693502 699205 699210) (-409 "FSINT.spad" 693148 693164 693480 693485) (-408 "FSERIES.spad" 692335 692347 692968 693067) (-407 "FSCINT.spad" 691648 691664 692325 692330) (-406 "FSAGG.spad" 690753 690763 691592 691643) (-405 "FSAGG.spad" 689832 689844 690673 690678) (-404 "FSAGG2.spad" 688531 688547 689822 689827) (-403 "FS2UPS.spad" 682920 682954 688521 688526) (-402 "FS2.spad" 682565 682581 682910 682915) (-401 "FS2EXPXP.spad" 681688 681711 682555 682560) (-400 "FRUTIL.spad" 680630 680640 681678 681683) (-399 "FR.spad" 674327 674337 679657 679726) (-398 "FRNAALG.spad" 669414 669424 674269 674322) (-397 "FRNAALG.spad" 664513 664525 669370 669375) (-396 "FRNAAF2.spad" 663967 663985 664503 664508) (-395 "FRMOD.spad" 663362 663392 663899 663904) (-394 "FRIDEAL.spad" 662557 662578 663342 663357) (-393 "FRIDEAL2.spad" 662159 662191 662547 662552) (-392 "FRETRCT.spad" 661670 661680 662149 662154) (-391 "FRETRCT.spad" 661049 661061 661530 661535) (-390 "FRAMALG.spad" 659377 659390 661005 661044) (-389 "FRAMALG.spad" 657737 657752 659367 659372) (-388 "FRAC.spad" 654840 654850 655243 655416) (-387 "FRAC2.spad" 654443 654455 654830 654835) (-386 "FR2.spad" 653777 653789 654433 654438) (-385 "FPS.spad" 650586 650594 653667 653772) (-384 "FPS.spad" 647423 647433 650506 650511) (-383 "FPC.spad" 646465 646473 647325 647418) (-382 "FPC.spad" 645593 645603 646455 646460) (-381 "FPATMAB.spad" 645345 645355 645573 645588) (-380 "FPARFRAC.spad" 643818 643835 645335 645340) (-379 "FORTRAN.spad" 642324 642367 643808 643813) (-378 "FORT.spad" 641253 641261 642314 642319) (-377 "FORTFN.spad" 638413 638421 641233 641248) (-376 "FORTCAT.spad" 638087 638095 638393 638408) (-375 "FORMULA.spad" 635425 635433 638077 638082) (-374 "FORMULA1.spad" 634904 634914 635415 635420) (-373 "FORDER.spad" 634595 634619 634894 634899) (-372 "FOP.spad" 633796 633804 634585 634590) (-371 "FNLA.spad" 633220 633242 633764 633791) (-370 "FNCAT.spad" 631548 631556 633210 633215) (-369 "FNAME.spad" 631440 631448 631538 631543) (-368 "FMTC.spad" 631238 631246 631366 631435) (-367 "FMONOID.spad" 628293 628303 631194 631199) (-366 "FM.spad" 627988 628000 628227 628254) (-365 "FMFUN.spad" 625008 625016 627968 627983) (-364 "FMC.spad" 624050 624058 624988 625003) (-363 "FMCAT.spad" 621704 621722 624018 624045) (-362 "FM1.spad" 621061 621073 621638 621665) (-361 "FLOATRP.spad" 618782 618796 621051 621056) (-360 "FLOAT.spad" 611946 611954 618648 618777) (-359 "FLOATCP.spad" 609363 609377 611936 611941) (-358 "FLINEXP.spad" 609075 609085 609343 609358) (-357 "FLINEXP.spad" 608741 608753 609011 609016) (-356 "FLASORT.spad" 608061 608073 608731 608736) (-355 "FLALG.spad" 605707 605726 607987 608056) (-354 "FLAGG.spad" 602713 602723 605675 605702) (-353 "FLAGG.spad" 599632 599644 602596 602601) (-352 "FLAGG2.spad" 598313 598329 599622 599627) (-351 "FINRALG.spad" 596342 596355 598269 598308) (-350 "FINRALG.spad" 594297 594312 596226 596231) (-349 "FINITE.spad" 593449 593457 594287 594292) (-348 "FINAALG.spad" 582430 582440 593391 593444) (-347 "FINAALG.spad" 571423 571435 582386 582391) (-346 "FILE.spad" 571006 571016 571413 571418) (-345 "FILECAT.spad" 569524 569541 570996 571001) (-344 "FIELD.spad" 568930 568938 569426 569519) (-343 "FIELD.spad" 568422 568432 568920 568925) (-342 "FGROUP.spad" 567031 567041 568402 568417) (-341 "FGLMICPK.spad" 565818 565833 567021 567026) (-340 "FFX.spad" 565193 565208 565534 565627) (-339 "FFSLPE.spad" 564682 564703 565183 565188) (-338 "FFPOLY.spad" 555934 555945 564672 564677) (-337 "FFPOLY2.spad" 554994 555011 555924 555929) (-336 "FFP.spad" 554391 554411 554710 554803) (-335 "FF.spad" 553839 553855 554072 554165) (-334 "FFNBX.spad" 552351 552371 553555 553648) (-333 "FFNBP.spad" 550864 550881 552067 552160) (-332 "FFNB.spad" 549329 549350 550545 550638) (-331 "FFINTBAS.spad" 546743 546762 549319 549324) (-330 "FFIELDC.spad" 544318 544326 546645 546738) (-329 "FFIELDC.spad" 541979 541989 544308 544313) (-328 "FFHOM.spad" 540727 540744 541969 541974) (-327 "FFF.spad" 538162 538173 540717 540722) (-326 "FFCGX.spad" 537009 537029 537878 537971) (-325 "FFCGP.spad" 535898 535918 536725 536818) (-324 "FFCG.spad" 534690 534711 535579 535672) (-323 "FFCAT.spad" 527717 527739 534529 534685) (-322 "FFCAT.spad" 520823 520847 527637 527642) (-321 "FFCAT2.spad" 520568 520608 520813 520818) (-320 "FEXPR.spad" 512281 512327 520328 520367) (-319 "FEVALAB.spad" 511987 511997 512271 512276) (-318 "FEVALAB.spad" 511478 511490 511764 511769) (-317 "FDIV.spad" 510920 510944 511468 511473) (-316 "FDIVCAT.spad" 508962 508986 510910 510915) (-315 "FDIVCAT.spad" 507002 507028 508952 508957) (-314 "FDIV2.spad" 506656 506696 506992 506997) (-313 "FCPAK1.spad" 505209 505217 506646 506651) (-312 "FCOMP.spad" 504588 504598 505199 505204) (-311 "FC.spad" 494413 494421 504578 504583) (-310 "FAXF.spad" 487348 487362 494315 494408) (-309 "FAXF.spad" 480335 480351 487304 487309) (-308 "FARRAY.spad" 478481 478491 479518 479545) (-307 "FAMR.spad" 476601 476613 478379 478476) (-306 "FAMR.spad" 474705 474719 476485 476490) (-305 "FAMONOID.spad" 474355 474365 474659 474664) (-304 "FAMONC.spad" 472577 472589 474345 474350) (-303 "FAGROUP.spad" 472183 472193 472473 472500) (-302 "FACUTIL.spad" 470379 470396 472173 472178) (-301 "FACTFUNC.spad" 469555 469565 470369 470374) (-300 "EXPUPXS.spad" 466388 466411 467687 467836) (-299 "EXPRTUBE.spad" 463616 463624 466378 466383) (-298 "EXPRODE.spad" 460488 460504 463606 463611) (-297 "EXPR.spad" 455790 455800 456504 456907) (-296 "EXPR2UPS.spad" 451882 451895 455780 455785) (-295 "EXPR2.spad" 451585 451597 451872 451877) (-294 "EXPEXPAN.spad" 448526 448551 449160 449253) (-293 "EXIT.spad" 448197 448205 448516 448521) (-292 "EVALCYC.spad" 447655 447669 448187 448192) (-291 "EVALAB.spad" 447219 447229 447645 447650) (-290 "EVALAB.spad" 446781 446793 447209 447214) (-289 "EUCDOM.spad" 444323 444331 446707 446776) (-288 "EUCDOM.spad" 441927 441937 444313 444318) (-287 "ESTOOLS.spad" 433767 433775 441917 441922) (-286 "ESTOOLS2.spad" 433368 433382 433757 433762) (-285 "ESTOOLS1.spad" 433053 433064 433358 433363) (-284 "ES.spad" 425600 425608 433043 433048) (-283 "ES.spad" 418055 418065 425500 425505) (-282 "ESCONT.spad" 414828 414836 418045 418050) (-281 "ESCONT1.spad" 414577 414589 414818 414823) (-280 "ES2.spad" 414072 414088 414567 414572) (-279 "ES1.spad" 413638 413654 414062 414067) (-278 "ERROR.spad" 410959 410967 413628 413633) (-277 "EQTBL.spad" 409431 409453 409640 409667) (-276 "EQ.spad" 404315 404325 407114 407223) (-275 "EQ2.spad" 404031 404043 404305 404310) (-274 "EP.spad" 400345 400355 404021 404026) (-273 "ENV.spad" 399047 399055 400335 400340) (-272 "ENTIRER.spad" 398715 398723 398991 399042) (-271 "EMR.spad" 397916 397957 398641 398710) (-270 "ELTAGG.spad" 396156 396175 397906 397911) (-269 "ELTAGG.spad" 394360 394381 396112 396117) (-268 "ELTAB.spad" 393807 393825 394350 394355) (-267 "ELFUTS.spad" 393186 393205 393797 393802) (-266 "ELEMFUN.spad" 392875 392883 393176 393181) (-265 "ELEMFUN.spad" 392562 392572 392865 392870) (-264 "ELAGG.spad" 390493 390503 392530 392557) (-263 "ELAGG.spad" 388373 388385 390412 390417) (-262 "ELABEXPR.spad" 387304 387312 388363 388368) (-261 "EFUPXS.spad" 384080 384110 387260 387265) (-260 "EFULS.spad" 380916 380939 384036 384041) (-259 "EFSTRUC.spad" 378871 378887 380906 380911) (-258 "EF.spad" 373637 373653 378861 378866) (-257 "EAB.spad" 371913 371921 373627 373632) (-256 "E04UCFA.spad" 371449 371457 371903 371908) (-255 "E04NAFA.spad" 371026 371034 371439 371444) (-254 "E04MBFA.spad" 370606 370614 371016 371021) (-253 "E04JAFA.spad" 370142 370150 370596 370601) (-252 "E04GCFA.spad" 369678 369686 370132 370137) (-251 "E04FDFA.spad" 369214 369222 369668 369673) (-250 "E04DGFA.spad" 368750 368758 369204 369209) (-249 "E04AGNT.spad" 364592 364600 368740 368745) (-248 "DVARCAT.spad" 361277 361287 364582 364587) (-247 "DVARCAT.spad" 357960 357972 361267 361272) (-246 "DSMP.spad" 355394 355408 355699 355826) (-245 "DROPT.spad" 349339 349347 355384 355389) (-244 "DROPT1.spad" 349002 349012 349329 349334) (-243 "DROPT0.spad" 343829 343837 348992 348997) (-242 "DRAWPT.spad" 341984 341992 343819 343824) (-241 "DRAW.spad" 334584 334597 341974 341979) (-240 "DRAWHACK.spad" 333892 333902 334574 334579) (-239 "DRAWCX.spad" 331334 331342 333882 333887) (-238 "DRAWCURV.spad" 330871 330886 331324 331329) (-237 "DRAWCFUN.spad" 320043 320051 330861 330866) (-236 "DQAGG.spad" 318199 318209 319999 320038) (-235 "DPOLCAT.spad" 313540 313556 318067 318194) (-234 "DPOLCAT.spad" 308967 308985 313496 313501) (-233 "DPMO.spad" 302317 302333 302455 302751) (-232 "DPMM.spad" 295680 295698 295805 296101) (-231 "DOMAIN.spad" 294951 294959 295670 295675) (-230 "DMP.spad" 292176 292191 292748 292875) (-229 "DLP.spad" 291524 291534 292166 292171) (-228 "DLIST.spad" 289936 289946 290707 290734) (-227 "DLAGG.spad" 288337 288347 289916 289931) (-226 "DIVRING.spad" 287879 287887 288281 288332) (-225 "DIVRING.spad" 287465 287475 287869 287874) (-224 "DISPLAY.spad" 285645 285653 287455 287460) (-223 "DIRPROD.spad" 276550 276566 277190 277319) (-222 "DIRPROD2.spad" 275358 275376 276540 276545) (-221 "DIRPCAT.spad" 274290 274306 275212 275353) (-220 "DIRPCAT.spad" 272962 272980 273886 273891) (-219 "DIOSP.spad" 271787 271795 272952 272957) (-218 "DIOPS.spad" 270759 270769 271755 271782) (-217 "DIOPS.spad" 269717 269729 270715 270720) (-216 "DIFRING.spad" 269009 269017 269697 269712) (-215 "DIFRING.spad" 268309 268319 268999 269004) (-214 "DIFEXT.spad" 267468 267478 268289 268304) (-213 "DIFEXT.spad" 266544 266556 267367 267372) (-212 "DIAGG.spad" 266162 266172 266512 266539) (-211 "DIAGG.spad" 265800 265812 266152 266157) (-210 "DHMATRIX.spad" 264104 264114 265257 265284) (-209 "DFSFUN.spad" 257512 257520 264094 264099) (-208 "DFLOAT.spad" 254035 254043 257402 257507) (-207 "DFINTTLS.spad" 252244 252260 254025 254030) (-206 "DERHAM.spad" 250154 250186 252224 252239) (-205 "DEQUEUE.spad" 249472 249482 249761 249788) (-204 "DEGRED.spad" 249087 249101 249462 249467) (-203 "DEFINTRF.spad" 246612 246622 249077 249082) (-202 "DEFINTEF.spad" 245108 245124 246602 246607) (-201 "DECIMAL.spad" 242992 243000 243578 243671) (-200 "DDFACT.spad" 240791 240808 242982 242987) (-199 "DBLRESP.spad" 240389 240413 240781 240786) (-198 "DBASE.spad" 238961 238971 240379 240384) (-197 "DATABUF.spad" 238449 238462 238951 238956) (-196 "D03FAFA.spad" 238277 238285 238439 238444) (-195 "D03EEFA.spad" 238097 238105 238267 238272) (-194 "D03AGNT.spad" 237177 237185 238087 238092) (-193 "D02EJFA.spad" 236639 236647 237167 237172) (-192 "D02CJFA.spad" 236117 236125 236629 236634) (-191 "D02BHFA.spad" 235607 235615 236107 236112) (-190 "D02BBFA.spad" 235097 235105 235597 235602) (-189 "D02AGNT.spad" 229901 229909 235087 235092) (-188 "D01WGTS.spad" 228220 228228 229891 229896) (-187 "D01TRNS.spad" 228197 228205 228210 228215) (-186 "D01GBFA.spad" 227719 227727 228187 228192) (-185 "D01FCFA.spad" 227241 227249 227709 227714) (-184 "D01ASFA.spad" 226709 226717 227231 227236) (-183 "D01AQFA.spad" 226155 226163 226699 226704) (-182 "D01APFA.spad" 225579 225587 226145 226150) (-181 "D01ANFA.spad" 225073 225081 225569 225574) (-180 "D01AMFA.spad" 224583 224591 225063 225068) (-179 "D01ALFA.spad" 224123 224131 224573 224578) (-178 "D01AKFA.spad" 223649 223657 224113 224118) (-177 "D01AJFA.spad" 223172 223180 223639 223644) (-176 "D01AGNT.spad" 219231 219239 223162 223167) (-175 "CYCLOTOM.spad" 218737 218745 219221 219226) (-174 "CYCLES.spad" 215569 215577 218727 218732) (-173 "CVMP.spad" 214986 214996 215559 215564) (-172 "CTRIGMNP.spad" 213476 213492 214976 214981) (-171 "CTORCALL.spad" 213064 213072 213466 213471) (-170 "CSTTOOLS.spad" 212307 212320 213054 213059) (-169 "CRFP.spad" 206011 206024 212297 212302) (-168 "CRAPACK.spad" 205054 205064 206001 206006) (-167 "CPMATCH.spad" 204554 204569 204979 204984) (-166 "CPIMA.spad" 204259 204278 204544 204549) (-165 "COORDSYS.spad" 199152 199162 204249 204254) (-164 "CONTOUR.spad" 198554 198562 199142 199147) (-163 "CONTFRAC.spad" 194166 194176 198456 198549) (-162 "COMRING.spad" 193840 193848 194104 194161) (-161 "COMPPROP.spad" 193354 193362 193830 193835) (-160 "COMPLPAT.spad" 193121 193136 193344 193349) (-159 "COMPLEX.spad" 187154 187164 187398 187659) (-158 "COMPLEX2.spad" 186867 186879 187144 187149) (-157 "COMPFACT.spad" 186469 186483 186857 186862) (-156 "COMPCAT.spad" 184525 184535 186191 186464) (-155 "COMPCAT.spad" 182288 182300 183956 183961) (-154 "COMMUPC.spad" 182034 182052 182278 182283) (-153 "COMMONOP.spad" 181567 181575 182024 182029) (-152 "COMM.spad" 181376 181384 181557 181562) (-151 "COMBOPC.spad" 180281 180289 181366 181371) (-150 "COMBINAT.spad" 179026 179036 180271 180276) (-149 "COMBF.spad" 176394 176410 179016 179021) (-148 "COLOR.spad" 175231 175239 176384 176389) (-147 "CMPLXRT.spad" 174940 174957 175221 175226) (-146 "CLIP.spad" 171032 171040 174930 174935) (-145 "CLIF.spad" 169671 169687 170988 171027) (-144 "CLAGG.spad" 166146 166156 169651 169666) (-143 "CLAGG.spad" 162502 162514 166009 166014) (-142 "CINTSLPE.spad" 161827 161840 162492 162497) (-141 "CHVAR.spad" 159905 159927 161817 161822) (-140 "CHARZ.spad" 159820 159828 159885 159900) (-139 "CHARPOL.spad" 159328 159338 159810 159815) (-138 "CHARNZ.spad" 159081 159089 159308 159323) (-137 "CHAR.spad" 156949 156957 159071 159076) (-136 "CFCAT.spad" 156265 156273 156939 156944) (-135 "CDEN.spad" 155423 155437 156255 156260) (-134 "CCLASS.spad" 153572 153580 154834 154873) (-133 "CATEGORY.spad" 153351 153359 153562 153567) (-132 "CARTEN.spad" 148454 148478 153341 153346) (-131 "CARTEN2.spad" 147840 147867 148444 148449) (-130 "CARD.spad" 145129 145137 147814 147835) (-129 "CACHSET.spad" 144751 144759 145119 145124) (-128 "CABMON.spad" 144304 144312 144741 144746) (-127 "BYTE.spad" 143698 143706 144294 144299) (-126 "BYTEARY.spad" 142773 142781 142867 142894) (-125 "BTREE.spad" 141842 141852 142380 142407) (-124 "BTOURN.spad" 140845 140855 141449 141476) (-123 "BTCAT.spad" 140221 140231 140801 140840) (-122 "BTCAT.spad" 139629 139641 140211 140216) (-121 "BTAGG.spad" 138739 138747 139585 139624) (-120 "BTAGG.spad" 137881 137891 138729 138734) (-119 "BSTREE.spad" 136616 136626 137488 137515) (-118 "BRILL.spad" 134811 134822 136606 136611) (-117 "BRAGG.spad" 133725 133735 134791 134806) (-116 "BRAGG.spad" 132613 132625 133681 133686) (-115 "BPADICRT.spad" 130597 130609 130852 130945) (-114 "BPADIC.spad" 130261 130273 130523 130592) (-113 "BOUNDZRO.spad" 129917 129934 130251 130256) (-112 "BOP.spad" 125381 125389 129907 129912) (-111 "BOP1.spad" 122767 122777 125337 125342) (-110 "BOOLEAN.spad" 122091 122099 122757 122762) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 3afc9f26..b731f09c 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,14 +1,14 @@
-(143433 . 3429209011)
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(143433 . 3429259033)
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#2| |#2|) . T))
((((-530)) . T))
-((($ $) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2| |#2|) . T) ((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2| |#2|) . T) ((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#2|) . T))
-((($) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
(|has| |#1| (-850))
((((-804)) . T))
((((-804)) . T))
@@ -23,28 +23,28 @@
((((-208)) . T) (((-804)) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((($ $) . T) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
-(-1476 (|has| |#1| (-768)) (|has| |#1| (-795)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
+((($ $) . T) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
+(-1461 (|has| |#1| (-768)) (|has| |#1| (-795)))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
((((-804)) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-793))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-804)) . T))
((((-804)) |has| |#1| (-1027)))
(((|#1|) . T) ((|#2|) . T))
(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#2| (-461 (-2167 |#1|) (-719))) . T))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(((|#2| (-461 (-2267 |#1|) (-719))) . T))
(((|#1| (-502 (-1099))) . T))
(((#0=(-811 |#1|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#4| (-349))
(|has| |#3| (-349))
(((|#1|) . T))
@@ -54,10 +54,10 @@
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-522))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
((($) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
((($) . T))
@@ -66,59 +66,59 @@
((((-804)) . T))
((((-804)) . T))
((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
((((-804)) . T))
((((-804)) . T))
(((|#1|) . T))
((((-804)) . T))
-(((|#1|) . T) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
+(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1| |#2|) . T))
((((-804)) . T))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
(((|#1|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
((($ $) . T))
(((|#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
((($) . T))
(|has| |#1| (-349))
(((|#1|) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-804)) . T))
((((-804)) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
(((|#1| |#1|) . T))
(|has| |#1| (-522))
(((|#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) (((-1099) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1099) |#2|))))
((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(|has| |#1| (-1027))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(|has| |#1| (-1027))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(|has| |#1| (-793))
((($) . T) (((-388 (-530))) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1476 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1476 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-1027))
@@ -132,21 +132,21 @@
((((-530)) . T))
((((-530)) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#1| (-719)) . T))
(|has| |#2| (-741))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(|has| |#2| (-793))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-1082) |#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1|) . T))
(((|#3| (-719)) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-1027))
((((-388 (-530))) . T) (((-530)) . T))
((((-1099) |#2|) |has| |#2| (-491 (-1099) |#2|)) ((|#2| |#2|) |has| |#2| (-291 |#2|)))
@@ -154,7 +154,7 @@
(((|#1|) . T) (($) . T))
((((-530)) . T))
((((-530)) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
((((-530)) . T))
((((-530)) . T))
(((#0=(-647) (-1095 #0#)) . T))
@@ -173,12 +173,12 @@
((((-804)) . T))
((((-804)) . T))
(((|#1| |#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
((((-804)) . T))
((((-804)) . T))
((((-804)) . T))
@@ -189,25 +189,25 @@
((((-804)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
(|has| |#1| (-344))
(-12 (|has| |#4| (-216)) (|has| |#4| (-984)))
(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
-(-1476 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-804)) . T))
(((|#1|) . T))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(|has| |#1| (-522))
(|has| |#1| (-522))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
(|has| |#1| (-522))
(|has| |#1| (-522))
@@ -218,11 +218,11 @@
(((|#2|) . T) (($) . T) (((-388 (-530))) . T))
(-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))
((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(((|#4| |#4|) -1476 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($ $) |has| |#4| (-162)))
-(((|#3| |#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
+(((|#4| |#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($ $) |has| |#4| (-162)))
+(((|#3| |#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
(((|#1|) . T))
(((|#2|) . T))
((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
@@ -231,21 +231,21 @@
((((-804)) . T))
((((-506)) |has| |#1| (-572 (-506))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
((((-804)) . T))
-(((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
-(((|#4|) -1476 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($) |has| |#4| (-162)))
+(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
+(((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($) |has| |#4| (-162)))
((((-804)) . T))
((((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
((((-388 $) (-388 $)) |has| |#2| (-522)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
(((|#1|) . T))
(|has| |#2| (-850))
((((-1082) (-51)) . T))
((((-530)) |has| #0=(-388 |#2|) (-593 (-530))) ((#0#) . T))
((((-506)) . T) (((-208)) . T) (((-360)) . T) (((-833 (-360))) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
(((|#1|) |has| |#1| (-162)))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
((((-804)) . T))
@@ -256,15 +256,15 @@
(|has| |#1| (-795))
(|has| |#1| (-1027))
(((|#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
((((-127)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((((-127)) . T))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(|has| |#1| (-216))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1| (-502 (-766 (-1099)))) . T))
(((|#1| (-911)) . T))
(((#0=(-811 |#1|) $) |has| #0# (-268 #0# #0#)))
@@ -273,7 +273,7 @@
(((|#1|) . T))
(((|#2| |#2|) . T))
(|has| |#1| (-1075))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(|has| (-1167 |#1| |#2| |#3| |#4|) (-138))
(|has| (-1167 |#1| |#2| |#3| |#4|) (-140))
(|has| |#1| (-138))
@@ -290,20 +290,20 @@
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-984)))
((((-804)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) #0#) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
((((-530) |#1|) . T))
((((-804)) . T))
((((-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))) (((-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360))))) (((-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530))))))
((((-804)) . T))
((((-804)) . T))
((($) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-804)) . T))
((((-804)) . T))
(|has| (-1166 |#2| |#3| |#4|) (-140))
@@ -314,16 +314,16 @@
((((-804)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
(((|#1|) . T))
((((-530) |#1|) . T))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
((((-804)) |has| |#1| (-1027)))
-(-1476 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
((((-851 |#1|)) . T))
((((-388 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-530) |#1|)))
@@ -335,7 +335,7 @@
(((|#1|) . T))
((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
(|has| |#1| (-344))
-(-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
+(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
(|has| |#1| (-344))
((((-530)) . T))
@@ -347,31 +347,31 @@
(((|#1|) . T))
((((-530) |#1|) . T))
(((|#2|) . T))
-(-1476 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(((|#1|) . T))
((((-1099)) -12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-(-1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
+(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
+(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
((($ $) |has| |#1| (-522)))
(((#0=(-647) (-1095 #0#)) . T))
((((-804)) . T))
((((-804)) . T) (((-1181 |#4|)) . T))
((((-804)) . T) (((-1181 |#3|)) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
((($) |has| |#1| (-522)))
((((-804)) . T))
((($) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
-(((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
(((|#3|) |has| |#3| (-984)))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(|has| |#1| (-1027))
(((|#2| (-767 |#1|)) . T))
(((|#1|) . T))
@@ -383,37 +383,37 @@
((((-137)) . T))
(((|#3|) |has| |#3| (-1027)) (((-530)) -12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (((-388 (-530))) -12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
(|has| |#2| (-768))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-793))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-506)) |has| |#1| (-572 (-506))))
(((|#1| |#2|) . T))
((((-1099)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099)))))
((((-1082) |#1|) . T))
(((|#1| |#2| |#3| (-502 |#3|)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
((((-804)) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(|has| |#1| (-349))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-530)) . T))
((((-530)) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
((((-804)) . T))
((((-804)) . T))
(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
@@ -422,10 +422,10 @@
((((-530) |#4|) . T))
((((-530) |#3|) . T))
(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-1167 |#1| |#2| |#3| |#4|)) . T))
((((-388 (-530))) . T) (((-530)) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
@@ -454,38 +454,38 @@
((($) . T))
((($ $) . T) ((#0=(-1099) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-162)))
-((($) -1476 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
-(((|#2| |#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+((($) -1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
+(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
((((-137)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
((((-804)) . T))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
(((|#1|) . T))
((((-804)) . T))
(|has| |#1| (-1027))
(|has| $ (-140))
((((-530) |#1|) . T))
-((($) -1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) -1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
(|has| |#1| (-344))
-(-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
+(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
(|has| |#1| (-344))
(|has| |#1| (-15 * (|#1| (-719) |#1|)))
(((|#1|) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
((((-804)) . T))
((((-530) (-127)) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(((|#2| (-502 (-806 |#1|))) . T))
((((-804)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-543 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
@@ -502,28 +502,28 @@
((((-804)) . T))
((((-804)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1097 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1097 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
(((|#2|) |has| |#2| (-984)))
(|has| |#1| (-1027))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
-(((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) |has| |#1| (-162)) (($) . T))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((((-804)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
(((#0=(-1012) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((($) . T))
(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#2|) |has| |#1| (-344)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1027)) (((-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (((-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))))
@@ -538,8 +538,8 @@
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-138))
(|has| |#1| (-140))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-388 (-530))) . T) (($) . T))
((((-388 (-530))) . T) (($) . T))
((((-388 (-530))) . T) (($) . T))
@@ -550,12 +550,12 @@
(((|#1| (-719) (-1012)) . T))
((((-388 (-530))) |has| |#2| (-344)) (($) . T))
(((|#1| (-502 (-1017 (-1099))) (-1017 (-1099))) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(|has| |#2| (-741))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
@@ -588,63 +588,63 @@
(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
(((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#2|) . T))
-((((-804)) -1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
+((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
(((|#1|) |has| |#1| (-162)))
((((-530)) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-530) (-137)) . T))
-((($) -1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
(((|#2|) |has| |#1| (-344)))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| (-502 #0=(-1099)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-162))
(|has| |#3| (-162))
(((#0=(-388 (-893 |#1|)) #0#) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(|has| |#1| (-1027))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(|has| |#1| (-1027))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1| |#1|) |has| |#1| (-162)))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
((((-388 (-893 |#1|))) . T))
((((-530) (-127)) . T))
(((|#1|) |has| |#1| (-162)))
((((-127)) . T))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-804)) . T))
((((-1167 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-984)) (((-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))
(((|#1| |#2|) . T))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
(|has| |#3| (-741))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
(|has| |#3| (-793))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
(((|#2|) . T))
((((-530) (-127)) . T))
((((-804)) . T))
@@ -660,22 +660,22 @@
(|has| |#1| (-1027))
(((|#2|) . T))
((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
-(((|#4|) -1476 (|has| |#4| (-162)) (|has| |#4| (-344))))
-(((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344))))
+(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
((((-804)) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
((($ $) . T) ((#0=(-1099) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-766 (-1099)) |#1|) . T) ((#1# $) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
((((-530) |#2|) . T))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((($) -1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
+((($) -1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
((((-530) |#1|) . T))
(|has| (-388 |#2|) (-140))
(|has| (-388 |#2|) (-138))
@@ -688,22 +688,22 @@
(|has| |#1| (-522))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-804)) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(|has| |#1| (-37 (-388 (-530))))
-((((-369) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#2| (-1075))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(((|#1|) . T))
((((-369) (-1082)) . T))
(|has| |#1| (-522))
((((-114 |#1|)) . T))
((((-127)) . T))
((((-530) |#1|) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#2|) . T))
((((-804)) . T))
((((-767 |#1|)) . T))
@@ -716,7 +716,7 @@
(((|#1|) |has| |#1| (-162)))
((((-804)) . T))
((((-506)) |has| |#1| (-572 (-506))))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#2|) |has| |#2| (-291 |#2|)))
(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
(((|#1|) . T))
@@ -726,7 +726,7 @@
(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
((($) . T) (((-530)) . T) (((-388 (-530))) . T))
(|has| |#2| (-349))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
@@ -737,9 +737,9 @@
((((-1097 |#1| |#2| |#3|) $) -12 (|has| (-1097 |#1| |#2| |#3|) (-268 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T))
((((-804)) . T))
((((-804)) . T))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
((($ $) . T))
((($ $) . T))
((((-804)) . T))
@@ -749,12 +749,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-388 (-530))) . T) (((-530)) . T))
((((-530) (-137)) . T))
((((-137)) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
((((-110)) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-110)) . T))
@@ -762,38 +762,38 @@
((((-506)) |has| |#1| (-572 (-506))) (((-208)) . #0=(|has| |#1| (-960))) (((-360)) . #0#))
((((-804)) . T))
(|has| |#1| (-768))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(|has| |#1| (-795))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
(|has| |#1| (-522))
(|has| |#1| (-850))
(((|#1|) . T))
(|has| |#1| (-1027))
((((-804)) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
((((-804)) . T))
((((-804)) . T))
((((-804)) . T))
(((|#1| (-1181 |#1|) (-1181 |#1|)) . T))
((((-530) (-137)) . T))
((($) . T))
-(-1476 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-804)) . T))
(|has| |#1| (-1027))
(((|#1| (-911)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(-12 (|has| |#1| (-453)) (|has| |#2| (-453)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
(((|#1|) . T))
(|has| |#2| (-741))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(((|#1| |#2|) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(|has| |#2| (-793))
@@ -808,7 +808,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
(|has| |#1| (-776))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
(|has| |#1| (-1027))
@@ -819,8 +819,8 @@
(((|#3|) |has| |#3| (-1027)))
(|has| |#3| (-349))
(((|#1|) . T) (((-804)) . T))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
((((-804)) . T))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#2|) . T))
@@ -830,30 +830,30 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
((((-388 (-530))) . T) (((-530)) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
((((-137)) . T))
(((|#1|) . T))
((((-137)) . T))
-((($) -1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
((((-137)) . T))
(((|#1| |#2| |#3|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
(|has| $ (-140))
(|has| $ (-140))
(|has| |#1| (-1027))
((((-804)) . T))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
((($ $) |has| |#1| (-268 $ $)) ((|#1| $) |has| |#1| (-268 |#1| |#1|)))
(((|#1| (-388 (-530))) . T))
(((|#1|) . T))
((((-1099)) . T))
(|has| |#1| (-522))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-522))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
@@ -864,7 +864,7 @@
(|has| |#1| (-140))
(|has| |#1| (-138))
(|has| |#4| (-793))
-(((|#2| (-223 (-2167 |#1|) (-719)) (-806 |#1|)) . T))
+(((|#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) . T))
(|has| |#3| (-793))
(((|#1| (-502 |#3|) |#3|) . T))
(|has| |#1| (-140))
@@ -878,21 +878,21 @@
(|has| |#1| (-138))
((((-388 (-530))) |has| |#2| (-344)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-330)) (|has| |#1| (-349)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-330)) (|has| |#1| (-349)))
((((-1066 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-162))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
((((-804)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-647)) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(|has| |#1| (-522))
(((|#1|) . T))
(((|#1|) . T))
@@ -914,10 +914,10 @@
(((|#1| (-388 (-530))) . T))
(((|#3|) . T) (((-570 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((#0=(-1097 |#1| |#2| |#3|) #0#) -12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1099) #0#) -12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))
@@ -925,8 +925,8 @@
((((-804)) . T))
((((-804)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
((((-804)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
@@ -937,10 +937,10 @@
((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-776))
(|has| |#1| (-1027))
-(((|#2| |#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344))))
-((((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
((((-719)) . T))
((((-530)) . T))
(|has| |#1| (-522))
@@ -953,29 +953,29 @@
((((-114 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-140))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
((((-833 (-530))) . T) (((-833 (-360))) . T) (((-506)) . T) (((-1099)) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
((($) . T))
((((-804)) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(((|#2|) |has| |#2| (-162)))
-((($) -1476 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
((((-811 |#1|)) . T))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
(|has| |#2| (-1075))
-(((#0=(-51)) . T) (((-2 (|:| -2940 (-1099)) (|:| -1806 #0#))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3078 (-1099)) (|:| -1874 #0#))) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
(((|#1| (-530) (-1012)) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| (-388 (-530)) (-1012)) . T))
-((($) -1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) -1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-530) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
@@ -983,37 +983,37 @@
(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
((((-804)) . T))
((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(((|#1|) . T))
((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-804)) . T))
(|has| |#1| (-330))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(|has| |#1| (-522))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-804)) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
((((-388 (-530))) . T) (((-530)) . T))
((((-530)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((($) . T))
((((-804)) . T))
(((|#1|) . T))
((((-811 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
((((-804)) . T))
-(((|#3| |#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
+(((|#3| |#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
(|has| |#1| (-960))
((((-804)) . T))
-(((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
+(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
((((-530) (-110)) . T))
(((|#1|) |has| |#1| (-291 |#1|)))
(|has| |#1| (-349))
@@ -1021,31 +1021,31 @@
(|has| |#1| (-349))
((((-1099) $) |has| |#1| (-491 (-1099) $)) (($ $) |has| |#1| (-291 $)) ((|#1| |#1|) |has| |#1| (-291 |#1|)) (((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)))
((((-1099)) |has| |#1| (-841 (-1099))))
-(-1476 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))
+(-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))
((((-369) (-1046)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-369) |#1|) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-1027))
((((-804)) . T))
((((-804)) . T))
((((-851 |#1|)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
(((#0=(-811 |#1|)) |has| #0# (-291 #0#)))
(((|#1| |#2|) . T))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
(((|#1|) . T))
(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#1| (-1121))
(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
((((-388 (-530))) . T) (($) . T))
@@ -1056,8 +1056,8 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
(|has| |#1| (-344))
((((-530)) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((($ $) . T) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
((((-804)) . T))
((((-804)) . T))
@@ -1072,14 +1072,14 @@
(((|#1| |#2|) . T))
(|has| |#1| (-793))
(|has| |#1| (-793))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(((#0=(-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) #0#) |has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(((#0=(-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
((($) . T))
(|has| |#2| (-795))
((($) . T))
(((|#2|) |has| |#2| (-1027)))
-((((-804)) -1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
+((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
(|has| |#1| (-795))
(|has| |#1| (-795))
((((-1082) (-51)) . T))
@@ -1087,10 +1087,10 @@
((((-804)) . T))
((((-530)) |has| #0=(-388 |#2|) (-593 (-530))) ((#0#) . T))
((((-530) (-137)) . T))
-((((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((|#1| |#2|) . T))
+((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
((((-388 (-530))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-804)) . T))
((((-851 |#1|)) . T))
(|has| |#1| (-344))
@@ -1115,31 +1115,31 @@
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-162)))
-((((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((|#1| |#2|) . T))
+((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-162)))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) . T))
(((|#1|) . T))
((((-506)) |has| |#1| (-572 (-506))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
((((-804)) . T))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#2| (-793))
(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
(|has| |#1| (-522))
(|has| |#1| (-1075))
((((-1082) |#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
((((-388 (-530))) |has| |#1| (-975 (-530))) (((-530)) |has| |#1| (-975 (-530))) (((-1099)) |has| |#1| (-975 (-1099))) ((|#1|) . T))
((((-530) |#2|) . T))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
(((|#1|) . T))
((((-597 |#4|)) . T) (((-804)) . T))
((((-506)) |has| |#4| (-572 (-506))))
@@ -1152,17 +1152,17 @@
(((|#1|) . T))
(((|#2|) . T))
((((-1099)) |has| (-388 |#2|) (-841 (-1099))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-804)) -1476 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-571 (-804))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027))) (((-1181 |#3|)) . T))
+((((-804)) -1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-571 (-804))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027))) (((-1181 |#3|)) . T))
((((-530) |#2|) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#2| |#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
((((-804)) . T))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#2|) . T))
((((-804)) . T))
((((-804)) . T))
((((-1082) (-1099) (-530) (-208) (-804)) . T))
@@ -1197,8 +1197,8 @@
(|has| |#1| (-37 (-388 (-530))))
((((-804)) . T))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
(|has| $ (-140))
((((-388 |#2|)) . T))
((((-388 (-530))) |has| #0=(-388 |#2|) (-975 (-388 (-530)))) (((-530)) |has| #0# (-975 (-530))) ((#0#) . T))
@@ -1209,11 +1209,11 @@
(((|#3|) |has| |#3| (-162)))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
(((|#1|) . T))
(((|#2|) . T))
@@ -1244,7 +1244,7 @@
((((-938 |#1|)) . T) ((|#1|) . T))
((((-804)) . T))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-388 (-530))) . T) (((-388 |#1|)) . T) ((|#1|) . T) (($) . T))
(((|#1| (-1095 |#1|)) . T))
((((-530)) . T) (($) . T) (((-388 (-530))) . T))
@@ -1252,9 +1252,9 @@
(|has| |#1| (-795))
(((|#2|) . T))
((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
((((-530) |#2|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#2|) . T))
((((-530) |#3|) . T))
(((|#2|) . T))
@@ -1269,7 +1269,7 @@
(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-344))
(((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
@@ -1299,19 +1299,19 @@
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| |#2|) . T))
((((-530) (-137)) . T))
-(((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+(((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(|has| |#1| (-795))
(((|#2| (-719) (-1012)) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
(|has| |#1| (-739))
(((|#1|) |has| |#1| (-162)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140))))
-(-1476 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138))))
+(-1461 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140))))
+(-1461 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138))))
(((|#4|) . T))
(|has| |#1| (-138))
((((-1082) |#1|) . T))
@@ -1324,10 +1324,10 @@
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#3|) . T))
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))) (((-899 |#1|)) . T))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))) (((-899 |#1|)) . T))
(|has| |#1| (-793))
(|has| |#1| (-793))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
@@ -1340,8 +1340,8 @@
((($) . T))
((((-369) (-1082)) . T))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) -1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2940 (-1082)) (|:| -1806 #0#))) . T))
+((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 #0#))) . T))
(((|#1|) . T))
((((-804)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
@@ -1349,7 +1349,7 @@
(|has| |#2| (-138))
(|has| |#2| (-140))
(|has| |#1| (-453))
-(-1476 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
(|has| |#1| (-344))
((((-804)) . T))
(|has| |#1| (-37 (-388 (-530))))
@@ -1358,8 +1358,8 @@
(|has| |#1| (-793))
(|has| |#1| (-793))
((((-804)) . T))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1| |#2|) . T))
((((-1099)) |has| |#1| (-841 (-1099))))
@@ -1367,7 +1367,7 @@
((((-804)) . T))
((((-804)) . T))
(|has| |#1| (-1027))
-(((|#2| (-461 (-2167 |#1|) (-719)) (-806 |#1|)) . T))
+(((|#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) . T))
((((-388 (-530))) . #0=(|has| |#2| (-344))) (($) . #0#))
(((|#1| (-502 (-1099)) (-1099)) . T))
(((|#1|) . T))
@@ -1387,16 +1387,16 @@
(|has| |#1| (-140))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+(((|#1|) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-1099) (-51)) . T))
((($ $) . T))
(((|#1| (-530)) . T))
((((-851 |#1|)) . T))
-(((|#1|) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))) (($) -1476 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984))))
+(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))) (($) -1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984))))
(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
(|has| |#1| (-795))
(|has| |#1| (-795))
@@ -1411,13 +1411,13 @@
(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
(((|#1|) |has| |#1| (-162)))
(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
(|has| |#2| (-795))
(|has| |#1| (-795))
-(-1476 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-850)))
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
((((-530) |#2|) . T))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344))))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
(|has| |#1| (-330))
(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
((($) . T) (((-388 (-530))) . T))
@@ -1425,7 +1425,7 @@
(|has| |#1| (-768))
(|has| |#1| (-768))
(((|#1|) . T))
-(-1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-793))
(|has| |#1| (-793))
(|has| |#1| (-793))
@@ -1434,13 +1434,13 @@
((((-530)) . T) (($) . T) (((-388 (-530))) . T))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-1099)) |has| |#1| (-841 (-1099))) (((-1012)) . T))
(((|#1|) . T))
(|has| |#1| (-793))
-(((#0=(-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) #0#) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))))
+(((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(|has| |#1| (-1027))
(((|#1|) . T))
@@ -1459,7 +1459,7 @@
(((|#1|) . T))
((((-137)) . T))
(((|#2|) |has| |#2| (-162)))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
(((|#1|) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
@@ -1481,32 +1481,32 @@
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) #0#) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
(|has| |#1| (-795))
(|has| |#1| (-522))
((((-543 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-768))) (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-768))) (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
((((-851 |#1|)) . T))
(((|#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-719)) . T))
((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
((((-622 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -1514,17 +1514,17 @@
((((-804)) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-804)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
((((-804)) . T))
((((-804)) . T))
((((-804)) . T))
(((|#2|) . T))
-(-1476 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
(|has| |#1| (-1121))
(|has| |#1| (-1121))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
(|has| |#1| (-1121))
(|has| |#1| (-1121))
(((|#3| |#3|) . T))
@@ -1537,43 +1537,43 @@
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
((((-1082) (-51)) . T))
(|has| |#1| (-1027))
-(-1476 (|has| |#2| (-768)) (|has| |#2| (-795)))
+(-1461 (|has| |#2| (-768)) (|has| |#2| (-795)))
(((|#1|) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
(((|#1|) |has| |#1| (-162)) (($) . T))
((($) . T))
((((-1097 |#1| |#2| |#3|)) -12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))
((((-804)) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
((($) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-804)) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
(|has| |#2| (-850))
(|has| |#1| (-344))
(((|#2|) |has| |#2| (-1027)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((($) . T) ((|#2|) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
(|has| |#1| (-850))
((((-506)) . T) (((-388 (-1095 (-530)))) . T) (((-208)) . T) (((-360)) . T))
((((-360)) . T) (((-208)) . T) (((-804)) . T))
(|has| |#1| (-850))
(|has| |#1| (-850))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
((($ $) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((($ $) . T))
((((-530) (-110)) . T))
((($) . T))
(((|#1|) . T))
((((-530)) . T))
((((-110)) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-37 (-388 (-530))))
(((|#1| (-530)) . T))
((($) . T))
@@ -1595,7 +1595,7 @@
(((|#1| (-1145 |#1| |#2| |#3|)) . T))
(((|#1| (-719)) . T))
(((|#1|) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-804)) . T))
(|has| |#1| (-1027))
((((-1082) |#1|) . T))
@@ -1615,18 +1615,18 @@
(((|#1|) . T))
((((-530)) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-330)))
(|has| |#1| (-140))
((((-804)) . T))
(((|#3|) . T))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-804)) . T))
((((-1166 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T))
((((-804)) . T))
-((((-47)) -12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (((-570 $)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) -1476 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))) (((-388 (-893 |#1|))) |has| |#1| (-522)) (((-893 |#1|)) |has| |#1| (-984)) (((-1099)) . T))
+((((-47)) -12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (((-570 $)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) -1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))) (((-388 (-893 |#1|))) |has| |#1| (-522)) (((-893 |#1|)) |has| |#1| (-984)) (((-1099)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-719)) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
(((|#1|) |has| |#1| (-291 |#1|)))
((((-1167 |#1| |#2| |#3| |#4|)) . T))
((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
@@ -1634,14 +1634,14 @@
(|has| |#1| (-522))
(((|#1|) . T))
((((-804)) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((|#1|) |has| |#1| (-162)))
((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(((|#1|) . T))
(((|#3|) |has| |#3| (-1027)))
-(((|#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-344))))
+(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
((((-1166 |#2| |#3| |#4|)) . T))
((((-110)) . T))
(|has| |#1| (-768))
@@ -1651,8 +1651,8 @@
(|has| |#1| (-793))
(|has| |#1| (-793))
(((|#1| (-530) (-1012)) . T))
-(-1476 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+(-1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1| (-388 (-530)) (-1012)) . T))
(((|#1| (-719) (-1012)) . T))
(|has| |#1| (-795))
@@ -1668,28 +1668,28 @@
(((|#1|) . T))
(|has| |#1| (-1027))
((((-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-530)))) ((|#2|) |has| |#1| (-344)))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
((((-804)) . T))
(|has| |#3| (-793))
((((-804)) . T))
((((-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
((((-804)) . T))
-(((|#1| |#1|) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
+(((|#1| |#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
(((|#1|) . T))
((((-530)) . T))
((((-530)) . T))
-(((|#1|) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
+(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
(((|#2|) |has| |#2| (-344)))
((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-344)))
(|has| |#1| (-795))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) |has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-850)))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
((((-804)) . T))
((((-804)) . T))
@@ -1725,18 +1725,18 @@
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
(((|#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) . T) (($ $) . T))
((((-804)) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(|has| |#1| (-344))
(|has| |#1| (-344))
(|has| (-388 |#2|) (-216))
(|has| |#1| (-850))
(((|#2|) |has| |#2| (-984)))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(|has| |#1| (-344))
(((|#1|) |has| |#1| (-162)))
(((|#1| |#1|) . T))
@@ -1761,7 +1761,7 @@
(((|#1| (-388 (-530)) (-1012)) . T))
(((|#1| (-719) (-1012)) . T))
(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-530)) -1476 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) . T))
+(((|#1|) . T) (((-530)) -1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) . T))
(((|#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
@@ -1780,24 +1780,24 @@
((((-647)) . T))
(((|#2|) |has| |#2| (-162)))
(|has| |#2| (-793))
-((((-110)) |has| |#1| (-1027)) (((-804)) -1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027))))
+((((-110)) |has| |#1| (-1027)) (((-804)) -1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
((((-804)) . T))
((((-530) |#1|) . T))
((((-647)) . T) (((-388 (-530))) . T) (((-530)) . T))
(((|#1| |#1|) |has| |#1| (-162)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
((((-360)) . T))
((((-647)) . T))
((((-388 (-530))) . #0=(|has| |#2| (-344))) (($) . #0#))
(((|#1|) |has| |#1| (-162)))
((((-388 (-893 |#1|))) . T))
(((|#2| |#2|) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#2|) . T))
(|has| |#2| (-795))
(((|#3|) |has| |#3| (-984)))
@@ -1807,14 +1807,14 @@
(|has| |#1| (-795))
((((-1099)) |has| |#2| (-841 (-1099))))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-388 (-530))) . T) (($) . T))
(|has| |#1| (-453))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
(|has| |#1| (-37 (-388 (-530))))
((((-114 |#1|)) . T))
((((-114 |#1|)) . T))
@@ -1835,11 +1835,11 @@
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-795))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(((|#2|) . T))
(((|#3|) . T))
((((-114 |#1|)) . T))
@@ -1857,11 +1857,11 @@
((((-506)) |has| |#1| (-572 (-506))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-360)) . #0=(|has| |#1| (-960))) (((-208)) . #0#))
(((|#1|) |has| |#1| (-344)))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((($ $) . T) (((-570 $) $) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-388 (-530))) . T))
-((($) -1476 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-522)))
+((($) -1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-522)))
(|has| |#1| (-344))
(|has| |#1| (-344))
(|has| |#1| (-344))
@@ -1872,11 +1872,11 @@
((((-360)) . T))
(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
((((-804)) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
(((|#1|) . T))
(|has| |#1| (-795))
(|has| |#1| (-795))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(|has| |#1| (-1027))
@@ -1885,13 +1885,13 @@
(|has| |#1| (-138))
(|has| |#1| (-140))
((((-530)) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(((#0=(-1166 |#2| |#3| |#4|)) . T) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))) (($) . T))
((((-530)) . T))
(|has| |#1| (-344))
-(-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
-(-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
+(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
+(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
(|has| |#1| (-344))
(|has| |#1| (-138))
(|has| |#1| (-140))
@@ -1908,18 +1908,18 @@
(((|#1| |#2|) . T))
(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
(((|#3|) |has| |#3| (-162)))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
((((-530)) . T))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
((((-388 (-530))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
((((-804)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#0=(-388 (-530)) #0#) |has| |#1| (-344)))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#0=(-388 (-530)) #0#) |has| |#1| (-344)))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
((($) . T))
((((-530) |#1|) . T))
((((-1099)) |has| (-388 |#2|) (-841 (-1099))))
-(((|#1|) . T) (($) -1476 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-530))) |has| |#1| (-344)))
+(((|#1|) . T) (($) -1461 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-530))) |has| |#1| (-344)))
((((-506)) |has| |#2| (-572 (-506))))
((((-637 |#2|)) . T) (((-804)) . T))
(((|#1|) . T))
@@ -1927,8 +1927,8 @@
(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
((((-811 |#1|)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1476 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
((((-804)) . T))
((((-804)) . T))
(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
@@ -1944,17 +1944,17 @@
((((-388 (-530))) . T) (($) . T))
((((-388 (-530))) . T) (($) . T))
((((-388 (-530))) . T) (($) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-1139)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-1139)))
((($) . T))
((((-388 (-530))) |has| #0=(-388 |#2|) (-975 (-388 (-530)))) (((-530)) |has| #0# (-975 (-530))) ((#0#) . T))
(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
(((|#1| (-719)) . T))
(|has| |#1| (-795))
(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-530)) . T))
(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(|has| |#1| (-793))
(|has| |#1| (-37 (-388 (-530))))
@@ -1979,24 +1979,24 @@
(((|#1| |#2|) . T))
((((-137)) . T))
((((-728 |#1| (-806 |#2|))) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(|has| |#1| (-1121))
(((|#1|) . T))
-(-1476 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
+(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)))
(((|#2|) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-851 |#1|)) . T))
((($) . T))
((((-388 (-893 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-506)) |has| |#4| (-572 (-506))))
((((-804)) . T) (((-597 |#4|)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-793))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) |has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
(|has| |#1| (-1027))
(|has| |#1| (-344))
(|has| |#1| (-795))
@@ -2004,16 +2004,16 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-388 (-530))) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
-(-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
+(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
+(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
(|has| |#1| (-793))
(((|#1| |#2|) . T))
@@ -2036,9 +2036,9 @@
((((-804)) . T))
((((-804)) . T))
((((-506)) |has| |#1| (-572 (-506))))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(((|#1|) -1476 (|has| |#1| (-162)) (|has| |#1| (-344))))
+(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344))))
((((-297 |#1|)) . T))
(((|#2|) |has| |#2| (-344)))
(((|#2|) . T))
@@ -2059,13 +2059,13 @@
(|has| |#1| (-138))
(|has| |#1| (-140))
((($ $) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
(|has| |#1| (-522))
(((|#2|) . T))
((((-530)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
((((-543 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
@@ -2074,7 +2074,7 @@
((($) . T))
(((|#1|) . T))
((((-804)) . T))
-(((|#2|) |has| |#2| (-6 (-4272 "*"))))
+(((|#2|) |has| |#2| (-6 (-4271 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2091,12 +2091,12 @@
(((|#1| |#2|) . T))
((((-1099) |#1|) . T))
(((|#4|) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
((((-1099) (-51)) . T))
((((-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
((((-804)) . T))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
(((#0=(-1167 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-162)) ((#0=(-388 (-530)) #0#) |has| |#1| (-522)) (($ $) |has| |#1| (-522)))
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
@@ -2115,14 +2115,14 @@
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(((|#2| |#3|) . T))
-(-1476 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(((|#1| (-502 |#2|)) . T))
(((|#1| (-719)) . T))
(((|#1| (-502 (-1017 (-1099)))) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
(|has| |#2| (-850))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
((((-804)) . T))
((($ $) . T) ((#0=(-1166 |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-530)) #1#) |has| #0# (-37 (-388 (-530)))))
((((-851 |#1|)) . T))
@@ -2131,13 +2131,13 @@
((($) . T))
((($) . T))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
(|has| |#1| (-344))
((($) . T) ((#0=(-1166 |#2| |#3| |#4|)) . T) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))))
(((|#1| |#2|) . T))
((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1476 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-804)) . T))
@@ -2169,27 +2169,27 @@
(((|#1|) |has| |#1| (-162)))
((((-804)) . T))
(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#2|) -1476 (|has| |#2| (-6 (-4272 "*"))) (|has| |#2| (-162))))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(((|#2|) -1461 (|has| |#2| (-6 (-4271 "*"))) (|has| |#2| (-162))))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(|has| |#2| (-795))
(|has| |#2| (-850))
(|has| |#1| (-850))
(((|#2|) |has| |#2| (-162)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
((((-804)) . T))
((((-804)) . T))
((((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
(((|#1|) . T))
((((-804)) . T))
(((|#1| |#2|) . T))
(((|#1| (-388 (-530))) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-272)) (|has| |#1| (-344)))
+(-1461 (|has| |#1| (-272)) (|has| |#1| (-344)))
((((-137)) . T))
((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
(|has| |#1| (-793))
@@ -2204,7 +2204,7 @@
((((-388 (-530))) . T) (($) . T))
((((-804)) . T))
((((-804)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-804)) . T))
((((-804)) . T))
@@ -2215,7 +2215,7 @@
(((|#1|) . T))
((((-597 (-137))) . T) (((-1082)) . T))
((((-804)) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
(|has| |#1| (-795))
((((-804)) . T))
@@ -2227,16 +2227,16 @@
((((-804)) . T) (((-597 |#4|)) . T))
(((|#2|) . T))
((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1476 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-1099) (-51)) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(|has| |#1| (-850))
(|has| |#1| (-850))
(((|#2|) . T))
@@ -2251,12 +2251,12 @@
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(|has| |#1| (-768))
(((#0=(-851 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
((((-388 |#2|)) . T))
(|has| |#1| (-793))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) . T) ((#1=(-530) #1#) . T) (($ $) . T))
((((-851 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
@@ -2266,25 +2266,25 @@
(|has| |#1| (-138))
(((|#2|) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2940 (-1099)) (|:| -1806 #0#))) . T))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3078 (-1099)) (|:| -1874 #0#))) . T))
(|has| |#1| (-330))
((((-530)) . T))
((((-804)) . T))
(((#0=(-1167 |#1| |#2| |#3| |#4|) $) |has| #0# (-268 #0# #0#)))
(|has| |#1| (-344))
(((#0=(-1012) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
(((#0=(-388 (-530)) #0#) . T) ((#1=(-647) #1#) . T) (($ $) . T))
((((-297 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) |has| |#1| (-344)))
(|has| |#1| (-1027))
(((|#1|) . T))
-(((|#1|) -1476 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
-(((|#1|) -1476 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
+(((|#1|) -1461 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
+(((|#1|) -1461 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
(((|#2|) . T))
((((-388 (-530))) . T) (((-647)) . T) (($) . T))
(((|#3| |#3|) . T))
@@ -2303,7 +2303,7 @@
(((|#2|) . T))
(((|#1|) . T))
((((-530)) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2340,7 +2340,7 @@
(|has| |#2| (-960))
((($) . T))
(|has| |#1| (-850))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2348,24 +2348,24 @@
((($) . T))
(|has| |#1| (-344))
((((-851 |#1|)) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(-1476 (|has| |#1| (-349)) (|has| |#1| (-795)))
+(-1461 (|has| |#1| (-349)) (|has| |#1| (-795)))
(((|#1|) . T))
((((-804)) . T))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
((((-388 |#2|) |#3|) . T))
((($) . T) (((-388 (-530))) . T))
((((-719) |#1|) . T))
-(((|#2| (-223 (-2167 |#1|) (-719))) . T))
+(((|#2| (-223 (-2267 |#1|) (-719))) . T))
(((|#1| (-502 |#3|)) . T))
((((-388 (-530))) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-804)) . T))
-(((#0=(-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) #0#) |has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))))
+(((#0=(-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
(|has| |#1| (-850))
(|has| |#2| (-344))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T))
((((-804)) . T))
(((|#1|) . T))
@@ -2382,11 +2382,11 @@
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-37 (-388 (-530))))
(-12 (|has| |#1| (-515)) (|has| |#1| (-776)))
((((-804)) . T))
-((((-1099)) -1476 (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099))))))
+((((-1099)) -1461 (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099))))))
(|has| |#1| (-344))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
(|has| |#1| (-344))
@@ -2396,7 +2396,7 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-344)))
(((|#2|) |has| |#1| (-344)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
@@ -2421,30 +2421,30 @@
((((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-360)))) (((-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-530)))))
(|has| |#1| (-344))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
(|has| |#1| (-344))
(|has| |#1| (-522))
(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
(((|#3|) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#2|) . T))
(((|#2|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#1| (-37 (-388 (-530))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
((((-1082) |#1|) . T))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
((((-543 |#1|)) . T))
((($) . T))
@@ -2452,7 +2452,7 @@
(|has| |#1| (-522))
(|has| |#1| (-37 (-388 (-530))))
(|has| |#1| (-37 (-388 (-530))))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-330)))
(|has| |#1| (-140))
((((-804)) . T))
((($) . T))
@@ -2477,7 +2477,7 @@
(|has| |#1| (-739))
(|has| |#1| (-739))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-112)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2498,7 +2498,7 @@
((((-530)) . T))
((((-804)) . T))
((((-530)) . T))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T))
((((-804)) . T))
((((-804)) . T))
@@ -2510,9 +2510,9 @@
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
(|has| |#1| (-1075))
((((-530) |#1|) . T))
(((|#1|) . T))
@@ -2530,8 +2530,8 @@
(((|#1|) . T))
(|has| |#1| (-522))
((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
((((-360)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2540,7 +2540,7 @@
(|has| |#1| (-522))
(|has| |#1| (-1027))
((((-728 |#1| (-806 |#2|))) |has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(|has| |#2| (-850))
@@ -2550,12 +2550,12 @@
(|has| |#1| (-216))
(((|#1| (-502 (-1017 (-1099)))) . T))
(|has| |#2| (-344))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
((((-804)) . T))
((((-804)) . T))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
((((-804)) . T))
((((-1046)) . T) (((-804)) . T))
((((-804)) . T))
@@ -2565,8 +2565,8 @@
((((-530)) . T))
(((|#3|) . T))
((((-804)) . T))
-(-1476 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1476 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
(((#0=(-543 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
(((|#1|) |has| |#1| (-162)))
@@ -2574,12 +2574,12 @@
((((-543 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
((($) . T) (((-388 (-530))) . T))
((($) . T) (((-388 (-530))) . T))
-(((|#2|) |has| |#2| (-6 (-4272 "*"))))
+(((|#2|) |has| |#2| (-6 (-4271 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((((-804)) |has| |#1| (-571 (-804))))
((((-276 |#3|)) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
@@ -2587,20 +2587,20 @@
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
(((|#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
((((-804)) . T))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(|has| |#2| (-850))
(|has| |#1| (-850))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) . T))
-((((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) . T))
+((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
@@ -2614,10 +2614,10 @@
(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
(((#0=(-388 (-530)) #0#) . T))
((((-388 (-530))) . T))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#1|) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-506)) . T))
((((-804)) . T))
((((-1099)) |has| |#2| (-841 (-1099))) (((-1012)) . T))
@@ -2632,12 +2632,12 @@
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
((((-1099)) |has| |#1| (-841 (-1099))))
((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
+(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
((($) . T) (((-388 (-530))) . T))
(((|#1|) . T) (((-388 (-530))) . T) (((-530)) . T) (($) . T))
(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-522))))
+((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
(|has| |#1| (-522))
(((|#1|) |has| |#1| (-344)))
((((-530)) . T))
@@ -2656,8 +2656,8 @@
((((-804)) . T))
(|has| |#2| (-768))
(|has| |#2| (-768))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
@@ -2683,12 +2683,12 @@
(((|#2| (-719)) . T))
((((-1099)) . T))
((((-811 |#1|)) . T))
-(-1476 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-804)) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))
+(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))
((((-811 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-349))
@@ -2714,7 +2714,7 @@
(((|#1|) . T))
((((-804)) . T))
(|has| |#2| (-850))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
((((-804)) . T))
((((-804)) . T))
@@ -2747,12 +2747,12 @@
((((-388 |#2|) |#3|) . T))
(((|#1|) . T))
(|has| |#1| (-1027))
-(((|#2| (-461 (-2167 |#1|) (-719))) . T))
+(((|#2| (-461 (-2267 |#1|) (-719))) . T))
((((-530) |#1|) . T))
((((-1082)) . T) (((-804)) . T))
(((|#2| |#2|) . T))
(((|#1| (-502 (-1099))) . T))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-530)) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -2762,9 +2762,9 @@
((($) . T) (((-388 (-530))) . T))
((($) . T))
((($) . T))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
(((|#1|) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-804)) . T))
((((-137)) . T))
(((|#1|) . T) (((-388 (-530))) . T))
@@ -2804,27 +2804,27 @@
(|has| |#1| (-216))
(((|#1| (-502 |#3|)) . T))
(|has| |#1| (-349))
-(((|#2| (-223 (-2167 |#1|) (-719))) . T))
+(((|#2| (-223 (-2267 |#1|) (-719))) . T))
(|has| |#1| (-349))
(|has| |#1| (-349))
(((|#1|) . T) (($) . T))
(((|#1| (-502 |#2|)) . T))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#1| (-719)) . T))
(|has| |#1| (-522))
-(-1476 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-804)) . T))
-(-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
-(-1476 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-1461 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
(((|#1|) |has| |#1| (-162)))
(((|#4|) |has| |#4| (-984)))
(((|#3|) |has| |#3| (-984)))
(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
@@ -2837,14 +2837,14 @@
(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
(((|#1|) . T))
(|has| |#2| (-344))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
(((|#2| |#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
@@ -2863,25 +2863,25 @@
(((|#1|) |has| |#2| (-398 |#1|)))
(((|#1|) |has| |#2| (-398 |#1|)))
((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
((((-804)) . T))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) |has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
((((-530) |#1|) . T))
((((-530) |#1|) . T))
((((-530) |#1|) . T))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-530) |#1|) . T))
(((|#1|) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((((-1099)) |has| |#1| (-841 (-1099))) (((-766 (-1099))) . T))
-(-1476 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
((((-767 |#1|)) . T))
(((|#1| |#2|) . T))
((((-804)) . T))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-388 (-530))))
((((-804)) . T))
@@ -2889,15 +2889,15 @@
(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)) (((-388 (-530))) |has| |#1| (-522)))
(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216))))
+(-1461 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216))))
(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
(|has| |#1| (-344))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
+(((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
((((-530) |#1|) . T))
((((-297 |#1|)) . T))
(((#0=(-647) (-1095 #0#)) . T))
-((((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
+((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-793))
((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
@@ -2914,12 +2914,12 @@
(((#0=(-1167 |#1| |#2| |#3| |#4|)) |has| #0# (-291 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
(|has| |#2| (-216))
(|has| $ (-140))
((((-804)) . T))
-((($) . T) (((-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
((((-804)) . T))
(|has| |#1| (-793))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))
@@ -2931,23 +2931,23 @@
(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#4|) . T))
(|has| |#1| (-522))
-((($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T))
-((((-1099)) -1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
-(((|#1|) . T) (($) -1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T))
+((((-1099)) -1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
+(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))))
(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
((((-530) |#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
(((|#1|) . T))
(((|#1| (-502 (-766 (-1099)))) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#1|) . T))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
(((|#1|) . T))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
((($) . T) (((-811 |#1|)) . T) (((-388 (-530))) . T))
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
@@ -2956,15 +2956,15 @@
(((|#1|) . T))
(((|#1|) . T))
((((-388 |#2|)) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-388 (-530)) #0#) . T) (($ $) . T))
((((-530)) . T))
@@ -2993,32 +2993,32 @@
((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
((((-1099)) . T) (((-804)) . T))
(|has| |#1| (-344))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((((-1031)) . T))
((((-804)) . T))
-((($) -1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
((($) . T))
-((($) -1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(|has| |#2| (-850))
(|has| |#1| (-850))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-162)))
((((-647)) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1|) |has| |#1| (-162)))
(((|#1|) |has| |#1| (-162)))
((((-388 (-530))) . T) (($) . T))
(((|#1| (-530)) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1476 (|has| |#1| (-162)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
(((|#1| (-530)) . T))
(((|#1| (-388 (-530))) . T))
(((|#1| (-719)) . T))
@@ -3033,16 +3033,16 @@
((((-833 (-360))) . T) (((-833 (-530))) . T) (((-1099)) . T) (((-506)) . T))
(((|#1|) . T))
((((-804)) . T))
-(-1476 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
+(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
((((-530)) . T))
((((-530)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-1476 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
((((-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))))
-(-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-344))
@@ -3066,7 +3066,7 @@
((((-1082) (-1099) (-530) (-208) (-804)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1476 (|has| |#1| (-330)) (|has| |#1| (-349)))
+(-1461 (|has| |#1| (-330)) (|has| |#1| (-349)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
((((-804)) . T))
@@ -3074,7 +3074,7 @@
((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
(((|#2|) |has| |#2| (-1027)) (((-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (((-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))))
((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
((($) . T) (((-388 (-530))) . T))
(|has| |#1| (-850))
(|has| |#1| (-850))
@@ -3083,14 +3083,14 @@
((((-804)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-162)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
(((|#2|) . T))
-(-1476 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) -1476 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))
+((((-804)) -1461 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))
((((-388 |#2|) |#3|) . T))
((((-388 (-530))) . T) (($) . T))
(|has| |#1| (-37 (-388 (-530))))
@@ -3102,17 +3102,17 @@
(((|#1|) . T) (((-388 (-530))) . T) (((-530)) . T) (($) . T))
(((#0=(-530) #0#) . T))
((($) . T) (((-388 (-530))) . T))
-(-1476 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1476 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+(-1461 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
+(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
(|has| |#4| (-741))
-(-1476 (|has| |#4| (-741)) (|has| |#4| (-793)))
+(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
(|has| |#4| (-793))
(|has| |#3| (-741))
-(-1476 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
(|has| |#3| (-793))
((((-530)) . T))
(((|#2|) . T))
-((((-1099)) -1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
+((((-1099)) -1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))))
(((|#1| |#1|) . T) (($ $) . T))
@@ -3127,11 +3127,11 @@
((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
((((-1064 |#1| |#2|)) . T))
((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
((($) . T))
(|has| |#1| (-960))
-(((|#2|) . T) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
((((-804)) . T))
((((-506)) |has| |#2| (-572 (-506))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-360)) . #0=(|has| |#2| (-960))) (((-208)) . #0#))
((((-1099) (-51)) . T))
@@ -3143,15 +3143,15 @@
((((-1097 |#1| |#2| |#3|)) . T))
((((-1097 |#1| |#2| |#3|)) . T) (((-1090 |#1| |#2| |#3|)) . T))
((((-804)) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
((((-530) |#1|) . T))
((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-344))
-(((|#3|) . T) ((|#2|) . T) (($) -1476 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984))) ((|#4|) -1476 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))))
-(((|#2|) . T) (($) -1476 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1476 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
+(((|#3|) . T) ((|#2|) . T) (($) -1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984))) ((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))))
+(((|#2|) . T) (($) -1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-344))
@@ -3163,7 +3163,7 @@
((((-804)) . T))
((((-804)) . T))
(((|#1|) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
((((-127)) . T) (((-804)) . T))
((((-530) |#1|) . T))
(((|#1|) . T))
@@ -3171,31 +3171,31 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
((((-804)) . T))
((((-804)) . T))
((((-804)) . T))
(((|#1| (-502 |#2|)) . T))
-((((-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) . T))
+((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
(((|#1| (-530)) . T))
(((|#1| (-388 (-530))) . T))
(((|#1| (-719)) . T))
((((-1104)) . T) (((-804)) . T))
((((-114 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-(-1476 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1476 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
((($) . T))
(((|#2| (-502 (-806 |#1|))) . T))
((((-530) |#1|) . T))
(((|#2|) . T))
(((|#2| (-719)) . T))
-((((-804)) -1476 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-1082) |#1|) . T))
((((-388 |#2|)) . T))
-((((-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T))
+((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
(|has| |#1| (-522))
(|has| |#1| (-522))
((($) . T) ((|#2|) . T))
@@ -3203,12 +3203,12 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-268 |#2| |#2|)))
(((|#1| (-597 |#1|)) |has| |#1| (-793)))
-(-1476 (|has| |#1| (-216)) (|has| |#1| (-330)))
-(-1476 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-216)) (|has| |#1| (-330)))
+(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-1027))
(((|#1|) . T))
((((-388 (-530))) . T) (($) . T))
-((((-938 |#1|)) . T) ((|#1|) . T) (((-530)) -1476 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) -1476 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))
+((((-938 |#1|)) . T) ((|#1|) . T) (((-530)) -1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) -1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
@@ -3219,9 +3219,9 @@
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((#0=(-1064 |#1| |#2|) #0#) |has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) #0#) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
(((#0=(-114 |#1|)) |has| #0# (-291 #0#)))
-(-1476 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
((($ $) . T))
((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-216)) ((|#2| |#1|) |has| |#1| (-216)) ((|#3| |#1|) . T) ((|#3| $) . T))
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 59326d3b..05135bb3 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3429209004)
-(4273 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3429259026)
+(4272 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -461,647 +461,646 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |divisor| |choosemon| |precision| |tensorProduct|
- |numberOfHues| |nextSublist| |var2StepsDefault| |ellipticCylindrical|
- |nextSubsetGray| |useNagFunctions| |transform|
- |permutationRepresentation| |blue| |overset?| |tubePointsDefault|
- |prolateSpheroidal| |firstSubsetGray| |s17dcf| |setStatus!|
- |rationalPoints| |pack!| |completeEchelonBasis| |green| |ParCond|
- |tubeRadiusDefault| |dom| |oblateSpheroidal| |clipPointsDefault|
- |s17def| |setCondition!| |nonSingularModel| |complexLimit|
- |createRandomElement| |set| |yellow| |redmat| |dimension| |bipolar|
- |drawToScale| |s17dgf| |setValue!| |algSplitSimple| |limit|
- |cyclicSubmodule| |/\\| |red| |bipolarCylindrical| |stop| |adaptive|
- |s17dhf| |empty?| |iifact| |hyperelliptic| |linearlyDependent?|
- |standardBasisOfCyclicSubmodule| |\\/| |hasTopPredicate?|
- |divideExponents| |toroidal| |figureUnits| |s17dlf| |splitNodeOf!|
- |iibinom| |elliptic| |linearDependence| |areEquivalent?|
- |topPredicate| |unmakeSUP| |conical| |putColorInfo| |s18acf| |remove!|
- |iiperm| |integralDerivationMatrix| |solveLinear|
- |isAbsolutelyIrreducible?| |setTopPredicate| |makeSUP| |modTree|
- |title| |appendPoint| |s18adf| |subNodeOf?| |deleteProperty!| |iipow|
- |integralRepresents| |reducedSystem| |meatAxe| |patternVariable|
- |vectorise| |multiEuclideanTree| |component| |s18aef| |nodeOf?| |has?|
- |iidsum| |integralCoordinates| |duplicates?| |scanOneDimSubspaces|
- |withPredicates| |extend| |complexZeros| |ranges| |s18aff|
- |updateStatus!| |sort| |iidprod| |yCoordinates| |mapGen| |expt|
- |setPredicates| |truncate| |e| |divisorCascade| |pointLists| |s18dcf|
- |extractSplittingLeaf| |ipow| |inverseIntegralMatrixAtInfinity|
- |mapExpon| |showArrayValues| |predicates| |order| |graeffe|
- |makeGraphImage| |s18def| |squareMatrix| |factorial|
- |integralMatrixAtInfinity| |commutativeEquality| |showScalarValues|
- |hasPredicate?| |terms| F |pleskenSplit| |graphImage| |mr| |s19aaf|
- |transpose| |any| |multinomial| |showSummary| |inverseIntegralMatrix|
- |leftMult| |solveRetract| |show| |optional?| |squareFreePart|
- |reciprocalPolynomial| |groebSolve| |s19abf| |trim| |permutation|
- |integralMatrix| |rightMult| |mainVariable| |multiple?| |BumInSepFFE|
- |rootRadius| |testDim| |s19acf| |split| |stirling1|
- |reduceBasisAtInfinity| |random| |showAttributes| |makeUnit|
- |uniform01| |trace| |generic?| |multiplyExponents| |schwerpunkt|
- |genericPosition| |s19adf| |upperCase!| |stirling2|
- |normalizeAtInfinity| |reverse!| |normal01| |quoted?| |laurentIfCan|
- |setErrorBound| |lfunc| |s20acf| |upperCase| |summation|
- |complementaryBasis| |makeMulti| |exponential1| |inR?| |laurentRep|
- |brillhartIrreducible?| |startPolynomial| |inHallBasis?| |s20adf|
- |lowerCase!| |factorials| |integral?| |makeTerm| |chiSquare1| |isList|
- |rationalPower| |brillhartTrials| |cycleElt| |reorder| |s21baf|
- |lowerCase| |mkcomm| |integralAtInfinity?| |listOfMonoms|
- |exponential| |isOp| |dominantTerm| |computeCycleLength| |headAst|
- |s21bbf| |KrullNumber| |polarCoordinates| |integralBasisAtInfinity|
- |symmetricSquare| |chiSquare| |satisfy?| |limitPlus|
- |computeCycleEntry| |heap| |s21bcf| |numberOfVariables| |eq?|
- |imaginary| |ramified?| |factor1| |factorFraction| |addBadValue|
- |split!| |coerceP| |gcdprim| |s21bdf| |algebraicDecompose| |solid|
- |ramifiedAtInfinity?| |symmetricProduct| |uniform| |badValues|
- |setlast!| |powerSum| |gcdcofact| |fortranCompilerName|
- |transcendentalDecompose| |solid?| |width| |singular?|
- |symmetricPower| |binomial| NOT |retractable?| |setrest!| |elementary|
- |gcdcofactprim| |fortranLinkerArgs| |internalDecompose| |denominators|
- |singularAtInfinity?| |directSum| |poisson| OR |ListOfTerms|
- |setfirst!| |alternating| |lintgcd| |aspFilename| |decompose|
- |numerators| |branchPoint?| |solveLinearPolynomialEquationByFractions|
- |geometric| AND |PDESolve| |cycleSplit!| |plusInfinity| |lhs| |cyclic|
- |hex| |dimensionsOf| |upDateBranches| |convergents|
- |branchPointAtInfinity?| |hasSolution?| |ridHack1| |leftFactor|
- |concat!| |minusInfinity| |rhs| |dihedral| |every?| |restorePrecision|
- |preprocess| |approximants| |rationalPoint?| |linSolve| |interpolate|
- |rightFactorCandidate| |cycleTail| |cap| |any?| |antiCommutator|
- |internalZeroSetSplit| |reducedForm| |absolutelyIrreducible?| |zero|
- |LyndonWordsList| |nullSpace| |measure| |cycleLength| |cup| |host|
- |commutator| |internalAugment| |optional| |genus| |LyndonWordsList1|
- |nullity| |coerceImages| |cycleEntry| |delta| |wreath| |trueEqual|
- |associator| |possiblyInfinite?| |getZechTable| |And| |lyndonIfCan|
- |rowEchelon| |fixedPoints| |invmultisect| |SFunction| |factorList|
- |complexEigenvalues| |explicitlyFinite?| |node| |createZechTable| |Or|
- |lyndon| |column| |odd?| |multisect| |skewSFunction|
- |listConjugateBases| |complexEigenvectors| |nextItem|
- |createMultiplicationTable| |Not| |lyndon?| |row| |even?| |revert|
- |type| |cyclotomicDecomposition| |matrixGcd| |normalizedAssociate|
- |infiniteProduct| |createMultiplicationMatrix|
- |numberOfComputedEntries| |maxColIndex| |numberOfCycles|
- |generalLambert| |cyclotomicFactorization| |divideIfCan!| |normalize|
- |evenInfiniteProduct| |createLowComplexityTable| |rst| |minColIndex| *
- |cyclePartition| |evenlambert| |rangeIsFinite| |leastPower|
- |outputArgs| |oddInfiniteProduct| |createLowComplexityNormalBasis|
- |frst| |maxRowIndex| |coerceListOfPairs| |oddlambert| |top|
- |functionIsContinuousAtEndPoints| |idealiser| |normInvertible?|
- |generalInfiniteProduct| |representationType| |lazyEvaluate| |print|
- |minRowIndex| |coercePreimagesImages| |lambert| |continue|
- |functionIsOscillatory| |idealiserMatrix| |normFactors| |showAll?|
- |createPrimitiveElement| |lazy?| |antisymmetric?| |listRepresentation|
- |lagrange| |changeName| |moduleSum| |npcoef| |showAllElements|
- |tableForDiscreteLogarithm| |explicitlyEmpty?| |symmetric?|
- |permanent| |univariatePolynomial| |exprHasWeightCosWXorSinWX|
- |mapUnivariate| |listexp| |tree| |delay| |cons| |hexDigit?|
- |factorsOfCyclicGroupSize| |explicitEntries?| |diagonal?| |cycles|
- |integrate| |exprHasAlgebraicWeight| |mapUnivariateIfCan|
- |characteristicPolynomial| |findCycle| |escape| |sizeMultiplication|
- |matrixDimensions| |square?| |cycle| |multiplyCoefficients|
- |exprHasLogarithmicWeights| |mapMatrixIfCan| |realEigenvalues|
- |repeating?| |ord| |getMultiplicationMatrix| |matrixConcat3D|
- |rectangularMatrix| |initializeGroupForWordProblem| |quoByVar|
- |combineFeatureCompatibility| |mapBivariate| |level|
- |realEigenvectors| |repeating| |equation| |mkIntegral|
- |getMultiplicationTable| |setelt!| |characteristic| |movedPoints|
- |coefficients| |sparsityIF| |fullDisplay| |halfExtendedResultant2|
- |recip| |primitive?| |identityMatrix| |round| |wordInGenerators|
- |stFunc1| |relationsIdeal| |halfExtendedResultant1| |integers|
- |numberOfIrreduciblePoly| |zeroMatrix| |fractionPart|
- |wordInStrongGenerators| |stFunc2| |saturate| |extendedResultant|
- |oddintegers| |source| |numberOfPrimitivePoly| |dec| |nullary|
- |wholePart| |orbits| |stFuncN| |groebner?| |subResultantsChain| |int|
- |numberOfNormalPoly| |fixedPoint| |floor| |orbit| |fixedPointExquo|
- |groebnerIdeal| |lazyPseudoQuotient| |mapmult| |recur| |ceiling|
- |permutationGroup| |ode1| |ideal| |lazyPseudoRemainder| |deriv|
- |edf2efi| |const| |norm| |wordsForStrongGenerators| |ode2|
- |leadingIdeal| |bernoulliB| |gderiv| |dfRange| |curry|
- |mightHaveRoots| |strongGenerators| |ode| |bright| |backOldPos|
- |eulerE| |compose| |target| |dflist| |diag| |refine| |generators|
- |mpsode| |numericIfCan| |addiag| |df2mf| |curryRight| |middle|
- |bivariateSLPEBR| UP2UTS |rangePascalTriangle| |complexNumericIfCan|
- |lazyIntegrate| |ldf2vmf| |curryLeft| |roman|
- |solveLinearPolynomialEquationByRecursion| UTS2UP |sizePascalTriangle|
- |FormatArabic| |nlde| |edf2ef| |max| |constantRight| |property|
- |recoverAfterFail| |factorByRecursion| LODO2FUN |fillPascalTriangle|
- |ScanArabic| |powern| |vedf2vef| |factorSquareFreeByRecursion| RF2UTS
- |safeCeiling| |FormatRoman| |mapdiv| |df2st| |comp| |cCos| |imagK|
- |randomR| |magnitude| |delete| |safeFloor| |ScanRoman|
- |lazyGintegrate| |f2st| |cSin| |imagJ| |result| |units|
- |factorSFBRlcUnit| |cross| |safetyMargin| |ScanFloatIgnoreSpaces|
- |power| |ldf2lst| |cLog| |imagI| |charthRoot| |dot| |sumSquares|
- |sdf2lst| |cExp| |conjugate| |conditionP| |scan| |euclideanNormalForm|
- |f01bsf| |smith| |entry| |getlo| |cRationalPower| |queue|
- |solveLinearPolynomialEquation| |graphCurves| |euclideanGroebner|
- |f01maf| |completeSmith| |gethi| |cPower| |nthRoot|
- |factorSquareFreePolynomial| |drawCurves| |factorGroebnerBasis| |li|
- |f01mcf| |diophantineSystem| |outputMeasure| |seriesToOutputForm|
- |fractRadix| |code| |clearCache| |groebnerFactorize| |f01qcf| |csubst|
- |elt| |measure2Result| |iCompose| |wholeRadix| |overlabel| |basicSet|
- |credPol| |f01qdf| |particularSolution| |att2Result| |taylorQuoByVar|
- |cycleRagits| |overbar| |infRittWu?| |redPol| |f01qef| |numer|
- |mapSolve| |iflist2Result| |iExquo| |prefixRagits| |prime| |getCurve|
- |gbasis| |f01rcf| |denom| |quadratic| |pdf2ef| |getStream|
- |fractRagits| |quote| |listLoops| |critT| |f01rdf| |rule| |cubic|
- |pdf2df| |getRef| |wholeRagits| |supersub| |closed?| |log10| |critM|
- |f01ref| |quartic| |pi| |df2ef| |makeSeries| |radix| |presuper|
- |open?| |bitand| |critB| |f02aaf| |infinity| |aLinear| |fi2df| GF2FG
- |randnum| |presub| |setClosed| |critBonD| |f02abf| |aQuadratic| |mat|
- FG2F |generator| |reseed| |super| |tube| |critMTonD1| |f02adf|
- |aCubic| |neglist| F2FG |seed| |sub| |unitVector| |index| |critMonD1|
- |kernel| |f02aef| |aQuartic| |multiEuclidean| |explogs2trigs|
- |rational| |rarrow| |cosSinInfo| |draw| |redPo| |f02aff|
- |radicalSolve| |option| |extendedEuclidean| |comment| |trigs2explogs|
- |rational?| |assign| |loopPoints| |hMonic| |f02agf| |radicalRoots|
- |euclideanSize| |swap!| |rationalIfCan| |slash| |generalTwoFactor|
- |pair| |updatF| BY |f02ajf| |contractSolve| |position| |sizeLess?|
- |fill!| |setvalue!| |over| |generalSqFr| |sPol| |f02akf|
- |decomposeFunc| |simplifyPower| |minIndex| |setchildren!| |zag|
- |twoFactor| |makeObject| |updatD| |f02awf| |unvectorise| |function|
- |predicate| |number?| |maxIndex| |node?| |postfix| |setOrder|
- |minGbasis| |f02axf| |bubbleSort!| |seriesSolve| |entry?| |child?|
- |lo| |infix| |getOrder| |lepol| |f02bbf| |insertionSort!| |coef|
- |constantToUnaryFunction| |indices| |distance| |incr| |vconcat|
- |less?| |prinshINFO| |f02bjf| |check| |condition| |tubePlot| |index?|
- |nodes| |hi| |hconcat| |userOrdered?| |prindINFO| |f02fjf| |lprop|
- |exponentialOrder| |entries| |rename| |rspace| |largest| |fprindINFO|
- |f02wef| |llprop| |completeEval| |key?| |nothing| |rename!| |vspace|
- |more?| |prinpolINFO| |f02xef| |lllp| |lowerPolynomial| |symbolIfCan|
- |mainValue| |hspace| |setVariableOrder| |prinb| |f04adf| |lllip|
- |raisePolynomial| |argument| |mainDefiningPolynomial| |superHeight|
- |getVariableOrder| |critpOrder| |f04arf| |mesh?| |parameters|
- |normalDeriv| |constantKernel| |mainForm| |subHeight|
- |resetVariableOrder| |tail| |makeCrit| |f04asf| |mesh| |ran|
- |constantIfCan| |messagePrint| |rischDE| |pattern| |prime?|
- |virtualDegree| |f04atf| |polygon?| |highCommonTerms| |kovacic|
- |rischDEsys| |padecf| |rationalFunction| |alphanumeric|
- |conditionsForIdempotents| |f04axf| |polygon| |mapCoef| |laplace|
- |monomRDE| |pade| |taylorIfCan| |genericRightDiscriminant| |f04faf|
- |closedCurve?| |log| |cond| |lcm| |nthCoef| |erf|
- |trailingCoefficient| |baseRDE| |root| |removeZeroes| |alphabetic|
- |genericRightTraceForm| |f04jgf| |closedCurve| |digit| |binomThmExpt|
- |normalizeIfCan| |message| |polyRDE| |quotientByP| |taylorRep|
- |hexDigit| |genericLeftDiscriminant| |output| |f04maf| |curve?|
- |charClass| |append| |pomopo!| |polCase| |monomRDEsys| |moduloP|
- |factorSquareFree| |outputList| |genericLeftTraceForm| |status|
- |f04mbf| |curve| |mapExponents| |gcd| |distFact| |dilog| |baseRDEsys|
- |generate| |modulus| |henselFact| |properties| |genericRightNorm|
- |f04mcf| |point?| |false| |linearAssociatedLog| |sin| |identification|
- |weighted| |digits| |hasHi| |translate| |genericRightTrace| |f04qaf|
- |enterPointData| |linearAssociatedOrder| |compile| |incrementBy| |cos|
- |LyndonCoordinates| |rdHack1| |continuedFraction| |fmecg| |upperCase?|
- |genericRightMinimalPolynomial| |f07adf| |composites|
- |linearAssociatedExp| |LyndonBasis| |tan| |light| |midpoint| |expand|
- = |commonDenominator| |rightRankPolynomial| |f07aef| |components|
- |createNormalElement| |zeroDimensional?| |cot| |midpoints|
- |filterWhile| |pastel| |clearDenominator| |genericLeftNorm| |f07fdf|
- |matrix| |numberOfComposites| |setLabelValue| |fglmIfCan| |realZeros|
- |#| |filterUntil| |sec| |dark| |length| < |splitDenominator|
- |genericLeftTrace| |f07fef| |numberOfComponents| |getCode| |groebner|
- |mainCharacterization| |select| |csc| > |getSyntaxFormsFromFile|
- |scripts| |double| |monicRightFactorIfCan|
- |genericLeftMinimalPolynomial| |s01eaf| |create3Space| |printCode|
- |lexTriangular| |asin| |algebraicOf| |surface| <= |rightFactorIfCan|
- |leftRankPolynomial| |s13aaf| |outputAsScript| |printStatement|
- |squareFreeLexTriangular| |acos| |ReduceOrder| >= |coordinate|
- |leftFactorIfCan| |generic| |s13acf| |outputAsTex| |block| |atan|
- |belong?| |setref| |partitions| |monicDecomposeIfCan| |rightUnits|
- |s13adf| |abs| |returns| |acot| |operator| |deref| |conjugates|
- |monicCompleteDecompose| |leftUnits| |s14aaf| |Beta| |goto| |Ci|
- |asec| |ref| |shuffle| |divideIfCan| + |compBound| |s14abf| |digamma|
- |repeatUntilLoop| |Si| |makeRecord| |acsc| |radicalEigenvectors|
- |shufflein| |noKaratsuba| - ~= |tablePow| |s14baf| |polygamma| |Ei|
- |radicalEigenvector| |close| |sinh| |sequences| |declare!|
- |karatsubaOnce| / |coerce| |solveid| |s15adf| |Gamma| |iiacosh| |cosh|
- |linGenPos| |radicalEigenvalues| |permutations| |karatsuba|
- |construct| |testModulus| |s15aef| |besselJ| |remove| |initial|
- |iiatanh| |groebgen| |tanh| |eigenMatrix| |display| |atoms| |separate|
- |HenselLift| |s17acf| |besselY| |checkPrecision| |iiacoth|
- |rootKerSimp| |coth| |totolex| |normalise| |makeResult| |pseudoDivide|
- |s17adf| |besselI| |last| |iiasech| |leftRank| |sech| |minPol|
- |gramschmidt| |is?| |pseudoQuotient| |complement| |s17aef| |besselK|
- |assoc| |iiacsch| |rightRank| |csch| |computeBasis| |orthonormalBasis|
- |Is| |composite| |cardinality| |s17aff| |airyAi| |specialTrigs|
- |doubleRank| |asinh| |coord| |antisymmetricTensors|
- |addMatchRestricted| |subResultantGcd| |internalIntegrate0|
- |noLinearFactor?| |s17agf| |airyBi| |localReal?| |acosh| |insertMatch|
- |resultant| |makeCos| |insertRoot!| |s17ahf| |subNode?|
- |rischNormalize| |mkPrim| |changeBase| |puiseux| |atanh| |addMatch|
- |discriminant| |makeSin| |s17ajf| |infLex?| |alphanumeric?|
- |realElementary| |intPatternMatch| |companionBlocks| |acoth| |tower|
- |getMatch| |pseudoRemainder| |iiGamma| |s17akf| |setEmpty!|
- |lowerCase?| |validExponential| |primintegrate| |inv| |xCoord| |asech|
- |failed?| |shiftLeft| |iiabs| |rootNormalize| |ground?| |expintegrate|
- |yCoord| |optpair| |shiftRight| |bringDown| |d01anf| |algebraicSort|
- |tanQ| |ground| |tanintegrate| |zCoord| |multiple| |getBadValues|
- |karatsubaDivide| |newReduc| |declare| |d01apf| |moreAlgebraic?|
- |callForm?| |applyQuote| |primextendedint| |leadingMonomial| |rCoord|
- ~ |resetBadValues| |segment| |monicDivide| |doublyTransitive?|
- |logical?| |d01aqf| |subTriSet?| |constructorName| |getIdentifier|
- |expextendedint| |thetaCoord| |leadingCoefficient| |complexNumeric|
- |knownInfBasis| |character?| |d01asf| |subPolSet?| |say| |getConstant|
- |primlimitedint| |primitiveMonomials| |phiCoord| |OMUnknownCD?|
- |complexNormalize| |open| |setelt| |rootSplit| |doubleComplex?|
- |d01bbf| |internalSubPolSet?| |select!| |kernels| |explimitedint|
- |color| |reductum| |ruleset| |OMParseError?| |complexElementary|
- |ratDenom| |obj| |complex?| |d01fcf| |internalInfRittWu?| |delete!|
- |primextintfrac| |hue| |OMwrite| |trigs| |univariate| |ratPoly| |copy|
- |double?| |cache| |d01gaf| |internalSubQuasiComponent?| |retract| |sn|
- |primlimintfrac| |shade| |po| |real?| |rootPower| |ffactor| |d01gbf|
- |subQuasiComponent?| |parts| |isTimes| |dn| |primintfldpoly|
- |nthRootIfCan| |suchThat| |OMread| |complexForm| |qfactor| |d02bbf|
- |removeSuperfluousQuasiComponents| |isExpt| |sncndn| |expintfldpoly|
- |expIfCan| |OMreadFile| |UpTriBddDenomInv| |factor| |autoCoerce|
- |rootProduct| |UP2ifCan| |d02bhf| |subCase?| |isPower| |categoryFrame|
- |monomialIntegrate| |logIfCan| |reset| |OMreadStr| |hash|
- |LowTriBddDenomInv| |sqrt| |rootSimp| |anfactor| |d02cjf|
- |removeSuperfluousCases| |rroot| |setProperties!| |count|
- |monomialIntPoly| |sinIfCan| |OMlistCDs| |simplify| |real|
- |fortranCharacter| |d02ejf| |prepareDecompose| |qroot| |getProperties|
- |inverseLaplace| |write| |cosIfCan| |OMlistSymbols| |htrigs| |imag|
- |fortranDoubleComplex| |d02gaf| |branchIfCan| |froot| |directProduct|
- |setProperty!| |save| |iprint| |tanIfCan| |OMsupportsCD?|
- |simplifyExp| |fortranComplex| |d02gbf| |startTableGcd!| |nthr|
- |getProperty| |elem?| |cotIfCan| |OMsupportsSymbol?| |simplifyLog|
- |fortranLogical| |d02kef| |stopTableGcd!| |port| |scopes| |notelem|
- |destruct| |secIfCan| |OMunhandledSymbol| |expandPower|
- |fortranInteger| |d02raf| |startTableInvSet!| |firstUncouplingMatrix|
- |eigenvalues| |logpart| |cscIfCan| |OMreceive| |expandLog|
- |fortranDouble| |d03edf| |stopTableInvSet!| |integral| |eigenvector|
- |ratpart| |asinIfCan| |OMsend| |cos2sec| |fortranReal| |d03eef|
- |stosePrepareSubResAlgo| |constant| |primitiveElement|
- |generalizedEigenvector| |mkAnswer| |acosIfCan| |OMserve| |cosh2sech|
- |external?| |d03faf| |stoseInternalLastSubResultant| |nextPrime|
- |generalizedEigenvectors| |perfectNthPower?| |monomial| |atanIfCan|
- |makeop| |cot2trig| |scalarTypeOf| |e01baf|
- |stoseIntegralLastSubResultant| |arguments| |prevPrime| |eigenvectors|
- |perfectNthRoot| |multivariate| |acotIfCan| |opeval| |coth2trigh|
- |fortranCarriageReturn| |e01bef| |stoseLastSubResultant| |primes|
- |factorAndSplit| |approxNthRoot| |variables| |asecIfCan|
- |evaluateInverse| |csc2sin| |fortranLiteral| |e01bff|
- |stoseInvertible?sqfreg| |selectsecond| |rightOne| |perfectSquare?|
- |acscIfCan| |evaluate| |csch2sinh| |alphabetic?| |fortranLiteralLine|
- |e01bgf| |stoseInvertibleSetsqfreg| |selectfirst| |search|
- |basisOfRightAnnihilator| |leftOne| |perfectSqrt| |sinhIfCan| |conjug|
- |sec2cos| |processTemplate| |e01bhf| |eq| |stoseInvertible?reg|
- |makeprod| |basisOfLeftNucleus| |rightZero| |approxSqrt| |coshIfCan|
- |adjoint| |sech2cosh| |makeFR| |iter| |e01daf| |stoseInvertibleSetreg|
- |equivOperands| |leftZero| |generateIrredPoly| |tanhIfCan|
- |getDatabase| |sin2csc| |musserTrials| |e01saf| |stoseInvertible?|
- |equiv?| |swap| |complexExpand| |taylor| |cothIfCan|
- |numericalOptimization| |sinh2csch| |stopMusserTrials| |e01sbf|
- |stoseInvertibleSet| |impliesOperands| |or| |minPoly|
- |complexIntegrate| |laurent| |sechIfCan| |goodnessOfFit| |tan2trig|
- |numberOfFactors| |e01sef| |stoseSquareFreePart| |implies?| |freeOf?|
- |dimensionOfIrreducibleRepresentation| |cschIfCan| |whatInfinity|
- |tanh2trigh| |modularFactor| |e01sff| |coleman| |orOperands|
- |operators| |irreducibleRepresentation| |asinhIfCan| |infinite?|
- |tan2cot| |useSingleFactorBound?| |e02adf| |inverseColeman| |or?|
- |mainKernel| |checkRur| |acoshIfCan| |finite?| |tanh2coth|
- |useSingleFactorBound| |e02aef| |listYoungTableaus| |exp|
- |andOperands| |distribute| |cAcsch| |atanhIfCan| |pureLex| |cot2tan|
- |unravel| |useEisensteinCriterion?| |e02agf| |makeYoungTableau| |and?|
- |rightTrim| |functionIsFracPolynomial?| |cAsech| |acothIfCan|
- |totalLex| |coth2tanh| |leviCivitaSymbol| |useEisensteinCriterion|
- |e02ahf| |nextColeman| |notOperand| |leftTrim| |problemPoints|
- |cAcoth| |asechIfCan| |reverseLex| |removeCosSq|
- |eisensteinIrreducible?| ^ |e02ajf| |nextLatticePermutation|
- |variable?| |basisOfRightNucleus| |zerosOf| |cAtanh| |acschIfCan|
- |leftLcm| |removeSinSq| |tryFunctionalDecomposition?| |e02akf|
- |nextPartition| |term| |basisOfMiddleNucleus| |singularitiesOf|
- |cAcosh| |pushdown| |rightExtendedGcd| |removeCoshSq|
- |tryFunctionalDecomposition| |e02baf| |numberOfImproperPartitions|
- |term?| |polynomialZeros| |cAsinh| |pushup| |rightGcd| |removeSinhSq|
- |conditions| |btwFact| |e02bbf| |subSet| |equiv| |f2df| |cCsch|
- |reducedDiscriminant| |rightExactQuotient| |expandTrigProducts|
- |match| |beauzamyBound| |ptree| |e02bcf| |unrankImproperPartitions0|
- |merge!| |ef2edf| |cSech| |idealSimplify| |rightRemainder|
- |fintegrate| |call| |bombieriNorm| |e02bdf|
- |unrankImproperPartitions1| |resultantEuclidean| |ocf2ocdf| |cCoth|
- |definingInequation| |rightQuotient| |coefficient| |list| |rootBound|
- |e02bef| |subresultantSequence| |qelt| |semiResultantEuclidean2|
- |basisOfCommutingElements| |leader| |socf2socdf| |cTanh|
- |definingEquations| |rightLcm| |coHeight| |kroneckerDelta| |car|
- |singleFactorBound| |e02daf| |SturmHabichtSequence|
- |semiResultantEuclidean1| |basisOfLeftAnnihilator| |df2fi| |cCosh|
- |setStatus| |leftExtendedGcd| |extendIfCan| |reindex| |cdr|
- |quadraticNorm| |e02dcf| |SturmHabichtCoefficients| |xRange|
- |indiceSubResultant| |edf2fi| |loadNativeModule| |cSinh|
- |quasiAlgebraicSet| |leftGcd| |algebraicVariables| |setDifference|
- |infinityNorm| |e02ddf| |SturmHabicht| |yRange|
- |indiceSubResultantEuclidean| |char| |edf2df| |cAcsc|
- |radicalSimplify| |leftExactQuotient|
- |zeroSetSplitIntoTriangularSystems| |lambda| |setIntersection|
- |scaleRoots| |e02def| |countRealRoots| |zRange|
- |semiIndiceSubResultantEuclidean| |expenseOfEvaluation| |cAsec|
- |denominator| |leftRemainder| |zeroSetSplit| |setUnion| |shiftRoots|
- |map!| |e02dff| |SturmHabichtMultiple| |substring?|
- |degreeSubResultant| |numberOfOperations| |cAcot| |numerator|
- |leftQuotient| |reduceByQuasiMonic| |apply| |qsetelt!|
- |degreePartition| |e02gaf| |countRealRootsMultiple|
- |degreeSubResultantEuclidean| |cAtan| |quadraticForm|
- |monicLeftDivide| |collectQuasiMonic| |factorOfDegree| |e02zaf|
- |suffix?| |pop!| |semiDegreeSubResultantEuclidean| |setImagSteps|
- |float| |cAcos| |void| |back| |monicRightDivide| |removeZero| |size|
- |factorsOfDegree| |e04dgf| |push!| |lastSubResultantEuclidean|
- |setClipValue| |cAsin| |front| |leftDivide| |initiallyReduce|
- |pascalTriangle| |e04fdf| |prefix?| |minordet|
- |semiLastSubResultantEuclidean| |option?| |cCsc| |rotate!|
- |rightDivide| |headReduce| |e04gcf| |determinant|
- |subResultantGcdEuclidean| |range| |cSec| |dequeue!| |hermiteH|
- |stronglyReduce| |first| |exp1| |e04jaf| |acsch| |diagonalProduct|
- |semiSubResultantGcdEuclidean2| |colorFunction| |cCot| |enqueue!|
- |laguerreL| |rewriteSetWithReduction| |rest| |log2| |null| |e04mbf|
- |diagonal| |semiSubResultantGcdEuclidean1| |curveColor| |implies|
- |cTan| |quatern| |legendreP| |autoReduced?| |substitute|
- |rationalApproximation| |e04naf| |diagonalMatrix| |case|
- |discriminantEuclidean| |pointColor| |blankSeparate|
- |initiallyReduced?| |removeDuplicates| |key| |relerror| |e04ucf|
- |Zero| |scalarMatrix| |semiDiscriminantEuclidean| |clip| |xor|
- |bitTruth| |resultantnaif| |semicolonSeparate| |headReduced?|
- |complexSolve| |e04ycf| |infix?| |One| |hermite| |chainSubResultants|
- |clipBoolean| GE |contains?| |resultantEuclideannaif| |commaSeparate|
- |stronglyReduced?| |filename| |complexRoots| |mask| |f01brf|
- |completeHermite| |generalizedContinuumHypothesisAssumed| |schema|
- |style| GT |inf| |semiResultantEuclideannaif| |pile| |reduced?| |not?|
- |realRoots| |setColumn!| |generalizedContinuumHypothesisAssumed?|
- |resultantReduit| |toScale| LE |qinterval| |pdct| |paren|
- |normalized?| |parse| |leadingTerm| |computePowers| |positive?|
- |setRow!| |resultantReduitEuclidean| |pointColorPalette| LT |interval|
- |powers| |bracket| |quasiComponent| |writable?| |pow| |negative?|
- |oneDimensionalArray| |semiResultantReduitEuclidean|
- |curveColorPalette| |unit?| |prod| |partition| |label| |symbolTable|
- |initials| |retractIfCan| |readable?| |An| |zero?| |associatedSystem|
- |divide| |ravel| |var1Steps| |associates?| |complete| |exists?|
- |UnVectorise| |dim| |augment| |uncouplingMatrices| |var2Steps|
- |Lazard| |pushFortranOutputStack| |reshape| |unitCanonical| |pole?|
- |OMconnInDevice| |getOperator| |extension| |Vectorise|
- |lastSubResultant| |associatedEquations| |space| |Lazard2|
- |popFortranOutputStack| |unitNormal| |OMconnOutDevice| |listBranches|
- |string| |nil?| |shallowExpand| |setPoly| |lastSubResultantElseSplit|
- |arrayStack| |nextsousResultant2| |tubePoints| |lfextendedint|
- |OMconnectTCP| |triangular?| |buildSyntax| |outputAsFortran|
- |deepExpand| |exponent| |invertibleSet| |setButtonValue| |tubeRadius|
- |lflimitedint| |rewriteIdealWithRemainder| |OMbindTCP| |solve|
- |setAttributeButtonStep| |clearFortranOutputStack| |exQuo|
- |invertible?| |regime| |crest| |weight| |replace| |lfinfieldint|
- |rewriteIdealWithHeadRemainder| |OMopenFile| |triangularSystems|
- |resetAttributeButtons| |showFortranOutputStack| |moebius|
- |invertibleElseSplit?| |sqfree| |cfirst| |makeVariable| |update|
- |lfintegrate| |remainder| |OMopenString| |rootDirectory|
- |getButtonValue| |topFortranOutputStack| |rightRecip|
- |purelyAlgebraicLeadingMonomial?| |inconsistent?| |sts2stst|
- |finiteBound| |lfextlimint| |headRemainder| |OMclose| |hostPlatform|
- |mantissa| |decrease| |setFormula!| |leftRecip|
- |algebraicCoefficients?| |numFunEvals| |clikeUniv| |sortConstraints|
- |BasicMethod| |roughUnitIdeal?| |OMsetEncoding|
- |nativeModuleExtension| |map| |increase| |linkToFortran| |leftPower|
- |purelyTranscendental?| |setAdaptive| |weierstrass| |sumOfSquares|
- |PollardSmallFactor| |roughEqualIdeals?| |OMputApp| |bumprow|
- |morphism| |setLegalFortranSourceExtensions| |rightPower|
- |purelyAlgebraic?| |adaptive?| |qqq| |splitLinear| |showTheFTable|
- |roughSubIdeal?| |OMputAtp| |bumptab| |balancedFactorisation|
- |fracPart| |derivationCoordinates| |prepareSubResAlgo|
- |setScreenResolution| |integralBasis| |simpleBounds?| |clearTheFTable|
- |roughBase?| |OMputAttr| |bumptab1| |mapDown!| |polyPart| |one?|
- |internalLastSubResultant| |second| |screenResolution|
- |localIntegralBasis| |subst| |linearMatrix| |fTable| |trivialIdeal?|
- |OMputBind| |untab| |mapUp!| |fullPartialFraction| |splitSquarefree|
- |integralLastSubResultant| |third| |setMaxPoints| |changeWeightLevel|
- |linearPart| |palgint0| |collectUpper| |OMputBVar| |bat1| |convert|
- |setleaves!| |primeFrobenius| |normalDenom| |toseLastSubResultant|
- |maxPoints| |script| |characteristicSerie| |nonLinearPart|
- |palgextint0| |collect| |OMputError| |bat| |balancedBinaryTree|
- |discreteLog| |totalfract| |toseInvertible?| |setMinPoints|
- |characteristicSet| |quadratic?| |interpret| |palglimint0|
- |OMputObject| |collectUnder| |tab1| |vector| |sylvesterMatrix|
- |decreasePrecision| |pushdterm| |keys| |toseInvertibleSet| |minPoints|
- |medialSet| |changeNameToObjf| |palgRDE0| |OMputEndApp|
- |mainVariable?| |tab| |differentiate| |bezoutMatrix| |nullary?|
- |increasePrecision| |pushucoef| |toseSquareFreePart| |parametric?|
- |tex| |Hausdorff| |optAttributes| |palgLODE0| |mainVariables|
- |OMputEndAtp| |lex| |bezoutResultant| |arity| |bits| |pushuconst|
- |quotedOperators| |plotPolar| |Frobenius| |Nul| |chineseRemainder|
- |removeSquaresIfCan| |OMputEndAttr| |slex| |bezoutDiscriminant|
- |unitNormalize| |numberOfMonomials| |rur| |debug3D|
- |transcendenceDegree| |objects| |exponents| |divisors|
- |unprotectedRemoveRedundantFactors| |OMputEndBind| |inverse|
- |setright!| |bfEntry| |unit| |members| |create| |numFunEvals3D|
- |extensionDegree| |base| |iisqrt2| |eulerPhi| |removeRedundantFactors|
- |OMputEndBVar| |maxrow| |setleft!| |bfKeys| |flagFactor| |multiset|
- |enterInCache| |setAdaptive3D| |inGroundField?| |iisqrt3| |fibonacci|
- |OMputEndError| |certainlySubVariety?| |tableau| |debug| |inspect|
- |sqfrFactor| |mergeDifference| |currentCategoryFrame| |adaptive3D?|
- |transcendent?| |iiexp| |harmonic| |OMputEndObject|
- |possiblyNewVariety?| |listOfLists| D |extract!| |primeFactor|
- |squareFreePrim| |currentScope| |setScreenResolution3D| |algebraic?|
- |iilog| |jacobi| |probablyZeroDim?| |OMputInteger| |tanSum| |bag|
- |nthFlag| |compdegd| |pushNewContour| |screenResolution3D| |sh|
- |iisin| |moebiusMu| |selectPolynomials| |OMputFloat| |tanAn| |nand|
- |binding| |nthExponent| |univcase| |findBinding| |setMaxPoints3D|
- |mirror| |iicos| |numberOfDivisors| |selectOrPolynomials|
- |OMputVariable| |tanNa| |binaryTournament| |position!|
- |irreducibleFactor| |consnewpol| |contours| |maxPoints3D| |monomial?|
- |true| |iitan| |sumOfDivisors| |selectAndPolynomials| |OMputString|
- |initTable!| |setProperties| |nilFactor| |nsqfree|
- |structuralConstants| |setMinPoints3D| |rquo| |and| |brace| |iicot|
- |sumOfKthPowerDivisors| |quasiMonicPolynomials| |OMputSymbol|
- |printInfo!| |setProperty| |regularRepresentation| |intChoose|
- |minPoints3D| |coordinates| |lquo| |leaves| |iisec| |HermiteIntegrate|
- |univariate?| |OMgetApp| |startStats!| |traceMatrix| |lp| |coefChoose|
- |high| |tValues| |mindegTerm| |iicsc| |palgint|
- |univariatePolynomials| |OMgetAtp| |printStats!| |randomLC| |myDegree|
- |low| |tRange| |product| |iiasin| |palgextint| |linear?| |OMgetAttr|
- |clearTable!| |binaryTree| |minimize| |normDeriv2| |subset?| |plot|
- |LiePolyIfCan| |previous| |value| |iiacos| |palglimint|
- |linearPolynomials| |OMgetBind| |usingTable?| |byte| |module|
- |plenaryPower| |symmetricDifference| |pointPlot| |trunc| |iiatan|
- |sum| |palgRDE| |bivariate?| |OMgetBVar| |printingInfo?|
- |rightRegularRepresentation| |c02aff| |difference| |calcRanges|
- |degree| |basisOfNucleus| |iiacot| |palgLODE| |bivariatePolynomials|
- |OMgetError| |makingStats?| |leftRegularRepresentation| |c02agf|
- |intersect| |fixPredicate| |quasiRegular| |countable?| |basisOfCenter|
- |iiasec| |splitConstant| |removeRoughlyRedundantFactorsInPols|
- |OMgetObject| |extractIfCan| |rightTraceMatrix| |c05adf| |part?|
- |patternMatch| |quasiRegular?| |basisOfLeftNucloid| |Aleph|
- |binarySearchTree| |iiacsc| |pmComplexintegrate|
- |removeRoughlyRedundantFactorsInPol| |OMgetEndApp| |insert!|
- |leftTraceMatrix| |c05nbf| |latex| |patternMatchTimes| |constant?|
- |basisOfRightNucloid| |nor| |iisinh| |pmintegrate| |interReduce|
- |OMgetEndAtp| |interpretString| |rightDiscriminant| |c05pbf| |member?|
- |bernoulli| |mindeg| |basisOfCentroid| |iicosh| |infieldint|
- |roughBasicSet| |OMgetEndAttr| |stripCommentsAndBlanks|
- |leftDiscriminant| |c06eaf| |enumerate| |chebyshevT| |maxdeg|
- |radicalOfLeftTraceForm| |iitanh| |extendedint| |linear| |crushedSet|
- |OMgetEndBind| |setPrologue!| |concat| |represents| |c06ebf|
- |setOfMinN| |chebyshevU| |RemainderList| |showTypeInOutput| |iicoth|
- |limitedint| |rewriteSetByReducingWithParticularGenerators|
- |OMgetEndBVar| |setTex!| |formula| |mergeFactors| |c06ecf| |elements|
- |cyclotomic| |unexpand| |iisech| |integerIfCan| |polynomial|
- |rewriteIdealWithQuasiMonicGenerators| |OMgetEndError| |setEpilogue!|
- |isMult| |c06ekf| |replaceKthElement| |euler| |triangSolve| |iicsch|
- |internalIntegrate| |squareFreeFactors| |OMgetEndObject| |prologue|
- |exprToXXP| |id| |c06fpf| |incrementKthElement| |fixedDivisor|
- |univariateSolve| |iiasinh| |infieldIntegrate|
- |univariatePolynomialsGcds| |OMgetInteger| |epilogue| |exprToUPS|
- |c06fqf| |float?| |laguerre| |realSolve| |limitedIntegrate|
- |removeRoughlyRedundantFactorsInContents| |OMgetFloat| |endOfFile?|
- |derivative| |nrows| |exprToGenUPS| |c06frf| |table| |integer?|
- |legendre| |positiveSolve| |stiffnessAndStabilityFactor|
- |extendedIntegrate| |removeRedundantFactorsInContents| |OMgetVariable|
- |readIfCan!| |constantOperator| |ncols| |localAbs| |c06fuf| |new|
- |symbol?| |dmpToHdmp| |squareFree| |stiffnessAndStabilityOfODEIF|
- |varselect| |removeRedundantFactorsInPols| |OMgetString|
- |readLineIfCan!| |universe| |c06gbf| |string?| |hdmpToDmp|
- |linearlyDependentOverZ?| |systemSizeIF| |exquo| |kmax|
- |irreducibleFactors| |OMgetSymbol| |readLine!| |comparison|
- |currentEnv| |c06gcf| |list?| |pToHdmp| |linearDependenceOverZ|
- |expenseOfEvaluationIF| |objectOf| |div| |ksec|
- |lazyIrreducibleFactors| |OMgetType| |writeLine!| |equality|
- |createIrreduciblePoly| |c06gqf| |pair?| |hdmpToP|
- |solveLinearlyOverQ| |accuracyIF| |domainOf| |quo| |vark|
- |removeIrreducibleRedundantFactors| |OMencodingBinary| |sign|
- |createPrimitivePoly| |c06gsf| |atom?| |dmpToP|
- |intermediateResultsIF| |removeConstantTerm| |normalForm|
- |OMencodingSGML| |nonQsign| |createNormalPoly| |d01ajf| |null?|
- |pToDmp| |subscriptedVariables| |rem| |OMencodingXML| |direction|
- |createNormalPrimitivePoly| |d01akf| |startTable!| |sylvesterSequence|
- |central?| |generalPosition| |OMencodingUnknown| |createThreeSpace|
- |subtractIfCan| |createPrimitiveNormalPoly| |d01alf| |stopTable!|
- |sturmSequence| |elliptic?| |quotient| |omError| |cyclicParents|
- |setPosition| |nextIrreduciblePoly| |d01amf| |supDimElseRittWu?|
- |boundOfCauchy| |doubleResultant| |constantOpIfCan| |zeroDim?|
- |errorInfo| |cyclicEqual?| |nextPrimitivePoly| |sturmVariationsOf|
- |distdfact| |integerBound| |inRadical?| |errorKind| |fortran|
- |cyclicEntries| |nextNormalPoly| |constantLeft| |showTheRoutinesTable|
- |left| |lazyVariations| |separateDegrees| |in?| |OMReadError?|
- |cyclicCopy| |nextNormalPrimitivePoly| |twist| |deleteRoutine!|
- |right| |content| |trace2PowMod| |element?| |numeric|
- |OMUnknownSymbol?| |cyclic?| |nextPrimitiveNormalPoly| |setsubMatrix!|
- |getExplanations| |totalDegree| |tracePowMod| |zeroDimPrime?|
- |radical| |leastAffineMultiple| |subMatrix| |getMeasure|
- |minimumDegree| |irreducible?| |zeroDimPrimary?| |init|
- |ScanFloatIgnoreSpacesIfCan| |sincos| |reducedQPowers| |swapColumns!|
- |changeMeasure| |monomials| |decimal| |primaryDecomp|
- |numericalIntegration| |sinhcosh| |rootOfIrreduciblePoly| |swapRows!|
- |changeThreshhold| |isPlus| |innerint| |contract| |not| |rk4|
- |subresultantVector| |write!| |vertConcat|
- |selectMultiDimensionalRoutines| |exteriorDifferential|
- |leadingSupport| |rk4a| |primitivePart| |read!| |horizConcat|
- |selectNonFiniteRoutines| |factorPolynomial| |scale|
- |totalDifferential| |shrinkable| |rk4qc| |pointData| |iomode|
- |squareTop| |squareFreePolynomial| |selectSumOfSquaresRoutines|
- |varList| |connect| |rules| |homogeneous?| |center| |physicalLength!|
- |rk4f| |parent| |close!| |elRow1!| |selectFiniteRoutines|
- |gcdPolynomial| |region| |leadingBasisTerm| |physicalLength|
- |aromberg| |extractProperty| |reopen!| |elRow2!|
- |selectODEIVPRoutines| |torsion?| |points| |ignore?| |flexibleArray|
- |asimpson| |extractClosed| |rightUnit| |elColumn2!|
- |selectPDERoutines| |torsionIfCan| |getGraph| |computeInt| |operation|
- |generalizedInverse| |atrapezoidal| |extractIndex| |leftUnit|
- |fractionFreeGauss!| |getGoodPrime| |selectOptimizationRoutines|
- |putGraph| |symbol| |checkForZero| |setFieldInfo| |romberg|
- |extractPoint| |match?| |rightMinimalPolynomial| |invertIfCan|
- |selectIntegrationRoutines| |badNum| |graphs| |doubleFloatFormat|
- |pol| |simpson| |traverse| |leftMinimalPolynomial| |copy!| |mix|
- |routines| |graphStates| |integer| |bitior| |logGamma| |xn| **
- |trapezoidal| |defineProperty| |associatorDependence| |plus!|
- |mainSquareFreePart| |doubleDisc| |graphState| |hypergeometric0F1|
- |dAndcExp| |rombergo| |closeComponent| |lieAlgebra?| |minus!|
- |mainPrimitivePart| |polyred| |makeViewport2D| |rotatez| |repSq|
- |simpsono| |modifyPoint| |jordanAlgebra?| |leftScalarTimes!|
- |mainContent| EQ |padicFraction| |viewport2D| |rotatey| |expPot|
- |trapezoidalo| |addPointLast| |noncommutativeJordanAlgebra?|
- |rightScalarTimes!| |primitivePart!| |padicallyExpand|
- |getPickedPoints| |rotatex| |qPot| |inc| |sup| |addPoint2|
- |applyRules| |jordanAdmissible?| |times!| |nextsubResultant2|
- |numberOfFractionalTerms| |colorDef| |identity| |lookup| |imagE|
- |addPoint| |localUnquote| |lieAdmissible?| |power!| |LazardQuotient2|
- |nthFractionalTerm| |intensity| |dictionary| |normal?| |imagk| |merge|
- |jacobiIdentity?| |lift| |plus| SEGMENT |gradient| |LazardQuotient|
- |firstNumer| |lighting| |dioSolve| |prefix| |basis| |imagj| |deepCopy|
- |reduce| |powerAssociative?| |divergence| |subResultantChain|
- |firstDenom| |clipSurface| |newLine| |normalElement| |imagi|
- |shallowCopy| |test| |alternative?| |laplacian|
- |halfExtendedSubResultantGcd2| |compactFraction| |showClipRegion|
- |copies| |minimalPolynomial| |octon| |numberOfChildren| |flexible?|
- |hessian| |halfExtendedSubResultantGcd1| |partialFraction|
- |showRegion| |sayLength| |increment| |stack| |ODESolve| |children|
- |rightAlternative?| |bandedHessian| |times| |extendedSubResultantGcd|
- |gcdPrimitive| |hitherPlane| |setnext!| |charpol| |constDsolve|
- |child| |leftAlternative?| |jacobian| |exactQuotient!|
- |symmetricGroup| |eyeDistance| |name| |setprevious!| |solve1|
- |showTheIFTable| |birth| |error| |antiAssociative?| |bandedJacobian|
- |exactQuotient| |alternatingGroup| |perspective| |body|
- |shanksDiscLogAlgorithm| |innerEigenvectors| |clearTheIFTable|
- |internal?| |assert| |associative?| |duplicates|
- |primPartElseUnitCanonical!| |abelianGroup| |zoom| |optimize|
- |reflect| |unparse| |iFTable| |root?| |antiCommutative?|
- |removeDuplicates!| |primPartElseUnitCanonical| |monom| |cyclicGroup|
- |rotate| |reify| |binary| |showIntensityFunctions| |leaf?|
- |commutative?| |linears| |lazyResidueClass| |dihedralGroup|
- |drawStyle| |separant| |packageCall| |expint| |outputForm|
- |rightCharacteristicPolynomial| |ddFact| |monicModulo| |mathieu11|
- |outlineRender| |isobaric?| |innerSolve1| |expr| |diff| |sample|
- |arg1| |common| |leftCharacteristicPolynomial| |separateFactors|
- |lazyPseudoDivide| |mathieu12| |diagonals| |weights| |innerSolve|
- |algDsolve| |argscript| |arg2| |rightNorm| |exptMod|
- |lazyPremWithDefault| |mathieu22| |axes| |differentialVariables|
- |makeEq| |denomLODE| |superscript| |leftNorm| |meshPar2Var| |lazyPquo|
- |mathieu23| |controlPanel| |extractBottom!| |modularGcdPrimitive|
- |indicialEquations| |subscript| |rightTrace| |meshFun2Var| |lazyPrem|
- |mathieu24| |viewpoint| |extractTop!| |modularGcd| |variable|
- |indicialEquation| |scripted?| |leftTrace| |box| |meshPar1Var| |pquo|
- |janko2| |dimensions| |insertBottom!| |reduction| |denomRicDE|
- |resetNew| |someBasis| |ptFunc| |prem| |rubiksGroup| |resize|
- |insertTop!| |signAround| |leadingCoefficientRicDE| |symFunc| |insert|
- |sort!| |failed| |minimumExponent| |supRittWu?| |youngGroup| |move|
- |bottom!| |invmod| |constantCoefficientRicDE| |symbolTableOf|
- |copyInto!| |maximumExponent| |RittWuCompare| |lexGroebner| |t|
- |modifyPointData| |top!| |powmod| |changeVar| |argumentListOf| |next|
- |sorted?| |rowEch| |mainMonomials| |totalGroebner| |subspace|
- |dequeue| |mulmod| |ratDsolve| |returnTypeOf| |digit?| |LiePoly|
- |rowEchLocal| |mainCoefficients| |expressIdealMember| |makeViewport3D|
- |recolor| |flatten| |submod| |indicialEquationAtInfinity|
- |printHeader| |datalist| |cn| |quickSort| |rowEchelonLocal|
- |leastMonomial| |principalIdeal| |viewport3D| |drawComplex| |addmod|
- |reduceLODE| |returnType!| |heapSort| |normalizedDivide|
- |mainMonomial| |LagrangeInterpolation| |viewDeltaYDefault|
- |drawComplexVectorField| |symmetricRemainder| |singRicDE|
- |argumentList!| |shellSort| |directory| |maxint| |quasiMonic?|
- |psolve| |viewDeltaXDefault| |eval| |setRealSteps| |positiveRemainder|
- |nil| |isQuotient| |polyRicDE| |endSubProgram| |iroot| |outputSpacing|
- |reverse| |binaryFunction| |monic?| |wrregime| |viewZoomDefault|
- |bit?| |ricDsolve| |currentSubProgram| |zeroOf| |size?|
- |outputGeneral| |makeFloatFunction| |deepestInitial| |rdregime|
- |viewPhiDefault| |partialQuotients| |point| |algint| |triangulate|
- |newSubProgram| |rank| Y |rootsOf| |outputFixed| |unaryFunction|
- |iteratedInitials| |bsolve| |viewThetaDefault| |partialDenominators|
- |algintegrate| |solveInField| |clearTheSymbolTable| |approximate|
- |makeSketch| |weakBiRank| |outputFloating| |compiledFunction|
- |deepestTail| |printInfo| |dmp2rfi| |pointColorDefault|
- |partialNumerators| |op| |complex| |palgintegrate| |wronskianMatrix|
- |showTheSymbolTable| |systemCommand| |inrootof| |biRank| |corrPoly|
- |head| |se2rfi| |lineColorDefault| |reducedContinuedFraction| |series|
- |palginfieldint| |height| |variationOfParameters| |printTypes| |nary?|
- |whileLoop| |droot| |lifting| |mdeg| |pr2dmp| |axesColorDefault|
- |push| |bitLength| |factors| |newTypeLists| |unary?| |forLoop|
- |lifting1| |mvar| |hasoln| |unitsColorDefault| |bindings| |bitCoef|
- |outerProduct| |nthFactor| |typeLists| |sin?| |normal| |radPoly|
- |exprex| |relativeApprox| |ParCondList| |pointSizeDefault| |cartesian|
- |nthExpon| |externalList| |lists| |zeroVector| |rootPoly| |coerceL|
- |rootOf| |redpps| |viewPosDefault| |polar| |completeHensel| |min|
- |overlap| |typeList| |zeroSquareMatrix| |goodPoint| |coerceS|
- |allRootsOf| |B1solve| |viewSizeDefault| |cylindrical| |union|
- |multMonom| |shift| |hcrf| |parametersOf| |identitySquareMatrix|
- |chvar| |frobenius| |definingPolynomial| |factorset| |viewDefaults|
- |spherical| |build| |hclf| |fortranTypeOf| |depth| |lSpaceBasis|
- |find| |maxrank| |viewWriteDefault| |parabolic| |leadingIndex|
- |lexico| |empty| |input| |finiteBasis| |anticoord|
- |createGenericMatrix| |clipParametric| |minrank| |viewWriteAvailable|
- |parabolicCylindrical| |leadingExponent| |OMmakeConn| |compound?|
- |options| |principal?| |intcompBasis| |library| |symmetricTensors|
- |clipWithRanges| |minset| |var1StepsDefault| |paraboloidal|
- |GospersMethod| |OMcloseConn| |getOperands| |nil| |infinite|
+ |Record| |Union| |stronglyReduced?| |fortranTypeOf| |read!| |c06frf|
+ |certainlySubVariety?| |e02ajf| |csc2sin| |meatAxe| |twoFactor|
+ |oblateSpheroidal| |droot| |getDatabase| |removeSquaresIfCan|
+ |compose| |cos2sec| |d02ejf| |lprop| |tanhIfCan| |possiblyInfinite?|
+ |mapMatrixIfCan| |leftRecip| |idealiserMatrix| |OMgetEndBVar| |dom|
+ |paraboloidal| |coerceL| |asimpson| |primitivePart|
+ |singularAtInfinity?| |groebner| |Is| |set| |palgint| |subPolSet?|
+ |palglimint0| |lyndon?| |bumptab| |exprHasLogarithmicWeights|
+ |polCase| |compdegd| |difference| |/\\| |imaginary| |stop|
+ |normalizeAtInfinity| |leftTraceMatrix| |complexRoots| |setprevious!|
+ |insertTop!| |rightRemainder| |\\/| |polyRicDE| |topPredicate|
+ |setref| |rspace| |getMatch| |c02aff| |denominator| |f01brf|
+ |LazardQuotient2| |nil?| |oddlambert| |contours| |copies| |unit?|
+ |orthonormalBasis| |component| |horizConcat| |ScanRoman| |iisec|
+ |reorder| |title| |cAcos| |leftExtendedGcd| |expressIdealMember|
+ |overbar| |d02bbf| |f02awf| |leviCivitaSymbol| |shufflein|
+ |cyclicGroup| |exponentialOrder| |oddintegers| |decimal|
+ |explicitEntries?| |removeConstantTerm| |integer?| |sin2csc| |range|
+ |mesh?| |rangePascalTriangle| |factorial| |asinhIfCan| |s17adf|
+ |conjug| |sort| |stopTableGcd!| |lifting| |realEigenvalues|
+ |separateFactors| |routines| |e| |fortranReal| |balancedFactorisation|
+ |extractClosed| |OMgetBind| |numFunEvals3D| |lSpaceBasis| |calcRanges|
+ |algebraicCoefficients?| |shallowExpand| |critMTonD1| |quotient| |row|
+ |rootOf| |weakBiRank| |concat!| |changeWeightLevel| |directSum|
+ |composite| |in?| |ode2| F |GospersMethod| |mr| |reverse!| |c05nbf|
+ |totolex| |moebius| |showSummary| |getZechTable| |signAround|
+ |nthFractionalTerm| |show| |OMgetEndBind| |opeval| |OMputObject|
+ |largest| |pseudoRemainder| |contractSolve| |LiePolyIfCan|
+ |clipPointsDefault| |monomRDEsys| |completeHermite| |lex|
+ |monicDivide| |ramified?| |minimalPolynomial| |prod| |relerror|
+ |diagonal?| |musserTrials| |random| |showAttributes|
+ |mainCharacterization| |trace| |fintegrate| |s19acf| |unmakeSUP|
+ |back| |extendIfCan| |makeViewport3D| |besselI| |viewpoint|
+ |pushNewContour| |unvectorise| |lazyGintegrate|
+ |functionIsContinuousAtEndPoints| |endSubProgram| |rotate|
+ |numberOfPrimitivePoly| |rightUnit| |getlo| |usingTable?| |solve1|
+ |legendre| |selectNonFiniteRoutines| |HermiteIntegrate| |s21baf|
+ |appendPoint| |basisOfRightNucloid| |infinite?| |outputFloating|
+ |primaryDecomp| |leftRemainder|
+ |generalizedContinuumHypothesisAssumed|
+ |removeSuperfluousQuasiComponents| |normalDeriv| |noKaratsuba|
+ |complexNumericIfCan| |lowerCase?| |even?| |invertibleElseSplit?|
+ |sec2cos| |infRittWu?| |numFunEvals| |repeating?|
+ |useEisensteinCriterion| |cSec| |d03eef| |integralMatrixAtInfinity|
+ |iiGamma| |basisOfLeftNucleus| |extensionDegree| |subst| |port|
+ |cardinality| |mdeg| |lazyPseudoDivide| |graphStates| |omError|
+ |fracPart| |latex| |dihedral| |sizeLess?| |normalForm| |poisson|
+ |degree| |iroot| |f02adf| |OMcloseConn| |recolor| |redpps| |iiacos|
+ |changeThreshhold| |find| |leadingCoefficientRicDE| |moduloP|
+ |leadingIdeal| |OMReadError?| |collectUnder| |fprindINFO| |partition|
+ |cycles| |normalise| |width| |linearPart| |number?| |bombieriNorm| NOT
+ |doublyTransitive?| |coth2trigh| |factor1| |getRef| |normal01| |byte|
+ |extractTop!| |lyndonIfCan| |e01saf| OR |intensity| |bezoutResultant|
+ |setPrologue!| |reindex| |mapCoef| |zeroSquareMatrix| |elColumn2!|
+ |iiasech| |e04ucf| |f2st| |getSyntaxFormsFromFile| |factorPolynomial|
+ AND |conical| |setPoly| |plusInfinity| |lhs| |reify| |clearTheFTable|
+ |octon| |tan2cot| |cRationalPower| |compiledFunction|
+ |screenResolution3D| |ord| |isExpt| |idealiser| |split|
+ |minusInfinity| |rhs| |limit| |nor| |revert| |processTemplate|
+ |sqfree| |objects| |showTheIFTable| |basisOfNucleus| |positiveSolve|
+ |tablePow| |lowerCase| |showRegion| |monicRightDivide| |nullary|
+ |s17akf| |rightZero| |numericalIntegration| |constantKernel| |base|
+ |zero| |zeroSetSplit| |s17aff| |pr2dmp| |qroot| |univariate?| |f01mcf|
+ |s18adf| |validExponential| |patternMatchTimes| |iisqrt2| |fill!|
+ |optional| |logGamma| |redPol| |schema| |clikeUniv| |mathieu12|
+ |list?| |lazyIntegrate| |submod| |commutativeEquality| |every?|
+ |isPlus| |scopes| |And| |ListOfTerms| |symFunc| |e02ahf| |dequeue!|
+ |stosePrepareSubResAlgo| |derivationCoordinates| |initials| |s17dcf|
+ |integrate| |node| |Or| |OMencodingSGML| |maxIndex| |factorSquareFree|
+ |stirling1| |aCubic| |cyclicParents| |wholeRagits| |viewPosDefault|
+ |leftRank| |modularGcd| |palgint0| |Not| |dictionary|
+ |stoseInvertible?| |fortranCarriageReturn| |bernoulliB| |type|
+ |components| |getOperands| |useSingleFactorBound?| |quoted?| |module|
+ |scalarMatrix| |maxrank| |e02bdf| |scale| |represents| |cyclicCopy|
+ |sayLength| |tab1| |f02wef| |selectPDERoutines| |queue| |deepestTail|
+ |stiffnessAndStabilityFactor| |rowEchelon| |getMultiplicationMatrix| *
+ |arity| |logical?| |factorFraction| |cyclotomicDecomposition|
+ |quadraticNorm| |e01bhf| |cfirst| |monicRightFactorIfCan| |iiacot|
+ |cSin| |outputSpacing| |putColorInfo| |top| |laplace| |setEmpty!|
+ |numberOfChildren| |innerint| |sinhcosh| |sortConstraints| |sh|
+ |print| |airyAi| |normInvertible?| |lastSubResultantElseSplit|
+ |continue| |binary| |wholePart| |constant?| |eulerPhi| |setvalue!|
+ |mkcomm| |shiftRoots| |style| |sncndn| |s14baf| |interpolate|
+ |removeZero| |iisinh| |readable?| |approxSqrt| |restorePrecision|
+ |sort!| |birth| |OMgetApp| |axesColorDefault| |mainForm| |tableau|
+ |bfKeys| |exprHasAlgebraicWeight| |quasiAlgebraicSet| |primintegrate|
+ |cyclicSubmodule| |tree| |indicialEquationAtInfinity| |cons| |fmecg|
+ |previous| |xn| |seriesToOutputForm| |f01qef| |node?| |setfirst!|
+ |hermiteH| |janko2| |diophantineSystem| |ldf2vmf| |polar| |supersub|
+ |minPol| |inGroundField?| |totalDifferential| |setProperty!|
+ |linearAssociatedExp| |notelem| |genericLeftTraceForm| |nextColeman|
+ |diagonals| |headReduced?| |setPosition| |e02adf| |showScalarValues|
+ |plenaryPower| |setStatus!| |arrayStack| |neglist| |nonQsign|
+ |normal?| |equiv?| |gethi| |createIrreduciblePoly| |mapDown!|
+ |primitiveElement| |box| |level| |torsionIfCan| |prepareSubResAlgo|
+ |indicialEquation| |over| |absolutelyIrreducible?| |equation|
+ |getProperties| |collectUpper| |matrixConcat3D|
+ |unrankImproperPartitions1| |nextNormalPrimitivePoly| |c06ebf|
+ |sylvesterMatrix| |matrixGcd| |patternVariable| |contract|
+ |semiDiscriminantEuclidean| |reducedForm| |createNormalElement|
+ |specialTrigs| |viewWriteDefault| |e01bef| |imagJ| |gderiv| |pToHdmp|
+ |addBadValue| |An| |laurentIfCan| |solveLinearPolynomialEquation|
+ |coshIfCan| |iiexp| |bits| |fixedPoints| |palgLODE|
+ |extendedIntegrate| |flagFactor| |d01aqf| |rootOfIrreduciblePoly|
+ |monomRDE| |llprop| |printHeader| |mapUnivariateIfCan| |source|
+ |inspect| |iisin| |dec| |inf| |expintfldpoly| |reduceBasisAtInfinity|
+ |s18acf| |factorsOfDegree| |orbits| |closed?| |gramschmidt|
+ |stoseInvertible?reg| |push| |genericLeftMinimalPolynomial|
+ |minimumExponent| |binaryFunction| |linear| |generalInfiniteProduct|
+ |rightFactorCandidate| |showIntensityFunctions| |pmintegrate|
+ |inverseColeman| |removeRedundantFactors| |symmetricDifference|
+ |integralAtInfinity?| |BasicMethod| |postfix| |LyndonBasis|
+ |polygamma| |formula| |curryLeft| |xCoord| |getGraph| |upperCase?|
+ |complexSolve| |OMencodingBinary| |alternating| |swap| |polynomial|
+ |subHeight| |startStats!| |decreasePrecision| |setErrorBound|
+ |normalizedAssociate| |preprocess| |dimensions| |OMputBind|
+ |shrinkable| |f04mbf| |weights| |trapezoidal| |bright| |iisqrt3|
+ |split!| |partitions| |hasPredicate?| |target| |generalSqFr|
+ |definingPolynomial| |imagk| |rectangularMatrix| |notOperand|
+ |stronglyReduce| |bitTruth| |completeHensel| |maxPoints3D|
+ |rationalPoints| |rk4| |nullity| |doubleRank| |resultantEuclidean|
+ |dfRange| F2FG |nrows| |createThreeSpace| |quickSort|
+ |euclideanGroebner| |setScreenResolution| |internalZeroSetSplit|
+ |clip| |adjoint| |jacobi| |factorSFBRlcUnit| |bivariatePolynomials|
+ |twist| |setOfMinN| |principal?| |ncols| |completeEval| |f07aef|
+ |zero?| |characteristicPolynomial| |scripted?| |dark| |max| |property|
+ |semiResultantEuclideannaif| |removeRedundantFactorsInContents|
+ |subTriSet?| |stoseLastSubResultant| |discreteLog| |critM| |vectorise|
+ |is?| |graphCurves| |scaleRoots| |pushuconst| |nextsousResultant2|
+ |algSplitSimple| |partialFraction| |computeInt| |checkRur| |swapRows!|
+ |pointPlot| |comp| |child| |limitedIntegrate| |cPower| |monic?|
+ |remove!| |delete| |factorGroebnerBasis| |OMputVariable|
+ |atrapezoidal| |or?| |insertBottom!| |makeprod| |credPol| |result|
+ |mapdiv| |representationType| |units| |inverseLaplace| |listOfMonoms|
+ |leftFactorIfCan| |infiniteProduct| |stFuncN| |e04ycf| |elem?|
+ |isTimes| |traceMatrix| |resetVariableOrder| |unparse| |sPol| |sign|
+ |reducedContinuedFraction| |problemPoints| |Ei| |collectQuasiMonic|
+ |whatInfinity| |shallowCopy| |entry| |subresultantVector| |factorset|
+ |lfextlimint| |exp1| |defineProperty| |f01rdf| |branchIfCan| |Aleph|
+ |zeroMatrix| |sech2cosh| |untab| |setrest!| |innerSolve| |curry|
+ |subtractIfCan| |li| |writeLine!| |systemSizeIF| |stFunc1| |findCycle|
+ |probablyZeroDim?| |hexDigit| |code| |clearCache| |makeSin| |integral|
+ |monomialIntPoly| |elt| |pseudoQuotient| |coerceImages| |lookup|
+ |lazyPseudoRemainder| |rotate!| |intcompBasis| |dequeue| |choosemon|
+ |trunc| |splitDenominator| |e02bcf| |d01apf| |outlineRender|
+ |cartesian| |totalfract| |numer| |quasiComponent| |reduction|
+ |leftAlternative?| |df2st| |chebyshevT| |aQuadratic| |numeric|
+ |computeCycleEntry| |index?| |denom| |qqq| |e02def| |dn| |radical|
+ |rightMult| |e01baf| |schwerpunkt| |generic| |elRow2!| |rule|
+ |modularGcdPrimitive| |polygon| |f01qdf|
+ |removeRoughlyRedundantFactorsInContents| |quasiMonic?|
+ |cyclicEntries| |log10| |tanNa| |rdHack1| |pi| |tanh2trigh|
+ |singularitiesOf| |truncate| |createPrimitivePoly| |palginfieldint|
+ |parametric?| |chiSquare1| |bitand| |alternative?| |factorOfDegree|
+ |relationsIdeal| |infinity| |leftScalarTimes!| |loopPoints| |cotIfCan|
+ |headRemainder| |mainDefiningPolynomial| |splitNodeOf!| |iFTable|
+ |binarySearchTree| |semiResultantEuclidean1|
+ |ScanFloatIgnoreSpacesIfCan| |univariatePolynomial| |mapUp!|
+ |elementary| |generator| |functionIsFracPolynomial?|
+ |oddInfiniteProduct| |cubic| |s17ajf| |fractionPart|
+ |replaceKthElement| |stoseInvertibleSetsqfreg| |viewDefaults|
+ |genericLeftDiscriminant| |regularRepresentation| |simpson| |index|
+ |eigenvector| |writable?| |kmax| |kernel| |inverse|
+ |complexElementary| |genericLeftTrace| |imagE| |s14abf|
+ |moreAlgebraic?| |draw| |createPrimitiveNormalPoly| |mulmod|
+ |tensorProduct| |weight| |explicitlyEmpty?| |isobaric?| |cycleEntry|
+ |comment| |unrankImproperPartitions0| |option| |maxdeg|
+ |symmetricTensors| |sinIfCan| |nodes| |adaptive3D?| |bsolve|
+ |clearTable!| |OMputInteger| |cCos| |rightDivide| |deriv| |pair|
+ |splitLinear| |toseInvertible?| BY |edf2fi| |modularFactor| |cAcosh|
+ |separate| |position| |jacobian| |primintfldpoly| |mat| |order| |heap|
+ |nthExpon| |selectODEIVPRoutines| |e04naf| |mainContent|
+ |countRealRoots| |OMgetFloat| |nextNormalPoly| |mainVariable|
+ |binaryTournament| |makeObject| |iiacsc| |genericPosition|
+ |exprHasWeightCosWXorSinWX| |indicialEquations| |function| |iipow|
+ |variationOfParameters| |psolve| |stoseIntegralLastSubResultant|
+ |s13acf| |halfExtendedResultant1| |continuedFraction| |ratDenom|
+ |divisorCascade| |particularSolution| |OMclose| |lo| |iibinom|
+ |Lazard2| |basisOfLeftAnnihilator| |e02zaf| |infLex?| |coef| |hMonic|
+ |euler| |c06gsf| |gcdcofactprim| |incr| |isList| |Hausdorff| |root?|
+ |laplacian| |pow| |lfinfieldint| |selectfirst| |condition|
+ |OMsupportsSymbol?| |f04maf| |hi| |createLowComplexityNormalBasis|
+ |superHeight| |clipWithRanges| |ratDsolve| |wordInStrongGenerators|
+ |sincos| |viewThetaDefault| |spherical| |merge!| |cAsech| |intChoose|
+ |pdf2df| |numberOfHues| |e01sff| |setright!| |swap!|
+ |fullPartialFraction| |nothing| |addPoint| |digamma| |traverse|
+ |linearDependenceOverZ| |ratpart| |hconcat| |completeEchelonBasis|
+ |binaryTree| |padicFraction| |wreath| |imagK| |radicalOfLeftTraceForm|
+ |innerSolve1| |multiset| |d01alf| |OMlistCDs| |torsion?| |HenselLift|
+ |pushdown| |f07fef| |nthRootIfCan| |callForm?| |headReduce| |lift|
+ |setMinPoints| |ParCond| |irreducibleFactors| |mapUnivariate|
+ |diagonalMatrix| |tanSum| |endOfFile?| |edf2efi| FG2F |tail| |reduce|
+ |s21bcf| |alphanumeric?| |showTheFTable| |complex?| |subscript|
+ |semiIndiceSubResultantEuclidean| |unitNormal| |printTypes|
+ |constantLeft| |pattern| |position!| |integers| |externalList|
+ |f02agf| |triangSolve| |exactQuotient!| |hostPlatform| |multiple?|
+ |prevPrime| |outputAsTex| |pmComplexintegrate| |s19adf|
+ |basisOfRightAnnihilator| |partialDenominators| |att2Result|
+ |fortranLinkerArgs| |optAttributes| |viewDeltaXDefault| |df2fi|
+ |antiCommutative?| |reducedQPowers| |negative?|
+ |rewriteIdealWithHeadRemainder| |log| |cond| |lcm|
+ |integralRepresents| |erf| |localUnquote| |elliptic| |s18aef| |pop!|
+ |halfExtendedSubResultantGcd2| |returnTypeOf| |bfEntry|
+ |rationalIfCan| |atom?| |repeatUntilLoop| |curve?| |message|
+ |rationalPower| |ellipticCylindrical| |output| |green| |userOrdered?|
+ |branchPointAtInfinity?| |rightExtendedGcd| |append| |simplifyLog|
+ |ef2edf| |frst| |getVariableOrder| |outputList| |asinIfCan| |status|
+ |coleman| |stFunc2| |minimize| |viewport2D| |gcd| |build| |dilog|
+ |red| |generate| |leftMinimalPolynomial| |minPoints3D| |properties|
+ |stopTable!| |zeroVector| |points| |s17acf| |listexp| |false|
+ |splitSquarefree| |sin| |randomR| |e04gcf| |acothIfCan| |translate|
+ |minset| |nextSublist| |tubeRadiusDefault| |iicsch| |rightTrace|
+ |compile| |trueEqual| |cos| |derivative| |incrementBy| |setRealSteps|
+ |diff| |numberOfIrreduciblePoly| |characteristicSet| |ODESolve|
+ |OMgetSymbol| |d01fcf| |discriminantEuclidean| |bag| |iitanh| |tan|
+ |OMread| |expand| |reseed| = |numberOfVariables| |realElementary|
+ |simplify| |algintegrate| |radicalRoots| |cot| |numberOfComponents|
+ |decrease| |filterWhile| |eigenvectors| |const| |block| |entries|
+ |removeRoughlyRedundantFactorsInPol| |matrix| |leftOne| |OMopenFile|
+ |nary?| |#| |expenseOfEvaluation| |sec| |primextendedint|
+ |filterUntil| < |showTheRoutinesTable| |irreducibleFactor|
+ |oneDimensionalArray| |roughSubIdeal?| |swapColumns!| |slash|
+ |palgLODE0| |internalDecompose| |csc| |symmetricGroup| |select| >
+ |double| |BumInSepFFE| |removeDuplicates!| |LiePoly| |upperCase!|
+ |rotatey| |unit| |taylorQuoByVar| |asin| |charClass|
+ |linearDependence| |OMconnOutDevice| <=
+ |semiDegreeSubResultantEuclidean| |ignore?| |cCosh| |hasSolution?|
+ |removeCoshSq| |fortranLogical| |acos| |lieAdmissible?| >=
+ |maxRowIndex| |nodeOf?| |bivariateSLPEBR| |prindINFO|
+ |compactFraction| |normDeriv2| |delay| |atan| |dmpToP| |cSech|
+ |brillhartTrials| |Si| |nextSubsetGray| |orOperands| |subNodeOf?|
+ |solveInField| |besselY| |acot| |hclf| |bipolarCylindrical|
+ |critpOrder| |coordinates| |reducedSystem| |saturate|
+ |intPatternMatch| |pointColor| |triangularSystems| |asec|
+ |integralLastSubResultant| |copy!| |magnitude| |determinant| +
+ |OMsend| |fortranCharacter| |OMgetEndApp| |meshFun2Var|
+ |generalTwoFactor| |exprToGenUPS| |associator| |acsc| |makeRecord|
+ |totalLex| |sample| - ~= |sturmSequence| |rowEchLocal|
+ |var2StepsDefault| |euclideanSize| |tryFunctionalDecomposition|
+ |rootRadius| |complexForm| |sinh| |close| |super| |declare!| /
+ |datalist| |coerce| |quadratic?| |semiResultantReduitEuclidean|
+ |readLine!| |expPot| |perfectSqrt| |primeFactor| |cosh| |whileLoop|
+ |perfectNthRoot| |norm| |construct| |hexDigit?| |var1StepsDefault|
+ |rootPoly| |operators| |changeMeasure| |remove| |initial|
+ |genericLeftNorm| |tanh| |setFormula!| |display| |extendedint|
+ |lazyVariations| |eq?| |palglimint| |f02fjf| |OMputAtp| |members|
+ |checkPrecision| |indiceSubResultantEuclidean| |coth| |denominators|
+ |mainVariables| |rCoord| |stirling2| |flexibleArray| |makeResult|
+ |OMputEndBVar| |ridHack1| |last| |extendedSubResultantGcd| |sech|
+ |pomopo!| |positiveRemainder| |areEquivalent?| |duplicates| |assoc|
+ |approximants| |createMultiplicationTable| |rename|
+ |resetAttributeButtons| |iiacoth| |csubst| |csch| |point| |power!|
+ |coerceListOfPairs| |listBranches| |rank| |multisect|
+ |genericRightMinimalPolynomial| |companionBlocks| |setStatus|
+ |subset?| |clearTheSymbolTable| |simplifyExp| |asinh| |idealSimplify|
+ |cycleElt| |radicalEigenvectors| |countRealRootsMultiple| |fibonacci|
+ |composites| |insert!| |showClipRegion| |updatF| |blankSeparate|
+ |solveLinearlyOverQ| |acosh| |f04arf| |lquo| |deleteProperty!|
+ |setMaxPoints3D| |curveColorPalette| |semicolonSeparate| |pack!|
+ |e02baf| |powern| |lazyPrem| |puiseux| |hcrf| |atanh| |series|
+ |leftCharacteristicPolynomial| |mix| |fortranDoubleComplex|
+ |outputAsScript| |leftTrace| |extendedResultant| |mainCoefficients|
+ |trapezoidalo| |monomials| |screenResolution| |po| |acoth| |tower|
+ |subResultantGcdEuclidean| |coth2tanh| |lazyIrreducibleFactors|
+ |squareMatrix| |comparison| |irreducibleRepresentation|
+ |factorsOfCyclicGroupSize| |sinhIfCan| |host| |inv| |epilogue| |asech|
+ |testDim| |tube| |dimension| |B1solve| |linearPolynomials| |create|
+ |squareFreePrim| |inrootof| |ground?| |separateDegrees|
+ |wordsForStrongGenerators| |lists| |getStream| |changeVar|
+ |upDateBranches| |topFortranOutputStack| |possiblyNewVariety?|
+ |leftFactor| |pseudoDivide| |ground| |f07fdf| |multiple| |min|
+ |resetBadValues| |acotIfCan| |declare| |OMreceive| |digits|
+ |positive?| |nullSpace| |makeSketch| |rootKerSimp| |digit| |edf2df|
+ |applyQuote| |leadingMonomial| ~ |OMputEndAtp| |crushedSet| |segment|
+ |sylvesterSequence| |s18dcf| |definingEquations| |constructorName|
+ |midpoints| |showFortranOutputStack| |plot| |leadingCoefficient|
+ |gcdPrimitive| |transcendentalDecompose| |transcendent?|
+ |complexNumeric| |parabolicCylindrical| |distance| |subResultantChain|
+ |say| |infinityNorm| |f02ajf| |mathieu24| |f2df| |measure2Result|
+ |cSinh| |primitiveMonomials| |iicot| |OMconnInDevice| |open| |setelt|
+ |collect| |e01sef| |conjugate| |accuracyIF| |children|
+ |numberOfImproperPartitions| |initiallyReduced?| |kernels|
+ |jordanAdmissible?| |reductum| |ruleset| |goto| |inHallBasis?| |obj|
+ |bipolar| |rootSimp| |gcdPolynomial| |fractRadix| |smith|
+ |addPointLast| |fortranComplex| |vedf2vef| |e04fdf| |setVariableOrder|
+ |univariate| |ipow| |copy| |mapGen| |cache| |precision|
+ |readLineIfCan!| |iprint| |retract| |parametersOf| |exprToUPS|
+ |invertIfCan| |outputForm| |skewSFunction| |sin?| |c06gqf|
+ |halfExtendedResultant2| |low| |limitPlus| |localIntegralBasis|
+ |real?| |suchThat| |randnum| |cot2tan| |printStatement| |leftNorm|
+ |rightTraceMatrix| |bumprow| |polyPart| |kovacic| |commutator|
+ |groebSolve| |makeSUP| |overset?| |factor| |autoCoerce| |convergents|
+ |integralCoordinates| |leftLcm| |subNode?|
+ |semiSubResultantGcdEuclidean1| |viewSizeDefault| |biRank|
+ |currentScope| |reset| |perfectNthPower?| |recur| |hash| |sqrt|
+ |setRow!| |mirror| |f02aff| |hasHi| |polyred| |measure| |count|
+ |numberOfComposites| |tanintegrate| |rightRecip| |sturmVariationsOf|
+ |real| |leastAffineMultiple| |degreeSubResultantEuclidean| |rightLcm|
+ |argumentListOf| |addiag| |pastel| |cAcsc| |write| |bezoutMatrix|
+ |solid?| |OMgetEndAttr| |imag| |iisech| |primPartElseUnitCanonical!|
+ |firstDenom| |extractSplittingLeaf| |listOfLists| |acscIfCan| |save|
+ |hitherPlane| |directProduct| |binomThmExpt| |symmetricRemainder|
+ |hasTopPredicate?| |rightAlternative?| |fractRagits| |vconcat|
+ |conditionP| |doubleComplex?| |debug3D| |iCompose| |cCsch|
+ |rightCharacteristicPolynomial| |getOperator| |central?| |universe|
+ |algint| |stoseSquareFreePart| |e02ddf| |lagrange| |domainOf| |times!|
+ |s20adf| |destruct| |cyclePartition| |anfactor| |expandLog|
+ |groebnerFactorize| |region| |s15aef| |solve| |d02gbf| |rootPower|
+ |operation| |prinb| |sumOfKthPowerDivisors| |morphism|
+ |leadingExponent| |inverseIntegralMatrixAtInfinity| |tanIfCan|
+ |tRange| |rischDEsys| |linearMatrix| |factorSquareFreeByRecursion|
+ |unravel| |Ci| |radPoly| |curveColor| |OMputError| |recip| |constant|
+ |pair?| |removeSinSq| |identitySquareMatrix| |modTree|
+ |selectIntegrationRoutines| |minordet| |cylindrical| |iicos|
+ |rischNormalize| |genericRightTrace| |meshPar2Var| |makeViewport2D|
+ |internalAugment| |nullary?| |c06fqf| |extension| |monomial| |any|
+ |df2mf| |drawToScale| |c05adf| |coHeight| |one?| |radicalSolve|
+ |setLabelValue| |corrPoly| |multivariate| |presub| |zCoord| |extract!|
+ |arguments| |listConjugateBases| |sorted?| |clipSurface|
+ |integerIfCan| |subMatrix| |setScreenResolution3D| |variables|
+ |purelyAlgebraicLeadingMonomial?| |ceiling| |tubePointsDefault|
+ |squareFreeLexTriangular| |d01bbf| |resultantReduitEuclidean| |scan|
+ |cycleLength| |evaluate| |setnext!| |singular?| |distdfact|
+ |stripCommentsAndBlanks| |setAttributeButtonStep| |duplicates?|
+ |c06gbf| |less?| |algebraicVariables| |clearDenominator|
+ |transcendenceDegree| |search| |radicalSimplify| |normalizeIfCan|
+ |s19abf| |atanIfCan| |changeName| |leadingBasisTerm| |cAtan| |d02cjf|
+ |eq| |bandedHessian| |triangulate| |d02gaf| |wholeRadix|
+ |reducedDiscriminant| |singRicDE| |divideExponents|
+ |setLegalFortranSourceExtensions| |iter| |abelianGroup| |implies?|
+ |SturmHabicht| |padecf| |besselJ| |OMgetType| |vark|
+ |nextsubResultant2| |lowerCase!| |evenlambert| |rotatez|
+ |fortranDouble| |primitive?| |exprex| |f01qcf| |product|
+ |startTableGcd!| |f04adf| RF2UTS |taylor| |quasiMonicPolynomials|
+ |tryFunctionalDecomposition?| |quote| |mkPrim| |makeUnit| |cTan|
+ |OMsupportsCD?| |or| |chvar| |ffactor| |useEisensteinCriterion?|
+ |laurent| |ref| |generalPosition| |curryRight| |f04qaf| |part?|
+ |hdmpToP| |lazyPquo| |fTable| |float?| |ddFact| |badNum|
+ |kroneckerDelta| |OMmakeConn| |pointColorPalette| |extendedEuclidean|
+ |multMonom| |rewriteIdealWithQuasiMonicGenerators| |genus|
+ |inconsistent?| |leftDiscriminant| |semiLastSubResultantEuclidean|
+ |newLine| |bat| |rowEch| |internalLastSubResultant| |getMeasure|
+ |internalSubPolSet?| |fglmIfCan| |head| |permutationGroup| |setClosed|
+ |cup| |euclideanNormalForm| |numberOfDivisors| |prinshINFO| |exp|
+ |clearFortranOutputStack| |csch2sinh| |algebraic?| |symmetricPower|
+ |integerBound| |Vectorise| |complexEigenvectors| |freeOf?|
+ |rightPower| |exponents| |newSubProgram| |rightTrim| |charpol|
+ |polyRDE| |makeop| |getBadValues| |s17dgf| |physicalLength| |string?|
+ |iiasin| |rationalFunction| |leftTrim| |leftExactQuotient|
+ |rightExactQuotient| |toroidal| |trim| |ReduceOrder| |identityMatrix|
+ |removeSuperfluousCases| |moduleSum| |repSq| |overlabel|
+ |numberOfFractionalTerms| |increasePrecision| |argumentList!|
+ |quadraticForm| |patternMatch| |relativeApprox| |iiatanh| |e02akf|
+ |nthr| |safeCeiling| |factorials| |rangeIsFinite| |zoom| |changeBase|
+ |uniform01| |select!| |mathieu23| |delta|
+ |removeIrreducibleRedundantFactors| |d01gbf| |e02agf| |OMputSymbol|
+ |conditions| |listLoops| |interval| |enterPointData| |quatern|
+ |middle| |frobenius| |laguerre| |shuffle| |lllip| |match| |d03edf|
+ |ptree| |singleFactorBound| |mainMonomials| |alphabetic?|
+ |OMgetEndError| |trivialIdeal?| |se2rfi| |option?| |graphs| |call|
+ |OMencodingUnknown| |normalElement| |f02bjf| |rootsOf| |trigs2explogs|
+ |LyndonWordsList1| |sts2stst| |permutation| |monicModulo| |list|
+ |balancedBinaryTree| |dimensionOfIrreducibleRepresentation| |f01bsf|
+ |exQuo| |minimumDegree| |iilog| |prolateSpheroidal| |binomial|
+ |leader| |ode1| |car| |compound?| |aromberg| |hdmpToDmp|
+ |alphanumeric| |divisors| |realZeros| |quotientByP| |critBonD|
+ |c06eaf| |cdr| |reflect| |rroot| |round| |palgextint| |simpsono|
+ |constDsolve| |loadNativeModule| |expandTrigProducts| |inRadical?|
+ |karatsubaDivide| |setDifference| |nextItem| |addMatch| |ParCondList|
+ |npcoef| |nextPartition| |char| |zeroSetSplitIntoTriangularSystems|
+ |colorDef| |shellSort| |cot2trig| |setIntersection| |coordinate|
+ |purelyAlgebraic?| |quasiRegular?| |explimitedint| |groebgen|
+ |basicSet| |FormatRoman| |figureUnits| |lastSubResultant| |setUnion|
+ |generic?| |selectOrPolynomials| |totalGroebner| |substring?|
+ |legendreP| |setEpilogue!| |getProperty| |subQuasiComponent?|
+ |integral?| |pushucoef| |apply| |monicLeftDivide|
+ |linearAssociatedOrder| |powers| |outputFixed| |controlPanel|
+ |realSolve| |doubleFloatFormat| |leastPower| |e02daf| |setValue!|
+ |suffix?| |check| |rational?| |invertible?| |float| |finiteBound|
+ |void| |raisePolynomial| |printInfo!| |size| |critT| |imagi|
+ |cschIfCan| |irreducible?| |conditionsForIdempotents|
+ |lineColorDefault| |makeYoungTableau| |divideIfCan| |setProperties!|
+ |stopTableInvSet!| |prefix?| |extractProperty| |fortranLiteralLine|
+ |term| |retractable?| |associatedEquations| |cCsc| |divisor|
+ |wordInGenerators| |unprotectedRemoveRedundantFactors| |modifyPoint|
+ |taylorRep| |ideal| |mathieu11| |first| |OMencodingXML|
+ |basisOfLeftNucloid| |adaptive?| |linear?| |symmetric?| |identity|
+ |newReduc| |firstSubsetGray| |rest| |startTableInvSet!| |null|
+ |discriminant| |linearlyDependentOverZ?| |isMult| |showAllElements|
+ |implies| |beauzamyBound| |f02abf| |enumerate| |substitute|
+ |anticoord| |bracket| |case| |pointSizeDefault| |color| |eigenMatrix|
+ |integralMatrix| |scalarTypeOf| |removeDuplicates| |key|
+ |toseLastSubResultant| |Zero| |multiplyExponents| |subspace|
+ |extractBottom!| |unaryFunction| |xor| |padicallyExpand| |maxint|
+ |errorKind| |binding| |tubePlot| |LyndonCoordinates| |infix?| |One|
+ |regime| |autoReduced?| GE |pushup| |makeTerm| |s17dlf| |filename|
+ |createZechTable| |reopen!| |mask| |SturmHabichtSequence| |f04axf|
+ |assign| GT |double?| |pol| |toseSquareFreePart| |not?|
+ |innerEigenvectors| |basisOfMiddleNucleus| |zeroDimPrimary?| LE
+ |constantRight| |argument| |outputArgs| |parse| |surface| |copyInto!|
+ |mvar| |jordanAlgebra?| |e01bgf| LT |fixedDivisor| |setProperty|
+ |and?| |complexLimit| |infix| |purelyTranscendental?| |OMputEndBind|
+ |permanent| |space| |makeVariable| |compBound| |symbolTable| |label|
+ |retractIfCan| |leftQuotient| |homogeneous?| |dioSolve|
+ |tableForDiscreteLogarithm| |c06ekf| |ravel| |dmp2rfi| |graeffe| |dim|
+ |impliesOperands| |geometric| |OMgetAttr| |OMParseError?| |reshape|
+ |doubleResultant| |uniform| |pushFortranOutputStack| |putGraph|
+ |gbasis| |getMultiplicationTable| |genericRightNorm| |atoms|
+ |iteratedInitials| |uncouplingMatrices| |popFortranOutputStack| |root|
+ |string| |cosh2sech| |extend| |countable?| |e02bef|
+ |rationalApproximation| |crest| |s17dhf| |rightGcd| |floor|
+ |outputAsFortran| |firstUncouplingMatrix| |imagI| |airyBi|
+ |getPickedPoints| |nilFactor| |optpair| |direction| |qinterval|
+ |dmpToHdmp| |size?| |Gamma| |d01gaf| |divideIfCan!| |bernoulli|
+ |maxPoints| |maximumExponent| |isPower| |exponent| |mathieu22|
+ |update| |recoverAfterFail| |inverseIntegralMatrix| |cAsin|
+ |createGenericMatrix| |hasoln| |getOrder| |enqueue!| |KrullNumber|
+ |univariateSolve| |heapSort| |conjugates| |mantissa| |nthExponent|
+ |minPoly| |setAdaptive| |multiEuclidean| |rischDE| |lfintegrate|
+ |checkForZero| |dihedralGroup| |map| |lyndon| |physicalLength!|
+ |basis| |nextPrimitiveNormalPoly| |dAndcExp| |pointColorDefault|
+ |critB| |exponential1| |s17def| |setelt!| |f04mcf| |fortranLiteral|
+ |nextLatticePermutation| |badValues| |constantOpIfCan| |lllp|
+ |clearTheIFTable| |basisOfCenter| |PDESolve| |dflist| |OMputEndAttr|
+ |removeZeroes| |external?| |andOperands| |localReal?|
+ |rightFactorIfCan| |subresultantSequence| |second| |getConstant|
+ |normFactors| |rotatex| |var2Steps| |empty?| |charthRoot|
+ |reduceByQuasiMonic| |pdct| |third| |iiacosh| |setTex!| |removeSinhSq|
+ |normalize| |orbit| |convert| |categoryFrame| |createRandomElement|
+ |outputGeneral| |RittWuCompare| |univariatePolynomials| |script|
+ |iiasinh| |nsqfree| |shiftRight| |complexZeros| |lepol| |squareFree|
+ |laguerreL| |invertibleSet| |interpret| |monicCompleteDecompose|
+ |factorByRecursion| |mindeg| |vector| |complexIntegrate| |f01rcf|
+ |keys| |unitsColorDefault| |polarCoordinates| |axes| |leftMult|
+ |internalSubQuasiComponent?| |front| |differentiate| |eigenvalues|
+ |explogs2trigs| |rk4f| |weierstrass| |tex| |prime?|
+ |partialNumerators| |normalizedDivide| |drawStyle|
+ |createNormalPrimitivePoly| |characteristic| |cycleSplit!|
+ |setsubMatrix!| |rombergo| |remainder| |useNagFunctions| |inR?|
+ |clipParametric| |iiasec| |point?| |e01bff| |variable?| |setlast!|
+ |distribute| |f02aaf| |characteristicSerie| |imagj| |insertMatch|
+ |diag| |slex| |alphabetic| |lowerPolynomial| |zeroDim?| |yellow|
+ |paren| |semiResultantEuclidean2| |mergeFactors| |showAll?| |btwFact|
+ |setFieldInfo| |d03faf| |debug| |degreePartition| |lexGroebner| |dot|
+ |primlimitedint| |linGenPos| |basisOfCentroid| |qPot| |iifact| D
+ |predicate| |leftRankPolynomial| |stiffnessAndStabilityOfODEIF|
+ |f02bbf| |setButtonValue| |OMgetAtp| LODO2FUN |evenInfiniteProduct|
+ |fixedPointExquo| |column| |monomialIntegrate| |sechIfCan|
+ |differentialVariables| |makeFloatFunction| |sn| |bringDown|
+ |leftUnits| |makeGraphImage| |bindings| |parent|
+ |integralBasisAtInfinity| |rewriteSetWithReduction| |infieldIntegrate|
+ |solveRetract| |structuralConstants| |univcase| |sumOfSquares|
+ |movedPoints| |virtualDegree| |rational| |true| |palgintegrate|
+ |separant| |Lazard| |setCondition!| |cyclic| |splitConstant|
+ |basisOfRightNucleus| |getExplanations| |and| |brace| |OMopenString|
+ |leftDivide| |mainMonomial| |basisOfCommutingElements| |internal?|
+ |stoseInvertible?sqfreg| |resultant| |closeComponent| |leaves|
+ |powerSum| |transform| |laurentRep| |quadratic| |lp|
+ |linearAssociatedLog| |normalized?| |bezoutDiscriminant| |refine|
+ |genericRightTraceForm| |symbolIfCan| |aLinear| |logpart| |deepCopy|
+ |modifyPointData| |createPrimitiveElement| |c06ecf| |e02bbf| |cAcsch|
+ |errorInfo| |parameters| |d01akf| |sumSquares| |insertionSort!|
+ |phiCoord| |radicalEigenvalues| |value| |sup| |romberg|
+ |stoseInternalLastSubResultant| |nonLinearPart| |close!| |varselect|
+ |tubeRadius| |printStats!| |sum| |fillPascalTriangle| |iicosh|
+ |hyperelliptic| |minrank| |goodnessOfFit| |logIfCan| |log2|
+ |deepestInitial| |equality| |primlimintfrac| |groebnerIdeal|
+ |OMputEndApp| |associative?| |bitCoef| |coefficients| |makeEq|
+ |symmetricSquare| |univariatePolynomialsGcds|
+ |createLowComplexityTable| |unitCanonical| |e02gaf| |makeCos|
+ |PollardSmallFactor| |f04atf| |expt| |froot| |wronskianMatrix|
+ |d01anf| |s14aaf| |bumptab1| |odd?| |hex|
+ |removeRoughlyRedundantFactorsInPols| |zerosOf| |rarrow| |allRootsOf|
+ |rootDirectory| |optional?| |setMinPoints3D| |LyndonWordsList|
+ |s13aaf| |top!| |identification| |lieAlgebra?| |totalDegree|
+ |gcdcofact| |packageCall| |LagrangeInterpolation| |findBinding|
+ |socf2socdf| |leadingTerm| |generators| |selectsecond| |f04jgf|
+ |brillhartIrreducible?| |initiallyReduce| |concat| |s18def|
+ |powerAssociative?| |pointLists| |unitNormalize| |OMUnknownCD?|
+ |subSet| |fi2df| |mainValue| |redmat| |sdf2lst|
+ |constantToUnaryFunction| |randomLC| |elements| |addPoint2|
+ |atanhIfCan| |permutationRepresentation| |pdf2ef| |elRow1!|
+ |OMreadStr| |lflimitedint| |lazy?| |ScanArabic| |nextPrime|
+ |extractPoint| |yCoordinates| |id| |removeRedundantFactorsInPols|
+ |tan2trig| |e04mbf| |rdregime| |OMgetInteger| |infieldint|
+ |cyclicEqual?| |cscIfCan| |sparsityIF| |nthFactor| |permutations|
+ |chiSquare| |shade| |linearlyDependent?| |lazyPseudoQuotient|
+ |insertRoot!| |startTable!| |table| |roughEqualIdeals?| |denomLODE|
+ |polygon?| |getButtonValue| |qelt| |mainVariable?| |algebraicSort|
+ |pquo| |palgextint0| |dimensionsOf| |new| |OMgetObject| |cAtanh|
+ |setPredicates| |showTheSymbolTable| |pascalTriangle| |squareFreePart|
+ |completeSmith| |viewWriteAvailable| |powmod| |weighted| |minus!|
+ |cosSinInfo| |exquo| |rst| |fortranCompilerName| |xRange| |pole?|
+ |currentEnv| |cTanh| |computePowers| |tracePowMod| |mpsode| |div|
+ |yRange| |closedCurve| |Beta| |viewDeltaYDefault| |antiAssociative?|
+ |indices| |divergence| |rightOne| |cyclotomic| |quo| |applyRules|
+ |startPolynomial| |zRange| |rquo| |e02dff| |numberOfFactors| |cExp|
+ |numberOfMonomials| |complexNormalize| |rightMinimalPolynomial|
+ |equiv| |map!| |expint| |scanOneDimSubspaces| |OMgetString|
+ |selectFiniteRoutines| |rewriteIdealWithRemainder| |antisymmetric?|
+ |rem| |blue| |qsetelt!| |hspace| |mapSolve| |fullDisplay|
+ |LowTriBddDenomInv| |myDegree| |viewPhiDefault| |pade|
+ |generalizedEigenvectors| |pureLex| |createNormalPoly| |s17ahf|
+ |OMputApp| |satisfy?| |karatsuba| |e04dgf| |reciprocalPolynomial|
+ GF2FG |secIfCan| |typeLists| |extractIfCan| |highCommonTerms|
+ |diagonal| |leaf?| |nextPrimitivePoly| |mapmult| |parabolic|
+ |acschIfCan| |superscript| |roman| |tanQ| |fortran| |tab| |OMputBVar|
+ |expIfCan| |supRittWu?| |left| |redPo| |mainPrimitivePart|
+ |internalIntegrate| |acsch| |roughBasicSet|
+ |standardBasisOfCyclicSubmodule| |invmultisect| |bitLength|
+ |complexExpand| |right| |rootSplit| |zeroDimPrime?|
+ |internalInfRittWu?| |drawComplexVectorField| |minColIndex|
+ |moebiusMu| |roughUnitIdeal?| |setOrder| |perfectSquare?|
+ |numericIfCan| |pushdterm| |goodPoint| |s01eaf| |lintgcd| |rk4qc|
+ |rur| |unexpand| |coerceP| |init| |failed?| |monicDecomposeIfCan|
+ |roughBase?| |bandedJacobian| |initializeGroupForWordProblem| |curve|
+ |partialQuotients| |listRepresentation| |taylorIfCan| |interReduce|
+ |monomial?| |zeroDimensional?| |SturmHabichtMultiple| |ocf2ocdf|
+ |coord| |testModulus| |OMbindTCP| |commutative?| |not|
+ |associatedSystem| |terms| |coerceS| |withPredicates| |OMputEndObject|
+ |OMgetError| |merge| |push!| |rowEchelonLocal| |overlap| |sqfrFactor|
+ |iflist2Result| |OMputAttr| |pile| |cross| |getIdentifier| |seed|
+ |ranges| |f01ref| |integralBasis| |cycleTail| |d01ajf| |chebyshevU|
+ |OMgetVariable| |youngGroup| |varList| |primes| |rules| |center|
+ |solveLinearPolynomialEquationByRecursion| |mainKernel| |lfunc|
+ |light| |OMunhandledSymbol| |minGbasis| |OMreadFile| |tubePoints|
+ |deleteRoutine!| |delete!| |maxrow| |generalizedInverse| |key?|
+ |flexible?| |leadingIndex| |factors| |cothIfCan| |iiperm| |wrregime|
+ |rationalPoint?| |squareFreeFactors| |createMultiplicationMatrix|
+ |acoshIfCan| |e02dcf| |hermite| |bat1| |OMsetEncoding| |pointData|
+ |exponential| |quotedOperators| |f07adf| |toseInvertibleSet| |iitan|
+ |extractIndex| |f02akf| |nthRoot| |SFunction| |makeCrit| |aspFilename|
+ |quoByVar| |lazyEvaluate| |symbol| |expenseOfEvaluationIF| |gcdprim|
+ |OMputEndError| |rightUnits| |groebner?| |write!| |match?|
+ |selectPolynomials| |mapExponents| |antisymmetricTensors|
+ |associatorDependence| |coefChoose| |genericRightDiscriminant|
+ |meshPar1Var| |OMgetEndAtp| |divide| |makeFR| |cosIfCan|
+ |jacobiIdentity?| |create3Space| |cAcoth| |makingStats?|
+ |radicalEigenvector| |integer| |bitior| |escape| |linears|
+ |resultantnaif| ** |leastMonomial| |shiftLeft| |parts| |enterInCache|
+ |degreeSubResultant| |replace| |cCoth| |reduced?| |e04jaf|
+ |mightHaveRoots| |lastSubResultantEuclidean| |pleskenSplit| |quartic|
+ |cap| |iiatan| |exactQuotient| |safetyMargin| |move| |expextendedint|
+ |algDsolve| |f01maf| |s18aff| |has?| |simpleBounds?| |complement|
+ |mergeDifference| |iExquo| |f02axf| EQ |readIfCan!| |sub|
+ |RemainderList| |c06gcf| UTS2UP |numberOfComputedEntries| |typeList|
+ |denomRicDE| |midpoint| |null?| |iomode| |UpTriBddDenomInv|
+ |factorAndSplit| |lfextendedint| |inc| |primextintfrac|
+ |sumOfDivisors| |s20acf| |hessian| |chainSubResultants| |expandPower|
+ |numericalOptimization| |newTypeLists| |content| |viewZoomDefault|
+ |OMgetEndObject| |leftUnit| |s13adf| |decomposeFunc|
+ |SturmHabichtCoefficients| |setleaves!| |combineFeatureCompatibility|
+ |nativeModuleExtension| |integralDerivationMatrix| |isOp| |minPoints|
+ |var1Steps| |rename!| |vertConcat| |factorSquareFreePolynomial|
+ |leftRegularRepresentation| |lexico| SEGMENT |plus| |decompose|
+ |f04asf| |plotPolar| |prefix| |s21bdf| |finite?| |principalIdeal|
+ |objectOf| |e01daf| |factorList| |distFact| |addMatchRestricted|
+ |plus!| |minRowIndex| |f04faf| |df2ef| |iiabs| |sizeMultiplication|
+ |OMlistSymbols| |test| |printCode| |bottom!| |gradient| |sequences|
+ |asechIfCan| |sizePascalTriangle| |generalizedEigenvector|
+ |subResultantsChain| |palgRDE| |setAdaptive3D| |OMputFloat|
+ |realRoots| |definingInequation| |strongGenerators| |high|
+ |nextIrreduciblePoly| |hue| |stack| |interpretString| |any?| |s17aef|
+ |numberOfOperations| |ScanFloatIgnoreSpaces| |times| |bubbleSort!|
+ |showTypeInOutput| |diagonalProduct| |prologue| |iidsum| |graphImage|
+ |clipBoolean| |currentCategoryFrame| |alternatingGroup| |rootProduct|
+ |squareTop| |thetaCoord| |argscript| |name| |medialSet| |maxColIndex|
+ |upperCase| |resetNew| |commonDenominator| |error| |prefixRagits|
+ |constantOperator| |sinh2csch| |trace2PowMod| |bit?| |body|
+ |algebraicDecompose| |vspace| |selectAndPolynomials| |simplifyPower|
+ |indiceSubResultant| |assert| |fortranInteger| |increase|
+ |mapBivariate| |OMconnectTCP| |unitVector| |optimize| |closedCurve?|
+ |fractionFreeGauss!| |abs| |selectMultiDimensionalRoutines|
+ |halfExtendedSubResultantGcd1| |unary?| |pToDmp| |c02agf| |monom|
+ |approxNthRoot| |dominantTerm| |noncommutativeJordanAlgebra?|
+ |associates?| |tanh2coth| |stoseInvertibleSetreg| |drawCurves|
+ |primeFrobenius| |numerators| |subResultantGcd| |solveLinear| |mesh|
+ |term?| |rootNormalize| |viewport3D| |ksec| |matrixDimensions| |empty|
+ |setColumn!| |baseRDEsys| |reverseLex| |Frobenius| |makeSeries| |expr|
+ |FormatArabic| |arg1| |int| |bivariate?| |htrigs| |common|
+ |lexTriangular| |invmod| |rightQuotient| |coercePreimagesImages|
+ |mainSquareFreePart| |exists?| |exprToXXP| |mkAnswer| |arg2|
+ |antiCommutator| |besselK| |complexEigenvalues| |seriesSolve|
+ |LazardQuotient| |tValues| |ode| |OMwrite| |rightDiscriminant|
+ |d01amf| |someBasis| |rightRankPolynomial| |tanAn| |localAbs|
+ |stopMusserTrials| |knownInfBasis| |karatsubaOnce| |changeNameToObjf|
+ |addmod| |mapExpon| |contains?| |cAcot| |squareFreePolynomial| |power|
+ |iicoth| |rightNorm| |solid| |variable| |s19aaf| |numberOfCycles|
+ |minIndex| |perspective| |UP2ifCan| |realEigenvectors| |ricDsolve|
+ |semiSubResultantGcdEuclidean2| |nthCoef| |summation| |returns|
+ |exteriorDifferential| |prime| |internalIntegrate0| |predicates| |Nul|
+ |triangular?| |polynomialZeros| |OMputString| |more?| |insert|
+ |equivOperands| |subscriptedVariables| |failed| |forLoop| |intersect|
+ |computeCycleLength| |critMonD1| |harmonic| |rightScalarTimes!|
+ |drawComplex| |useSingleFactorBound| |square?|
+ |generalizedContinuumHypothesisAssumed?| |d02raf| |ran|
+ |linkToFortran| |element?| |t| |increment| |c06fpf| |getGoodPrime|
+ |complete| |iiacsch| |next| |finiteBasis| |branchPoint?|
+ |constantCoefficientRicDE| |doubleDisc| |asecIfCan| |nlde|
+ |numberOfNormalPoly| |radix| |OMgetBVar| |digit?| |normalDenom|
+ |entry?| |firstNumer| |isAbsolutelyIrreducible?| |removeCosSq|
+ |flatten| |trigs| |expintegrate| |acosIfCan| |ptFunc| |nand| |cn|
+ |e01sbf| |modulus| |backOldPos| |lambert| |palgRDE0| |UnVectorise|
+ |supDimElseRittWu?| |resultantEuclideannaif| |explicitlyFinite?|
+ |selectSumOfSquaresRoutines| |coefficient| |character?| |solveid|
+ |ramifiedAtInfinity?| |c05pbf| |generalLambert| |setchildren!|
+ |shanksDiscLogAlgorithm| |ldf2lst| |directory| |repeating|
+ |limitedint| |mindegTerm| |eval| |cAsinh| |nil| |isQuotient|
+ |reduceLODE| |showArrayValues| |leftZero| |noLinearFactor?| |reverse|
+ |algebraicOf| |c06fuf| |length| |colorFunction| |currentSubProgram|
+ |trailingCoefficient| |updateStatus!| |transpose| |leadingSupport|
+ |nonSingularModel| |d02bhf| |fixPredicate| |scripts| |exptMod|
+ |buildSyntax| |primitivePart!| |complementaryBasis| |operator|
+ |rightRank| Y |numerator| |lifting1| |resultantReduit| |headAst|
+ |f02aef| |leftGcd| |ratPoly| |prinpolINFO| |initTable!| |approximate|
+ |cycle| |leftPower| |getCurve| |symbolTableOf| |printInfo|
+ |eisensteinIrreducible?| |OMUnknownSymbol?| |outputMeasure| |op|
+ |complex| |edf2ef| |e02aef| |presuper| |printingInfo?| |systemCommand|
+ |solveLinearPolynomialEquationByFractions| |child?| |constantIfCan|
+ |evaluateInverse| |height| |incrementKthElement| |OMserve|
+ |selectOptimizationRoutines| |commaSeparate| |getCode|
+ |stoseInvertibleSet| |henselFact| |chineseRemainder| |graphState|
+ |lambda| |symmetricProduct| |multinomial| |boundOfCauchy| |prem|
+ |nthFlag| |rootBound| |connect| |eulerE| |setTopPredicate|
+ |outerProduct| |baseRDE| |adaptive| |fixedPoint| |zag| |cAsec|
+ |normal| |mkIntegral| |lighting| |functionIsOscillatory| |d01asf|
+ |iidprod| |yCoord| |generateIrredPoly| |eyeDistance| |toScale| |cLog|
+ |iicsc| |rewriteSetByReducingWithParticularGenerators| |belong?|
+ |cyclotomicFactorization| |member?| |rk4a| |multiEuclideanTree|
+ |s17agf| |symbol?| |zeroOf| |s15adf| |union| |consnewpol|
+ |setProperties| |shift| |augment| |rightRegularRepresentation|
+ |cycleRagits| |subCase?| |quasiRegular| |deepExpand| |cCot|
+ |setImagSteps| |deref| |returnType!| |depth| |multiplyCoefficients|
+ |intermediateResultsIF| |prepareDecompose| |s21bbf|
+ |lazyPremWithDefault| |primPartElseUnitCanonical| |setClipValue|
+ |makeMulti| |computeBasis| |input| |d02kef| |safeFloor| |resize|
+ |setleft!| |messagePrint| |aQuartic| UP2UTS |f02xef|
+ |lazyResidueClass| |options| |rubiksGroup| |qfactor| |setMaxPoints|
+ |updatD| |library| |linSolve| |hypergeometric0F1| |cyclic?|
+ |elliptic?| |listYoungTableaus| |open?| |nil| |infinite|
|arbitraryExponent| |approximate| |complex| |shallowMutable|
|canonical| |noetherian| |central| |partiallyOrderedSet|
|arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 2a91169d..26d296df 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4949 +1,4949 @@
-(3152502 . 3429209025)
-((-4038 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-4017 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2416 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 34)) (-1389 (($ $) 59)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1944 (((-530) (-1 (-110) |#2|) $) 22) (((-530) |#2| $) NIL) (((-530) |#2| $ (-530)) 73)) (-2456 (((-597 |#2|) $) 13)) (-3842 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2847 (($ (-1 |#2| |#2|) $) 29)) (-3114 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4016 (($ |#2| $ (-530)) NIL) (($ $ $ (-530)) 50)) (-4221 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-1505 (((-110) (-1 (-110) |#2|) $) 21)) (-1832 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL) (($ $ (-1148 (-530))) 49)) (-1778 (($ $ (-530)) 56) (($ $ (-1148 (-530))) 55)) (-2494 (((-719) (-1 (-110) |#2|) $) 26) (((-719) |#2| $) NIL)) (-4027 (($ $ $ (-530)) 52)) (-2441 (($ $) 51)) (-2268 (($ (-597 |#2|)) 53)) (-3476 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-597 $)) 62)) (-2258 (((-804) $) 69)) (-1515 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 72)) (-2172 (((-110) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4027 (|#1| |#1| |#1| (-530))) (-15 -4038 ((-110) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2416 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -2416 (|#2| |#1| (-530) |#2|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2456 ((-597 |#2|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|))) (-19 |#2|) (-1135)) (T -18))
+(3138576 . 3429259048)
+((-2741 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-1627 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2552 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 34)) (-1337 (($ $) 59)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2027 (((-530) (-1 (-110) |#2|) $) 22) (((-530) |#2| $) NIL) (((-530) |#2| $ (-530)) 73)) (-3779 (((-597 |#2|) $) 13)) (-3683 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3583 (($ (-1 |#2| |#2|) $) 29)) (-3217 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4028 (($ |#2| $ (-530)) NIL) (($ $ $ (-530)) 50)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-1533 (((-110) (-1 (-110) |#2|) $) 21)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL) (($ $ (-1148 (-530))) 49)) (-1843 (($ $ (-530)) 56) (($ $ (-1148 (-530))) 55)) (-2632 (((-719) (-1 (-110) |#2|) $) 26) (((-719) |#2| $) NIL)) (-3121 (($ $ $ (-530)) 52)) (-2579 (($ $) 51)) (-2377 (($ (-597 |#2|)) 53)) (-3483 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-597 $)) 62)) (-2366 (((-804) $) 69)) (-3889 (((-110) (-1 (-110) |#2|) $) 20)) (-2248 (((-110) $ $) 72)) (-2272 (((-110) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -2741 ((-110) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|))) (-19 |#2|) (-1135)) (T -18))
NIL
-(-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -4027 (|#1| |#1| |#1| (-530))) (-15 -4038 ((-110) |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2416 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -2416 (|#2| |#1| (-530) |#2|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2456 ((-597 |#2|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-1944 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 70)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -2741 ((-110) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-19 |#1|) (-133) (-1135)) (T -19))
NIL
-(-13 (-354 |t#1|) (-10 -7 (-6 -4271)))
-(((-33) . T) ((-99) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-3618 (((-3 $ "failed") $ $) 12)) (-2245 (($ $) NIL) (($ $ $) 9)) (* (($ (-862) $) NIL) (($ (-719) $) 16) (($ (-530) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -3618 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-21)) (T -20))
+(-13 (-354 |t#1|) (-10 -7 (-6 -4270)))
+(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
+((-1889 (((-3 $ "failed") $ $) 12)) (-2351 (($ $) NIL) (($ $ $) 9)) (* (($ (-862) $) NIL) (($ (-719) $) 16) (($ (-530) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1889 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -3618 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
+(-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1889 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
(((-21) (-133)) (T -21))
-((-2245 (*1 *1 *1) (-4 *1 (-21))) (-2245 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530)))))
-(-13 (-128) (-10 -8 (-15 -2245 ($ $)) (-15 -2245 ($ $ $)) (-15 * ($ (-530) $))))
+((-2351 (*1 *1 *1) (-4 *1 (-21))) (-2351 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530)))))
+(-13 (-128) (-10 -8 (-15 -2351 ($ $)) (-15 -2351 ($ $ $)) (-15 * ($ (-530) $))))
(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3015 (((-110) $) 10)) (-3956 (($) 15)) (* (($ (-862) $) 14) (($ (-719) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 -3956 (|#1|)) (-15 * (|#1| (-862) |#1|))) (-23)) (T -22))
+((-1813 (((-110) $) 10)) (-2350 (($) 15)) (* (($ (-862) $) 14) (($ (-719) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 * (|#1| (-862) |#1|))) (-23)) (T -22))
NIL
-(-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 -3956 (|#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
+(-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 * (|#1| (-862) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
(((-23) (-133)) (T -23))
-((-2943 (*1 *1) (-4 *1 (-23))) (-3956 (*1 *1) (-4 *1 (-23))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719)))))
-(-13 (-25) (-10 -8 (-15 (-2943) ($) -2562) (-15 -3956 ($) -2562) (-15 -3015 ((-110) $)) (-15 * ($ (-719) $))))
+((-3080 (*1 *1) (-4 *1 (-23))) (-2350 (*1 *1) (-4 *1 (-23))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719)))))
+(-13 (-25) (-10 -8 (-15 (-3080) ($) -2708) (-15 -2350 ($) -2708) (-15 -1813 ((-110) $)) (-15 * ($ (-719) $))))
(((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
((* (($ (-862) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-862) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13)))
+((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13)))
(((-25) (-133)) (T -25))
-((-2234 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 -2234 ($ $ $)) (-15 * ($ (-862) $))))
+((-2339 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862)))))
+(-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ (-862) $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2728 (((-597 $) (-893 $)) 29) (((-597 $) (-1095 $)) 16) (((-597 $) (-1095 $) (-1099)) 20)) (-4101 (($ (-893 $)) 27) (($ (-1095 $)) 11) (($ (-1095 $) (-1099)) 54)) (-4115 (((-597 $) (-893 $)) 30) (((-597 $) (-1095 $)) 18) (((-597 $) (-1095 $) (-1099)) 19)) (-4189 (($ (-893 $)) 28) (($ (-1095 $)) 13) (($ (-1095 $) (-1099)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2728 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2728 ((-597 |#1|) (-1095 |#1|))) (-15 -2728 ((-597 |#1|) (-893 |#1|))) (-15 -4101 (|#1| (-1095 |#1|) (-1099))) (-15 -4101 (|#1| (-1095 |#1|))) (-15 -4101 (|#1| (-893 |#1|))) (-15 -4115 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -4115 ((-597 |#1|) (-1095 |#1|))) (-15 -4115 ((-597 |#1|) (-893 |#1|))) (-15 -4189 (|#1| (-1095 |#1|) (-1099))) (-15 -4189 (|#1| (-1095 |#1|))) (-15 -4189 (|#1| (-893 |#1|)))) (-27)) (T -26))
+((-3460 (((-597 $) (-893 $)) 29) (((-597 $) (-1095 $)) 16) (((-597 $) (-1095 $) (-1099)) 20)) (-4202 (($ (-893 $)) 27) (($ (-1095 $)) 11) (($ (-1095 $) (-1099)) 54)) (-2933 (((-597 $) (-893 $)) 30) (((-597 $) (-1095 $)) 18) (((-597 $) (-1095 $) (-1099)) 19)) (-1326 (($ (-893 $)) 28) (($ (-1095 $)) 13) (($ (-1095 $) (-1099)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|)))) (-27)) (T -26))
NIL
-(-10 -8 (-15 -2728 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2728 ((-597 |#1|) (-1095 |#1|))) (-15 -2728 ((-597 |#1|) (-893 |#1|))) (-15 -4101 (|#1| (-1095 |#1|) (-1099))) (-15 -4101 (|#1| (-1095 |#1|))) (-15 -4101 (|#1| (-893 |#1|))) (-15 -4115 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -4115 ((-597 |#1|) (-1095 |#1|))) (-15 -4115 ((-597 |#1|) (-893 |#1|))) (-15 -4189 (|#1| (-1095 |#1|) (-1099))) (-15 -4189 (|#1| (-1095 |#1|))) (-15 -4189 (|#1| (-893 |#1|))))
-((-2246 (((-110) $ $) 7)) (-2728 (((-597 $) (-893 $)) 80) (((-597 $) (-1095 $)) 79) (((-597 $) (-1095 $) (-1099)) 78)) (-4101 (($ (-893 $)) 83) (($ (-1095 $)) 82) (($ (-1095 $) (-1099)) 81)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-2487 (($ $) 92)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-4115 (((-597 $) (-893 $)) 86) (((-597 $) (-1095 $)) 85) (((-597 $) (-1095 $) (-1099)) 84)) (-4189 (($ (-893 $)) 89) (($ (-1095 $)) 88) (($ (-1095 $) (-1099)) 87)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 91)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68) (($ $ (-388 (-530))) 90)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+(-10 -8 (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|))))
+((-2352 (((-110) $ $) 7)) (-3460 (((-597 $) (-893 $)) 77) (((-597 $) (-1095 $)) 76) (((-597 $) (-1095 $) (-1099)) 75)) (-4202 (($ (-893 $)) 80) (($ (-1095 $)) 79) (($ (-1095 $) (-1099)) 78)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 89)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-2933 (((-597 $) (-893 $)) 83) (((-597 $) (-1095 $)) 82) (((-597 $) (-1095 $) (-1099)) 81)) (-1326 (($ (-893 $)) 86) (($ (-1095 $)) 85) (($ (-1095 $) (-1099)) 84)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 87)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-27) (-133)) (T -27))
-((-4189 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-4189 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-4189 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-4101 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))))
-(-13 (-344) (-941) (-10 -8 (-15 -4189 ($ (-893 $))) (-15 -4189 ($ (-1095 $))) (-15 -4189 ($ (-1095 $) (-1099))) (-15 -4115 ((-597 $) (-893 $))) (-15 -4115 ((-597 $) (-1095 $))) (-15 -4115 ((-597 $) (-1095 $) (-1099))) (-15 -4101 ($ (-893 $))) (-15 -4101 ($ (-1095 $))) (-15 -4101 ($ (-1095 $) (-1099))) (-15 -2728 ((-597 $) (-893 $))) (-15 -2728 ((-597 $) (-1095 $))) (-15 -2728 ((-597 $) (-1095 $) (-1099)))))
+((-1326 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-1326 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-1326 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))))
+(-13 (-344) (-941) (-10 -8 (-15 -1326 ($ (-893 $))) (-15 -1326 ($ (-1095 $))) (-15 -1326 ($ (-1095 $) (-1099))) (-15 -2933 ((-597 $) (-893 $))) (-15 -2933 ((-597 $) (-1095 $))) (-15 -2933 ((-597 $) (-1095 $) (-1099))) (-15 -4202 ($ (-893 $))) (-15 -4202 ($ (-1095 $))) (-15 -4202 ($ (-1095 $) (-1099))) (-15 -3460 ((-597 $) (-893 $))) (-15 -3460 ((-597 $) (-1095 $))) (-15 -3460 ((-597 $) (-1095 $) (-1099)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-941) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2728 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 50) (((-597 $) $) 19) (((-597 $) $ (-1099)) 41)) (-4101 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) 52) (($ $) 17) (($ $ (-1099)) 37)) (-4115 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 48) (((-597 $) $) 15) (((-597 $) $ (-1099)) 43)) (-4189 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) NIL) (($ $) 12) (($ $ (-1099)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2728 ((-597 |#1|) |#1| (-1099))) (-15 -4101 (|#1| |#1| (-1099))) (-15 -2728 ((-597 |#1|) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4115 ((-597 |#1|) |#1| (-1099))) (-15 -4189 (|#1| |#1| (-1099))) (-15 -4115 ((-597 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -2728 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2728 ((-597 |#1|) (-1095 |#1|))) (-15 -2728 ((-597 |#1|) (-893 |#1|))) (-15 -4101 (|#1| (-1095 |#1|) (-1099))) (-15 -4101 (|#1| (-1095 |#1|))) (-15 -4101 (|#1| (-893 |#1|))) (-15 -4115 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -4115 ((-597 |#1|) (-1095 |#1|))) (-15 -4115 ((-597 |#1|) (-893 |#1|))) (-15 -4189 (|#1| (-1095 |#1|) (-1099))) (-15 -4189 (|#1| (-1095 |#1|))) (-15 -4189 (|#1| (-893 |#1|)))) (-29 |#2|) (-13 (-795) (-522))) (T -28))
+((-3460 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 50) (((-597 $) $) 19) (((-597 $) $ (-1099)) 41)) (-4202 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) 52) (($ $) 17) (($ $ (-1099)) 37)) (-2933 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 48) (((-597 $) $) 15) (((-597 $) $ (-1099)) 43)) (-1326 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) NIL) (($ $) 12) (($ $ (-1099)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3460 ((-597 |#1|) |#1| (-1099))) (-15 -4202 (|#1| |#1| (-1099))) (-15 -3460 ((-597 |#1|) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2933 ((-597 |#1|) |#1| (-1099))) (-15 -1326 (|#1| |#1| (-1099))) (-15 -2933 ((-597 |#1|) |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|)))) (-29 |#2|) (-13 (-795) (-522))) (T -28))
NIL
-(-10 -8 (-15 -2728 ((-597 |#1|) |#1| (-1099))) (-15 -4101 (|#1| |#1| (-1099))) (-15 -2728 ((-597 |#1|) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4115 ((-597 |#1|) |#1| (-1099))) (-15 -4189 (|#1| |#1| (-1099))) (-15 -4115 ((-597 |#1|) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -2728 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2728 ((-597 |#1|) (-1095 |#1|))) (-15 -2728 ((-597 |#1|) (-893 |#1|))) (-15 -4101 (|#1| (-1095 |#1|) (-1099))) (-15 -4101 (|#1| (-1095 |#1|))) (-15 -4101 (|#1| (-893 |#1|))) (-15 -4115 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -4115 ((-597 |#1|) (-1095 |#1|))) (-15 -4115 ((-597 |#1|) (-893 |#1|))) (-15 -4189 (|#1| (-1095 |#1|) (-1099))) (-15 -4189 (|#1| (-1095 |#1|))) (-15 -4189 (|#1| (-893 |#1|))))
-((-2246 (((-110) $ $) 7)) (-2728 (((-597 $) (-893 $)) 80) (((-597 $) (-1095 $)) 79) (((-597 $) (-1095 $) (-1099)) 78) (((-597 $) $) 126) (((-597 $) $ (-1099)) 124)) (-4101 (($ (-893 $)) 83) (($ (-1095 $)) 82) (($ (-1095 $) (-1099)) 81) (($ $) 127) (($ $ (-1099)) 125)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1099)) $) 201)) (-2439 (((-388 (-1095 $)) $ (-570 $)) 233 (|has| |#1| (-522)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-2350 (((-597 (-570 $)) $) 164)) (-3618 (((-3 $ "failed") $ $) 19)) (-3155 (($ $ (-597 (-570 $)) (-597 $)) 154) (($ $ (-597 (-276 $))) 153) (($ $ (-276 $)) 152)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-2487 (($ $) 92)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-4115 (((-597 $) (-893 $)) 86) (((-597 $) (-1095 $)) 85) (((-597 $) (-1095 $) (-1099)) 84) (((-597 $) $) 130) (((-597 $) $ (-1099)) 128)) (-4189 (($ (-893 $)) 89) (($ (-1095 $)) 88) (($ (-1095 $) (-1099)) 87) (($ $) 131) (($ $ (-1099)) 129)) (-3012 (((-3 (-893 |#1|) "failed") $) 251 (|has| |#1| (-984))) (((-3 (-388 (-893 |#1|)) "failed") $) 235 (|has| |#1| (-522))) (((-3 |#1| "failed") $) 197) (((-3 (-530) "failed") $) 195 (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) 188) (((-3 (-570 $) "failed") $) 139) (((-3 (-388 (-530)) "failed") $) 123 (-1476 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2446 (((-893 |#1|) $) 252 (|has| |#1| (-984))) (((-388 (-893 |#1|)) $) 236 (|has| |#1| (-522))) ((|#1| $) 198) (((-530) $) 194 (|has| |#1| (-975 (-530)))) (((-1099) $) 189) (((-570 $) $) 140) (((-388 (-530)) $) 122 (-1476 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3607 (($ $ $) 55)) (-1298 (((-637 |#1|) (-637 $)) 241 (|has| |#1| (-984))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 240 (|has| |#1| (-984))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 121 (-1476 (-3340 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3340 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (((-637 (-530)) (-637 $)) 120 (-1476 (-3340 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3340 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 193 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 192 (|has| |#1| (-827 (-530))))) (-2986 (($ (-597 $)) 158) (($ $) 157)) (-2676 (((-597 (-112)) $) 165)) (-2221 (((-112) (-112)) 166)) (-3150 (((-110) $) 31)) (-1555 (((-110) $) 186 (|has| $ (-975 (-530))))) (-2854 (($ $) 218 (|has| |#1| (-984)))) (-1848 (((-1051 |#1| (-570 $)) $) 217 (|has| |#1| (-984)))) (-1817 (($ $ (-530)) 91)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2657 (((-1095 $) (-570 $)) 183 (|has| $ (-984)))) (-4194 (($ $ $) 137)) (-1757 (($ $ $) 136)) (-3114 (($ (-1 $ $) (-570 $)) 172)) (-2685 (((-3 (-570 $) "failed") $) 162)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2422 (((-597 (-570 $)) $) 163)) (-1912 (($ (-112) (-597 $)) 171) (($ (-112) $) 170)) (-2457 (((-3 (-597 $) "failed") $) 212 (|has| |#1| (-1039)))) (-2479 (((-3 (-2 (|:| |val| $) (|:| -3059 (-530))) "failed") $) 221 (|has| |#1| (-984)))) (-3691 (((-3 (-597 $) "failed") $) 214 (|has| |#1| (-25)))) (-3500 (((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2467 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-1099)) 220 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-112)) 219 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $) 213 (|has| |#1| (-1039)))) (-2300 (((-110) $ (-1099)) 169) (((-110) $ (-112)) 168)) (-2359 (($ $) 70)) (-4150 (((-719) $) 161)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 199)) (-2375 ((|#1| $) 200)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2667 (((-110) $ (-1099)) 174) (((-110) $ $) 173)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1565 (((-110) $) 185 (|has| $ (-975 (-530))))) (-4084 (($ $ (-1099) (-719) (-1 $ $)) 225 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 224 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 223 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 222 (|has| |#1| (-984))) (($ $ (-597 (-112)) (-597 $) (-1099)) 211 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 210 (|has| |#1| (-572 (-506)))) (($ $) 209 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 208 (|has| |#1| (-572 (-506)))) (($ $ (-1099)) 207 (|has| |#1| (-572 (-506)))) (($ $ (-112) (-1 $ $)) 182) (($ $ (-112) (-1 $ (-597 $))) 181) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 180) (($ $ (-597 (-112)) (-597 (-1 $ $))) 179) (($ $ (-1099) (-1 $ $)) 178) (($ $ (-1099) (-1 $ (-597 $))) 177) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 176) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 175) (($ $ (-597 $) (-597 $)) 146) (($ $ $ $) 145) (($ $ (-276 $)) 144) (($ $ (-597 (-276 $))) 143) (($ $ (-597 (-570 $)) (-597 $)) 142) (($ $ (-570 $) $) 141)) (-1934 (((-719) $) 58)) (-1832 (($ (-112) (-597 $)) 151) (($ (-112) $ $ $ $) 150) (($ (-112) $ $ $) 149) (($ (-112) $ $) 148) (($ (-112) $) 147)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2695 (($ $ $) 160) (($ $) 159)) (-3211 (($ $ (-1099)) 249 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 248 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 247 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 246 (|has| |#1| (-984)))) (-2842 (($ $) 228 (|has| |#1| (-522)))) (-1857 (((-1051 |#1| (-570 $)) $) 227 (|has| |#1| (-522)))) (-4212 (($ $) 184 (|has| $ (-984)))) (-3173 (((-506) $) 255 (|has| |#1| (-572 (-506)))) (($ (-399 $)) 226 (|has| |#1| (-522))) (((-833 (-360)) $) 191 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 190 (|has| |#1| (-572 (-833 (-530)))))) (-1800 (($ $ $) 254 (|has| |#1| (-453)))) (-1527 (($ $ $) 253 (|has| |#1| (-453)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ (-893 |#1|)) 250 (|has| |#1| (-984))) (($ (-388 (-893 |#1|))) 234 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 232 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 231 (|has| |#1| (-522))) (($ (-388 |#1|)) 230 (|has| |#1| (-522))) (($ (-1051 |#1| (-570 $))) 216 (|has| |#1| (-984))) (($ |#1|) 196) (($ (-1099)) 187) (($ (-570 $)) 138)) (-1795 (((-3 $ "failed") $) 239 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3998 (($ (-597 $)) 156) (($ $) 155)) (-2212 (((-110) (-112)) 167)) (-3020 (((-110) $ $) 39)) (-2386 (($ (-1099) (-597 $)) 206) (($ (-1099) $ $ $ $) 205) (($ (-1099) $ $ $) 204) (($ (-1099) $ $) 203) (($ (-1099) $) 202)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1099)) 245 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 244 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 243 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 242 (|has| |#1| (-984)))) (-2204 (((-110) $ $) 134)) (-2182 (((-110) $ $) 133)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 135)) (-2172 (((-110) $ $) 132)) (-2257 (($ $ $) 64) (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 229 (|has| |#1| (-522)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68) (($ $ (-388 (-530))) 90)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-162))) (($ |#1| $) 237 (|has| |#1| (-162)))))
+(-10 -8 (-15 -3460 ((-597 |#1|) |#1| (-1099))) (-15 -4202 (|#1| |#1| (-1099))) (-15 -3460 ((-597 |#1|) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2933 ((-597 |#1|) |#1| (-1099))) (-15 -1326 (|#1| |#1| (-1099))) (-15 -2933 ((-597 |#1|) |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|))))
+((-2352 (((-110) $ $) 7)) (-3460 (((-597 $) (-893 $)) 77) (((-597 $) (-1095 $)) 76) (((-597 $) (-1095 $) (-1099)) 75) (((-597 $) $) 123) (((-597 $) $ (-1099)) 121)) (-4202 (($ (-893 $)) 80) (($ (-1095 $)) 79) (($ (-1095 $) (-1099)) 78) (($ $) 124) (($ $ (-1099)) 122)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1099)) $) 198)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 230 (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2473 (((-597 (-570 $)) $) 161)) (-1889 (((-3 $ "failed") $ $) 19)) (-1416 (($ $ (-597 (-570 $)) (-597 $)) 151) (($ $ (-597 (-276 $))) 150) (($ $ (-276 $)) 149)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 89)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-2933 (((-597 $) (-893 $)) 83) (((-597 $) (-1095 $)) 82) (((-597 $) (-1095 $) (-1099)) 81) (((-597 $) $) 127) (((-597 $) $ (-1099)) 125)) (-1326 (($ (-893 $)) 86) (($ (-1095 $)) 85) (($ (-1095 $) (-1099)) 84) (($ $) 128) (($ $ (-1099)) 126)) (-3139 (((-3 (-893 |#1|) "failed") $) 248 (|has| |#1| (-984))) (((-3 (-388 (-893 |#1|)) "failed") $) 232 (|has| |#1| (-522))) (((-3 |#1| "failed") $) 194) (((-3 (-530) "failed") $) 192 (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) 185) (((-3 (-570 $) "failed") $) 136) (((-3 (-388 (-530)) "failed") $) 120 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-893 |#1|) $) 249 (|has| |#1| (-984))) (((-388 (-893 |#1|)) $) 233 (|has| |#1| (-522))) ((|#1| $) 195) (((-530) $) 191 (|has| |#1| (-975 (-530)))) (((-1099) $) 186) (((-570 $) $) 137) (((-388 (-530)) $) 119 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) 53)) (-2329 (((-637 |#1|) (-637 $)) 238 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 237 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 118 (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (((-637 (-530)) (-637 $)) 117 (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 190 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 189 (|has| |#1| (-827 (-530))))) (-3324 (($ (-597 $)) 155) (($ $) 154)) (-2381 (((-597 (-112)) $) 162)) (-4124 (((-112) (-112)) 163)) (-2731 (((-110) $) 30)) (-3457 (((-110) $) 183 (|has| $ (-975 (-530))))) (-4127 (($ $) 215 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 214 (|has| |#1| (-984)))) (-3741 (($ $ (-530)) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-3210 (((-1095 $) (-570 $)) 180 (|has| $ (-984)))) (-2508 (($ $ $) 134)) (-1817 (($ $ $) 133)) (-3217 (($ (-1 $ $) (-570 $)) 169)) (-3707 (((-3 (-570 $) "failed") $) 159)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 160)) (-1990 (($ (-112) (-597 $)) 168) (($ (-112) $) 167)) (-1862 (((-3 (-597 $) "failed") $) 209 (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 218 (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 211 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 212 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 217 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 216 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 210 (|has| |#1| (-1039)))) (-1826 (((-110) $ (-1099)) 166) (((-110) $ (-112)) 165)) (-2483 (($ $) 67)) (-4156 (((-719) $) 158)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 196)) (-2505 ((|#1| $) 197)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2861 (((-110) $ (-1099)) 171) (((-110) $ $) 170)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-1403 (((-110) $) 182 (|has| $ (-975 (-530))))) (-4098 (($ $ (-1099) (-719) (-1 $ $)) 222 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 221 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 220 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 219 (|has| |#1| (-984))) (($ $ (-597 (-112)) (-597 $) (-1099)) 208 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 207 (|has| |#1| (-572 (-506)))) (($ $) 206 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 205 (|has| |#1| (-572 (-506)))) (($ $ (-1099)) 204 (|has| |#1| (-572 (-506)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-597 $))) 178) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 177) (($ $ (-597 (-112)) (-597 (-1 $ $))) 176) (($ $ (-1099) (-1 $ $)) 175) (($ $ (-1099) (-1 $ (-597 $))) 174) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 173) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 172) (($ $ (-597 $) (-597 $)) 143) (($ $ $ $) 142) (($ $ (-276 $)) 141) (($ $ (-597 (-276 $))) 140) (($ $ (-597 (-570 $)) (-597 $)) 139) (($ $ (-570 $) $) 138)) (-2356 (((-719) $) 56)) (-1902 (($ (-112) (-597 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3313 (($ $ $) 157) (($ $) 156)) (-3289 (($ $ (-1099)) 246 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 245 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 244 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 243 (|has| |#1| (-984)))) (-1269 (($ $) 225 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 224 (|has| |#1| (-522)))) (-1781 (($ $) 181 (|has| $ (-984)))) (-3260 (((-506) $) 252 (|has| |#1| (-572 (-506)))) (($ (-399 $)) 223 (|has| |#1| (-522))) (((-833 (-360)) $) 188 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 187 (|has| |#1| (-572 (-833 (-530)))))) (-2555 (($ $ $) 251 (|has| |#1| (-453)))) (-2607 (($ $ $) 250 (|has| |#1| (-453)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-893 |#1|)) 247 (|has| |#1| (-984))) (($ (-388 (-893 |#1|))) 231 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 229 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 228 (|has| |#1| (-522))) (($ (-388 |#1|)) 227 (|has| |#1| (-522))) (($ (-1051 |#1| (-570 $))) 213 (|has| |#1| (-984))) (($ |#1|) 193) (($ (-1099)) 184) (($ (-570 $)) 135)) (-3251 (((-3 $ "failed") $) 236 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-1678 (($ (-597 $)) 153) (($ $) 152)) (-4195 (((-110) (-112)) 164)) (-3944 (((-110) $ $) 37)) (-2520 (($ (-1099) (-597 $)) 203) (($ (-1099) $ $ $ $) 202) (($ (-1099) $ $ $) 201) (($ (-1099) $ $) 200) (($ (-1099) $) 199)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1099)) 242 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 241 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 240 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 239 (|has| |#1| (-984)))) (-2306 (((-110) $ $) 131)) (-2284 (((-110) $ $) 130)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 132)) (-2272 (((-110) $ $) 129)) (-2364 (($ $ $) 62) (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 226 (|has| |#1| (-522)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 87)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-162))) (($ |#1| $) 234 (|has| |#1| (-162)))))
(((-29 |#1|) (-133) (-13 (-795) (-522))) (T -29))
-((-4189 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-4115 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-4115 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-2728 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-4101 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-2728 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-411 |t#1|) (-10 -8 (-15 -4189 ($ $)) (-15 -4115 ((-597 $) $)) (-15 -4189 ($ $ (-1099))) (-15 -4115 ((-597 $) $ (-1099))) (-15 -4101 ($ $)) (-15 -2728 ((-597 $) $)) (-15 -4101 ($ $ (-1099))) (-15 -2728 ((-597 $) $ (-1099)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-284) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-411 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) . T) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) . T) ((-941) . T) ((-975 (-388 (-530))) -1476 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T) ((-1139) . T))
-((-2825 (((-1022 (-208)) $) NIL)) (-2813 (((-1022 (-208)) $) NIL)) (-1735 (($ $ (-208)) 125)) (-4126 (($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530)))) 83)) (-3044 (((-597 (-597 (-884 (-208)))) $) 137)) (-2258 (((-804) $) 149)))
-(((-30) (-13 (-896) (-10 -8 (-15 -4126 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -1735 ($ $ (-208)))))) (T -30))
-((-4126 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099)) (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))))
-(-13 (-896) (-10 -8 (-15 -4126 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -1735 ($ $ (-208)))))
-((-4189 ((|#2| (-1095 |#2|) (-1099)) 43)) (-2221 (((-112) (-112)) 56)) (-2657 (((-1095 |#2|) (-570 |#2|)) 133 (|has| |#1| (-975 (-530))))) (-4091 ((|#2| |#1| (-530)) 122 (|has| |#1| (-975 (-530))))) (-4141 ((|#2| (-1095 |#2|) |#2|) 30)) (-4155 (((-804) (-597 |#2|)) 85)) (-4212 ((|#2| |#2|) 129 (|has| |#1| (-975 (-530))))) (-2212 (((-110) (-112)) 18)) (** ((|#2| |#2| (-388 (-530))) 96 (|has| |#1| (-975 (-530))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -4189 (|#2| (-1095 |#2|) (-1099))) (-15 -2221 ((-112) (-112))) (-15 -2212 ((-110) (-112))) (-15 -4141 (|#2| (-1095 |#2|) |#2|)) (-15 -4155 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -2657 ((-1095 |#2|) (-570 |#2|))) (-15 -4212 (|#2| |#2|)) (-15 -4091 (|#2| |#1| (-530)))) |%noBranch|)) (-13 (-795) (-522)) (-411 |#1|)) (T -31))
-((-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))) (-4141 (*1 *2 *3 *2) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4)) (-4 *4 (-411 *3)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522))))))
-(-10 -7 (-15 -4189 (|#2| (-1095 |#2|) (-1099))) (-15 -2221 ((-112) (-112))) (-15 -2212 ((-110) (-112))) (-15 -4141 (|#2| (-1095 |#2|) |#2|)) (-15 -4155 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -2657 ((-1095 |#2|) (-570 |#2|))) (-15 -4212 (|#2| |#2|)) (-15 -4091 (|#2| |#1| (-530)))) |%noBranch|))
-((-4102 (((-110) $ (-719)) 16)) (-3956 (($) 10)) (-2014 (((-110) $ (-719)) 15)) (-1987 (((-110) $ (-719)) 14)) (-1439 (((-110) $ $) 8)) (-1262 (((-110) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -3956 (|#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))) (-15 -1262 ((-110) |#1|)) (-15 -1439 ((-110) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -3956 (|#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))) (-15 -1262 ((-110) |#1|)) (-15 -1439 ((-110) |#1| |#1|)))
-((-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2014 (((-110) $ (-719)) 9)) (-1987 (((-110) $ (-719)) 10)) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2441 (($ $) 13)) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-1326 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-2933 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-2933 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-3460 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-3460 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-411 |t#1|) (-10 -8 (-15 -1326 ($ $)) (-15 -2933 ((-597 $) $)) (-15 -1326 ($ $ (-1099))) (-15 -2933 ((-597 $) $ (-1099))) (-15 -4202 ($ $)) (-15 -3460 ((-597 $) $)) (-15 -4202 ($ $ (-1099))) (-15 -3460 ((-597 $) $ (-1099)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-284) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-411 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) . T) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) . T) ((-941) . T) ((-975 (-388 (-530))) -1461 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T) ((-1139) . T))
+((-3562 (((-1022 (-208)) $) NIL)) (-3554 (((-1022 (-208)) $) NIL)) (-3399 (($ $ (-208)) 125)) (-2516 (($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530)))) 83)) (-2425 (((-597 (-597 (-884 (-208)))) $) 137)) (-2366 (((-804) $) 149)))
+(((-30) (-13 (-896) (-10 -8 (-15 -2516 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -3399 ($ $ (-208)))))) (T -30))
+((-2516 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099)) (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))))
+(-13 (-896) (-10 -8 (-15 -2516 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -3399 ($ $ (-208)))))
+((-1326 ((|#2| (-1095 |#2|) (-1099)) 43)) (-4124 (((-112) (-112)) 56)) (-3210 (((-1095 |#2|) (-570 |#2|)) 133 (|has| |#1| (-975 (-530))))) (-1430 ((|#2| |#1| (-530)) 122 (|has| |#1| (-975 (-530))))) (-2493 ((|#2| (-1095 |#2|) |#2|) 30)) (-1222 (((-804) (-597 |#2|)) 85)) (-1781 ((|#2| |#2|) 129 (|has| |#1| (-975 (-530))))) (-4195 (((-110) (-112)) 18)) (** ((|#2| |#2| (-388 (-530))) 96 (|has| |#1| (-975 (-530))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -1326 (|#2| (-1095 |#2|) (-1099))) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -2493 (|#2| (-1095 |#2|) |#2|)) (-15 -1222 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -3210 ((-1095 |#2|) (-570 |#2|))) (-15 -1781 (|#2| |#2|)) (-15 -1430 (|#2| |#1| (-530)))) |%noBranch|)) (-13 (-795) (-522)) (-411 |#1|)) (T -31))
+((-1430 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))) (-2493 (*1 *2 *3 *2) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4)) (-4 *4 (-411 *3)))) (-1326 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522))))))
+(-10 -7 (-15 -1326 (|#2| (-1095 |#2|) (-1099))) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -2493 (|#2| (-1095 |#2|) |#2|)) (-15 -1222 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -3210 ((-1095 |#2|) (-570 |#2|))) (-15 -1781 (|#2| |#2|)) (-15 -1430 (|#2| |#1| (-530)))) |%noBranch|))
+((-3186 (((-110) $ (-719)) 16)) (-2350 (($) 10)) (-4027 (((-110) $ (-719)) 15)) (-2763 (((-110) $ (-719)) 14)) (-2391 (((-110) $ $) 8)) (-3250 (((-110) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -2350 (|#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -3250 ((-110) |#1|)) (-15 -2391 ((-110) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -2350 (|#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -3250 ((-110) |#1|)) (-15 -2391 ((-110) |#1| |#1|)))
+((-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-4027 (((-110) $ (-719)) 9)) (-2763 (((-110) $ (-719)) 10)) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2579 (($ $) 13)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-33) (-133)) (T -33))
-((-1439 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2441 (*1 *1 *1) (-4 *1 (-33))) (-4227 (*1 *1) (-4 *1 (-33))) (-1262 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-1987 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-2014 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-4102 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-3956 (*1 *1) (-4 *1 (-33))) (-2167 (*1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-33)) (-5 *2 (-719)))))
-(-13 (-1135) (-10 -8 (-15 -1439 ((-110) $ $)) (-15 -2441 ($ $)) (-15 -4227 ($)) (-15 -1262 ((-110) $)) (-15 -1987 ((-110) $ (-719))) (-15 -2014 ((-110) $ (-719))) (-15 -4102 ((-110) $ (-719))) (-15 -3956 ($) -2562) (IF (|has| $ (-6 -4270)) (-15 -2167 ((-719) $)) |%noBranch|)))
+((-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2579 (*1 *1 *1) (-4 *1 (-33))) (-3958 (*1 *1) (-4 *1 (-33))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2763 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-4027 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-3186 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-2350 (*1 *1) (-4 *1 (-33))) (-2267 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719)))))
+(-13 (-1135) (-10 -8 (-15 -2391 ((-110) $ $)) (-15 -2579 ($ $)) (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -2763 ((-110) $ (-719))) (-15 -4027 ((-110) $ (-719))) (-15 -3186 ((-110) $ (-719))) (-15 -2350 ($) -2708) (IF (|has| $ (-6 -4269)) (-15 -2267 ((-719) $)) |%noBranch|)))
(((-1135) . T))
-((-2339 (($ $) 11)) (-2318 (($ $) 10)) (-2361 (($ $) 9)) (-2910 (($ $) 8)) (-2349 (($ $) 7)) (-2328 (($ $) 6)))
+((-2459 (($ $) 11)) (-2434 (($ $) 10)) (-2485 (($ $) 9)) (-3632 (($ $) 8)) (-2472 (($ $) 7)) (-2446 (($ $) 6)))
(((-34) (-133)) (T -34))
-((-2339 (*1 *1 *1) (-4 *1 (-34))) (-2318 (*1 *1 *1) (-4 *1 (-34))) (-2361 (*1 *1 *1) (-4 *1 (-34))) (-2910 (*1 *1 *1) (-4 *1 (-34))) (-2349 (*1 *1 *1) (-4 *1 (-34))) (-2328 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -2328 ($ $)) (-15 -2349 ($ $)) (-15 -2910 ($ $)) (-15 -2361 ($ $)) (-15 -2318 ($ $)) (-15 -2339 ($ $))))
-((-2246 (((-110) $ $) 19 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-3387 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 125)) (-3165 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 148)) (-2040 (($ $) 146)) (-3534 (($) 72) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 71)) (-1935 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4271))) (((-1186) $ (-530) (-530)) 178 (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 159 (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-4017 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 200 (|has| $ (-6 -4271))) (($ $) 199 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-4102 (((-110) $ (-719)) 8)) (-1947 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 134 (|has| $ (-6 -4271)))) (-1467 (($ $ $) 155 (|has| $ (-6 -4271)))) (-1455 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 157 (|has| $ (-6 -4271)))) (-1478 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 153 (|has| $ (-6 -4271)))) (-2416 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 189 (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-1148 (-530)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 160 (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "last" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 158 (|has| $ (-6 -4271))) (($ $ "rest" $) 156 (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "first" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 154 (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "value" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 133 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 132 (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 45 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 216)) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 55 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 175 (|has| $ (-6 -4270)))) (-3152 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 147)) (-2614 (((-3 |#2| "failed") |#1| $) 61)) (-3956 (($) 7 T CONST)) (-1389 (($ $) 201 (|has| $ (-6 -4271)))) (-4093 (($ $) 211)) (-2918 (($ $ (-719)) 142) (($ $) 140)) (-3929 (($ $) 214 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2939 (($ $) 58 (-1476 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))) (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 46 (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 220) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 215 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 54 (|has| $ (-6 -4270))) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 174 (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 56 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 53 (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 52 (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 176 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 173 (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 172 (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 190 (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) 88) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) 188)) (-1539 (((-110) $) 192)) (-1944 (((-530) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 208) (((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 207 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) (((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) 206 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 30 (|has| $ (-6 -4270))) (((-597 |#2|) $) 79 (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 114 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 123)) (-1966 (((-110) $ $) 131 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-3547 (($ (-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 169)) (-2014 (((-110) $ (-719)) 9)) (-1954 ((|#1| $) 96 (|has| |#1| (-795))) (((-530) $) 180 (|has| (-530) (-795)))) (-4194 (($ $ $) 198 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2767 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-3842 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 29 (|has| $ (-6 -4270))) (((-597 |#2|) $) 80 (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 115 (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270)))) (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))))) (-1965 ((|#1| $) 95 (|has| |#1| (-795))) (((-530) $) 181 (|has| (-530) (-795)))) (-1757 (($ $ $) 197 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 34 (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4271))) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 110 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 109)) (-2783 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 225)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 128)) (-3937 (((-110) $) 124)) (-3443 (((-1082) $) 22 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2294 (($ $ (-719)) 145) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 143)) (-3202 (((-597 |#1|) $) 63)) (-2010 (((-110) |#1| $) 64)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 39)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 40) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) 219) (($ $ $ (-530)) 218)) (-4016 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) 162) (($ $ $ (-530)) 161)) (-1983 (((-597 |#1|) $) 93) (((-597 (-530)) $) 183)) (-1993 (((-110) |#1| $) 92) (((-110) (-530) $) 184)) (-2485 (((-1046) $) 21 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2907 ((|#2| $) 97 (|has| |#1| (-795))) (($ $ (-719)) 139) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 137)) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 51) (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 171)) (-1946 (($ $ |#2|) 98 (|has| $ (-6 -4271))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 179 (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 41)) (-1549 (((-110) $) 191)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 32 (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 112 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) 26 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 25 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 24 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 23 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 121 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 120 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 119 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) 118 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 182 (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2002 (((-597 |#2|) $) 91) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 185)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 187) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) 186) (($ $ (-1148 (-530))) 165) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "first") 138) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "value") 126)) (-1984 (((-530) $ $) 129)) (-3839 (($) 49) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 48)) (-2434 (($ $ (-530)) 222) (($ $ (-1148 (-530))) 221)) (-1778 (($ $ (-530)) 164) (($ $ (-1148 (-530))) 163)) (-3663 (((-110) $) 127)) (-1513 (($ $) 151)) (-1489 (($ $) 152 (|has| $ (-6 -4271)))) (-1524 (((-719) $) 150)) (-1534 (($ $) 149)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 31 (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 113 (|has| $ (-6 -4270)))) (-4027 (($ $ $ (-530)) 202 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506)))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 50) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 170)) (-1501 (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 224) (($ $ $) 223)) (-3476 (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 168) (($ (-597 $)) 167) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 136) (($ $ $) 135)) (-2258 (((-804) $) 18 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804)))))) (-3885 (((-597 $) $) 122)) (-1974 (((-110) $ $) 130 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 42)) (-2305 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") |#1| $) 108)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 33 (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 111 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 195 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2182 (((-110) $ $) 194 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2148 (((-110) $ $) 20 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2195 (((-110) $ $) 196 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2172 (((-110) $ $) 193 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2459 (*1 *1 *1) (-4 *1 (-34))) (-2434 (*1 *1 *1) (-4 *1 (-34))) (-2485 (*1 *1 *1) (-4 *1 (-34))) (-3632 (*1 *1 *1) (-4 *1 (-34))) (-2472 (*1 *1 *1) (-4 *1 (-34))) (-2446 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -2446 ($ $)) (-15 -2472 ($ $)) (-15 -3632 ($ $)) (-15 -2485 ($ $)) (-15 -2434 ($ $)) (-15 -2459 ($ $))))
+((-2352 (((-110) $ $) 19 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3417 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 125)) (-3254 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 148)) (-2133 (($ $) 146)) (-3527 (($) 72) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 71)) (-2097 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4270))) (((-1186) $ (-530) (-530)) 178 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 159 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-1627 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 200 (|has| $ (-6 -4270))) (($ $) 199 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-1615 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 134 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 155 (|has| $ (-6 -4270)))) (-3312 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 157 (|has| $ (-6 -4270)))) (-1647 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 153 (|has| $ (-6 -4270)))) (-2552 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 189 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-1148 (-530)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 160 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 158 (|has| $ (-6 -4270))) (($ $ "rest" $) 156 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 154 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 133 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 132 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 216)) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 175 (|has| $ (-6 -4269)))) (-3245 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 147)) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-1337 (($ $) 201 (|has| $ (-6 -4270)))) (-4106 (($ $) 211)) (-3057 (($ $ (-719)) 142) (($ $) 140)) (-2287 (($ $) 214 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3077 (($ $) 58 (-1461 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))) (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 220) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 215 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 174 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 176 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 173 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 172 (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 190 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 88) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 188)) (-1230 (((-110) $) 192)) (-2027 (((-530) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 208) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 207 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 206 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-597 |#2|) $) 79 (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 114 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 123)) (-1646 (((-110) $ $) 131 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3538 (($ (-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 169)) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 96 (|has| |#1| (-795))) (((-530) $) 180 (|has| (-530) (-795)))) (-2508 (($ $ $) 198 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2090 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3683 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-597 |#2|) $) 80 (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 115 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 95 (|has| |#1| (-795))) (((-530) $) 181 (|has| (-530) (-795)))) (-1817 (($ $ $) 197 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 110 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 109)) (-2939 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 225)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 128)) (-3615 (((-110) $) 124)) (-1424 (((-1082) $) 22 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2407 (($ $ (-719)) 145) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 143)) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 219) (($ $ $ (-530)) 218)) (-4028 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 162) (($ $ $ (-530)) 161)) (-3567 (((-597 |#1|) $) 93) (((-597 (-530)) $) 183)) (-1927 (((-110) |#1| $) 92) (((-110) (-530) $) 184)) (-2624 (((-1046) $) 21 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3048 ((|#2| $) 97 (|has| |#1| (-795))) (($ $ (-719)) 139) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 137)) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51) (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 171)) (-1522 (($ $ |#2|) 98 (|has| $ (-6 -4270))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 179 (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-4083 (((-110) $) 191)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 112 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 121 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 120 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 119 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 118 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 182 (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2261 (((-597 |#2|) $) 91) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 185)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 187) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 186) (($ $ (-1148 (-530))) 165) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first") 138) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value") 126)) (-2539 (((-530) $ $) 129)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-3715 (($ $ (-530)) 222) (($ $ (-1148 (-530))) 221)) (-1843 (($ $ (-530)) 164) (($ $ (-1148 (-530))) 163)) (-4246 (((-110) $) 127)) (-3697 (($ $) 151)) (-3301 (($ $) 152 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 150)) (-2004 (($ $) 149)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 113 (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) 202 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506)))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 170)) (-1328 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 224) (($ $ $) 223)) (-3483 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 168) (($ (-597 $)) 167) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 136) (($ $ $) 135)) (-2366 (((-804) $) 18 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))))) (-2557 (((-597 $) $) 122)) (-4153 (((-110) $ $) 130 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-2414 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") |#1| $) 108)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 111 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 195 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2284 (((-110) $ $) 194 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2248 (((-110) $ $) 20 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2297 (((-110) $ $) 196 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2272 (((-110) $ $) 193 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-35 |#1| |#2|) (-133) (-1027) (-1027)) (T -35))
-((-2305 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| -2940 *3) (|:| -1806 *4))))))
-(-13 (-1112 |t#1| |t#2|) (-617 (-2 (|:| -2940 |t#1|) (|:| -1806 |t#2|))) (-10 -8 (-15 -2305 ((-3 (-2 (|:| -2940 |t#1|) (|:| -1806 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((-99) -1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795))) ((-571 (-804)) -1476 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804)))) ((-144 #1=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((-572 (-506)) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 #2=(-530) #1#) . T) ((-268 |#1| |#2|) . T) ((-270 #2# #1#) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-264 #1#) . T) ((-354 #1#) . T) ((-468 #1#) . T) ((-468 |#2|) . T) ((-563 #2# #1#) . T) ((-563 |#1| |#2|) . T) ((-491 #1# #1#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-602 #1#) . T) ((-617 #1#) . T) ((-795) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)) ((-949 #1#) . T) ((-1027) -1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795))) ((-1073 #1#) . T) ((-1112 |#1| |#2|) . T) ((-1135) . T) ((-1169 #1#) . T))
-((-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-37 |#2|) (-162)) (T -36))
-NIL
-(-10 -8 (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-2414 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| -3078 *3) (|:| -1874 *4))))))
+(-13 (-1112 |t#1| |t#2|) (-617 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))) (-10 -8 (-15 -2414 ((-3 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #1=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 #2=(-530) #1#) . T) ((-268 |#1| |#2|) . T) ((-270 #2# #1#) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-264 #1#) . T) ((-354 #1#) . T) ((-468 #1#) . T) ((-468 |#2|) . T) ((-563 #2# #1#) . T) ((-563 |#1| |#2|) . T) ((-491 #1# #1#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-602 #1#) . T) ((-617 #1#) . T) ((-795) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) ((-949 #1#) . T) ((-1027) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))) ((-1073 #1#) . T) ((-1112 |#1| |#2|) . T) ((-1135) . T) ((-1169 #1#) . T))
+((-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-37 |#2|) (-162)) (T -36))
+NIL
+(-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-37 |#1|) (-133) (-162)) (T -37))
-((-2258 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
-(-13 (-984) (-666 |t#1|) (-10 -8 (-15 -2258 ($ |t#1|))))
+((-2366 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
+(-13 (-984) (-666 |t#1|) (-10 -8 (-15 -2366 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1373 (((-399 |#1|) |#1|) 41)) (-2473 (((-399 |#1|) |#1|) 30) (((-399 |#1|) |#1| (-597 (-47))) 33)) (-2394 (((-110) |#1|) 56)))
-(((-38 |#1|) (-10 -7 (-15 -2473 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -1373 ((-399 |#1|) |#1|)) (-15 -2394 ((-110) |#1|))) (-1157 (-47))) (T -38))
-((-2394 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-1373 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
-(-10 -7 (-15 -2473 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -1373 ((-399 |#1|) |#1|)) (-15 -2394 ((-110) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1319 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3031 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3359 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1380 (((-388 |#2|) $) NIL)) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3550 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1945 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-2879 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1473 (((-110)) NIL)) (-1462 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-3477 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 57) (($ (-1181 |#2|) |#2|) 125)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3607 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3348 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1375 (((-1181 $) (-1181 $)) NIL)) (-3856 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-1673 (((-3 $ "failed") $) NIL)) (-1231 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-1509 (((-110) |#1| |#1|) NIL)) (-4113 (((-862)) NIL)) (-1376 (($) NIL (|has| (-388 |#2|) (-349)))) (-1451 (((-110)) NIL)) (-1441 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3588 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-3703 (($ $) NIL)) (-2563 (($) NIL (|has| (-388 |#2|) (-330)))) (-1674 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3175 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2049 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1334 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-3150 (((-110) $) NIL)) (-2176 (((-719)) NIL)) (-1388 (((-1181 $) (-1181 $)) 102)) (-1717 (((-388 |#2|) $) NIL)) (-1242 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-3873 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-3830 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-3844 ((|#3| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3443 (((-1082) $) NIL)) (-2404 (((-1186) (-719)) 79)) (-1330 (((-637 (-388 |#2|))) 51)) (-1354 (((-637 (-388 |#2|))) 44)) (-2359 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1297 (($ (-1181 |#2|) |#2|) 126)) (-1340 (((-637 (-388 |#2|))) 45)) (-1365 (((-637 (-388 |#2|))) 43)) (-1285 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1308 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 64)) (-1430 (((-1181 $)) 42)) (-3142 (((-1181 $)) 41)) (-1420 (((-110) $) NIL)) (-1409 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3677 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1910 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-1264 (((-3 |#2| "failed")) NIL)) (-2485 (((-1046) $) NIL)) (-1530 (((-719)) NIL)) (-1898 (($) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2108 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2473 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3562 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1934 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1832 ((|#1| $ |#1| |#1|) NIL)) (-1275 (((-3 |#2| "failed")) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-2341 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 39)) (-3187 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3211 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3139 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-4212 ((|#3|) 50)) (-1612 (($) NIL (|has| (-388 |#2|) (-330)))) (-3351 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 58) (((-637 (-388 |#2|)) (-1181 $)) 103)) (-3173 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-1398 (((-1181 $) (-1181 $)) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1476 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1795 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1640 ((|#3| $) NIL)) (-1667 (((-719)) NIL)) (-1497 (((-110)) 37)) (-1484 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-3853 (((-1181 $)) 93)) (-3020 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1253 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1519 (((-110)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (-2943 (($) 16 T CONST)) (-2955 (($) 26 T CONST)) (-3286 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -2404 ((-1186) (-719))))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) |#3|) (T -39))
-((-2404 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
-(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -2404 ((-1186) (-719)))))
-((-2417 ((|#2| |#2|) 48)) (-2488 ((|#2| |#2|) 120 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2475 ((|#2| |#2|) 87 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2452 ((|#2| |#2|) 88 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2286 ((|#2| (-112) |#2| (-719)) 116 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2440 (((-1095 |#2|) |#2|) 45)) (-2429 ((|#2| |#2| (-597 (-570 |#2|))) 18) ((|#2| |#2| (-597 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2429 (|#2| |#2| |#2|)) (-15 -2429 (|#2| |#2| (-597 |#2|))) (-15 -2429 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -2440 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2452 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2286 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-522) (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 |#1| (-570 $)) $)) (-15 -1857 ((-1051 |#1| (-570 $)) $)) (-15 -2258 ($ (-1051 |#1| (-570 $))))))) (T -40))
-((-2286 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795)) (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2)) (-4 *2 (-411 *5)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *5 (-570 $)) $)) (-15 -1857 ((-1051 *5 (-570 $)) $)) (-15 -2258 ($ (-1051 *5 (-570 $))))))))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $)) (-15 -1857 ((-1051 *4 (-570 $)) $)) (-15 -2258 ($ (-1051 *4 (-570 $))))))))) (-2429 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-570 *2))) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $)) (-15 -1857 ((-1051 *4 (-570 $)) $)) (-15 -2258 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2429 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $)) (-15 -1857 ((-1051 *4 (-570 $)) $)) (-15 -2258 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2429 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $)) (-15 -1857 ((-1051 *3 (-570 $)) $)) (-15 -2258 ($ (-1051 *3 (-570 $))))))))))
-(-10 -7 (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2429 (|#2| |#2| |#2|)) (-15 -2429 (|#2| |#2| (-597 |#2|))) (-15 -2429 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -2440 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2452 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2286 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2473 (((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))) 23) (((-399 |#3|) |#3| (-597 (-47))) 19)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2473 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2473 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))))) (-795) (-741) (-890 (-47) |#2| |#1|)) (T -41))
-((-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *7 (-890 (-47) *6 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-890 (-47) *6 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2473 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47)))))
-((-4127 (((-719) |#2|) 65)) (-2307 (((-719) |#2|) 68)) (-3469 (((-597 |#2|)) 33)) (-2296 (((-719) |#2|) 67)) (-2317 (((-719) |#2|) 64)) (-4142 (((-719) |#2|) 66)) (-3446 (((-597 (-637 |#1|))) 60)) (-2727 (((-597 |#2|)) 55)) (-2615 (((-597 |#2|) |#2|) 43)) (-3410 (((-597 |#2|)) 57)) (-2737 (((-597 |#2|)) 56)) (-3433 (((-597 (-637 |#1|))) 48)) (-2626 (((-597 |#2|)) 54)) (-2802 (((-597 |#2|) |#2|) 42)) (-2789 (((-597 |#2|)) 50)) (-3458 (((-597 (-637 |#1|))) 61)) (-3422 (((-597 |#2|)) 59)) (-3853 (((-1181 |#2|) (-1181 |#2|)) 84 (|has| |#1| (-289)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2296 ((-719) |#2|)) (-15 -2307 ((-719) |#2|)) (-15 -2317 ((-719) |#2|)) (-15 -4127 ((-719) |#2|)) (-15 -4142 ((-719) |#2|)) (-15 -2789 ((-597 |#2|))) (-15 -2802 ((-597 |#2|) |#2|)) (-15 -2615 ((-597 |#2|) |#2|)) (-15 -2626 ((-597 |#2|))) (-15 -2727 ((-597 |#2|))) (-15 -2737 ((-597 |#2|))) (-15 -3410 ((-597 |#2|))) (-15 -3422 ((-597 |#2|))) (-15 -3433 ((-597 (-637 |#1|)))) (-15 -3446 ((-597 (-637 |#1|)))) (-15 -3458 ((-597 (-637 |#1|)))) (-15 -3469 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3853 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|)) (-522) (-398 |#1|)) (T -42))
-((-3853 (*1 *2 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-42 *3 *4)))) (-3469 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3458 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3446 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3433 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3422 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3410 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2737 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2727 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2626 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2615 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2789 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-4142 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2317 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2307 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))))
-(-10 -7 (-15 -2296 ((-719) |#2|)) (-15 -2307 ((-719) |#2|)) (-15 -2317 ((-719) |#2|)) (-15 -4127 ((-719) |#2|)) (-15 -4142 ((-719) |#2|)) (-15 -2789 ((-597 |#2|))) (-15 -2802 ((-597 |#2|) |#2|)) (-15 -2615 ((-597 |#2|) |#2|)) (-15 -2626 ((-597 |#2|))) (-15 -2727 ((-597 |#2|))) (-15 -2737 ((-597 |#2|))) (-15 -3410 ((-597 |#2|))) (-15 -3422 ((-597 |#2|))) (-15 -3433 ((-597 (-637 |#1|)))) (-15 -3446 ((-597 (-637 |#1|)))) (-15 -3458 ((-597 (-637 |#1|)))) (-15 -3469 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3853 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3251 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3337 (((-1181 (-637 |#1|)) (-1181 $)) NIL) (((-1181 (-637 |#1|))) 24)) (-4007 (((-1181 $)) 51)) (-3956 (($) NIL T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-3743 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-3428 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-3987 ((|#1| $) NIL)) (-3405 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-3093 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-2150 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-3128 (($ $ (-862)) NIL)) (-3969 ((|#1| $) NIL)) (-3764 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-3453 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-3947 (((-1095 |#1|) $) NIL)) (-3886 (((-110)) 87)) (-3477 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-1673 (((-3 $ "failed") $) 14 (|has| |#1| (-522)))) (-4113 (((-862)) 52)) (-3857 (((-110)) NIL)) (-3395 (($ $ (-862)) NIL)) (-3813 (((-110)) NIL)) (-3794 (((-110)) NIL)) (-3834 (((-110)) 89)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-3753 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-3441 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-3997 ((|#1| $) NIL)) (-3416 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-2197 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-3117 (($ $ (-862)) NIL)) (-3978 ((|#1| $) NIL)) (-3773 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-3464 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-3959 (((-1095 |#1|) $) NIL)) (-3896 (((-110)) 86)) (-3443 (((-1082) $) NIL)) (-3803 (((-110)) 93)) (-3824 (((-110)) 92)) (-3843 (((-110)) 94)) (-2485 (((-1046) $) NIL)) (-3876 (((-110)) 88)) (-1832 ((|#1| $ (-530)) 54)) (-3351 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 28) (((-637 |#1|) (-1181 $)) NIL)) (-3173 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL)) (-2059 (((-597 (-893 |#1|)) (-1181 $)) NIL) (((-597 (-893 |#1|))) NIL)) (-1527 (($ $ $) NIL)) (-3938 (((-110)) 84)) (-2258 (((-804) $) 69) (($ (-1181 |#1|)) 22)) (-3853 (((-1181 $)) 45)) (-3785 (((-597 (-1181 |#1|))) NIL (|has| |#1| (-522)))) (-1538 (($ $ $ $) NIL)) (-3918 (((-110)) 82)) (-2857 (($ (-637 |#1|) $) 18)) (-1516 (($ $ $) NIL)) (-3928 (((-110)) 85)) (-3907 (((-110)) 83)) (-3867 (((-110)) 81)) (-2943 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1066 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2258 ($ (-1181 |#1|))))) (-344) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -43))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))))
-(-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2258 ($ (-1181 |#1|)))))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3387 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3165 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-2040 (($ $) NIL)) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271))) (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-4017 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795))))) (-1317 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-1947 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271)))) (-1467 (($ $ $) 27 (|has| $ (-6 -4271)))) (-1455 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271)))) (-1478 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 29 (|has| $ (-6 -4271)))) (-2416 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-1148 (-530)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "last" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271))) (($ $ "rest" $) NIL (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "first" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "value" (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3152 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-2614 (((-3 |#2| "failed") |#1| $) 37)) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2918 (($ $ (-719)) NIL) (($ $) 24)) (-3929 (($ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) NIL)) (-1539 (((-110) $) NIL)) (-1944 (((-530) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) (((-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 18 (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 18 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-3547 (($ (-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 32 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2767 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-3842 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 34 (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271))) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-2783 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) 42 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2294 (($ $ (-719)) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3202 (((-597 |#1|) $) 20)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-4016 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 |#1|) $) NIL) (((-597 (-530)) $) NIL)) (-1993 (((-110) |#1| $) NIL) (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795))) (($ $ (-719)) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 23)) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1549 (((-110) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2002 (((-597 |#2|) $) NIL) (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 17)) (-1262 (((-110) $) 16)) (-4227 (($) 13)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "first") NIL) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $ "value") NIL)) (-1984 (((-530) $ $) NIL)) (-3839 (($) 12) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2434 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3663 (((-110) $) NIL)) (-1513 (($ $) NIL)) (-1489 (($ $) NIL (|has| $ (-6 -4271)))) (-1524 (((-719) $) NIL)) (-1534 (($ $) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1501 (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL) (($ $ $) NIL)) (-3476 (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL) (($ (-597 $)) NIL) (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 25) (($ $ $) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2305 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") |#1| $) 44)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2195 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-795)))) (-2167 (((-719) $) 22 (|has| $ (-6 -4270)))))
+((-1489 (((-399 |#1|) |#1|) 41)) (-2611 (((-399 |#1|) |#1|) 30) (((-399 |#1|) |#1| (-597 (-47))) 33)) (-1452 (((-110) |#1|) 56)))
+(((-38 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1489 ((-399 |#1|) |#1|)) (-15 -1452 ((-110) |#1|))) (-1157 (-47))) (T -38))
+((-1452 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
+(-10 -7 (-15 -2611 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1489 ((-399 |#1|) |#1|)) (-15 -1452 ((-110) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3446 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1367 (((-388 |#2|) $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) NIL)) (-2757 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 57) (($ (-1181 |#2|) |#2|) 125)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1728 (((-1181 $) (-1181 $)) NIL)) (-2134 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-1789 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) NIL)) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) NIL)) (-1358 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3571 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-1239 (($ $) NIL)) (-1677 (($) NIL (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) NIL)) (-2255 (((-719)) NIL)) (-1256 (((-1181 $) (-1181 $)) 102)) (-2376 (((-388 |#2|) $) NIL)) (-4116 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) NIL)) (-3995 (((-1186) (-719)) 79)) (-2696 (((-637 (-388 |#2|))) 51)) (-3198 (((-637 (-388 |#2|))) 44)) (-2483 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 126)) (-1412 (((-637 (-388 |#2|))) 45)) (-3075 (((-637 (-388 |#2|))) 43)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 64)) (-3361 (((-1181 $)) 42)) (-3696 (((-1181 $)) 41)) (-1747 (((-110) $) NIL)) (-3001 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3657 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) NIL)) (-2624 (((-1046) $) NIL)) (-2835 (((-719)) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) NIL)) (-2174 (((-3 |#2| "failed")) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 39)) (-1823 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 50)) (-3406 (($) NIL (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 58) (((-637 (-388 |#2|)) (-1181 $)) 103)) (-3260 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3251 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) NIL)) (-3300 (((-719)) NIL)) (-2190 (((-110)) 37)) (-4054 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-3220 (((-1181 $)) 93)) (-3944 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1684 (((-110)) NIL)) (-3080 (($) 16 T CONST)) (-3093 (($) 26 T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3995 ((-1186) (-719))))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) |#3|) (T -39))
+((-3995 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
+(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3995 ((-1186) (-719)))))
+((-3639 ((|#2| |#2|) 48)) (-2568 ((|#2| |#2|) 120 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-3903 ((|#2| |#2|) 87 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2690 ((|#2| |#2|) 88 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2517 ((|#2| (-112) |#2| (-719)) 116 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-4133 (((-1095 |#2|) |#2|) 45)) (-2055 ((|#2| |#2| (-597 (-570 |#2|))) 18) ((|#2| |#2| (-597 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| (-597 |#2|))) (-15 -2055 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -4133 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2690 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2517 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-522) (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 |#1| (-570 $)) $)) (-15 -1928 ((-1051 |#1| (-570 $)) $)) (-15 -2366 ($ (-1051 |#1| (-570 $))))))) (T -40))
+((-2517 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795)) (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2)) (-4 *2 (-411 *5)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *5 (-570 $)) $)) (-15 -1928 ((-1051 *5 (-570 $)) $)) (-15 -2366 ($ (-1051 *5 (-570 $))))))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-2690 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-570 *2))) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2055 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
+(-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| (-597 |#2|))) (-15 -2055 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -4133 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2690 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2517 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2611 (((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))) 23) (((-399 |#3|) |#3| (-597 (-47))) 19)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2611 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))))) (-795) (-741) (-890 (-47) |#2| |#1|)) (T -41))
+((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *7 (-890 (-47) *6 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-890 (-47) *6 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2611 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47)))))
+((-1327 (((-719) |#2|) 65)) (-4125 (((-719) |#2|) 68)) (-2111 (((-597 |#2|)) 33)) (-1556 (((-719) |#2|) 67)) (-1792 (((-719) |#2|) 64)) (-2619 (((-719) |#2|) 66)) (-1392 (((-597 (-637 |#1|))) 60)) (-3378 (((-597 |#2|)) 55)) (-2157 (((-597 |#2|) |#2|) 43)) (-1499 (((-597 |#2|)) 57)) (-3113 (((-597 |#2|)) 56)) (-3050 (((-597 (-637 |#1|))) 48)) (-1414 (((-597 |#2|)) 54)) (-2062 (((-597 |#2|) |#2|) 42)) (-3385 (((-597 |#2|)) 50)) (-3337 (((-597 (-637 |#1|))) 61)) (-3235 (((-597 |#2|)) 59)) (-3220 (((-1181 |#2|) (-1181 |#2|)) 84 (|has| |#1| (-289)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -1556 ((-719) |#2|)) (-15 -4125 ((-719) |#2|)) (-15 -1792 ((-719) |#2|)) (-15 -1327 ((-719) |#2|)) (-15 -2619 ((-719) |#2|)) (-15 -3385 ((-597 |#2|))) (-15 -2062 ((-597 |#2|) |#2|)) (-15 -2157 ((-597 |#2|) |#2|)) (-15 -1414 ((-597 |#2|))) (-15 -3378 ((-597 |#2|))) (-15 -3113 ((-597 |#2|))) (-15 -1499 ((-597 |#2|))) (-15 -3235 ((-597 |#2|))) (-15 -3050 ((-597 (-637 |#1|)))) (-15 -1392 ((-597 (-637 |#1|)))) (-15 -3337 ((-597 (-637 |#1|)))) (-15 -2111 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3220 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|)) (-522) (-398 |#1|)) (T -42))
+((-3220 (*1 *2 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-42 *3 *4)))) (-2111 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3337 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1392 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3050 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3235 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1499 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3113 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3378 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1414 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3385 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1792 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1556 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))))
+(-10 -7 (-15 -1556 ((-719) |#2|)) (-15 -4125 ((-719) |#2|)) (-15 -1792 ((-719) |#2|)) (-15 -1327 ((-719) |#2|)) (-15 -2619 ((-719) |#2|)) (-15 -3385 ((-597 |#2|))) (-15 -2062 ((-597 |#2|) |#2|)) (-15 -2157 ((-597 |#2|) |#2|)) (-15 -1414 ((-597 |#2|))) (-15 -3378 ((-597 |#2|))) (-15 -3113 ((-597 |#2|))) (-15 -1499 ((-597 |#2|))) (-15 -3235 ((-597 |#2|))) (-15 -3050 ((-597 (-637 |#1|)))) (-15 -1392 ((-597 (-637 |#1|)))) (-15 -3337 ((-597 (-637 |#1|)))) (-15 -2111 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3220 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) NIL) (((-1181 (-637 |#1|))) 24)) (-3990 (((-1181 $)) 51)) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-2228 ((|#1| $) NIL)) (-4209 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-3991 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL)) (-3581 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-2670 (((-1095 |#1|) $) NIL)) (-2662 (((-110)) 87)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-2707 (((-3 $ "failed") $) 14 (|has| |#1| (-522)))) (-2426 (((-862)) 52)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) 89)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-2465 ((|#1| $) NIL)) (-3846 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-3342 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL)) (-2209 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-2461 (((-1095 |#1|) $) NIL)) (-1921 (((-110)) 86)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) 93)) (-2561 (((-110)) 92)) (-3766 (((-110)) 94)) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) 88)) (-1902 ((|#1| $ (-530)) 54)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 28) (((-637 |#1|) (-1181 $)) NIL)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) NIL) (((-597 (-893 |#1|))) NIL)) (-2607 (($ $ $) NIL)) (-3675 (((-110)) 84)) (-2366 (((-804) $) 69) (($ (-1181 |#1|)) 22)) (-3220 (((-1181 $)) 45)) (-3758 (((-597 (-1181 |#1|))) NIL (|has| |#1| (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) 82)) (-3003 (($ (-637 |#1|) $) 18)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) 85)) (-3566 (((-110)) 83)) (-1957 (((-110)) 81)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1066 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2366 ($ (-1181 |#1|))))) (-344) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -43))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))))
+(-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2366 ($ (-1181 |#1|)))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3417 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3254 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2133 (($ $) NIL)) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270))) (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-1627 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))))) (-1307 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1615 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 27 (|has| $ (-6 -4270)))) (-3312 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-1647 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 29 (|has| $ (-6 -4270)))) (-2552 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-1148 (-530)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3245 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2767 (((-3 |#2| "failed") |#1| $) 37)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $ (-719)) NIL) (($ $) 24)) (-2287 (($ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 18 (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 18 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3538 (($ (-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 32 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2090 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3683 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 34 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-2939 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) 42 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2407 (($ $ (-719)) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3282 (((-597 |#1|) $) 20)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-4028 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 |#1|) $) NIL) (((-597 (-530)) $) NIL)) (-1927 (((-110) |#1| $) NIL) (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795))) (($ $ (-719)) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 23)) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2261 (((-597 |#2|) $) NIL) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 17)) (-3250 (((-110) $) 16)) (-3958 (($) 13)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first") NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value") NIL)) (-2539 (((-530) $ $) NIL)) (-1560 (($) 12) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3715 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-1328 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (($ $ $) NIL)) (-3483 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (($ (-597 $)) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 25) (($ $ $) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2414 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") |#1| $) 44)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2297 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2267 (((-719) $) 22 (|has| $ (-6 -4269)))))
(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1027) (-1027)) (T -44))
NIL
(-35 |#1| |#2|)
-((-3327 (((-110) $) 12)) (-3114 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-530)) $) 25) (($ $ (-388 (-530))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3327 ((-110) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-46 |#2| |#3|) (-984) (-740)) (T -45))
+((-3668 (((-110) $) 12)) (-3217 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-530)) $) 25) (($ $ (-388 (-530))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3668 ((-110) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-46 |#2| |#3|) (-984) (-740)) (T -45))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3327 ((-110) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3327 (((-110) $) 62)) (-2575 (($ |#1| |#2|) 61)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-3409 ((|#2| $) 64)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522))) (($ |#1|) 47 (|has| |#1| (-162)))) (-2782 ((|#1| $ |#2|) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3668 ((-110) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-46 |#1| |#2|) (-133) (-984) (-740)) (T -46))
-((-2402 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2575 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2782 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-344)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2402 (|t#1| $)) (-15 -2388 ($ $)) (-15 -3409 (|t#2| $)) (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (-15 -3327 ((-110) $)) (-15 -2575 ($ |t#1| |t#2|)) (-15 -2425 ($ $)) (-15 -2782 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -2257 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-522)) (-6 (-522)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-6 (-37 (-388 (-530)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-2728 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4101 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3015 (((-110) $) 11)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-2350 (((-597 (-570 $)) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3155 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-4115 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4189 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3012 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2446 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3607 (($ $ $) NIL)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-3856 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2986 (($ $) NIL) (($ (-597 $)) NIL)) (-2676 (((-597 (-112)) $) NIL)) (-2221 (((-112) (-112)) NIL)) (-3150 (((-110) $) 14)) (-1555 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1848 (((-1051 (-530) (-570 $)) $) NIL)) (-1817 (($ $ (-530)) NIL)) (-1717 (((-1095 $) (-1095 $) (-570 $)) NIL) (((-1095 $) (-1095 $) (-597 (-570 $))) NIL) (($ $ (-570 $)) NIL) (($ $ (-597 (-570 $))) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2657 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 $ $) (-570 $)) NIL)) (-2685 (((-3 (-570 $) "failed") $) NIL)) (-2072 (($ (-597 $)) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2422 (((-597 (-570 $)) $) NIL)) (-1912 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-2300 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2359 (($ $) NIL)) (-4150 (((-719) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2667 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1934 (((-719) $) NIL)) (-1832 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2695 (($ $) NIL) (($ $ $) NIL)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-1857 (((-1051 (-530) (-570 $)) $) NIL)) (-4212 (($ $) NIL (|has| $ (-984)))) (-3173 (((-360) $) NIL) (((-208) $) NIL) (((-159 (-360)) $) NIL)) (-2258 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) NIL)) (-1667 (((-719)) NIL)) (-3998 (($ $) NIL) (($ (-597 $)) NIL)) (-2212 (((-110) (-112)) NIL)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-530)) NIL) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) 7 T CONST)) (-2955 (($) 12 T CONST)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 16)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (-2245 (($ $ $) 15) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) NIL) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-47) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2258 ($ (-1051 (-530) (-570 $)))) (-15 -1848 ((-1051 (-530) (-570 $)) $)) (-15 -1857 ((-1051 (-530) (-570 $)) $)) (-15 -3856 ($ $)) (-15 -1717 ((-1095 $) (-1095 $) (-570 $))) (-15 -1717 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -1717 ($ $ (-570 $))) (-15 -1717 ($ $ (-597 (-570 $))))))) (T -47))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-3856 (*1 *1 *1) (-5 *1 (-47))) (-1717 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47)))) (-1717 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47)))))
-(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2258 ($ (-1051 (-530) (-570 $)))) (-15 -1848 ((-1051 (-530) (-570 $)) $)) (-15 -1857 ((-1051 (-530) (-570 $)) $)) (-15 -3856 ($ $)) (-15 -1717 ((-1095 $) (-1095 $) (-570 $))) (-15 -1717 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -1717 ($ $ (-570 $))) (-15 -1717 ($ $ (-597 (-570 $))))))
-((-2246 (((-110) $ $) NIL)) (-2034 (((-597 (-1099)) $) 17)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 7)) (-3912 (((-1104) $) 18)) (-2148 (((-110) $ $) NIL)))
-(((-48) (-13 (-1027) (-10 -8 (-15 -2034 ((-597 (-1099)) $)) (-15 -3912 ((-1104) $))))) (T -48))
-((-2034 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-48)))))
-(-13 (-1027) (-10 -8 (-15 -2034 ((-597 (-1099)) $)) (-15 -3912 ((-1104) $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 61)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1466 (((-110) $) 20)) (-3012 (((-3 |#1| "failed") $) 23)) (-2446 ((|#1| $) 24)) (-2425 (($ $) 28)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2402 ((|#1| $) 21)) (-3730 (($ $) 50)) (-3443 (((-1082) $) NIL)) (-3720 (((-110) $) 30)) (-2485 (((-1046) $) NIL)) (-1898 (($ (-719)) 48)) (-2693 (($ (-597 (-530))) 49)) (-3409 (((-719) $) 31)) (-2258 (((-804) $) 64) (($ (-530)) 45) (($ |#1|) 43)) (-2782 ((|#1| $ $) 19)) (-1667 (((-719)) 47)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 32 T CONST)) (-2955 (($) 14 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2402 (|#1| $)) (-15 -3730 ($ $)) (-15 -2425 ($ $)) (-15 -2782 (|#1| $ $)) (-15 -1898 ($ (-719))) (-15 -2693 ($ (-597 (-530)))) (-15 -3720 ((-110) $)) (-15 -1466 ((-110) $)) (-15 -3409 ((-719) $)) (-15 -3114 ($ (-1 |#1| |#1|) $)))) (-984) (-597 (-1099))) (T -49))
-((-2402 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-2782 (*1 *2 *1 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4)) (-14 *4 (-597 (-1099))))))
-(-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2402 (|#1| $)) (-15 -3730 ($ $)) (-15 -2425 ($ $)) (-15 -2782 (|#1| $ $)) (-15 -1898 ($ (-719))) (-15 -2693 ($ (-597 (-530)))) (-15 -3720 ((-110) $)) (-15 -1466 ((-110) $)) (-15 -3409 ((-719) $)) (-15 -3114 ($ (-1 |#1| |#1|) $))))
-((-1466 (((-110) (-51)) 13)) (-3012 (((-3 |#1| "failed") (-51)) 21)) (-2446 ((|#1| (-51)) 22)) (-2258 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2258 ((-51) |#1|)) (-15 -3012 ((-3 |#1| "failed") (-51))) (-15 -1466 ((-110) (-51))) (-15 -2446 (|#1| (-51)))) (-1135)) (T -50))
-((-2446 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135)))) (-3012 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2258 ((-51) |#1|)) (-15 -3012 ((-3 |#1| "failed") (-51))) (-15 -1466 ((-110) (-51))) (-15 -2446 (|#1| (-51))))
-((-2246 (((-110) $ $) NIL)) (-3482 (((-1082) (-110)) 25)) (-3574 (((-804) $) 24)) (-2430 (((-722) $) 12)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3587 (((-804) $) 16)) (-1237 (((-1031) $) 14)) (-2258 (((-804) $) 32)) (-1351 (($ (-1031) (-722)) 33)) (-2148 (((-110) $ $) 18)))
-(((-51) (-13 (-1027) (-10 -8 (-15 -1351 ($ (-1031) (-722))) (-15 -3587 ((-804) $)) (-15 -3574 ((-804) $)) (-15 -1237 ((-1031) $)) (-15 -2430 ((-722) $)) (-15 -3482 ((-1082) (-110)))))) (T -51))
-((-1351 (*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-1237 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-51)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
-(-13 (-1027) (-10 -8 (-15 -1351 ($ (-1031) (-722))) (-15 -3587 ((-804) $)) (-15 -3574 ((-804) $)) (-15 -1237 ((-1031) $)) (-15 -2430 ((-722) $)) (-15 -3482 ((-1082) (-110)))))
-((-2857 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2857 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-984) (-599 |#1|) (-797 |#1|)) (T -52))
-((-2857 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5)))))
-(-10 -7 (-15 -2857 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3833 ((|#3| |#3| (-597 (-1099))) 35)) (-3823 ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862)) 22) ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3823 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3823 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -3833 (|#3| |#3| (-597 (-1099))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -53))
-((-3833 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3823 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027)) (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5)))) (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3823 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3823 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3823 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -3833 (|#3| |#3| (-597 (-1099)))))
-((-4102 (((-110) $ (-719)) 23)) (-2992 (($ $ (-530) |#3|) 46)) (-2979 (($ $ (-530) |#4|) 50)) (-1564 ((|#3| $ (-530)) 59)) (-2456 (((-597 |#2|) $) 30)) (-2014 (((-110) $ (-719)) 25)) (-3455 (((-110) |#2| $) 54)) (-2847 (($ (-1 |#2| |#2|) $) 37)) (-3114 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-1987 (((-110) $ (-719)) 24)) (-1946 (($ $ |#2|) 34)) (-1505 (((-110) (-1 (-110) |#2|) $) 19)) (-1832 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) 27)) (-2494 (((-719) (-1 (-110) |#2|) $) 28) (((-719) |#2| $) 56)) (-2441 (($ $) 33)) (-1554 ((|#4| $ (-530)) 62)) (-2258 (((-804) $) 68)) (-1515 (((-110) (-1 (-110) |#2|) $) 18)) (-2148 (((-110) $ $) 53)) (-2167 (((-719) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2979 (|#1| |#1| (-530) |#4|)) (-15 -2992 (|#1| |#1| (-530) |#3|)) (-15 -2456 ((-597 |#2|) |#1|)) (-15 -1554 (|#4| |#1| (-530))) (-15 -1564 (|#3| |#1| (-530))) (-15 -1832 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530))) (-15 -1946 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))) (-15 -2441 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1135) (-354 |#2|) (-354 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2979 (|#1| |#1| (-530) |#4|)) (-15 -2992 (|#1| |#1| (-530) |#3|)) (-15 -2456 ((-597 |#2|) |#1|)) (-15 -1554 (|#4| |#1| (-530))) (-15 -1564 (|#3| |#1| (-530))) (-15 -1832 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530))) (-15 -1946 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))) (-15 -2441 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) (-530) |#1|) 44)) (-2992 (($ $ (-530) |#2|) 42)) (-2979 (($ $ (-530) |#3|) 41)) (-3956 (($) 7 T CONST)) (-1564 ((|#2| $ (-530)) 46)) (-2858 ((|#1| $ (-530) (-530) |#1|) 43)) (-2787 ((|#1| $ (-530) (-530)) 48)) (-2456 (((-597 |#1|) $) 30)) (-3531 (((-719) $) 51)) (-3547 (($ (-719) (-719) |#1|) 57)) (-3544 (((-719) $) 50)) (-2014 (((-110) $ (-719)) 9)) (-1604 (((-530) $) 55)) (-1583 (((-530) $) 53)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1593 (((-530) $) 54)) (-1574 (((-530) $) 52)) (-2847 (($ (-1 |#1| |#1|) $) 34)) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) 56)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-1554 ((|#3| $ (-530)) 45)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2533 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2725 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-344)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2533 (|t#1| $)) (-15 -2521 ($ $)) (-15 -1429 (|t#2| $)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3668 ((-110) $)) (-15 -2725 ($ |t#1| |t#2|)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-522)) (-6 (-522)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-6 (-37 (-388 (-530)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
+((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4202 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-1813 (((-110) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2473 (((-597 (-570 $)) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2933 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-1326 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-2134 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) 14)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1918 (((-1051 (-530) (-570 $)) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (((-1095 $) (-1095 $) (-570 $)) NIL) (((-1095 $) (-1095 $) (-597 (-570 $))) NIL) (($ $ (-570 $)) NIL) (($ $ (-597 (-570 $))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3210 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2483 (($ $) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-2356 (((-719) $) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1928 (((-1051 (-530) (-570 $)) $) NIL)) (-1781 (($ $) NIL (|has| $ (-984)))) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-159 (-360)) $) NIL)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) NIL)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 7 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 16)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $ $) 15) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) NIL) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
+(((-47) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))) (T -47))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-2134 (*1 *1 *1) (-5 *1 (-47))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47)))))
+(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))
+((-2352 (((-110) $ $) NIL)) (-3411 (((-597 (-1099)) $) 17)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-3919 (((-1104) $) 18)) (-2248 (((-110) $ $) NIL)))
+(((-48) (-13 (-1027) (-10 -8 (-15 -3411 ((-597 (-1099)) $)) (-15 -3919 ((-1104) $))))) (T -48))
+((-3411 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-48)))))
+(-13 (-1027) (-10 -8 (-15 -3411 ((-597 (-1099)) $)) (-15 -3919 ((-1104) $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 61)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3038 (((-110) $) 20)) (-3139 (((-3 |#1| "failed") $) 23)) (-2585 ((|#1| $) 24)) (-2562 (($ $) 28)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2533 ((|#1| $) 21)) (-2773 (($ $) 50)) (-1424 (((-1082) $) NIL)) (-3141 (((-110) $) 30)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) 48)) (-2853 (($ (-597 (-530))) 49)) (-1429 (((-719) $) 31)) (-2366 (((-804) $) 64) (($ (-530)) 45) (($ |#1|) 43)) (-4085 ((|#1| $ $) 19)) (-3300 (((-719)) 47)) (-3080 (($) 32 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2533 (|#1| $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 (|#1| $ $)) (-15 -1974 ($ (-719))) (-15 -2853 ($ (-597 (-530)))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-719) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)))) (-984) (-597 (-1099))) (T -49))
+((-2533 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-4085 (*1 *2 *1 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4)) (-14 *4 (-597 (-1099))))))
+(-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2533 (|#1| $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 (|#1| $ $)) (-15 -1974 ($ (-719))) (-15 -2853 ($ (-597 (-530)))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-719) $)) (-15 -3217 ($ (-1 |#1| |#1|) $))))
+((-3038 (((-110) (-51)) 13)) (-3139 (((-3 |#1| "failed") (-51)) 21)) (-2585 ((|#1| (-51)) 22)) (-2366 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2366 ((-51) |#1|)) (-15 -3139 ((-3 |#1| "failed") (-51))) (-15 -3038 ((-110) (-51))) (-15 -2585 (|#1| (-51)))) (-1135)) (T -50))
+((-2585 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135)))) (-3139 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1135)))))
+(-10 -7 (-15 -2366 ((-51) |#1|)) (-15 -3139 ((-3 |#1| "failed") (-51))) (-15 -3038 ((-110) (-51))) (-15 -2585 (|#1| (-51))))
+((-2352 (((-110) $ $) NIL)) (-3895 (((-1082) (-110)) 25)) (-3857 (((-804) $) 24)) (-2566 (((-722) $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2678 (((-804) $) 16)) (-1235 (((-1031) $) 14)) (-2366 (((-804) $) 32)) (-2726 (($ (-1031) (-722)) 33)) (-2248 (((-110) $ $) 18)))
+(((-51) (-13 (-1027) (-10 -8 (-15 -2726 ($ (-1031) (-722))) (-15 -2678 ((-804) $)) (-15 -3857 ((-804) $)) (-15 -1235 ((-1031) $)) (-15 -2566 ((-722) $)) (-15 -3895 ((-1082) (-110)))))) (T -51))
+((-2726 (*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-51)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
+(-13 (-1027) (-10 -8 (-15 -2726 ($ (-1031) (-722))) (-15 -2678 ((-804) $)) (-15 -3857 ((-804) $)) (-15 -1235 ((-1031) $)) (-15 -2566 ((-722) $)) (-15 -3895 ((-1082) (-110)))))
+((-3003 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -3003 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-984) (-599 |#1|) (-797 |#1|)) (T -52))
+((-3003 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5)))))
+(-10 -7 (-15 -3003 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2173 ((|#3| |#3| (-597 (-1099))) 35)) (-3572 ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862)) 22) ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -2173 (|#3| |#3| (-597 (-1099))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -53))
+((-2173 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3572 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027)) (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5)))) (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -2173 (|#3| |#3| (-597 (-1099)))))
+((-3186 (((-110) $ (-719)) 23)) (-2626 (($ $ (-530) |#3|) 46)) (-3959 (($ $ (-530) |#4|) 50)) (-1325 ((|#3| $ (-530)) 59)) (-3779 (((-597 |#2|) $) 30)) (-4027 (((-110) $ (-719)) 25)) (-4197 (((-110) |#2| $) 54)) (-3583 (($ (-1 |#2| |#2|) $) 37)) (-3217 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2763 (((-110) $ (-719)) 24)) (-1522 (($ $ |#2|) 34)) (-1533 (((-110) (-1 (-110) |#2|) $) 19)) (-1902 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) 27)) (-2632 (((-719) (-1 (-110) |#2|) $) 28) (((-719) |#2| $) 56)) (-2579 (($ $) 33)) (-3350 ((|#4| $ (-530)) 62)) (-2366 (((-804) $) 68)) (-3889 (((-110) (-1 (-110) |#2|) $) 18)) (-2248 (((-110) $ $) 53)) (-2267 (((-719) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1| (-530) |#4|)) (-15 -2626 (|#1| |#1| (-530) |#3|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -3350 (|#4| |#1| (-530))) (-15 -1325 (|#3| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -2579 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1135) (-354 |#2|) (-354 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1| (-530) |#4|)) (-15 -2626 (|#1| |#1| (-530) |#3|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -3350 (|#4| |#1| (-530))) (-15 -1325 (|#3| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -2579 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) (-530) |#1|) 44)) (-2626 (($ $ (-530) |#2|) 42)) (-3959 (($ $ (-530) |#3|) 41)) (-2350 (($) 7 T CONST)) (-1325 ((|#2| $ (-530)) 46)) (-3592 ((|#1| $ (-530) (-530) |#1|) 43)) (-3532 ((|#1| $ (-530) (-530)) 48)) (-3779 (((-597 |#1|) $) 30)) (-1796 (((-719) $) 51)) (-3538 (($ (-719) (-719) |#1|) 57)) (-1810 (((-719) $) 50)) (-4027 (((-110) $ (-719)) 9)) (-3863 (((-530) $) 55)) (-3643 (((-530) $) 53)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 54)) (-3909 (((-530) $) 52)) (-3583 (($ (-1 |#1| |#1|) $) 34)) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) 56)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3350 ((|#3| $ (-530)) 45)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-55 |#1| |#2| |#3|) (-133) (-1135) (-354 |t#1|) (-354 |t#1|)) (T -55))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3547 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-1135)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1946 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-1832 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-2787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-1832 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-1564 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-1554 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 *3)))) (-2416 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2858 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2992 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))) (-2979 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))) (-2847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3114 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3114 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(-13 (-468 |t#1|) (-10 -8 (-6 -4271) (-6 -4270) (-15 -3547 ($ (-719) (-719) |t#1|)) (-15 -1946 ($ $ |t#1|)) (-15 -1604 ((-530) $)) (-15 -1593 ((-530) $)) (-15 -1583 ((-530) $)) (-15 -1574 ((-530) $)) (-15 -3531 ((-719) $)) (-15 -3544 ((-719) $)) (-15 -1832 (|t#1| $ (-530) (-530))) (-15 -2787 (|t#1| $ (-530) (-530))) (-15 -1832 (|t#1| $ (-530) (-530) |t#1|)) (-15 -1564 (|t#2| $ (-530))) (-15 -1554 (|t#3| $ (-530))) (-15 -2456 ((-597 |t#1|) $)) (-15 -2416 (|t#1| $ (-530) (-530) |t#1|)) (-15 -2858 (|t#1| $ (-530) (-530) |t#1|)) (-15 -2992 ($ $ (-530) |t#2|)) (-15 -2979 ($ $ (-530) |t#3|)) (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (-15 -2847 ($ (-1 |t#1| |t#1|) $)) (-15 -3114 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3114 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-1802 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3114 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -1802 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3114 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1135) (-1135)) (T -56))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-56 *5 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -1802 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3114 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3003 (($ (-597 |#1|)) 13) (($ (-719) |#1|) 14)) (-3547 (($ (-719) |#1|) 9)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 7)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3003 ($ (-597 |#1|))) (-15 -3003 ($ (-719) |#1|)))) (-1135)) (T -57))
-((-3003 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))) (-3003 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3003 ($ (-597 |#1|))) (-15 -3003 ($ (-719) |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2992 (($ $ (-530) (-57 |#1|)) NIL)) (-2979 (($ $ (-530) (-57 |#1|)) NIL)) (-3956 (($) NIL T CONST)) (-1564 (((-57 |#1|) $ (-530)) NIL)) (-2858 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2787 ((|#1| $ (-530) (-530)) NIL)) (-2456 (((-597 |#1|) $) NIL)) (-3531 (((-719) $) NIL)) (-3547 (($ (-719) (-719) |#1|) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-1554 (((-57 |#1|) $ (-530)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4271))) (-1135)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4271)))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 74) (((-3 $ "failed") (-1181 (-297 (-530)))) 63) (((-3 $ "failed") (-1181 (-893 (-360)))) 94) (((-3 $ "failed") (-1181 (-893 (-530)))) 84) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 52) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 39)) (-2446 (($ (-1181 (-297 (-360)))) 70) (($ (-1181 (-297 (-530)))) 59) (($ (-1181 (-893 (-360)))) 90) (($ (-1181 (-893 (-530)))) 80) (($ (-1181 (-388 (-893 (-360))))) 48) (($ (-1181 (-388 (-893 (-530))))) 32)) (-3057 (((-1186) $) 120)) (-2258 (((-804) $) 113) (($ (-597 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 101) (($ (-1181 (-320 (-2268 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2268) (-647)))) 31)))
-(((-59 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2268) (-647))))))) (-1099)) (T -59))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2268) (-647)))) (-5 *1 (-59 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2268) (-647)))))))
-((-3057 (((-1186) $) 53) (((-1186)) 54)) (-2258 (((-804) $) 50)))
-(((-60 |#1|) (-13 (-376) (-10 -7 (-15 -3057 ((-1186))))) (-1099)) (T -60))
-((-3057 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-60 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3057 ((-1186)))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 144) (((-3 $ "failed") (-1181 (-297 (-530)))) 134) (((-3 $ "failed") (-1181 (-893 (-360)))) 164) (((-3 $ "failed") (-1181 (-893 (-530)))) 154) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 123) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 111)) (-2446 (($ (-1181 (-297 (-360)))) 140) (($ (-1181 (-297 (-530)))) 130) (($ (-1181 (-893 (-360)))) 160) (($ (-1181 (-893 (-530)))) 150) (($ (-1181 (-388 (-893 (-360))))) 119) (($ (-1181 (-388 (-893 (-530))))) 104)) (-3057 (((-1186) $) 97)) (-2258 (((-804) $) 91) (($ (-597 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 32) (($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))) 89)))
-(((-61 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647))))))) (-1099)) (T -61))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))) (-5 *1 (-61 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))))))
-((-3012 (((-3 $ "failed") (-297 (-360))) 41) (((-3 $ "failed") (-297 (-530))) 46) (((-3 $ "failed") (-893 (-360))) 50) (((-3 $ "failed") (-893 (-530))) 54) (((-3 $ "failed") (-388 (-893 (-360)))) 36) (((-3 $ "failed") (-388 (-893 (-530)))) 29)) (-2446 (($ (-297 (-360))) 39) (($ (-297 (-530))) 44) (($ (-893 (-360))) 48) (($ (-893 (-530))) 52) (($ (-388 (-893 (-360)))) 34) (($ (-388 (-893 (-530)))) 26)) (-3057 (((-1186) $) 76)) (-2258 (((-804) $) 69) (($ (-597 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 64) (($ (-320 (-2268 (QUOTE X)) (-2268) (-647))) 25)))
-(((-62 |#1|) (-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268 (QUOTE X)) (-2268) (-647)))))) (-1099)) (T -62))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-320 (-2268 (QUOTE X)) (-2268) (-647))) (-5 *1 (-62 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268 (QUOTE X)) (-2268) (-647))))))
-((-3012 (((-3 $ "failed") (-637 (-297 (-360)))) 109) (((-3 $ "failed") (-637 (-297 (-530)))) 97) (((-3 $ "failed") (-637 (-893 (-360)))) 131) (((-3 $ "failed") (-637 (-893 (-530)))) 120) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 85) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 71)) (-2446 (($ (-637 (-297 (-360)))) 105) (($ (-637 (-297 (-530)))) 93) (($ (-637 (-893 (-360)))) 127) (($ (-637 (-893 (-530)))) 116) (($ (-637 (-388 (-893 (-360))))) 81) (($ (-637 (-388 (-893 (-530))))) 64)) (-3057 (((-1186) $) 139)) (-2258 (((-804) $) 133) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 31) (($ (-637 (-320 (-2268) (-2268 (QUOTE X) (QUOTE HESS)) (-647)))) 54)))
-(((-63 |#1|) (-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268) (-2268 (QUOTE X) (QUOTE HESS)) (-647))))))) (-1099)) (T -63))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2268) (-2268 (QUOTE X) (QUOTE HESS)) (-647)))) (-5 *1 (-63 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268) (-2268 (QUOTE X) (QUOTE HESS)) (-647)))))))
-((-3012 (((-3 $ "failed") (-297 (-360))) 59) (((-3 $ "failed") (-297 (-530))) 64) (((-3 $ "failed") (-893 (-360))) 68) (((-3 $ "failed") (-893 (-530))) 72) (((-3 $ "failed") (-388 (-893 (-360)))) 54) (((-3 $ "failed") (-388 (-893 (-530)))) 47)) (-2446 (($ (-297 (-360))) 57) (($ (-297 (-530))) 62) (($ (-893 (-360))) 66) (($ (-893 (-530))) 70) (($ (-388 (-893 (-360)))) 52) (($ (-388 (-893 (-530)))) 44)) (-3057 (((-1186) $) 81)) (-2258 (((-804) $) 75) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 31) (($ (-320 (-2268) (-2268 (QUOTE XC)) (-647))) 39)))
-(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE XC)) (-647)))))) (-1099)) (T -64))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-320 (-2268) (-2268 (QUOTE XC)) (-647))) (-5 *1 (-64 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE XC)) (-647))))))
-((-3057 (((-1186) $) 63)) (-2258 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 53)))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3538 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-1135)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1522 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-3532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 *3)))) (-2552 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-3592 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))) (-3959 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))) (-3583 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3217 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3538 ($ (-719) (-719) |t#1|)) (-15 -1522 ($ $ |t#1|)) (-15 -3863 ((-530) $)) (-15 -2307 ((-530) $)) (-15 -3643 ((-530) $)) (-15 -3909 ((-530) $)) (-15 -1796 ((-719) $)) (-15 -1810 ((-719) $)) (-15 -1902 (|t#1| $ (-530) (-530))) (-15 -3532 (|t#1| $ (-530) (-530))) (-15 -1902 (|t#1| $ (-530) (-530) |t#1|)) (-15 -1325 (|t#2| $ (-530))) (-15 -3350 (|t#3| $ (-530))) (-15 -3779 ((-597 |t#1|) $)) (-15 -2552 (|t#1| $ (-530) (-530) |t#1|)) (-15 -3592 (|t#1| $ (-530) (-530) |t#1|)) (-15 -2626 ($ $ (-530) |t#2|)) (-15 -3959 ($ $ (-530) |t#3|)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3583 ($ (-1 |t#1| |t#1|) $)) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2753 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3217 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -2753 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3217 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1135) (-1135)) (T -56))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-56 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -2753 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3217 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2275 (($ (-597 |#1|)) 13) (($ (-719) |#1|) 14)) (-3538 (($ (-719) |#1|) 9)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 7)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2275 ($ (-597 |#1|))) (-15 -2275 ($ (-719) |#1|)))) (-1135)) (T -57))
+((-2275 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2275 ($ (-597 |#1|))) (-15 -2275 ($ (-719) |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2626 (($ $ (-530) (-57 |#1|)) NIL)) (-3959 (($ $ (-530) (-57 |#1|)) NIL)) (-2350 (($) NIL T CONST)) (-1325 (((-57 |#1|) $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-57 |#1|) $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4270))) (-1135)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4270)))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 74) (((-3 $ "failed") (-1181 (-297 (-530)))) 63) (((-3 $ "failed") (-1181 (-893 (-360)))) 94) (((-3 $ "failed") (-1181 (-893 (-530)))) 84) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 52) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 39)) (-2585 (($ (-1181 (-297 (-360)))) 70) (($ (-1181 (-297 (-530)))) 59) (($ (-1181 (-893 (-360)))) 90) (($ (-1181 (-893 (-530)))) 80) (($ (-1181 (-388 (-893 (-360))))) 48) (($ (-1181 (-388 (-893 (-530))))) 32)) (-3176 (((-1186) $) 120)) (-2366 (((-804) $) 113) (($ (-597 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 101) (($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))) 31)))
+(((-59 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647))))))) (-1099)) (T -59))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))) (-5 *1 (-59 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))))))
+((-3176 (((-1186) $) 53) (((-1186)) 54)) (-2366 (((-804) $) 50)))
+(((-60 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -60))
+((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-60 *3)) (-14 *3 (-1099)))))
+(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 144) (((-3 $ "failed") (-1181 (-297 (-530)))) 134) (((-3 $ "failed") (-1181 (-893 (-360)))) 164) (((-3 $ "failed") (-1181 (-893 (-530)))) 154) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 123) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 111)) (-2585 (($ (-1181 (-297 (-360)))) 140) (($ (-1181 (-297 (-530)))) 130) (($ (-1181 (-893 (-360)))) 160) (($ (-1181 (-893 (-530)))) 150) (($ (-1181 (-388 (-893 (-360))))) 119) (($ (-1181 (-388 (-893 (-530))))) 104)) (-3176 (((-1186) $) 97)) (-2366 (((-804) $) 91) (($ (-597 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 32) (($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) 89)))
+(((-61 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))) (-1099)) (T -61))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) (-5 *1 (-61 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))))
+((-3139 (((-3 $ "failed") (-297 (-360))) 41) (((-3 $ "failed") (-297 (-530))) 46) (((-3 $ "failed") (-893 (-360))) 50) (((-3 $ "failed") (-893 (-530))) 54) (((-3 $ "failed") (-388 (-893 (-360)))) 36) (((-3 $ "failed") (-388 (-893 (-530)))) 29)) (-2585 (($ (-297 (-360))) 39) (($ (-297 (-530))) 44) (($ (-893 (-360))) 48) (($ (-893 (-530))) 52) (($ (-388 (-893 (-360)))) 34) (($ (-388 (-893 (-530)))) 26)) (-3176 (((-1186) $) 76)) (-2366 (((-804) $) 69) (($ (-597 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 64) (($ (-320 (-2377 (QUOTE X)) (-2377) (-647))) 25)))
+(((-62 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377) (-647)))))) (-1099)) (T -62))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377 (QUOTE X)) (-2377) (-647))) (-5 *1 (-62 *3)) (-14 *3 (-1099)))))
+(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377) (-647))))))
+((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 109) (((-3 $ "failed") (-637 (-297 (-530)))) 97) (((-3 $ "failed") (-637 (-893 (-360)))) 131) (((-3 $ "failed") (-637 (-893 (-530)))) 120) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 85) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 71)) (-2585 (($ (-637 (-297 (-360)))) 105) (($ (-637 (-297 (-530)))) 93) (($ (-637 (-893 (-360)))) 127) (($ (-637 (-893 (-530)))) 116) (($ (-637 (-388 (-893 (-360))))) 81) (($ (-637 (-388 (-893 (-530))))) 64)) (-3176 (((-1186) $) 139)) (-2366 (((-804) $) 133) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 31) (($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))) 54)))
+(((-63 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647))))))) (-1099)) (T -63))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))) (-5 *1 (-63 *3)) (-14 *3 (-1099)))))
+(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))))))
+((-3139 (((-3 $ "failed") (-297 (-360))) 59) (((-3 $ "failed") (-297 (-530))) 64) (((-3 $ "failed") (-893 (-360))) 68) (((-3 $ "failed") (-893 (-530))) 72) (((-3 $ "failed") (-388 (-893 (-360)))) 54) (((-3 $ "failed") (-388 (-893 (-530)))) 47)) (-2585 (($ (-297 (-360))) 57) (($ (-297 (-530))) 62) (($ (-893 (-360))) 66) (($ (-893 (-530))) 70) (($ (-388 (-893 (-360)))) 52) (($ (-388 (-893 (-530)))) 44)) (-3176 (((-1186) $) 81)) (-2366 (((-804) $) 75) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 31) (($ (-320 (-2377) (-2377 (QUOTE XC)) (-647))) 39)))
+(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))) (-1099)) (T -64))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE XC)) (-647))) (-5 *1 (-64 *3)) (-14 *3 (-1099)))))
+(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))
+((-3176 (((-1186) $) 63)) (-2366 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 53)))
(((-65 |#1|) (-364) (-1099)) (T -65))
NIL
(-364)
-((-3057 (((-1186) $) 64)) (-2258 (((-804) $) 58) (($ (-637 (-647))) 50) (($ (-597 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 55)))
+((-3176 (((-1186) $) 64)) (-2366 (((-804) $) 58) (($ (-637 (-647))) 50) (($ (-597 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 55)))
(((-66 |#1|) (-364) (-1099)) (T -66))
NIL
(-364)
-((-3057 (((-1186) $) NIL) (((-1186)) 32)) (-2258 (((-804) $) NIL)))
-(((-67 |#1|) (-13 (-376) (-10 -7 (-15 -3057 ((-1186))))) (-1099)) (T -67))
-((-3057 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-67 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3057 ((-1186)))))
-((-3057 (((-1186) $) 73)) (-2258 (((-804) $) 67) (($ (-637 (-647))) 59) (($ (-597 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 58)))
+((-3176 (((-1186) $) NIL) (((-1186)) 32)) (-2366 (((-804) $) NIL)))
+(((-67 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -67))
+((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-67 *3)) (-14 *3 (-1099)))))
+(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
+((-3176 (((-1186) $) 73)) (-2366 (((-804) $) 67) (($ (-637 (-647))) 59) (($ (-597 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 58)))
(((-68 |#1|) (-364) (-1099)) (T -68))
NIL
(-364)
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 103) (((-3 $ "failed") (-1181 (-297 (-530)))) 92) (((-3 $ "failed") (-1181 (-893 (-360)))) 123) (((-3 $ "failed") (-1181 (-893 (-530)))) 113) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 81) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 68)) (-2446 (($ (-1181 (-297 (-360)))) 99) (($ (-1181 (-297 (-530)))) 88) (($ (-1181 (-893 (-360)))) 119) (($ (-1181 (-893 (-530)))) 109) (($ (-1181 (-388 (-893 (-360))))) 77) (($ (-1181 (-388 (-893 (-530))))) 61)) (-3057 (((-1186) $) 136)) (-2258 (((-804) $) 130) (($ (-597 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 53) (($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))) 54)))
-(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647))))))) (-1099)) (T -69))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))) (-5 *1 (-69 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))))))
-((-3057 (((-1186) $) 32) (((-1186)) 31)) (-2258 (((-804) $) 35)))
-(((-70 |#1|) (-13 (-376) (-10 -7 (-15 -3057 ((-1186))))) (-1099)) (T -70))
-((-3057 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-70 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3057 ((-1186)))))
-((-3057 (((-1186) $) 63)) (-2258 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 48)))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 103) (((-3 $ "failed") (-1181 (-297 (-530)))) 92) (((-3 $ "failed") (-1181 (-893 (-360)))) 123) (((-3 $ "failed") (-1181 (-893 (-530)))) 113) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 81) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 68)) (-2585 (($ (-1181 (-297 (-360)))) 99) (($ (-1181 (-297 (-530)))) 88) (($ (-1181 (-893 (-360)))) 119) (($ (-1181 (-893 (-530)))) 109) (($ (-1181 (-388 (-893 (-360))))) 77) (($ (-1181 (-388 (-893 (-530))))) 61)) (-3176 (((-1186) $) 136)) (-2366 (((-804) $) 130) (($ (-597 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 53) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) 54)))
+(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))) (-1099)) (T -69))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-69 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))))
+((-3176 (((-1186) $) 32) (((-1186)) 31)) (-2366 (((-804) $) 35)))
+(((-70 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -70))
+((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-70 *3)) (-14 *3 (-1099)))))
+(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
+((-3176 (((-1186) $) 63)) (-2366 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 48)))
(((-71 |#1|) (-364) (-1099)) (T -71))
NIL
(-364)
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 125) (((-3 $ "failed") (-1181 (-297 (-530)))) 115) (((-3 $ "failed") (-1181 (-893 (-360)))) 145) (((-3 $ "failed") (-1181 (-893 (-530)))) 135) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 93)) (-2446 (($ (-1181 (-297 (-360)))) 121) (($ (-1181 (-297 (-530)))) 111) (($ (-1181 (-893 (-360)))) 141) (($ (-1181 (-893 (-530)))) 131) (($ (-1181 (-388 (-893 (-360))))) 101) (($ (-1181 (-388 (-893 (-530))))) 86)) (-3057 (((-1186) $) 78)) (-2258 (((-804) $) 27) (($ (-597 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 71) (($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) 65)))
-(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647))))))) (-1099)) (T -72))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) (-5 *1 (-72 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 130) (((-3 $ "failed") (-1181 (-297 (-530)))) 119) (((-3 $ "failed") (-1181 (-893 (-360)))) 150) (((-3 $ "failed") (-1181 (-893 (-530)))) 140) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 108) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 95)) (-2446 (($ (-1181 (-297 (-360)))) 126) (($ (-1181 (-297 (-530)))) 115) (($ (-1181 (-893 (-360)))) 146) (($ (-1181 (-893 (-530)))) 136) (($ (-1181 (-388 (-893 (-360))))) 104) (($ (-1181 (-388 (-893 (-530))))) 88)) (-3057 (((-1186) $) 79)) (-2258 (((-804) $) 71) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE EPS)) (-2268 (QUOTE -4114)) (-647)))) 66)))
-(((-73 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE EPS)) (-2268 (QUOTE -4114)) (-647))))))) (-1099) (-1099) (-1099)) (T -73))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE X) (QUOTE EPS)) (-2268 (QUOTE -4114)) (-647)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE EPS)) (-2268 (QUOTE -4114)) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 134) (((-3 $ "failed") (-1181 (-297 (-530)))) 123) (((-3 $ "failed") (-1181 (-893 (-360)))) 154) (((-3 $ "failed") (-1181 (-893 (-530)))) 144) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 112) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 99)) (-2446 (($ (-1181 (-297 (-360)))) 130) (($ (-1181 (-297 (-530)))) 119) (($ (-1181 (-893 (-360)))) 150) (($ (-1181 (-893 (-530)))) 140) (($ (-1181 (-388 (-893 (-360))))) 108) (($ (-1181 (-388 (-893 (-530))))) 92)) (-3057 (((-1186) $) 83)) (-2258 (((-804) $) 75) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2268 (QUOTE EPS)) (-2268 (QUOTE YA) (QUOTE YB)) (-647)))) 70)))
-(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE EPS)) (-2268 (QUOTE YA) (QUOTE YB)) (-647))))))) (-1099) (-1099) (-1099)) (T -74))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE EPS)) (-2268 (QUOTE YA) (QUOTE YB)) (-647)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE EPS)) (-2268 (QUOTE YA) (QUOTE YB)) (-647)))))))
-((-3012 (((-3 $ "failed") (-297 (-360))) 82) (((-3 $ "failed") (-297 (-530))) 87) (((-3 $ "failed") (-893 (-360))) 91) (((-3 $ "failed") (-893 (-530))) 95) (((-3 $ "failed") (-388 (-893 (-360)))) 77) (((-3 $ "failed") (-388 (-893 (-530)))) 70)) (-2446 (($ (-297 (-360))) 80) (($ (-297 (-530))) 85) (($ (-893 (-360))) 89) (($ (-893 (-530))) 93) (($ (-388 (-893 (-360)))) 75) (($ (-388 (-893 (-530)))) 67)) (-3057 (((-1186) $) 62)) (-2258 (((-804) $) 50) (($ (-597 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 54) (($ (-320 (-2268) (-2268 (QUOTE X)) (-647))) 47)))
-(((-75 |#1|) (-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE X)) (-647)))))) (-1099)) (T -75))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-320 (-2268) (-2268 (QUOTE X)) (-647))) (-5 *1 (-75 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE X)) (-647))))))
-((-3012 (((-3 $ "failed") (-297 (-360))) 46) (((-3 $ "failed") (-297 (-530))) 51) (((-3 $ "failed") (-893 (-360))) 55) (((-3 $ "failed") (-893 (-530))) 59) (((-3 $ "failed") (-388 (-893 (-360)))) 41) (((-3 $ "failed") (-388 (-893 (-530)))) 34)) (-2446 (($ (-297 (-360))) 44) (($ (-297 (-530))) 49) (($ (-893 (-360))) 53) (($ (-893 (-530))) 57) (($ (-388 (-893 (-360)))) 39) (($ (-388 (-893 (-530)))) 31)) (-3057 (((-1186) $) 80)) (-2258 (((-804) $) 74) (($ (-597 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 69) (($ (-320 (-2268) (-2268 (QUOTE X)) (-647))) 30)))
-(((-76 |#1|) (-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE X)) (-647)))))) (-1099)) (T -76))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-320 (-2268) (-2268 (QUOTE X)) (-647))) (-5 *1 (-76 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268) (-2268 (QUOTE X)) (-647))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 89) (((-3 $ "failed") (-1181 (-297 (-530)))) 78) (((-3 $ "failed") (-1181 (-893 (-360)))) 109) (((-3 $ "failed") (-1181 (-893 (-530)))) 99) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 67) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 54)) (-2446 (($ (-1181 (-297 (-360)))) 85) (($ (-1181 (-297 (-530)))) 74) (($ (-1181 (-893 (-360)))) 105) (($ (-1181 (-893 (-530)))) 95) (($ (-1181 (-388 (-893 (-360))))) 63) (($ (-1181 (-388 (-893 (-530))))) 47)) (-3057 (((-1186) $) 125)) (-2258 (((-804) $) 119) (($ (-597 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 115) (($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))) 38)))
-(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647))))))) (-1099)) (T -77))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))) (-5 *1 (-77 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE XC)) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 142) (((-3 $ "failed") (-1181 (-297 (-530)))) 132) (((-3 $ "failed") (-1181 (-893 (-360)))) 162) (((-3 $ "failed") (-1181 (-893 (-530)))) 152) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 122) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 110)) (-2446 (($ (-1181 (-297 (-360)))) 138) (($ (-1181 (-297 (-530)))) 128) (($ (-1181 (-893 (-360)))) 158) (($ (-1181 (-893 (-530)))) 148) (($ (-1181 (-388 (-893 (-360))))) 118) (($ (-1181 (-388 (-893 (-530))))) 103)) (-3057 (((-1186) $) 96)) (-2258 (((-804) $) 90) (($ (-597 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 86) (($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) 82)))
-(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647))))))) (-1099)) (T -78))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) (-5 *1 (-78 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 78) (((-3 $ "failed") (-1181 (-297 (-530)))) 67) (((-3 $ "failed") (-1181 (-893 (-360)))) 98) (((-3 $ "failed") (-1181 (-893 (-530)))) 88) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 56) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 43)) (-2446 (($ (-1181 (-297 (-360)))) 74) (($ (-1181 (-297 (-530)))) 63) (($ (-1181 (-893 (-360)))) 94) (($ (-1181 (-893 (-530)))) 84) (($ (-1181 (-388 (-893 (-360))))) 52) (($ (-1181 (-388 (-893 (-530))))) 36)) (-3057 (((-1186) $) 124)) (-2258 (((-804) $) 118) (($ (-597 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 113) (($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) 35)))
-(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647))))))) (-1099)) (T -79))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))) (-5 *1 (-79 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268) (-2268 (QUOTE X)) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 95) (((-3 $ "failed") (-1181 (-297 (-530)))) 84) (((-3 $ "failed") (-1181 (-893 (-360)))) 115) (((-3 $ "failed") (-1181 (-893 (-530)))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 73) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 60)) (-2446 (($ (-1181 (-297 (-360)))) 91) (($ (-1181 (-297 (-530)))) 80) (($ (-1181 (-893 (-360)))) 111) (($ (-1181 (-893 (-530)))) 101) (($ (-1181 (-388 (-893 (-360))))) 69) (($ (-1181 (-388 (-893 (-530))))) 53)) (-3057 (((-1186) $) 45)) (-2258 (((-804) $) 39) (($ (-597 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 35) (($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))) 30)))
-(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647))))))) (-1099)) (T -80))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))) (-5 *1 (-80 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))))))
-((-3012 (((-3 $ "failed") (-637 (-297 (-360)))) 115) (((-3 $ "failed") (-637 (-297 (-530)))) 104) (((-3 $ "failed") (-637 (-893 (-360)))) 137) (((-3 $ "failed") (-637 (-893 (-530)))) 126) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 93) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 80)) (-2446 (($ (-637 (-297 (-360)))) 111) (($ (-637 (-297 (-530)))) 100) (($ (-637 (-893 (-360)))) 133) (($ (-637 (-893 (-530)))) 122) (($ (-637 (-388 (-893 (-360))))) 89) (($ (-637 (-388 (-893 (-530))))) 73)) (-3057 (((-1186) $) 63)) (-2258 (((-804) $) 50) (($ (-597 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 55) (($ (-637 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))) 47)))
-(((-81 |#1|) (-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647))))))) (-1099)) (T -81))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))) (-5 *1 (-81 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE X) (QUOTE -4114)) (-2268) (-647)))))))
-((-3012 (((-3 $ "failed") (-637 (-297 (-360)))) 112) (((-3 $ "failed") (-637 (-297 (-530)))) 100) (((-3 $ "failed") (-637 (-893 (-360)))) 134) (((-3 $ "failed") (-637 (-893 (-530)))) 123) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 88) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 74)) (-2446 (($ (-637 (-297 (-360)))) 108) (($ (-637 (-297 (-530)))) 96) (($ (-637 (-893 (-360)))) 130) (($ (-637 (-893 (-530)))) 119) (($ (-637 (-388 (-893 (-360))))) 84) (($ (-637 (-388 (-893 (-530))))) 67)) (-3057 (((-1186) $) 59)) (-2258 (((-804) $) 53) (($ (-597 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 44) (($ (-637 (-320 (-2268 (QUOTE X)) (-2268) (-647)))) 45)))
-(((-82 |#1|) (-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE X)) (-2268) (-647))))))) (-1099)) (T -82))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2268 (QUOTE X)) (-2268) (-647)))) (-5 *1 (-82 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE X)) (-2268) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 104) (((-3 $ "failed") (-1181 (-297 (-530)))) 93) (((-3 $ "failed") (-1181 (-893 (-360)))) 124) (((-3 $ "failed") (-1181 (-893 (-530)))) 114) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 82) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 69)) (-2446 (($ (-1181 (-297 (-360)))) 100) (($ (-1181 (-297 (-530)))) 89) (($ (-1181 (-893 (-360)))) 120) (($ (-1181 (-893 (-530)))) 110) (($ (-1181 (-388 (-893 (-360))))) 78) (($ (-1181 (-388 (-893 (-530))))) 62)) (-3057 (((-1186) $) 46)) (-2258 (((-804) $) 40) (($ (-597 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 52) (($ (-1181 (-320 (-2268 (QUOTE X)) (-2268) (-647)))) 37)))
-(((-83 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268) (-647))))))) (-1099)) (T -83))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE X)) (-2268) (-647)))) (-5 *1 (-83 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268) (-647)))))))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 79) (((-3 $ "failed") (-1181 (-297 (-530)))) 68) (((-3 $ "failed") (-1181 (-893 (-360)))) 99) (((-3 $ "failed") (-1181 (-893 (-530)))) 89) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 57) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 44)) (-2446 (($ (-1181 (-297 (-360)))) 75) (($ (-1181 (-297 (-530)))) 64) (($ (-1181 (-893 (-360)))) 95) (($ (-1181 (-893 (-530)))) 85) (($ (-1181 (-388 (-893 (-360))))) 53) (($ (-1181 (-388 (-893 (-530))))) 37)) (-3057 (((-1186) $) 125)) (-2258 (((-804) $) 119) (($ (-597 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 114) (($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))) 36)))
-(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647))))))) (-1099)) (T -84))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))) (-5 *1 (-84 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2258 ($ (-1181 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))))))
-((-3012 (((-3 $ "failed") (-637 (-297 (-360)))) 113) (((-3 $ "failed") (-637 (-297 (-530)))) 101) (((-3 $ "failed") (-637 (-893 (-360)))) 135) (((-3 $ "failed") (-637 (-893 (-530)))) 124) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 89) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 75)) (-2446 (($ (-637 (-297 (-360)))) 109) (($ (-637 (-297 (-530)))) 97) (($ (-637 (-893 (-360)))) 131) (($ (-637 (-893 (-530)))) 120) (($ (-637 (-388 (-893 (-360))))) 85) (($ (-637 (-388 (-893 (-530))))) 68)) (-3057 (((-1186) $) 59)) (-2258 (((-804) $) 53) (($ (-597 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 48) (($ (-637 (-320 (-2268 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2268) (-647)))) 44)))
-(((-85 |#1|) (-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2268) (-647))))))) (-1099)) (T -85))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2268 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2268) (-647)))) (-5 *1 (-85 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2258 ($ (-637 (-320 (-2268 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2268) (-647)))))))
-((-3057 (((-1186) $) 44)) (-2258 (((-804) $) 38) (($ (-1181 (-647))) 92) (($ (-597 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 33)))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 125) (((-3 $ "failed") (-1181 (-297 (-530)))) 115) (((-3 $ "failed") (-1181 (-893 (-360)))) 145) (((-3 $ "failed") (-1181 (-893 (-530)))) 135) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 93)) (-2585 (($ (-1181 (-297 (-360)))) 121) (($ (-1181 (-297 (-530)))) 111) (($ (-1181 (-893 (-360)))) 141) (($ (-1181 (-893 (-530)))) 131) (($ (-1181 (-388 (-893 (-360))))) 101) (($ (-1181 (-388 (-893 (-530))))) 86)) (-3176 (((-1186) $) 78)) (-2366 (((-804) $) 27) (($ (-597 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 71) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 65)))
+(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -72))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-72 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 130) (((-3 $ "failed") (-1181 (-297 (-530)))) 119) (((-3 $ "failed") (-1181 (-893 (-360)))) 150) (((-3 $ "failed") (-1181 (-893 (-530)))) 140) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 108) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 95)) (-2585 (($ (-1181 (-297 (-360)))) 126) (($ (-1181 (-297 (-530)))) 115) (($ (-1181 (-893 (-360)))) 146) (($ (-1181 (-893 (-530)))) 136) (($ (-1181 (-388 (-893 (-360))))) 104) (($ (-1181 (-388 (-893 (-530))))) 88)) (-3176 (((-1186) $) 79)) (-2366 (((-804) $) 71) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))) 66)))
+(((-73 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647))))))) (-1099) (-1099) (-1099)) (T -73))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 134) (((-3 $ "failed") (-1181 (-297 (-530)))) 123) (((-3 $ "failed") (-1181 (-893 (-360)))) 154) (((-3 $ "failed") (-1181 (-893 (-530)))) 144) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 112) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 99)) (-2585 (($ (-1181 (-297 (-360)))) 130) (($ (-1181 (-297 (-530)))) 119) (($ (-1181 (-893 (-360)))) 150) (($ (-1181 (-893 (-530)))) 140) (($ (-1181 (-388 (-893 (-360))))) 108) (($ (-1181 (-388 (-893 (-530))))) 92)) (-3176 (((-1186) $) 83)) (-2366 (((-804) $) 75) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))) 70)))
+(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647))))))) (-1099) (-1099) (-1099)) (T -74))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))))))
+((-3139 (((-3 $ "failed") (-297 (-360))) 82) (((-3 $ "failed") (-297 (-530))) 87) (((-3 $ "failed") (-893 (-360))) 91) (((-3 $ "failed") (-893 (-530))) 95) (((-3 $ "failed") (-388 (-893 (-360)))) 77) (((-3 $ "failed") (-388 (-893 (-530)))) 70)) (-2585 (($ (-297 (-360))) 80) (($ (-297 (-530))) 85) (($ (-893 (-360))) 89) (($ (-893 (-530))) 93) (($ (-388 (-893 (-360)))) 75) (($ (-388 (-893 (-530)))) 67)) (-3176 (((-1186) $) 62)) (-2366 (((-804) $) 50) (($ (-597 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 54) (($ (-320 (-2377) (-2377 (QUOTE X)) (-647))) 47)))
+(((-75 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647)))))) (-1099)) (T -75))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE X)) (-647))) (-5 *1 (-75 *3)) (-14 *3 (-1099)))))
+(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647))))))
+((-3139 (((-3 $ "failed") (-297 (-360))) 46) (((-3 $ "failed") (-297 (-530))) 51) (((-3 $ "failed") (-893 (-360))) 55) (((-3 $ "failed") (-893 (-530))) 59) (((-3 $ "failed") (-388 (-893 (-360)))) 41) (((-3 $ "failed") (-388 (-893 (-530)))) 34)) (-2585 (($ (-297 (-360))) 44) (($ (-297 (-530))) 49) (($ (-893 (-360))) 53) (($ (-893 (-530))) 57) (($ (-388 (-893 (-360)))) 39) (($ (-388 (-893 (-530)))) 31)) (-3176 (((-1186) $) 80)) (-2366 (((-804) $) 74) (($ (-597 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 69) (($ (-320 (-2377) (-2377 (QUOTE X)) (-647))) 30)))
+(((-76 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647)))))) (-1099)) (T -76))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE X)) (-647))) (-5 *1 (-76 *3)) (-14 *3 (-1099)))))
+(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 89) (((-3 $ "failed") (-1181 (-297 (-530)))) 78) (((-3 $ "failed") (-1181 (-893 (-360)))) 109) (((-3 $ "failed") (-1181 (-893 (-530)))) 99) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 67) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 54)) (-2585 (($ (-1181 (-297 (-360)))) 85) (($ (-1181 (-297 (-530)))) 74) (($ (-1181 (-893 (-360)))) 105) (($ (-1181 (-893 (-530)))) 95) (($ (-1181 (-388 (-893 (-360))))) 63) (($ (-1181 (-388 (-893 (-530))))) 47)) (-3176 (((-1186) $) 125)) (-2366 (((-804) $) 119) (($ (-597 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 115) (($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) 38)))
+(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))) (-1099)) (T -77))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) (-5 *1 (-77 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 142) (((-3 $ "failed") (-1181 (-297 (-530)))) 132) (((-3 $ "failed") (-1181 (-893 (-360)))) 162) (((-3 $ "failed") (-1181 (-893 (-530)))) 152) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 122) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 110)) (-2585 (($ (-1181 (-297 (-360)))) 138) (($ (-1181 (-297 (-530)))) 128) (($ (-1181 (-893 (-360)))) 158) (($ (-1181 (-893 (-530)))) 148) (($ (-1181 (-388 (-893 (-360))))) 118) (($ (-1181 (-388 (-893 (-530))))) 103)) (-3176 (((-1186) $) 96)) (-2366 (((-804) $) 90) (($ (-597 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 86) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 82)))
+(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -78))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-78 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 78) (((-3 $ "failed") (-1181 (-297 (-530)))) 67) (((-3 $ "failed") (-1181 (-893 (-360)))) 98) (((-3 $ "failed") (-1181 (-893 (-530)))) 88) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 56) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 43)) (-2585 (($ (-1181 (-297 (-360)))) 74) (($ (-1181 (-297 (-530)))) 63) (($ (-1181 (-893 (-360)))) 94) (($ (-1181 (-893 (-530)))) 84) (($ (-1181 (-388 (-893 (-360))))) 52) (($ (-1181 (-388 (-893 (-530))))) 36)) (-3176 (((-1186) $) 124)) (-2366 (((-804) $) 118) (($ (-597 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 113) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 35)))
+(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -79))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-79 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 95) (((-3 $ "failed") (-1181 (-297 (-530)))) 84) (((-3 $ "failed") (-1181 (-893 (-360)))) 115) (((-3 $ "failed") (-1181 (-893 (-530)))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 73) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 60)) (-2585 (($ (-1181 (-297 (-360)))) 91) (($ (-1181 (-297 (-530)))) 80) (($ (-1181 (-893 (-360)))) 111) (($ (-1181 (-893 (-530)))) 101) (($ (-1181 (-388 (-893 (-360))))) 69) (($ (-1181 (-388 (-893 (-530))))) 53)) (-3176 (((-1186) $) 45)) (-2366 (((-804) $) 39) (($ (-597 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 35) (($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) 30)))
+(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647))))))) (-1099)) (T -80))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) (-5 *1 (-80 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))))))
+((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 115) (((-3 $ "failed") (-637 (-297 (-530)))) 104) (((-3 $ "failed") (-637 (-893 (-360)))) 137) (((-3 $ "failed") (-637 (-893 (-530)))) 126) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 93) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 80)) (-2585 (($ (-637 (-297 (-360)))) 111) (($ (-637 (-297 (-530)))) 100) (($ (-637 (-893 (-360)))) 133) (($ (-637 (-893 (-530)))) 122) (($ (-637 (-388 (-893 (-360))))) 89) (($ (-637 (-388 (-893 (-530))))) 73)) (-3176 (((-1186) $) 63)) (-2366 (((-804) $) 50) (($ (-597 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 55) (($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) 47)))
+(((-81 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647))))))) (-1099)) (T -81))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) (-5 *1 (-81 *3)) (-14 *3 (-1099)))))
+(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))))))
+((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 112) (((-3 $ "failed") (-637 (-297 (-530)))) 100) (((-3 $ "failed") (-637 (-893 (-360)))) 134) (((-3 $ "failed") (-637 (-893 (-530)))) 123) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 88) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 74)) (-2585 (($ (-637 (-297 (-360)))) 108) (($ (-637 (-297 (-530)))) 96) (($ (-637 (-893 (-360)))) 130) (($ (-637 (-893 (-530)))) 119) (($ (-637 (-388 (-893 (-360))))) 84) (($ (-637 (-388 (-893 (-530))))) 67)) (-3176 (((-1186) $) 59)) (-2366 (((-804) $) 53) (($ (-597 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 44) (($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) 45)))
+(((-82 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647))))))) (-1099)) (T -82))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) (-5 *1 (-82 *3)) (-14 *3 (-1099)))))
+(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 104) (((-3 $ "failed") (-1181 (-297 (-530)))) 93) (((-3 $ "failed") (-1181 (-893 (-360)))) 124) (((-3 $ "failed") (-1181 (-893 (-530)))) 114) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 82) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 69)) (-2585 (($ (-1181 (-297 (-360)))) 100) (($ (-1181 (-297 (-530)))) 89) (($ (-1181 (-893 (-360)))) 120) (($ (-1181 (-893 (-530)))) 110) (($ (-1181 (-388 (-893 (-360))))) 78) (($ (-1181 (-388 (-893 (-530))))) 62)) (-3176 (((-1186) $) 46)) (-2366 (((-804) $) 40) (($ (-597 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 52) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) 37)))
+(((-83 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647))))))) (-1099)) (T -83))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) (-5 *1 (-83 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))))))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 79) (((-3 $ "failed") (-1181 (-297 (-530)))) 68) (((-3 $ "failed") (-1181 (-893 (-360)))) 99) (((-3 $ "failed") (-1181 (-893 (-530)))) 89) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 57) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 44)) (-2585 (($ (-1181 (-297 (-360)))) 75) (($ (-1181 (-297 (-530)))) 64) (($ (-1181 (-893 (-360)))) 95) (($ (-1181 (-893 (-530)))) 85) (($ (-1181 (-388 (-893 (-360))))) 53) (($ (-1181 (-388 (-893 (-530))))) 37)) (-3176 (((-1186) $) 125)) (-2366 (((-804) $) 119) (($ (-597 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 114) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) 36)))
+(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))) (-1099)) (T -84))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-84 *3)) (-14 *3 (-1099)))))
+(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))))
+((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 113) (((-3 $ "failed") (-637 (-297 (-530)))) 101) (((-3 $ "failed") (-637 (-893 (-360)))) 135) (((-3 $ "failed") (-637 (-893 (-530)))) 124) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 89) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 75)) (-2585 (($ (-637 (-297 (-360)))) 109) (($ (-637 (-297 (-530)))) 97) (($ (-637 (-893 (-360)))) 131) (($ (-637 (-893 (-530)))) 120) (($ (-637 (-388 (-893 (-360))))) 85) (($ (-637 (-388 (-893 (-530))))) 68)) (-3176 (((-1186) $) 59)) (-2366 (((-804) $) 53) (($ (-597 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 48) (($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))) 44)))
+(((-85 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647))))))) (-1099)) (T -85))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))) (-5 *1 (-85 *3)) (-14 *3 (-1099)))))
+(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))))))
+((-3176 (((-1186) $) 44)) (-2366 (((-804) $) 38) (($ (-1181 (-647))) 92) (($ (-597 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 33)))
(((-86 |#1|) (-420) (-1099)) (T -86))
NIL
(-420)
-((-3012 (((-3 $ "failed") (-297 (-360))) 47) (((-3 $ "failed") (-297 (-530))) 52) (((-3 $ "failed") (-893 (-360))) 56) (((-3 $ "failed") (-893 (-530))) 60) (((-3 $ "failed") (-388 (-893 (-360)))) 42) (((-3 $ "failed") (-388 (-893 (-530)))) 35)) (-2446 (($ (-297 (-360))) 45) (($ (-297 (-530))) 50) (($ (-893 (-360))) 54) (($ (-893 (-530))) 58) (($ (-388 (-893 (-360)))) 40) (($ (-388 (-893 (-530)))) 32)) (-3057 (((-1186) $) 90)) (-2258 (((-804) $) 84) (($ (-597 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 76) (($ (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647))) 31)))
-(((-87 |#1|) (-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647)))))) (-1099)) (T -87))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647))) (-5 *1 (-87 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2258 ($ (-320 (-2268 (QUOTE X)) (-2268 (QUOTE -4114)) (-647))))))
-((-3026 (((-1181 (-637 |#1|)) (-637 |#1|)) 54)) (-3016 (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862)) 44)) (-3038 (((-2 (|:| |minor| (-597 (-862))) (|:| -2623 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862)) 65 (|has| |#1| (-344)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -3016 ((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3026 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3038 ((-2 (|:| |minor| (-597 (-862))) (|:| -2623 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|)) (-522) (-607 |#1|)) (T -88))
-((-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |minor| (-597 (-862))) (|:| -2623 *3) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))) (-3016 (*1 *2 *3 *4) (-12 (-4 *5 (-522)) (-5 *2 (-2 (|:| -1896 (-637 *5)) (|:| |vec| (-1181 (-597 (-862)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(-10 -7 (-15 -3016 ((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3026 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3038 ((-2 (|:| |minor| (-597 (-862))) (|:| -2623 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1596 ((|#1| $) 35)) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-2882 ((|#1| |#1| $) 30)) (-2870 ((|#1| $) 28)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) NIL)) (-3440 (($ |#1| $) 31)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3287 ((|#1| $) 29)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 16)) (-4227 (($) 39)) (-4219 (((-719) $) 26)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 15)) (-2258 (((-804) $) 25 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) NIL)) (-3050 (($ (-597 |#1|)) 37)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 13 (|has| |#1| (-1027)))) (-2167 (((-719) $) 10 (|has| $ (-6 -4270)))))
-(((-89 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -3050 ($ (-597 |#1|))))) (-1027)) (T -89))
-((-3050 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
-(-13 (-1047 |#1|) (-10 -8 (-15 -3050 ($ (-597 |#1|)))))
-((-2258 (((-804) $) 12) (((-1104) $) 8)))
-(((-90 |#1|) (-10 -8 (-15 -2258 ((-1104) |#1|)) (-15 -2258 ((-804) |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2258 ((-1104) |#1|)) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (((-1104) $) 14)) (-2148 (((-110) $ $) 6)))
+((-3139 (((-3 $ "failed") (-297 (-360))) 47) (((-3 $ "failed") (-297 (-530))) 52) (((-3 $ "failed") (-893 (-360))) 56) (((-3 $ "failed") (-893 (-530))) 60) (((-3 $ "failed") (-388 (-893 (-360)))) 42) (((-3 $ "failed") (-388 (-893 (-530)))) 35)) (-2585 (($ (-297 (-360))) 45) (($ (-297 (-530))) 50) (($ (-893 (-360))) 54) (($ (-893 (-530))) 58) (($ (-388 (-893 (-360)))) 40) (($ (-388 (-893 (-530)))) 32)) (-3176 (((-1186) $) 90)) (-2366 (((-804) $) 84) (($ (-597 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 76) (($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))) 31)))
+(((-87 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))) (-1099)) (T -87))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))) (-5 *1 (-87 *3)) (-14 *3 (-1099)))))
+(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))
+((-3163 (((-1181 (-637 |#1|)) (-637 |#1|)) 54)) (-3677 (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862)) 44)) (-3039 (((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862)) 65 (|has| |#1| (-344)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -3677 ((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3163 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3039 ((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|)) (-522) (-607 |#1|)) (T -88))
+((-3039 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |minor| (-597 (-862))) (|:| -2776 *3) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))) (-3677 (*1 *2 *3 *4) (-12 (-4 *5 (-522)) (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 (-597 (-862)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
+(-10 -7 (-15 -3677 ((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3163 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3039 ((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1598 ((|#1| $) 35)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3684 ((|#1| |#1| $) 30)) (-2176 ((|#1| $) 28)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) NIL)) (-2441 (($ |#1| $) 31)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 29)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 16)) (-3958 (($) 39)) (-4218 (((-719) $) 26)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 15)) (-2366 (((-804) $) 25 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-1669 (($ (-597 |#1|)) 37)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 13 (|has| |#1| (-1027)))) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
+(((-89 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -1669 ($ (-597 |#1|))))) (-1027)) (T -89))
+((-1669 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
+(-13 (-1047 |#1|) (-10 -8 (-15 -1669 ($ (-597 |#1|)))))
+((-2366 (((-804) $) 12) (((-1104) $) 8)))
+(((-90 |#1|) (-10 -8 (-15 -2366 ((-1104) |#1|)) (-15 -2366 ((-804) |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -2366 ((-1104) |#1|)) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (((-1104) $) 14)) (-2248 (((-110) $ $) 6)))
(((-91) (-133)) (T -91))
NIL
(-13 (-1027) (-571 (-1104)))
(((-99) . T) ((-571 (-804)) . T) ((-571 (-1104)) . T) ((-1027) . T))
-((-2230 (($ $) 10)) (-2241 (($ $) 12)))
-(((-92 |#1|) (-10 -8 (-15 -2241 (|#1| |#1|)) (-15 -2230 (|#1| |#1|))) (-93)) (T -92))
+((-2334 (($ $) 10)) (-2347 (($ $) 12)))
+(((-92 |#1|) (-10 -8 (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|))) (-93)) (T -92))
NIL
-(-10 -8 (-15 -2241 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)))
-((-2211 (($ $) 11)) (-2192 (($ $) 10)) (-2230 (($ $) 9)) (-2241 (($ $) 8)) (-2220 (($ $) 7)) (-2202 (($ $) 6)))
+(-10 -8 (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)))
+((-2314 (($ $) 11)) (-2293 (($ $) 10)) (-2334 (($ $) 9)) (-2347 (($ $) 8)) (-2324 (($ $) 7)) (-2304 (($ $) 6)))
(((-93) (-133)) (T -93))
-((-2211 (*1 *1 *1) (-4 *1 (-93))) (-2192 (*1 *1 *1) (-4 *1 (-93))) (-2230 (*1 *1 *1) (-4 *1 (-93))) (-2241 (*1 *1 *1) (-4 *1 (-93))) (-2220 (*1 *1 *1) (-4 *1 (-93))) (-2202 (*1 *1 *1) (-4 *1 (-93))))
-(-13 (-10 -8 (-15 -2202 ($ $)) (-15 -2220 ($ $)) (-15 -2241 ($ $)) (-15 -2230 ($ $)) (-15 -2192 ($ $)) (-15 -2211 ($ $))))
-((-2246 (((-110) $ $) NIL)) (-3061 (((-360) (-1082) (-360)) 42) (((-360) (-1082) (-1082) (-360)) 41)) (-3067 (((-360) (-360)) 33)) (-3079 (((-1186)) 36)) (-3443 (((-1082) $) NIL)) (-3115 (((-360) (-1082) (-1082)) 46) (((-360) (-1082)) 48)) (-2485 (((-1046) $) NIL)) (-3091 (((-360) (-1082) (-1082)) 47)) (-3103 (((-360) (-1082) (-1082)) 49) (((-360) (-1082)) 50)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
-(((-94) (-13 (-1027) (-10 -7 (-15 -3115 ((-360) (-1082) (-1082))) (-15 -3115 ((-360) (-1082))) (-15 -3103 ((-360) (-1082) (-1082))) (-15 -3103 ((-360) (-1082))) (-15 -3091 ((-360) (-1082) (-1082))) (-15 -3079 ((-1186))) (-15 -3067 ((-360) (-360))) (-15 -3061 ((-360) (-1082) (-360))) (-15 -3061 ((-360) (-1082) (-1082) (-360))) (-6 -4270)))) (T -94))
-((-3115 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3079 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))) (-3061 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))) (-3061 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
-(-13 (-1027) (-10 -7 (-15 -3115 ((-360) (-1082) (-1082))) (-15 -3115 ((-360) (-1082))) (-15 -3103 ((-360) (-1082) (-1082))) (-15 -3103 ((-360) (-1082))) (-15 -3091 ((-360) (-1082) (-1082))) (-15 -3079 ((-1186))) (-15 -3067 ((-360) (-360))) (-15 -3061 ((-360) (-1082) (-360))) (-15 -3061 ((-360) (-1082) (-1082) (-360))) (-6 -4270)))
+((-2314 (*1 *1 *1) (-4 *1 (-93))) (-2293 (*1 *1 *1) (-4 *1 (-93))) (-2334 (*1 *1 *1) (-4 *1 (-93))) (-2347 (*1 *1 *1) (-4 *1 (-93))) (-2324 (*1 *1 *1) (-4 *1 (-93))) (-2304 (*1 *1 *1) (-4 *1 (-93))))
+(-13 (-10 -8 (-15 -2304 ($ $)) (-15 -2324 ($ $)) (-15 -2347 ($ $)) (-15 -2334 ($ $)) (-15 -2293 ($ $)) (-15 -2314 ($ $))))
+((-2352 (((-110) $ $) NIL)) (-3345 (((-360) (-1082) (-360)) 42) (((-360) (-1082) (-1082) (-360)) 41)) (-2760 (((-360) (-360)) 33)) (-2418 (((-1186)) 36)) (-1424 (((-1082) $) NIL)) (-3927 (((-360) (-1082) (-1082)) 46) (((-360) (-1082)) 48)) (-2624 (((-1046) $) NIL)) (-3531 (((-360) (-1082) (-1082)) 47)) (-2256 (((-360) (-1082) (-1082)) 49) (((-360) (-1082)) 50)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
+(((-94) (-13 (-1027) (-10 -7 (-15 -3927 ((-360) (-1082) (-1082))) (-15 -3927 ((-360) (-1082))) (-15 -2256 ((-360) (-1082) (-1082))) (-15 -2256 ((-360) (-1082))) (-15 -3531 ((-360) (-1082) (-1082))) (-15 -2418 ((-1186))) (-15 -2760 ((-360) (-360))) (-15 -3345 ((-360) (-1082) (-360))) (-15 -3345 ((-360) (-1082) (-1082) (-360))) (-6 -4269)))) (T -94))
+((-3927 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2256 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3531 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2418 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))) (-3345 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))) (-3345 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
+(-13 (-1027) (-10 -7 (-15 -3927 ((-360) (-1082) (-1082))) (-15 -3927 ((-360) (-1082))) (-15 -2256 ((-360) (-1082) (-1082))) (-15 -2256 ((-360) (-1082))) (-15 -3531 ((-360) (-1082) (-1082))) (-15 -2418 ((-1186))) (-15 -2760 ((-360) (-360))) (-15 -3345 ((-360) (-1082) (-360))) (-15 -3345 ((-360) (-1082) (-1082) (-360))) (-6 -4269)))
NIL
(((-95) (-133)) (T -95))
NIL
-(-13 (-10 -7 (-6 -4270) (-6 (-4272 "*")) (-6 -4271) (-6 -4267) (-6 -4265) (-6 -4264) (-6 -4263) (-6 -4268) (-6 -4262) (-6 -4261) (-6 -4260) (-6 -4259) (-6 -4258) (-6 -4266) (-6 -4269) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4257)))
-((-2246 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3126 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-530))) 22)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 14)) (-2485 (((-1046) $) NIL)) (-1832 ((|#1| $ |#1|) 11)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) 20)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 8 T CONST)) (-2148 (((-110) $ $) 10)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) 28) (($ $ (-719)) NIL) (($ $ (-530)) 16)) (* (($ $ $) 29)))
-(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3126 ($ (-1 |#1| |#1|))) (-15 -3126 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3126 ($ (-1 |#1| |#1| (-530)))))) (-984)) (T -96))
-((-3126 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-3126 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
-(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3126 ($ (-1 |#1| |#1|))) (-15 -3126 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3126 ($ (-1 |#1| |#1| (-530))))))
-((-3137 (((-399 |#2|) |#2| (-597 |#2|)) 10) (((-399 |#2|) |#2| |#2|) 11)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -3137 ((-399 |#2|) |#2| |#2|)) (-15 -3137 ((-399 |#2|) |#2| (-597 |#2|)))) (-13 (-432) (-140)) (-1157 |#1|)) (T -97))
-((-3137 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))) (-3137 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3137 ((-399 |#2|) |#2| |#2|)) (-15 -3137 ((-399 |#2|) |#2| (-597 |#2|))))
-((-2246 (((-110) $ $) 10)))
-(((-98 |#1|) (-10 -8 (-15 -2246 ((-110) |#1| |#1|))) (-99)) (T -98))
-NIL
-(-10 -8 (-15 -2246 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-2148 (((-110) $ $) 6)))
+(-13 (-10 -7 (-6 -4269) (-6 (-4271 "*")) (-6 -4270) (-6 -4266) (-6 -4264) (-6 -4263) (-6 -4262) (-6 -4267) (-6 -4261) (-6 -4260) (-6 -4259) (-6 -4258) (-6 -4257) (-6 -4265) (-6 -4268) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4256)))
+((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2694 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-530))) 22)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 14)) (-2624 (((-1046) $) NIL)) (-1902 ((|#1| $ |#1|) 11)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 20)) (-3093 (($) 8 T CONST)) (-2248 (((-110) $ $) 10)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) 28) (($ $ (-719)) NIL) (($ $ (-530)) 16)) (* (($ $ $) 29)))
+(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1| (-530)))))) (-984)) (T -96))
+((-2694 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-2694 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
+(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1| (-530))))))
+((-1315 (((-399 |#2|) |#2| (-597 |#2|)) 10) (((-399 |#2|) |#2| |#2|) 11)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -1315 ((-399 |#2|) |#2| |#2|)) (-15 -1315 ((-399 |#2|) |#2| (-597 |#2|)))) (-13 (-432) (-140)) (-1157 |#1|)) (T -97))
+((-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))) (-1315 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -1315 ((-399 |#2|) |#2| |#2|)) (-15 -1315 ((-399 |#2|) |#2| (-597 |#2|))))
+((-2352 (((-110) $ $) 10)))
+(((-98 |#1|) (-10 -8 (-15 -2352 ((-110) |#1| |#1|))) (-99)) (T -98))
+NIL
+(-10 -8 (-15 -2352 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2248 (((-110) $ $) 6)))
(((-99) (-133)) (T -99))
-((-2246 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
-(-13 (-10 -8 (-15 -2148 ((-110) $ $)) (-15 -2246 ((-110) $ $))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) 13 (|has| $ (-6 -4271)))) (-3249 (($ $ $) NIL (|has| $ (-6 -4271)))) (-3262 (($ $ $) NIL (|has| $ (-6 -4271)))) (-3174 (($ $ (-597 |#1|)) 15)) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "left" $) NIL (|has| $ (-6 -4271))) (($ $ "right" $) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3657 (($ $) 11)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1550 (($ $ |#1| $) 17)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-3161 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3148 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)) 35)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3648 (($ $) 10)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) 12)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 9)) (-4227 (($) 16)) (-1832 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (($ (-719) |#1|) 19)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -3186 ($ (-719) |#1|)) (-15 -3174 ($ $ (-597 |#1|))) (-15 -3161 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3161 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3148 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3148 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|))))) (-1027)) (T -100))
-((-3186 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-3161 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))) (-3161 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-3148 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))) (-3148 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -3186 ($ (-719) |#1|)) (-15 -3174 ($ $ (-597 |#1|))) (-15 -3161 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3161 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3148 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3148 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)))))
-((-3199 ((|#3| |#2| |#2|) 29)) (-3225 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4272 "*"))))) (-3212 ((|#3| |#2| |#2|) 30)) (-3237 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4272 "*"))))))
-(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3199 (|#3| |#2| |#2|)) (-15 -3212 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4272 "*"))) (PROGN (-15 -3225 (|#1| |#2| |#2|)) (-15 -3237 (|#1| |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-635 |#1| |#4| |#5|) (-354 |#1|) (-354 |#1|)) (T -101))
-((-3237 (*1 *2 *3) (-12 (|has| *2 (-6 (-4272 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-3225 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4272 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))))
-(-10 -7 (-15 -3199 (|#3| |#2| |#2|)) (-15 -3212 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4272 "*"))) (PROGN (-15 -3225 (|#1| |#2| |#2|)) (-15 -3237 (|#1| |#2|))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3263 (((-597 (-1099))) 33)) (-3250 (((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099)) 35)) (-2148 (((-110) $ $) NIL)))
-(((-102) (-13 (-1027) (-10 -7 (-15 -3263 ((-597 (-1099)))) (-15 -3250 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4270)))) (T -102))
-((-3263 (*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208))))) (-5 *1 (-102)))))
-(-13 (-1027) (-10 -7 (-15 -3263 ((-597 (-1099)))) (-15 -3250 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4270)))
-((-3298 (($ (-597 |#2|)) 11)))
-(((-103 |#1| |#2|) (-10 -8 (-15 -3298 (|#1| (-597 |#2|)))) (-104 |#2|) (-1135)) (T -103))
-NIL
-(-10 -8 (-15 -3298 (|#1| (-597 |#2|))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2248 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
+(-13 (-10 -8 (-15 -2248 ((-110) $ $)) (-15 -2352 ((-110) $ $))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 13 (|has| $ (-6 -4270)))) (-2096 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4232 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3836 (($ $ (-597 |#1|)) 15)) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 11)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 17)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1972 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1676 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)) 35)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 10)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 9)) (-3958 (($) 16)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2940 (($ (-719) |#1|) 19)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2940 ($ (-719) |#1|)) (-15 -3836 ($ $ (-597 |#1|))) (-15 -1972 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1972 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|))))) (-1027)) (T -100))
+((-2940 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))) (-1972 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2940 ($ (-719) |#1|)) (-15 -3836 ($ $ (-597 |#1|))) (-15 -1972 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1972 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)))))
+((-1692 ((|#3| |#2| |#2|) 29)) (-1463 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4271 "*"))))) (-2646 ((|#3| |#2| |#2|) 30)) (-3398 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4271 "*"))))))
+(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1692 (|#3| |#2| |#2|)) (-15 -2646 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1463 (|#1| |#2| |#2|)) (-15 -3398 (|#1| |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-635 |#1| |#4| |#5|) (-354 |#1|) (-354 |#1|)) (T -101))
+((-3398 (*1 *2 *3) (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-1463 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))) (-1692 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))))
+(-10 -7 (-15 -1692 (|#3| |#2| |#2|)) (-15 -2646 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1463 (|#1| |#2| |#2|)) (-15 -3398 (|#1| |#2|))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-1633 (((-597 (-1099))) 33)) (-2179 (((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099)) 35)) (-2248 (((-110) $ $) NIL)))
+(((-102) (-13 (-1027) (-10 -7 (-15 -1633 ((-597 (-1099)))) (-15 -2179 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4269)))) (T -102))
+((-1633 (*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208))))) (-5 *1 (-102)))))
+(-13 (-1027) (-10 -7 (-15 -1633 ((-597 (-1099)))) (-15 -2179 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4269)))
+((-2242 (($ (-597 |#2|)) 11)))
+(((-103 |#1| |#2|) (-10 -8 (-15 -2242 (|#1| (-597 |#2|)))) (-104 |#2|) (-1135)) (T -103))
+NIL
+(-10 -8 (-15 -2242 (|#1| (-597 |#2|))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-104 |#1|) (-133) (-1135)) (T -104))
-((-3298 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-3440 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
-(-13 (-468 |t#1|) (-10 -8 (-6 -4271) (-15 -3298 ($ (-597 |t#1|))) (-15 -3287 (|t#1| $)) (-15 -3440 ($ |t#1| $)) (-15 -3275 (|t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-530) $) NIL (|has| (-530) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-530) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2446 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-530) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-530) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-530) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-3002 (((-110) $) NIL (|has| (-530) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-530) (-795)))) (-3114 (($ (-1 (-530) (-530)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-530) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-1702 (((-530) $) NIL (|has| (-530) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-530) $) NIL)) (-3173 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 2) $) 10)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-530) $) NIL (|has| (-530) (-515)))) (-3935 (($ (-388 (-530))) 9)) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| (-530) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2257 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-105) (-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 2) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -3935 ($ (-388 (-530))))))) (T -105))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 2) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -3935 ($ (-388 (-530))))))
-((-2115 (((-597 (-906)) $) 14)) (-3901 (((-1099) $) 10)) (-2258 (((-804) $) 23)) (-3310 (($ (-1099) (-597 (-906))) 15)))
-(((-106) (-13 (-571 (-804)) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2115 ((-597 (-906)) $)) (-15 -3310 ($ (-1099) (-597 (-906))))))) (T -106))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-106)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-597 (-906))) (-5 *1 (-106)))) (-3310 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2115 ((-597 (-906)) $)) (-15 -3310 ($ (-1099) (-597 (-906))))))
-((-2246 (((-110) $ $) NIL)) (-3697 (((-1046) $ (-1046)) 24)) (-3734 (($ $ (-1082)) 17)) (-3542 (((-3 (-1046) "failed") $) 23)) (-3704 (((-1046) $) 21)) (-3322 (((-1046) $ (-1046)) 26)) (-1944 (((-1046) $) 25)) (-2415 (($ (-369)) NIL) (($ (-369) (-1082)) 16)) (-3901 (((-369) $) NIL)) (-3443 (((-1082) $) NIL)) (-3713 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3725 (($ $) 18)) (-2148 (((-110) $ $) NIL)))
-(((-107) (-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3542 ((-3 (-1046) "failed") $)) (-15 -1944 ((-1046) $)) (-15 -3322 ((-1046) $ (-1046)))))) (T -107))
-((-3542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-3322 (*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
-(-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3542 ((-3 (-1046) "failed") $)) (-15 -1944 ((-1046) $)) (-15 -3322 ((-1046) $ (-1046)))))
-((-2246 (((-110) $ $) NIL)) (-2390 (($ $) NIL)) (-2947 (($ $ $) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-4017 (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4271)))) (-1317 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4271))) (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2272 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-3856 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2858 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4271)))) (-2787 (((-110) $ (-530)) NIL)) (-1944 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-2456 (((-597 (-110)) $) NIL (|has| $ (-6 -4270)))) (-2656 (($ $ $) NIL)) (-3694 (($ $) NIL)) (-3447 (($ $ $) NIL)) (-3547 (($ (-719) (-110)) 8)) (-3309 (($ $ $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL)) (-3842 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-3252 (((-597 (-110)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL)) (-2847 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-110) $) NIL (|has| (-530) (-795)))) (-4221 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1946 (($ $ (-110)) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2002 (((-597 (-110)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) NIL) (((-110) $ (-530) (-110)) NIL)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2494 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2268 (($ (-597 (-110))) NIL)) (-3476 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2258 (((-804) $) NIL)) (-3227 (($ (-719) (-110)) 9)) (-1515 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3340 (($ $ $) NIL)) (-1267 (($ $ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-1256 (($ $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-108) (-13 (-121) (-10 -8 (-15 -3227 ($ (-719) (-110)))))) (T -108))
-((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108)))))
-(-13 (-121) (-10 -8 (-15 -3227 ($ (-719) (-110)))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-2242 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-2441 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-15 -2242 ($ (-597 |t#1|))) (-15 -2738 (|t#1| $)) (-15 -2441 ($ |t#1| $)) (-15 -1723 (|t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 2) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-1611 (($ (-388 (-530))) 9)) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
+(((-105) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 2) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1611 ($ (-388 (-530))))))) (T -105))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))))
+(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 2) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1611 ($ (-388 (-530))))))
+((-2211 (((-597 (-906)) $) 14)) (-3907 (((-1099) $) 10)) (-2366 (((-804) $) 23)) (-3089 (($ (-1099) (-597 (-906))) 15)))
+(((-106) (-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-597 (-906)) $)) (-15 -3089 ($ (-1099) (-597 (-906))))))) (T -106))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-106)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-597 (-906))) (-5 *1 (-106)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-597 (-906)) $)) (-15 -3089 ($ (-1099) (-597 (-906))))))
+((-2352 (((-110) $ $) NIL)) (-3753 (((-1046) $ (-1046)) 24)) (-3102 (($ $ (-1082)) 17)) (-3806 (((-3 (-1046) "failed") $) 23)) (-1214 (((-1046) $) 21)) (-2145 (((-1046) $ (-1046)) 26)) (-2027 (((-1046) $) 25)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) 16)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3422 (($ $) 18)) (-2248 (((-110) $ $) NIL)))
+(((-107) (-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3806 ((-3 (-1046) "failed") $)) (-15 -2027 ((-1046) $)) (-15 -2145 ((-1046) $ (-1046)))))) (T -107))
+((-3806 (*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-2145 (*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
+(-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3806 ((-3 (-1046) "failed") $)) (-15 -2027 ((-1046) $)) (-15 -2145 ((-1046) $ (-1046)))))
+((-2352 (((-110) $ $) NIL)) (-2522 (($ $) NIL)) (-3085 (($ $ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2383 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3592 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) NIL)) (-2027 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-3779 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-2813 (($ $ $) NIL)) (-3676 (($ $) NIL)) (-1493 (($ $ $) NIL)) (-3538 (($ (-719) (-110)) 8)) (-4073 (($ $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL)) (-3683 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2395 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL)) (-3583 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-110) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1522 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) NIL) (((-110) $ (-530) (-110)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2632 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) NIL)) (-3483 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2366 (((-804) $) NIL)) (-1711 (($ (-719) (-110)) 9)) (-3889 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3380 (($ $ $) NIL)) (-1262 (($ $ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-1253 (($ $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-108) (-13 (-121) (-10 -8 (-15 -1711 ($ (-719) (-110)))))) (T -108))
+((-1711 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108)))))
+(-13 (-121) (-10 -8 (-15 -1711 ($ (-719) (-110)))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-109 |#1| |#2|) (-133) (-984) (-984)) (T -109))
NIL
-(-13 (-599 |t#1|) (-990 |t#2|) (-10 -7 (-6 -4265) (-6 -4264)))
+(-13 (-599 |t#1|) (-990 |t#2|) (-10 -7 (-6 -4264) (-6 -4263)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-990 |#2|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-2390 (($ $) 10)) (-2947 (($ $ $) 15)) (-3328 (($) 7 T CONST)) (-3866 (($ $) 6)) (-2879 (((-719)) 24)) (-1376 (($) 30)) (-2656 (($ $ $) 13)) (-3694 (($ $) 9)) (-3447 (($ $ $) 16)) (-3309 (($ $ $) 17)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3830 (((-862) $) 29)) (-3443 (((-1082) $) NIL)) (-1910 (($ (-862)) 28)) (-2925 (($ $ $) 20)) (-2485 (((-1046) $) NIL)) (-2119 (($) 8 T CONST)) (-2756 (($ $ $) 21)) (-3173 (((-506) $) 36)) (-2258 (((-804) $) 39)) (-3340 (($ $ $) 11)) (-1267 (($ $ $) 14)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 19)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 22)) (-1256 (($ $ $) 12)))
-(((-110) (-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3328 ($) -2562) (-15 -2119 ($) -2562) (-15 -2947 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -3866 ($ $))))) (T -110))
-((-3328 (*1 *1) (-5 *1 (-110))) (-2119 (*1 *1) (-5 *1 (-110))) (-2947 (*1 *1 *1 *1) (-5 *1 (-110))) (-3309 (*1 *1 *1 *1) (-5 *1 (-110))) (-3447 (*1 *1 *1 *1) (-5 *1 (-110))) (-3866 (*1 *1 *1) (-5 *1 (-110))))
-(-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3328 ($) -2562) (-15 -2119 ($) -2562) (-15 -2947 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -3866 ($ $))))
-((-2607 (((-3 (-1 |#1| (-597 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-597 |#1|))) 11) (((-3 |#1| "failed") (-112) (-597 |#1|)) 21)) (-3530 (((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-597 (-1 |#1| (-597 |#1|)))) 26)) (-3543 (((-112) |#1|) 56 (|has| |#1| (-795)))) (-3633 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-795)))))
-(((-111 |#1|) (-10 -7 (-15 -2607 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2607 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2607 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2607 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -3530 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -3530 ((-112) (-112) (-1 |#1| |#1|))) (-15 -3530 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3543 ((-112) |#1|)) (-15 -3633 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1027)) (T -111))
-((-3633 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-111 *2)))) (-3543 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-3530 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-3530 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-3530 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2607 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-597 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-2607 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2607 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-597 *4))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-597 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1027)))))
-(-10 -7 (-15 -2607 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2607 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2607 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2607 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -3530 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -3530 ((-112) (-112) (-1 |#1| |#1|))) (-15 -3530 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3543 ((-112) |#1|)) (-15 -3633 ((-3 |#1| "failed") (-112)))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3073 (((-719) $) 72) (($ $ (-719)) 30)) (-4164 (((-110) $) 32)) (-3347 (($ $ (-1082) (-722)) 26)) (-3334 (($ $ (-44 (-1082) (-722))) 15)) (-1759 (((-3 (-722) "failed") $ (-1082)) 25)) (-2115 (((-44 (-1082) (-722)) $) 14)) (-2221 (($ (-1099)) 17) (($ (-1099) (-719)) 22)) (-3213 (((-110) $) 31)) (-4153 (((-110) $) 33)) (-3901 (((-1099) $) 8)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2300 (((-110) $ (-1099)) 10)) (-4228 (($ $ (-1 (-506) (-597 (-506)))) 52) (((-3 (-1 (-506) (-597 (-506))) "failed") $) 56)) (-2485 (((-1046) $) NIL)) (-1306 (((-110) $ (-1082)) 29)) (-3580 (($ $ (-1 (-110) $ $)) 35)) (-2278 (((-3 (-1 (-804) (-597 (-804))) "failed") $) 54) (($ $ (-1 (-804) (-597 (-804)))) 41) (($ $ (-1 (-804) (-804))) 43)) (-1295 (($ $ (-1082)) 45)) (-2441 (($ $) 63)) (-3567 (($ $ (-1 (-110) $ $)) 36)) (-2258 (((-804) $) 48)) (-3917 (($ $ (-1082)) 27)) (-3226 (((-3 (-719) "failed") $) 58)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 79)))
-(((-112) (-13 (-795) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2115 ((-44 (-1082) (-722)) $)) (-15 -2441 ($ $)) (-15 -2221 ($ (-1099))) (-15 -2221 ($ (-1099) (-719))) (-15 -3226 ((-3 (-719) "failed") $)) (-15 -3213 ((-110) $)) (-15 -4164 ((-110) $)) (-15 -4153 ((-110) $)) (-15 -3073 ((-719) $)) (-15 -3073 ($ $ (-719))) (-15 -3580 ($ $ (-1 (-110) $ $))) (-15 -3567 ($ $ (-1 (-110) $ $))) (-15 -2278 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2278 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2278 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -2300 ((-110) $ (-1099))) (-15 -1306 ((-110) $ (-1082))) (-15 -3917 ($ $ (-1082))) (-15 -1295 ($ $ (-1082))) (-15 -1759 ((-3 (-722) "failed") $ (-1082))) (-15 -3347 ($ $ (-1082) (-722))) (-15 -3334 ($ $ (-44 (-1082) (-722))))))) (T -112))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))) (-2441 (*1 *1 *1) (-5 *1 (-112))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-2221 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-3580 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2278 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-804))) (-5 *1 (-112)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-4228 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112)))) (-1306 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-1295 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-1759 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-722)) (-5 *1 (-112)))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
-(-13 (-795) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2115 ((-44 (-1082) (-722)) $)) (-15 -2441 ($ $)) (-15 -2221 ($ (-1099))) (-15 -2221 ($ (-1099) (-719))) (-15 -3226 ((-3 (-719) "failed") $)) (-15 -3213 ((-110) $)) (-15 -4164 ((-110) $)) (-15 -4153 ((-110) $)) (-15 -3073 ((-719) $)) (-15 -3073 ($ $ (-719))) (-15 -3580 ($ $ (-1 (-110) $ $))) (-15 -3567 ($ $ (-1 (-110) $ $))) (-15 -2278 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2278 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2278 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -2300 ((-110) $ (-1099))) (-15 -1306 ((-110) $ (-1082))) (-15 -3917 ($ $ (-1082))) (-15 -1295 ($ $ (-1082))) (-15 -1759 ((-3 (-722) "failed") $ (-1082))) (-15 -3347 ($ $ (-1082) (-722))) (-15 -3334 ($ $ (-44 (-1082) (-722))))))
-((-3640 (((-530) |#2|) 37)))
-(((-113 |#1| |#2|) (-10 -7 (-15 -3640 ((-530) |#2|))) (-13 (-344) (-975 (-388 (-530)))) (-1157 |#1|)) (T -113))
-((-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3640 ((-530) |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $ (-530)) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-2077 (($ (-1095 (-530)) (-530)) NIL)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2088 (($ $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-1334 (((-719) $) NIL)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2113 (((-530)) NIL)) (-2100 (((-530) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1312 (($ $ (-530)) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2124 (((-1080 (-530)) $) NIL)) (-3021 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-4125 (((-530) $ (-530)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-2522 (($ $) 10)) (-3085 (($ $ $) 15)) (-3371 (($) 7 T CONST)) (-3869 (($ $) 6)) (-3023 (((-719)) 24)) (-1364 (($) 30)) (-2813 (($ $ $) 13)) (-3676 (($ $) 9)) (-1493 (($ $ $) 16)) (-4073 (($ $ $) 17)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1905 (((-862) $) 29)) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 28)) (-3064 (($ $ $) 20)) (-2624 (((-1046) $) NIL)) (-2217 (($) 8 T CONST)) (-3582 (($ $ $) 21)) (-3260 (((-506) $) 36)) (-2366 (((-804) $) 39)) (-3380 (($ $ $) 11)) (-1262 (($ $ $) 14)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 19)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 22)) (-1253 (($ $ $) 12)))
+(((-110) (-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3371 ($) -2708) (-15 -2217 ($) -2708) (-15 -3085 ($ $ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3869 ($ $))))) (T -110))
+((-3371 (*1 *1) (-5 *1 (-110))) (-2217 (*1 *1) (-5 *1 (-110))) (-3085 (*1 *1 *1 *1) (-5 *1 (-110))) (-4073 (*1 *1 *1 *1) (-5 *1 (-110))) (-1493 (*1 *1 *1 *1) (-5 *1 (-110))) (-3869 (*1 *1 *1) (-5 *1 (-110))))
+(-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3371 ($) -2708) (-15 -2217 ($) -2708) (-15 -3085 ($ $ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3869 ($ $))))
+((-2755 (((-3 (-1 |#1| (-597 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-597 |#1|))) 11) (((-3 |#1| "failed") (-112) (-597 |#1|)) 21)) (-2232 (((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-597 (-1 |#1| (-597 |#1|)))) 26)) (-3915 (((-112) |#1|) 56 (|has| |#1| (-795)))) (-3232 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-795)))))
+(((-111 |#1|) (-10 -7 (-15 -2755 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2755 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2755 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2755 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -2232 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -2232 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2232 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3915 ((-112) |#1|)) (-15 -3232 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1027)) (T -111))
+((-3232 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-111 *2)))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-2232 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-597 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-597 *4))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-597 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1027)))))
+(-10 -7 (-15 -2755 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2755 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2755 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2755 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -2232 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -2232 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2232 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3915 ((-112) |#1|)) (-15 -3232 ((-3 |#1| "failed") (-112)))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) 72) (($ $ (-719)) 30)) (-3937 (((-110) $) 32)) (-3127 (($ $ (-1082) (-722)) 26)) (-4206 (($ $ (-44 (-1082) (-722))) 15)) (-1818 (((-3 (-722) "failed") $ (-1082)) 25)) (-2211 (((-44 (-1082) (-722)) $) 14)) (-4124 (($ (-1099)) 17) (($ (-1099) (-719)) 22)) (-2722 (((-110) $) 31)) (-2266 (((-110) $) 33)) (-3907 (((-1099) $) 8)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1826 (((-110) $ (-1099)) 10)) (-4228 (($ $ (-1 (-506) (-597 (-506)))) 52) (((-3 (-1 (-506) (-597 (-506))) "failed") $) 56)) (-2624 (((-1046) $) NIL)) (-3799 (((-110) $ (-1082)) 29)) (-3435 (($ $ (-1 (-110) $ $)) 35)) (-2388 (((-3 (-1 (-804) (-597 (-804))) "failed") $) 54) (($ $ (-1 (-804) (-597 (-804)))) 41) (($ $ (-1 (-804) (-804))) 43)) (-2449 (($ $ (-1082)) 45)) (-2579 (($ $) 63)) (-2478 (($ $ (-1 (-110) $ $)) 36)) (-2366 (((-804) $) 48)) (-3925 (($ $ (-1082)) 27)) (-1586 (((-3 (-719) "failed") $) 58)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 71)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 79)))
+(((-112) (-13 (-795) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-44 (-1082) (-722)) $)) (-15 -2579 ($ $)) (-15 -4124 ($ (-1099))) (-15 -4124 ($ (-1099) (-719))) (-15 -1586 ((-3 (-719) "failed") $)) (-15 -2722 ((-110) $)) (-15 -3937 ((-110) $)) (-15 -2266 ((-110) $)) (-15 -2001 ((-719) $)) (-15 -2001 ($ $ (-719))) (-15 -3435 ($ $ (-1 (-110) $ $))) (-15 -2478 ($ $ (-1 (-110) $ $))) (-15 -2388 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2388 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2388 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -1826 ((-110) $ (-1099))) (-15 -3799 ((-110) $ (-1082))) (-15 -3925 ($ $ (-1082))) (-15 -2449 ($ $ (-1082))) (-15 -1818 ((-3 (-722) "failed") $ (-1082))) (-15 -3127 ($ $ (-1082) (-722))) (-15 -4206 ($ $ (-44 (-1082) (-722))))))) (T -112))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))) (-2579 (*1 *1 *1) (-5 *1 (-112))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112)))) (-1586 (*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2388 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-804))) (-5 *1 (-112)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-4228 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-2449 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-1818 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-722)) (-5 *1 (-112)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
+(-13 (-795) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-44 (-1082) (-722)) $)) (-15 -2579 ($ $)) (-15 -4124 ($ (-1099))) (-15 -4124 ($ (-1099) (-719))) (-15 -1586 ((-3 (-719) "failed") $)) (-15 -2722 ((-110) $)) (-15 -3937 ((-110) $)) (-15 -2266 ((-110) $)) (-15 -2001 ((-719) $)) (-15 -2001 ($ $ (-719))) (-15 -3435 ($ $ (-1 (-110) $ $))) (-15 -2478 ($ $ (-1 (-110) $ $))) (-15 -2388 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2388 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2388 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -1826 ((-110) $ (-1099))) (-15 -3799 ((-110) $ (-1082))) (-15 -3925 ($ $ (-1082))) (-15 -2449 ($ $ (-1082))) (-15 -1818 ((-3 (-722) "failed") $ (-1082))) (-15 -3127 ($ $ (-1082) (-722))) (-15 -4206 ($ $ (-44 (-1082) (-722))))))
+((-2858 (((-530) |#2|) 37)))
+(((-113 |#1| |#2|) (-10 -7 (-15 -2858 ((-530) |#2|))) (-13 (-344) (-975 (-388 (-530)))) (-1157 |#1|)) (T -113))
+((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -2858 ((-530) |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2957 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) NIL)) (-1439 (((-530) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-1080 (-530)) $) NIL)) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
(((-114 |#1|) (-810 |#1|) (-530)) (T -114))
NIL
(-810 |#1|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-114 |#1|) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-2446 (((-114 |#1|) $) NIL) (((-1099) $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-2078 (($ $) NIL) (($ (-530) $) NIL)) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-114 |#1|))) (|:| |vec| (-1181 (-114 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-114 |#1|)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-114 |#1|) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-114 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-114 |#1|) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-114 |#1|) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1075)))) (-3002 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-1757 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-3114 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-114 |#1|) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-1702 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-114 |#1|)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-276 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-276 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-1099)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|)))) (($ $ (-1099) (-114 |#1|)) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-114 |#1|) $) NIL)) (-3173 (((-833 (-530)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-114 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-114 |#1|) (-960))) (((-208) $) NIL (|has| (-114 |#1|) (-960)))) (-2136 (((-163 (-388 (-530))) $) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-114 |#1|)) NIL) (($ (-1099)) NIL (|has| (-114 |#1|) (-975 (-1099))))) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))) (|has| (-114 |#1|) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-3020 (((-110) $ $) NIL)) (-4125 (((-388 (-530)) $ (-530)) NIL)) (-2218 (($ $) NIL (|has| (-114 |#1|) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2257 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
-(((-115 |#1|) (-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $)))) (-530)) (T -115))
-((-4125 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2))))
-(-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $))))
-((-2416 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1994 (((-597 $) $) 27)) (-1966 (((-110) $ $) 32)) (-3455 (((-110) |#2| $) 36)) (-3353 (((-597 |#2|) $) 22)) (-3937 (((-110) $) 16)) (-1832 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3663 (((-110) $) 45)) (-2258 (((-804) $) 41)) (-3885 (((-597 $) $) 28)) (-2148 (((-110) $ $) 34)) (-2167 (((-719) $) 43)))
-(((-116 |#1| |#2|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2416 (|#1| |#1| "right" |#1|)) (-15 -2416 (|#1| |#1| "left" |#1|)) (-15 -1832 (|#1| |#1| "right")) (-15 -1832 (|#1| |#1| "left")) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1966 ((-110) |#1| |#1|)) (-15 -3353 ((-597 |#2|) |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2167 ((-719) |#1|))) (-117 |#2|) (-1135)) (T -116))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2416 (|#1| |#1| "right" |#1|)) (-15 -2416 (|#1| |#1| "left" |#1|)) (-15 -1832 (|#1| |#1| "right")) (-15 -1832 (|#1| |#1| "left")) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1966 ((-110) |#1| |#1|)) (-15 -3353 ((-597 |#2|) |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2167 ((-719) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-3249 (($ $ $) 52 (|has| $ (-6 -4271)))) (-3262 (($ $ $) 54 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) (($ $ "left" $) 55 (|has| $ (-6 -4271))) (($ $ "right" $) 53 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-3657 (($ $) 57)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3648 (($ $) 59)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1984 (((-530) $ $) 44)) (-3663 (((-110) $) 46)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-114 |#1|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-2585 (((-114 |#1|) $) NIL) (((-1099) $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-114 |#1|))) (|:| |vec| (-1181 (-114 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-114 |#1|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-114 |#1|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-114 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-114 |#1|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-114 |#1|) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-1817 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-3217 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-114 |#1|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-3175 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-114 |#1|)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-276 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-276 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-1099)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|)))) (($ $ (-1099) (-114 |#1|)) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-114 |#1|) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-114 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-114 |#1|) (-960))) (((-208) $) NIL (|has| (-114 |#1|) (-960)))) (-2054 (((-163 (-388 (-530))) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-114 |#1|)) NIL) (($ (-1099)) NIL (|has| (-114 |#1|) (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))) (|has| (-114 |#1|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) NIL)) (-3934 (($ $) NIL (|has| (-114 |#1|) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2364 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
+(((-115 |#1|) (-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530)) (T -115))
+((-4136 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2))))
+(-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
+((-2552 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2011 (((-597 $) $) 27)) (-1646 (((-110) $ $) 32)) (-4197 (((-110) |#2| $) 36)) (-3390 (((-597 |#2|) $) 22)) (-3615 (((-110) $) 16)) (-1902 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4246 (((-110) $) 45)) (-2366 (((-804) $) 41)) (-2557 (((-597 $) $) 28)) (-2248 (((-110) $ $) 34)) (-2267 (((-719) $) 43)))
+(((-116 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2552 (|#1| |#1| "right" |#1|)) (-15 -2552 (|#1| |#1| "left" |#1|)) (-15 -1902 (|#1| |#1| "right")) (-15 -1902 (|#1| |#1| "left")) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -3390 ((-597 |#2|) |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2267 ((-719) |#1|))) (-117 |#2|) (-1135)) (T -116))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2552 (|#1| |#1| "right" |#1|)) (-15 -2552 (|#1| |#1| "left" |#1|)) (-15 -1902 (|#1| |#1| "right")) (-15 -1902 (|#1| |#1| "left")) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -3390 ((-597 |#2|) |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2267 ((-719) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 52 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ "left" $) 55 (|has| $ (-6 -4270))) (($ $ "right" $) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3638 (($ $) 57)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3628 (($ $) 59)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-117 |#1|) (-133) (-1135)) (T -117))
-((-3648 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-2416 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4271)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-3262 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-2416 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4271)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-3249 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -3648 ($ $)) (-15 -1832 ($ $ "left")) (-15 -3657 ($ $)) (-15 -1832 ($ $ "right")) (IF (|has| $ (-6 -4271)) (PROGN (-15 -2416 ($ $ "left" $)) (-15 -3262 ($ $ $)) (-15 -2416 ($ $ "right" $)) (-15 -3249 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2324 (((-110) |#1|) 24)) (-1414 (((-719) (-719)) 23) (((-719)) 22)) (-1403 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
-(((-118 |#1|) (-10 -7 (-15 -1403 ((-110) |#1|)) (-15 -1403 ((-110) |#1| (-110))) (-15 -1414 ((-719))) (-15 -1414 ((-719) (-719))) (-15 -2324 ((-110) |#1|))) (-1157 (-530))) (T -118))
-((-2324 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-1414 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-1403 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -1403 ((-110) |#1|)) (-15 -1403 ((-110) |#1| (-110))) (-15 -1414 ((-719))) (-15 -1414 ((-719) (-719))) (-15 -2324 ((-110) |#1|)))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) 15)) (-1373 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-3249 (($ $ $) 18 (|has| $ (-6 -4271)))) (-3262 (($ $ $) 20 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "left" $) NIL (|has| $ (-6 -4271))) (($ $ "right" $) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3657 (($ $) 17)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1550 (($ $ |#1| $) 23)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3648 (($ $) 19)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2332 (($ |#1| $) 24)) (-3440 (($ |#1| $) 10)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 14)) (-4227 (($) 8)) (-1832 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3435 (($ (-597 |#1|)) 12)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4271) (-6 -4270) (-15 -3435 ($ (-597 |#1|))) (-15 -3440 ($ |#1| $)) (-15 -2332 ($ |#1| $)) (-15 -1373 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-795)) (T -119))
-((-3435 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-2332 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-1373 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-795)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4271) (-6 -4270) (-15 -3435 ($ (-597 |#1|))) (-15 -3440 ($ |#1| $)) (-15 -2332 ($ |#1| $)) (-15 -1373 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2390 (($ $) 13)) (-3694 (($ $) 11)) (-3447 (($ $ $) 23)) (-3309 (($ $ $) 21)) (-1267 (($ $ $) 19)) (-1256 (($ $ $) 17)))
-(((-120 |#1|) (-10 -8 (-15 -3447 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1256 (|#1| |#1| |#1|)) (-15 -1267 (|#1| |#1| |#1|))) (-121)) (T -120))
-NIL
-(-10 -8 (-15 -3447 (|#1| |#1| |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -1256 (|#1| |#1| |#1|)) (-15 -1267 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-2390 (($ $) 103)) (-2947 (($ $ $) 25)) (-1935 (((-1186) $ (-530) (-530)) 66 (|has| $ (-6 -4271)))) (-4038 (((-110) $) 98 (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) 92)) (-4017 (($ $) 102 (-12 (|has| (-110) (-795)) (|has| $ (-6 -4271)))) (($ (-1 (-110) (-110) (-110)) $) 101 (|has| $ (-6 -4271)))) (-1317 (($ $) 97 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) 91)) (-4102 (((-110) $ (-719)) 37)) (-2416 (((-110) $ (-1148 (-530)) (-110)) 88 (|has| $ (-6 -4271))) (((-110) $ (-530) (-110)) 54 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-110)) $) 71 (|has| $ (-6 -4270)))) (-3956 (($) 38 T CONST)) (-1389 (($ $) 100 (|has| $ (-6 -4271)))) (-4093 (($ $) 90)) (-2939 (($ $) 68 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4270))) (($ (-110) $) 69 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4270))))) (-3856 (((-110) (-1 (-110) (-110) (-110)) $) 74 (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 73 (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 70 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4270))))) (-2858 (((-110) $ (-530) (-110)) 53 (|has| $ (-6 -4271)))) (-2787 (((-110) $ (-530)) 55)) (-1944 (((-530) (-110) $ (-530)) 95 (|has| (-110) (-1027))) (((-530) (-110) $) 94 (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) 93)) (-2456 (((-597 (-110)) $) 45 (|has| $ (-6 -4270)))) (-2656 (($ $ $) 26)) (-3694 (($ $) 30)) (-3447 (($ $ $) 28)) (-3547 (($ (-719) (-110)) 77)) (-3309 (($ $ $) 29)) (-2014 (((-110) $ (-719)) 36)) (-1954 (((-530) $) 63 (|has| (-530) (-795)))) (-4194 (($ $ $) 13)) (-3842 (($ $ $) 96 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) 89)) (-3252 (((-597 (-110)) $) 46 (|has| $ (-6 -4270)))) (-3455 (((-110) (-110) $) 48 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 62 (|has| (-530) (-795)))) (-1757 (($ $ $) 14)) (-2847 (($ (-1 (-110) (-110)) $) 41 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-110) (-110) (-110)) $ $) 82) (($ (-1 (-110) (-110)) $) 40)) (-1987 (((-110) $ (-719)) 35)) (-3443 (((-1082) $) 9)) (-4016 (($ $ $ (-530)) 87) (($ (-110) $ (-530)) 86)) (-1983 (((-597 (-530)) $) 60)) (-1993 (((-110) (-530) $) 59)) (-2485 (((-1046) $) 10)) (-2907 (((-110) $) 64 (|has| (-530) (-795)))) (-4221 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 75)) (-1946 (($ $ (-110)) 65 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-110)) (-597 (-110))) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) 49 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1439 (((-110) $ $) 31)) (-1973 (((-110) (-110) $) 61 (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2002 (((-597 (-110)) $) 58)) (-1262 (((-110) $) 34)) (-4227 (($) 33)) (-1832 (($ $ (-1148 (-530))) 83) (((-110) $ (-530)) 57) (((-110) $ (-530) (-110)) 56)) (-1778 (($ $ (-1148 (-530))) 85) (($ $ (-530)) 84)) (-2494 (((-719) (-110) $) 47 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4270)))) (-4027 (($ $ $ (-530)) 99 (|has| $ (-6 -4271)))) (-2441 (($ $) 32)) (-3173 (((-506) $) 67 (|has| (-110) (-572 (-506))))) (-2268 (($ (-597 (-110))) 76)) (-3476 (($ (-597 $)) 81) (($ $ $) 80) (($ (-110) $) 79) (($ $ (-110)) 78)) (-2258 (((-804) $) 11)) (-1515 (((-110) (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4270)))) (-3340 (($ $ $) 27)) (-1267 (($ $ $) 105)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-1256 (($ $ $) 104)) (-2167 (((-719) $) 39 (|has| $ (-6 -4270)))))
+((-3628 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-3638 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-4232 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-2096 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -3628 ($ $)) (-15 -1902 ($ $ "left")) (-15 -3638 ($ $)) (-15 -1902 ($ $ "right")) (IF (|has| $ (-6 -4270)) (PROGN (-15 -2552 ($ $ "left" $)) (-15 -4232 ($ $ $)) (-15 -2552 ($ $ "right" $)) (-15 -2096 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-4105 (((-110) |#1|) 24)) (-2317 (((-719) (-719)) 23) (((-719)) 22)) (-3481 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
+(((-118 |#1|) (-10 -7 (-15 -3481 ((-110) |#1|)) (-15 -3481 ((-110) |#1| (-110))) (-15 -2317 ((-719))) (-15 -2317 ((-719) (-719))) (-15 -4105 ((-110) |#1|))) (-1157 (-530))) (T -118))
+((-4105 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-2317 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
+(-10 -7 (-15 -3481 ((-110) |#1|)) (-15 -3481 ((-110) |#1| (-110))) (-15 -2317 ((-719))) (-15 -2317 ((-719) (-719))) (-15 -4105 ((-110) |#1|)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 15)) (-1489 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2096 (($ $ $) 18 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 20 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 17)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 23)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 19)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3525 (($ |#1| $) 24)) (-2441 (($ |#1| $) 10)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 8)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1968 (($ (-597 |#1|)) 12)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1968 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)) (-15 -3525 ($ |#1| $)) (-15 -1489 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-795)) (T -119))
+((-1968 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-1489 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-795)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1968 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)) (-15 -3525 ($ |#1| $)) (-15 -1489 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2522 (($ $) 13)) (-3676 (($ $) 11)) (-1493 (($ $ $) 23)) (-4073 (($ $ $) 21)) (-1262 (($ $ $) 19)) (-1253 (($ $ $) 17)))
+(((-120 |#1|) (-10 -8 (-15 -1493 (|#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -1262 (|#1| |#1| |#1|))) (-121)) (T -120))
+NIL
+(-10 -8 (-15 -1493 (|#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -1262 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2522 (($ $) 103)) (-3085 (($ $ $) 25)) (-2097 (((-1186) $ (-530) (-530)) 66 (|has| $ (-6 -4270)))) (-2741 (((-110) $) 98 (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) 92)) (-1627 (($ $) 102 (-12 (|has| (-110) (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-110) (-110)) $) 101 (|has| $ (-6 -4270)))) (-1307 (($ $) 97 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) 91)) (-3186 (((-110) $ (-719)) 37)) (-2552 (((-110) $ (-1148 (-530)) (-110)) 88 (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) 54 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) 71 (|has| $ (-6 -4269)))) (-2350 (($) 38 T CONST)) (-1337 (($ $) 100 (|has| $ (-6 -4270)))) (-4106 (($ $) 90)) (-3077 (($ $) 68 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4269))) (($ (-110) $) 69 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) 74 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 73 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 70 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-3592 (((-110) $ (-530) (-110)) 53 (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) 55)) (-2027 (((-530) (-110) $ (-530)) 95 (|has| (-110) (-1027))) (((-530) (-110) $) 94 (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) 93)) (-3779 (((-597 (-110)) $) 45 (|has| $ (-6 -4269)))) (-2813 (($ $ $) 26)) (-3676 (($ $) 30)) (-1493 (($ $ $) 28)) (-3538 (($ (-719) (-110)) 77)) (-4073 (($ $ $) 29)) (-4027 (((-110) $ (-719)) 36)) (-4010 (((-530) $) 63 (|has| (-530) (-795)))) (-2508 (($ $ $) 13)) (-3683 (($ $ $) 96 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) 89)) (-2395 (((-597 (-110)) $) 46 (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) 48 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 62 (|has| (-530) (-795)))) (-1817 (($ $ $) 14)) (-3583 (($ (-1 (-110) (-110)) $) 41 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) 82) (($ (-1 (-110) (-110)) $) 40)) (-2763 (((-110) $ (-719)) 35)) (-1424 (((-1082) $) 9)) (-4028 (($ $ $ (-530)) 87) (($ (-110) $ (-530)) 86)) (-3567 (((-597 (-530)) $) 60)) (-1927 (((-110) (-530) $) 59)) (-2624 (((-1046) $) 10)) (-3048 (((-110) $) 64 (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 75)) (-1522 (($ $ (-110)) 65 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) 49 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) 31)) (-4064 (((-110) (-110) $) 61 (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) 58)) (-3250 (((-110) $) 34)) (-3958 (($) 33)) (-1902 (($ $ (-1148 (-530))) 83) (((-110) $ (-530)) 57) (((-110) $ (-530) (-110)) 56)) (-1843 (($ $ (-1148 (-530))) 85) (($ $ (-530)) 84)) (-2632 (((-719) (-110) $) 47 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) 99 (|has| $ (-6 -4270)))) (-2579 (($ $) 32)) (-3260 (((-506) $) 67 (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) 76)) (-3483 (($ (-597 $)) 81) (($ $ $) 80) (($ (-110) $) 79) (($ $ (-110)) 78)) (-2366 (((-804) $) 11)) (-3889 (((-110) (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4269)))) (-3380 (($ $ $) 27)) (-1262 (($ $ $) 105)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-1253 (($ $ $) 104)) (-2267 (((-719) $) 39 (|has| $ (-6 -4269)))))
(((-121) (-133)) (T -121))
-((-3694 (*1 *1 *1) (-4 *1 (-121))) (-3309 (*1 *1 *1 *1) (-4 *1 (-121))) (-3447 (*1 *1 *1 *1) (-4 *1 (-121))) (-3340 (*1 *1 *1 *1) (-4 *1 (-121))) (-2656 (*1 *1 *1 *1) (-4 *1 (-121))) (-2947 (*1 *1 *1 *1) (-4 *1 (-121))))
-(-13 (-795) (-612) (-19 (-110)) (-10 -8 (-15 -3694 ($ $)) (-15 -3309 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -3340 ($ $ $)) (-15 -2656 ($ $ $)) (-15 -2947 ($ $ $))))
+((-3676 (*1 *1 *1) (-4 *1 (-121))) (-4073 (*1 *1 *1 *1) (-4 *1 (-121))) (-1493 (*1 *1 *1 *1) (-4 *1 (-121))) (-3380 (*1 *1 *1 *1) (-4 *1 (-121))) (-2813 (*1 *1 *1 *1) (-4 *1 (-121))) (-3085 (*1 *1 *1 *1) (-4 *1 (-121))))
+(-13 (-795) (-612) (-19 (-110)) (-10 -8 (-15 -3676 ($ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3085 ($ $ $))))
(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 #0=(-110)) . T) ((-572 (-506)) |has| (-110) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-602 #0#) . T) ((-612) . T) ((-19 #0#) . T) ((-795) . T) ((-1027) . T) ((-1135) . T))
-((-2847 (($ (-1 |#2| |#2|) $) 22)) (-2441 (($ $) 16)) (-2167 (((-719) $) 24)))
-(((-122 |#1| |#2|) (-10 -8 (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -2441 (|#1| |#1|))) (-123 |#2|) (-1027)) (T -122))
+((-3583 (($ (-1 |#2| |#2|) $) 22)) (-2579 (($ $) 16)) (-2267 (((-719) $) 24)))
+(((-122 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -2579 (|#1| |#1|))) (-123 |#2|) (-1027)) (T -122))
NIL
-(-10 -8 (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -2441 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-3249 (($ $ $) 52 (|has| $ (-6 -4271)))) (-3262 (($ $ $) 54 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) (($ $ "left" $) 55 (|has| $ (-6 -4271))) (($ $ "right" $) 53 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-3657 (($ $) 57)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-1550 (($ $ |#1| $) 60)) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3648 (($ $) 59)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1984 (((-530) $ $) 44)) (-3663 (((-110) $) 46)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -2579 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 52 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ "left" $) 55 (|has| $ (-6 -4270))) (($ $ "right" $) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3638 (($ $) 57)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 60)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3628 (($ $) 59)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-123 |#1|) (-133) (-1027)) (T -123))
-((-1550 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
-(-13 (-117 |t#1|) (-10 -8 (-6 -4271) (-6 -4270) (-15 -1550 ($ $ |t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-117 |#1|) . T) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) 15)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) 19 (|has| $ (-6 -4271)))) (-3249 (($ $ $) 20 (|has| $ (-6 -4271)))) (-3262 (($ $ $) 18 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "left" $) NIL (|has| $ (-6 -4271))) (($ $ "right" $) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3657 (($ $) 21)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1550 (($ $ |#1| $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3648 (($ $) NIL)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3440 (($ |#1| $) 10)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 14)) (-4227 (($) 8)) (-1832 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 17)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3321 (($ (-597 |#1|)) 12)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4271) (-15 -3321 ($ (-597 |#1|))) (-15 -3440 ($ |#1| $)))) (-795)) (T -124))
-((-3321 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4271) (-15 -3321 ($ (-597 |#1|))) (-15 -3440 ($ |#1| $))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) 24)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) 26 (|has| $ (-6 -4271)))) (-3249 (($ $ $) 30 (|has| $ (-6 -4271)))) (-3262 (($ $ $) 28 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "left" $) NIL (|has| $ (-6 -4271))) (($ $ "right" $) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3657 (($ $) 20)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1550 (($ $ |#1| $) 15)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3648 (($ $) 19)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) 21)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 18)) (-4227 (($) 11)) (-1832 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3380 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 10 (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -3380 ($ |#1|)) (-15 -3380 ($ $ |#1| $)))) (-1027)) (T -125))
-((-3380 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))) (-3380 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
-(-13 (-123 |#1|) (-10 -8 (-15 -3380 ($ |#1|)) (-15 -3380 ($ $ |#1| $))))
-((-2246 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-795)))) (-4017 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-127) (-795))))) (-1317 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4271))) (((-127) $ (-1148 (-530)) (-127)) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027))))) (-2272 (($ (-127) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4270))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4270)))) (-2858 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4271)))) (-2787 (((-127) $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) (-127)) $) NIL) (((-530) (-127) $) NIL (|has| (-127) (-1027))) (((-530) (-127) $ (-530)) NIL (|has| (-127) (-1027)))) (-2456 (((-597 (-127)) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) (-127)) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| (-127) (-795)))) (-3842 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-795)))) (-3252 (((-597 (-127)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-127) (-795)))) (-2847 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| (-127) (-1027)))) (-4016 (($ (-127) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| (-127) (-1027)))) (-2907 (((-127) $) NIL (|has| (-530) (-795)))) (-4221 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-1946 (($ $ (-127)) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-127)))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-276 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-597 (-127)) (-597 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027))))) (-2002 (((-597 (-127)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (((-127) $ (-530) (-127)) NIL) (((-127) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4270))) (((-719) (-127) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-127) (-572 (-506))))) (-2268 (($ (-597 (-127))) NIL)) (-3476 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| (-127) (-571 (-804))))) (-1515 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2148 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-2195 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-1546 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
+(-13 (-117 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1546 ($ $ |t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-117 |#1|) . T) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 15)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 19 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 20 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 18 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 21)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ |#1| $) 10)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 8)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 17)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2041 (($ (-597 |#1|)) 12)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -2041 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)))) (-795)) (T -124))
+((-2041 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -2041 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 24)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 26 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 30 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 28 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 20)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 15)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 19)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 21)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 18)) (-3958 (($) 11)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2107 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 10 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -2107 ($ |#1|)) (-15 -2107 ($ $ |#1| $)))) (-1027)) (T -125))
+((-2107 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))) (-2107 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
+(-13 (-123 |#1|) (-10 -8 (-15 -2107 ($ |#1|)) (-15 -2107 ($ $ |#1| $))))
+((-2352 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-795)))) (-1627 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-795))))) (-1307 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4270))) (((-127) $ (-1148 (-530)) (-127)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-2383 (($ (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4269))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4270)))) (-3532 (((-127) $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) (-127)) $) NIL) (((-530) (-127) $) NIL (|has| (-127) (-1027))) (((-530) (-127) $ (-530)) NIL (|has| (-127) (-1027)))) (-3779 (((-597 (-127)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-127)) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-127) (-795)))) (-3683 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-795)))) (-2395 (((-597 (-127)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-127) (-795)))) (-3583 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| (-127) (-1027)))) (-4028 (($ (-127) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| (-127) (-1027)))) (-3048 (((-127) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-1522 (($ $ (-127)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-127)))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-276 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-597 (-127)) (-597 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-2261 (((-597 (-127)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-127) $ (-530) (-127)) NIL) (((-127) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269))) (((-719) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-127) (-572 (-506))))) (-2377 (($ (-597 (-127))) NIL)) (-3483 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| (-127) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2248 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-2297 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-126) (-19 (-127))) (T -126))
NIL
(-19 (-127))
-((-2246 (((-110) $ $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 12) (((-719) $) 9) (($ (-719)) 8)) (-3393 (($ (-719)) 7)) (-3779 (($ $ $) 16)) (-1883 (($ $ $) 15)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 14)))
-(((-127) (-13 (-795) (-571 (-719)) (-10 -8 (-15 -3393 ($ (-719))) (-15 -2258 ($ (-719))) (-15 -1883 ($ $ $)) (-15 -3779 ($ $ $))))) (T -127))
-((-3393 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-1883 (*1 *1 *1 *1) (-5 *1 (-127))) (-3779 (*1 *1 *1 *1) (-5 *1 (-127))))
-(-13 (-795) (-571 (-719)) (-10 -8 (-15 -3393 ($ (-719))) (-15 -2258 ($ (-719))) (-15 -1883 ($ $ $)) (-15 -3779 ($ $ $))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
+((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 12) (((-719) $) 9) (($ (-719)) 8)) (-1457 (($ (-719)) 7)) (-3772 (($ $ $) 16)) (-1956 (($ $ $) 15)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 14)))
+(((-127) (-13 (-795) (-571 (-719)) (-10 -8 (-15 -1457 ($ (-719))) (-15 -2366 ($ (-719))) (-15 -1956 ($ $ $)) (-15 -3772 ($ $ $))))) (T -127))
+((-1457 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-1956 (*1 *1 *1 *1) (-5 *1 (-127))) (-3772 (*1 *1 *1 *1) (-5 *1 (-127))))
+(-13 (-795) (-571 (-719)) (-10 -8 (-15 -1457 ($ (-719))) (-15 -2366 ($ (-719))) (-15 -1956 ($ $ $)) (-15 -3772 ($ $ $))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
(((-128) (-133)) (T -128))
-((-3618 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
-(-13 (-23) (-10 -8 (-15 -3618 ((-3 $ "failed") $ $))))
+((-1889 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+(-13 (-23) (-10 -8 (-15 -1889 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-3627 (((-1186) $ (-719)) 19)) (-1944 (((-719) $) 20)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)))
+((-2352 (((-110) $ $) 7)) (-1664 (((-1186) $ (-719)) 19)) (-2027 (((-719) $) 20)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
(((-129) (-133)) (T -129))
-((-1944 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719)))) (-3627 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
-(-13 (-795) (-10 -8 (-15 -1944 ((-719) $)) (-15 -3627 ((-1186) $ (-719)))))
+((-2027 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719)))) (-1664 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
+(-13 (-795) (-10 -8 (-15 -2027 ((-719) $)) (-15 -1664 ((-1186) $ (-719)))))
(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 34)) (-3015 (((-110) $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-719) "failed") $) 40)) (-2446 (((-719) $) 38)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) 27)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2980 (((-110)) 41)) (-2969 (((-110) (-110)) 43)) (-2688 (((-110) $) 24)) (-3421 (((-110) $) 37)) (-2258 (((-804) $) 22) (($ (-719)) 14)) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) 12 T CONST)) (-2955 (($) 11 T CONST)) (-3434 (($ (-719)) 15)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 26)) (-2245 (((-3 $ "failed") $ $) 30)) (-2234 (($ $ $) 28)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ $) 36)) (* (($ (-719) $) 33) (($ (-862) $) NIL) (($ $ $) 31)))
-(((-130) (-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4272 "*")) (-15 -2245 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3434 ($ (-719))) (-15 -2688 ((-110) $)) (-15 -3421 ((-110) $)) (-15 -2980 ((-110))) (-15 -2969 ((-110) (-110)))))) (T -130))
-((-2245 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-2980 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4272 "*")) (-15 -2245 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3434 ($ (-719))) (-15 -2688 ((-110) $)) (-15 -3421 ((-110) $)) (-15 -2980 ((-110))) (-15 -2969 ((-110) (-110)))))
-((-3030 (((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3114 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18)))
-(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3030 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3114 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-530) (-719) (-162) (-162)) (T -131))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3030 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3114 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|))))
-((-2246 (((-110) $ $) NIL)) (-2700 (($ (-597 |#3|)) 40)) (-1350 (($ $) 99) (($ $ (-530) (-530)) 98)) (-3956 (($) 17)) (-3012 (((-3 |#3| "failed") $) 60)) (-2446 ((|#3| $) NIL)) (-2808 (($ $ (-597 (-530))) 100)) (-3018 (((-597 |#3|) $) 36)) (-4113 (((-719) $) 44)) (-3374 (($ $ $) 93)) (-2711 (($) 43)) (-3443 (((-1082) $) NIL)) (-2796 (($) 16)) (-2485 (((-1046) $) NIL)) (-1832 ((|#3| $) 46) ((|#3| $ (-530)) 47) ((|#3| $ (-530) (-530)) 48) ((|#3| $ (-530) (-530) (-530)) 49) ((|#3| $ (-530) (-530) (-530) (-530)) 50) ((|#3| $ (-597 (-530))) 52)) (-3409 (((-719) $) 45)) (-3693 (($ $ (-530) $ (-530)) 94) (($ $ (-530) (-530)) 96)) (-2258 (((-804) $) 67) (($ |#3|) 68) (($ (-223 |#2| |#3|)) 75) (($ (-1066 |#2| |#3|)) 78) (($ (-597 |#3|)) 53) (($ (-597 $)) 58)) (-2943 (($) 69 T CONST)) (-2955 (($) 70 T CONST)) (-2148 (((-110) $ $) 80)) (-2245 (($ $) 86) (($ $ $) 84)) (-2234 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-530)) 89) (($ (-530) $) 88) (($ $ $) 95)))
-(((-132 |#1| |#2| |#3|) (-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2258 ($ (-223 |#2| |#3|))) (-15 -2258 ($ (-1066 |#2| |#3|))) (-15 -2258 ($ (-597 |#3|))) (-15 -2258 ($ (-597 $))) (-15 -4113 ((-719) $)) (-15 -1832 (|#3| $)) (-15 -1832 (|#3| $ (-530))) (-15 -1832 (|#3| $ (-530) (-530))) (-15 -1832 (|#3| $ (-530) (-530) (-530))) (-15 -1832 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1832 (|#3| $ (-597 (-530)))) (-15 -3374 ($ $ $)) (-15 * ($ $ $)) (-15 -3693 ($ $ (-530) $ (-530))) (-15 -3693 ($ $ (-530) (-530))) (-15 -1350 ($ $)) (-15 -1350 ($ $ (-530) (-530))) (-15 -2808 ($ $ (-597 (-530)))) (-15 -2796 ($)) (-15 -2711 ($)) (-15 -3018 ((-597 |#3|) $)) (-15 -2700 ($ (-597 |#3|))) (-15 -3956 ($)))) (-530) (-719) (-162)) (T -132))
-((-3374 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1066 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 *2) (-4 *5 (-162)))) (-1832 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-530)) (-14 *4 (-719)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1832 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1832 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1832 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-530))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-530)) (-14 *5 (-719)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-3693 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-3693 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1350 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-2808 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2796 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-2711 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-597 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-3956 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))))
-(-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2258 ($ (-223 |#2| |#3|))) (-15 -2258 ($ (-1066 |#2| |#3|))) (-15 -2258 ($ (-597 |#3|))) (-15 -2258 ($ (-597 $))) (-15 -4113 ((-719) $)) (-15 -1832 (|#3| $)) (-15 -1832 (|#3| $ (-530))) (-15 -1832 (|#3| $ (-530) (-530))) (-15 -1832 (|#3| $ (-530) (-530) (-530))) (-15 -1832 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1832 (|#3| $ (-597 (-530)))) (-15 -3374 ($ $ $)) (-15 * ($ $ $)) (-15 -3693 ($ $ (-530) $ (-530))) (-15 -3693 ($ $ (-530) (-530))) (-15 -1350 ($ $)) (-15 -1350 ($ $ (-530) (-530))) (-15 -2808 ($ $ (-597 (-530)))) (-15 -2796 ($)) (-15 -2711 ($)) (-15 -3018 ((-597 |#3|) $)) (-15 -2700 ($ (-597 |#3|))) (-15 -3956 ($))))
-((-2258 (((-804) $) 7)))
+((-2352 (((-110) $ $) 34)) (-1813 (((-110) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-719) "failed") $) 40)) (-2585 (((-719) $) 38)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4041 (((-110)) 41)) (-1397 (((-110) (-110)) 43)) (-3855 (((-110) $) 24)) (-3169 (((-110) $) 37)) (-2366 (((-804) $) 22) (($ (-719)) 14)) (-3080 (($) 12 T CONST)) (-3093 (($) 11 T CONST)) (-1882 (($ (-719)) 15)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 25)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 26)) (-2351 (((-3 $ "failed") $ $) 30)) (-2339 (($ $ $) 28)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ $) 36)) (* (($ (-719) $) 33) (($ (-862) $) NIL) (($ $ $) 31)))
+(((-130) (-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -2351 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1882 ($ (-719))) (-15 -3855 ((-110) $)) (-15 -3169 ((-110) $)) (-15 -4041 ((-110))) (-15 -1397 ((-110) (-110)))))) (T -130))
+((-2351 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-4041 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -2351 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1882 ($ (-719))) (-15 -3855 ((-110) $)) (-15 -3169 ((-110) $)) (-15 -4041 ((-110))) (-15 -1397 ((-110) (-110)))))
+((-3153 (((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3217 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18)))
+(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3153 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3217 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-530) (-719) (-162) (-162)) (T -131))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3153 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3217 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|))))
+((-2352 (((-110) $ $) NIL)) (-2702 (($ (-597 |#3|)) 40)) (-4114 (($ $) 99) (($ $ (-530) (-530)) 98)) (-2350 (($) 17)) (-3139 (((-3 |#3| "failed") $) 60)) (-2585 ((|#3| $) NIL)) (-1465 (($ $ (-597 (-530))) 100)) (-3145 (((-597 |#3|) $) 36)) (-2426 (((-719) $) 44)) (-2801 (($ $ $) 93)) (-1290 (($) 43)) (-1424 (((-1082) $) NIL)) (-2829 (($) 16)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $) 46) ((|#3| $ (-530)) 47) ((|#3| $ (-530) (-530)) 48) ((|#3| $ (-530) (-530) (-530)) 49) ((|#3| $ (-530) (-530) (-530) (-530)) 50) ((|#3| $ (-597 (-530))) 52)) (-1429 (((-719) $) 45)) (-1695 (($ $ (-530) $ (-530)) 94) (($ $ (-530) (-530)) 96)) (-2366 (((-804) $) 67) (($ |#3|) 68) (($ (-223 |#2| |#3|)) 75) (($ (-1066 |#2| |#3|)) 78) (($ (-597 |#3|)) 53) (($ (-597 $)) 58)) (-3080 (($) 69 T CONST)) (-3093 (($) 70 T CONST)) (-2248 (((-110) $ $) 80)) (-2351 (($ $) 86) (($ $ $) 84)) (-2339 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-530)) 89) (($ (-530) $) 88) (($ $ $) 95)))
+(((-132 |#1| |#2| |#3|) (-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2366 ($ (-223 |#2| |#3|))) (-15 -2366 ($ (-1066 |#2| |#3|))) (-15 -2366 ($ (-597 |#3|))) (-15 -2366 ($ (-597 $))) (-15 -2426 ((-719) $)) (-15 -1902 (|#3| $)) (-15 -1902 (|#3| $ (-530))) (-15 -1902 (|#3| $ (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-597 (-530)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -1695 ($ $ (-530) $ (-530))) (-15 -1695 ($ $ (-530) (-530))) (-15 -4114 ($ $)) (-15 -4114 ($ $ (-530) (-530))) (-15 -1465 ($ $ (-597 (-530)))) (-15 -2829 ($)) (-15 -1290 ($)) (-15 -3145 ((-597 |#3|) $)) (-15 -2702 ($ (-597 |#3|))) (-15 -2350 ($)))) (-530) (-719) (-162)) (T -132))
+((-2801 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1066 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 *2) (-4 *5 (-162)))) (-1902 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-530)) (-14 *4 (-719)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-530))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-530)) (-14 *5 (-719)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1695 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1695 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-4114 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2829 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1290 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-597 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-2350 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))))
+(-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2366 ($ (-223 |#2| |#3|))) (-15 -2366 ($ (-1066 |#2| |#3|))) (-15 -2366 ($ (-597 |#3|))) (-15 -2366 ($ (-597 $))) (-15 -2426 ((-719) $)) (-15 -1902 (|#3| $)) (-15 -1902 (|#3| $ (-530))) (-15 -1902 (|#3| $ (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-597 (-530)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -1695 ($ $ (-530) $ (-530))) (-15 -1695 ($ $ (-530) (-530))) (-15 -4114 ($ $)) (-15 -4114 ($ $ (-530) (-530))) (-15 -1465 ($ $ (-597 (-530)))) (-15 -2829 ($)) (-15 -1290 ($)) (-15 -3145 ((-597 |#3|) $)) (-15 -2702 ($ (-597 |#3|))) (-15 -2350 ($))))
+((-2366 (((-804) $) 7)))
(((-133) (-571 (-804))) (T -133))
NIL
(-571 (-804))
-((-2246 (((-110) $ $) NIL)) (-1396 (($) 15 T CONST)) (-3556 (($) NIL (|has| (-137) (-349)))) (-4204 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-3396 (($ $ $) NIL)) (-3383 (((-110) $ $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| (-137) (-349)))) (-1245 (($) NIL) (($ (-597 (-137))) NIL)) (-2421 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-1283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270))) (($ (-137) $) 51 (|has| $ (-6 -4270)))) (-2272 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-3856 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-1376 (($) NIL (|has| (-137) (-349)))) (-2456 (((-597 (-137)) $) 60 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-4194 (((-137) $) NIL (|has| (-137) (-795)))) (-3252 (((-597 (-137)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-1757 (((-137) $) NIL (|has| (-137) (-795)))) (-2847 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-137) (-137)) $) 55)) (-1418 (($) 16 T CONST)) (-3830 (((-862) $) NIL (|has| (-137) (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3418 (($ $ $) 29)) (-3275 (((-137) $) 52)) (-3440 (($ (-137) $) 50)) (-1910 (($ (-862)) NIL (|has| (-137) (-349)))) (-2090 (($) 14 T CONST)) (-2485 (((-1046) $) NIL)) (-4221 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-3287 (((-137) $) 53)) (-1505 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 48)) (-2083 (($) 13 T CONST)) (-3407 (($ $ $) 31) (($ $ (-137)) NIL)) (-3839 (($ (-597 (-137))) NIL) (($) NIL)) (-2494 (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027)))) (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-1082) $) 36) (((-506) $) NIL (|has| (-137) (-572 (-506)))) (((-597 (-137)) $) 34)) (-2268 (($ (-597 (-137))) NIL)) (-2302 (($ $) 32 (|has| (-137) (-349)))) (-2258 (((-804) $) 46)) (-2095 (($ (-1082)) 12) (($ (-597 (-137))) 43)) (-2313 (((-719) $) NIL)) (-3341 (($) 49) (($ (-597 (-137))) NIL)) (-3298 (($ (-597 (-137))) NIL)) (-1515 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2058 (($) 19 T CONST)) (-2079 (($) 18 T CONST)) (-2148 (((-110) $ $) 22)) (-2167 (((-719) $) 47 (|has| $ (-6 -4270)))))
-(((-134) (-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2095 ($ (-1082))) (-15 -2095 ($ (-597 (-137)))) (-15 -2083 ($) -2562) (-15 -2090 ($) -2562) (-15 -1396 ($) -2562) (-15 -1418 ($) -2562) (-15 -2079 ($) -2562) (-15 -2058 ($) -2562)))) (T -134))
-((-2095 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134)))) (-2083 (*1 *1) (-5 *1 (-134))) (-2090 (*1 *1) (-5 *1 (-134))) (-1396 (*1 *1) (-5 *1 (-134))) (-1418 (*1 *1) (-5 *1 (-134))) (-2079 (*1 *1) (-5 *1 (-134))) (-2058 (*1 *1) (-5 *1 (-134))))
-(-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2095 ($ (-1082))) (-15 -2095 ($ (-597 (-137)))) (-15 -2083 ($) -2562) (-15 -2090 ($) -2562) (-15 -1396 ($) -2562) (-15 -1418 ($) -2562) (-15 -2079 ($) -2562) (-15 -2058 ($) -2562)))
-((-2173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2149 ((|#1| |#3|) 9)) (-2159 ((|#3| |#3|) 15)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2149 (|#1| |#3|)) (-15 -2159 (|#3| |#3|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-354 |#2|)) (T -135))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-354 *5)))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-354 *4)))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-354 *4)))))
-(-10 -7 (-15 -2149 (|#1| |#3|)) (-15 -2159 (|#3| |#3|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1364 (($ $ $) 8)) (-1339 (($ $) 7)) (-1464 (($ $ $) 6)))
+((-2352 (((-110) $ $) NIL)) (-3910 (($) 15 T CONST)) (-2673 (($) NIL (|has| (-137) (-349)))) (-4204 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-1746 (($ $ $) NIL)) (-2431 (((-110) $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| (-137) (-349)))) (-1243 (($) NIL) (($ (-597 (-137))) NIL)) (-2901 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1842 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) 51 (|has| $ (-6 -4269)))) (-2383 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1364 (($) NIL (|has| (-137) (-349)))) (-3779 (((-597 (-137)) $) 60 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2508 (((-137) $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1817 (((-137) $) NIL (|has| (-137) (-795)))) (-3583 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 55)) (-1502 (($) 16 T CONST)) (-1905 (((-862) $) NIL (|has| (-137) (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 29)) (-1723 (((-137) $) 52)) (-2441 (($ (-137) $) 50)) (-1986 (($ (-862)) NIL (|has| (-137) (-349)))) (-1896 (($) 14 T CONST)) (-2624 (((-1046) $) NIL)) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-2738 (((-137) $) 53)) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 48)) (-2518 (($) 13 T CONST)) (-1252 (($ $ $) 31) (($ $ (-137)) NIL)) (-1560 (($ (-597 (-137))) NIL) (($) NIL)) (-2632 (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-1082) $) 36) (((-506) $) NIL (|has| (-137) (-572 (-506)))) (((-597 (-137)) $) 34)) (-2377 (($ (-597 (-137))) NIL)) (-3801 (($ $) 32 (|has| (-137) (-349)))) (-2366 (((-804) $) 46)) (-2294 (($ (-1082)) 12) (($ (-597 (-137))) 43)) (-1418 (((-719) $) NIL)) (-3381 (($) 49) (($ (-597 (-137))) NIL)) (-2242 (($ (-597 (-137))) NIL)) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2954 (($) 19 T CONST)) (-3320 (($) 18 T CONST)) (-2248 (((-110) $ $) 22)) (-2267 (((-719) $) 47 (|has| $ (-6 -4269)))))
+(((-134) (-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2294 ($ (-1082))) (-15 -2294 ($ (-597 (-137)))) (-15 -2518 ($) -2708) (-15 -1896 ($) -2708) (-15 -3910 ($) -2708) (-15 -1502 ($) -2708) (-15 -3320 ($) -2708) (-15 -2954 ($) -2708)))) (T -134))
+((-2294 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134)))) (-2518 (*1 *1) (-5 *1 (-134))) (-1896 (*1 *1) (-5 *1 (-134))) (-3910 (*1 *1) (-5 *1 (-134))) (-1502 (*1 *1) (-5 *1 (-134))) (-3320 (*1 *1) (-5 *1 (-134))) (-2954 (*1 *1) (-5 *1 (-134))))
+(-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2294 ($ (-1082))) (-15 -2294 ($ (-597 (-137)))) (-15 -2518 ($) -2708) (-15 -1896 ($) -2708) (-15 -3910 ($) -2708) (-15 -1502 ($) -2708) (-15 -3320 ($) -2708) (-15 -2954 ($) -2708)))
+((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3912 ((|#1| |#3|) 9)) (-2765 ((|#3| |#3|) 15)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-354 |#2|)) (T -135))
+((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-354 *5)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-354 *4)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-354 *4)))))
+(-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2937 (($ $ $) 8)) (-1303 (($ $) 7)) (-2947 (($ $ $) 6)))
(((-136) (-133)) (T -136))
-((-1364 (*1 *1 *1 *1) (-4 *1 (-136))) (-1339 (*1 *1 *1) (-4 *1 (-136))) (-1464 (*1 *1 *1 *1) (-4 *1 (-136))))
-(-13 (-10 -8 (-15 -1464 ($ $ $)) (-15 -1339 ($ $)) (-15 -1364 ($ $ $))))
-((-2246 (((-110) $ $) NIL)) (-2138 (((-110) $) 30)) (-1396 (($ $) 43)) (-3039 (($) 17)) (-2879 (((-719)) 10)) (-1376 (($) 16)) (-1862 (($) 18)) (-1652 (((-719) $) 14)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2356 (((-110) $) 32)) (-1418 (($ $) 44)) (-3830 (((-862) $) 15)) (-3443 (((-1082) $) 38)) (-1910 (($ (-862)) 13)) (-1632 (((-110) $) 28)) (-2485 (((-1046) $) NIL)) (-1642 (($) 19)) (-4047 (((-110) $) 26)) (-2258 (((-804) $) 21)) (-2827 (($ (-719)) 11) (($ (-1082)) 42)) (-2345 (((-110) $) 36)) (-2609 (((-110) $) 34)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 7)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 8)))
-(((-137) (-13 (-789) (-10 -8 (-15 -1652 ((-719) $)) (-15 -2827 ($ (-719))) (-15 -2827 ($ (-1082))) (-15 -3039 ($)) (-15 -1862 ($)) (-15 -1642 ($)) (-15 -1396 ($ $)) (-15 -1418 ($ $)) (-15 -4047 ((-110) $)) (-15 -1632 ((-110) $)) (-15 -2609 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2356 ((-110) $)) (-15 -2345 ((-110) $))))) (T -137))
-((-1652 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-137)))) (-3039 (*1 *1) (-5 *1 (-137))) (-1862 (*1 *1) (-5 *1 (-137))) (-1642 (*1 *1) (-5 *1 (-137))) (-1396 (*1 *1 *1) (-5 *1 (-137))) (-1418 (*1 *1 *1) (-5 *1 (-137))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(-13 (-789) (-10 -8 (-15 -1652 ((-719) $)) (-15 -2827 ($ (-719))) (-15 -2827 ($ (-1082))) (-15 -3039 ($)) (-15 -1862 ($)) (-15 -1642 ($)) (-15 -1396 ($ $)) (-15 -1418 ($ $)) (-15 -4047 ((-110) $)) (-15 -1632 ((-110) $)) (-15 -2609 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2356 ((-110) $)) (-15 -2345 ((-110) $))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1795 (((-3 $ "failed") $) 35)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2937 (*1 *1 *1 *1) (-4 *1 (-136))) (-1303 (*1 *1 *1) (-4 *1 (-136))) (-2947 (*1 *1 *1 *1) (-4 *1 (-136))))
+(-13 (-10 -8 (-15 -2947 ($ $ $)) (-15 -1303 ($ $)) (-15 -2937 ($ $ $))))
+((-2352 (((-110) $ $) NIL)) (-1756 (((-110) $) 30)) (-3910 (($ $) 43)) (-3134 (($) 17)) (-3023 (((-719)) 10)) (-1364 (($) 16)) (-2808 (($) 18)) (-1486 (((-719) $) 14)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1402 (((-110) $) 32)) (-1502 (($ $) 44)) (-1905 (((-862) $) 15)) (-1424 (((-1082) $) 38)) (-1986 (($ (-862)) 13)) (-2378 (((-110) $) 28)) (-2624 (((-1046) $) NIL)) (-3773 (($) 19)) (-4062 (((-110) $) 26)) (-2366 (((-804) $) 21)) (-2977 (($ (-719)) 11) (($ (-1082)) 42)) (-2136 (((-110) $) 36)) (-2923 (((-110) $) 34)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 7)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
+(((-137) (-13 (-789) (-10 -8 (-15 -1486 ((-719) $)) (-15 -2977 ($ (-719))) (-15 -2977 ($ (-1082))) (-15 -3134 ($)) (-15 -2808 ($)) (-15 -3773 ($)) (-15 -3910 ($ $)) (-15 -1502 ($ $)) (-15 -4062 ((-110) $)) (-15 -2378 ((-110) $)) (-15 -2923 ((-110) $)) (-15 -1756 ((-110) $)) (-15 -1402 ((-110) $)) (-15 -2136 ((-110) $))))) (T -137))
+((-1486 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-137)))) (-3134 (*1 *1) (-5 *1 (-137))) (-2808 (*1 *1) (-5 *1 (-137))) (-3773 (*1 *1) (-5 *1 (-137))) (-3910 (*1 *1 *1) (-5 *1 (-137))) (-1502 (*1 *1 *1) (-5 *1 (-137))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(-13 (-789) (-10 -8 (-15 -1486 ((-719) $)) (-15 -2977 ($ (-719))) (-15 -2977 ($ (-1082))) (-15 -3134 ($)) (-15 -2808 ($)) (-15 -3773 ($)) (-15 -3910 ($ $)) (-15 -1502 ($ $)) (-15 -4062 ((-110) $)) (-15 -2378 ((-110) $)) (-15 -2923 ((-110) $)) (-15 -1756 ((-110) $)) (-15 -1402 ((-110) $)) (-15 -2136 ((-110) $))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3251 (((-3 $ "failed") $) 33)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-138) (-133)) (T -138))
-((-1795 (*1 *1 *1) (|partial| -4 *1 (-138))))
-(-13 (-984) (-10 -8 (-15 -1795 ((-3 $ "failed") $))))
+((-3251 (*1 *1 *1) (|partial| -4 *1 (-138))))
+(-13 (-984) (-10 -8 (-15 -3251 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1640 ((|#1| (-637 |#1|) |#1|) 19)))
-(((-139 |#1|) (-10 -7 (-15 -1640 (|#1| (-637 |#1|) |#1|))) (-162)) (T -139))
-((-1640 (*1 *2 *3 *2) (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
-(-10 -7 (-15 -1640 (|#1| (-637 |#1|) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1814 ((|#1| (-637 |#1|) |#1|) 19)))
+(((-139 |#1|) (-10 -7 (-15 -1814 (|#1| (-637 |#1|) |#1|))) (-162)) (T -139))
+((-1814 (*1 *2 *3 *2) (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
+(-10 -7 (-15 -1814 (|#1| (-637 |#1|) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-140) (-133)) (T -140))
NIL
(-13 (-984))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-4187 (((-2 (|:| -3059 (-719)) (|:| -1981 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719)) 70)) (-4177 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|) 52)) (-1664 (((-2 (|:| -1981 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4198 ((|#1| |#3| |#3|) 40)) (-4084 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-4210 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|) 49)))
-(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -1664 ((-2 (|:| -1981 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4177 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -4187 ((-2 (|:| -3059 (-719)) (|:| -1981 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -4198 (|#1| |#3| |#3|)) (-15 -4084 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -4210 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|))) (T -141))
-((-4210 (*1 *2 *3 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1157 *3)))) (-4198 (*1 *2 *3 *3) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))) (-4177 (*1 *2 *3) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -1981 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(-10 -7 (-15 -1664 ((-2 (|:| -1981 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4177 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -4187 ((-2 (|:| -3059 (-719)) (|:| -1981 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -4198 (|#1| |#3| |#3|)) (-15 -4084 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -4210 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|)))
-((-1810 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 32)))
-(((-142 |#1| |#2|) (-10 -7 (-15 -1810 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)))) (-515) (-156 |#1|)) (T -142))
-((-1810 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5)))))
-(-10 -7 (-15 -1810 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))))
-((-2180 (($ (-1 (-110) |#2|) $) 29)) (-2939 (($ $) 36)) (-2272 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4221 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-1505 (((-110) (-1 (-110) |#2|) $) 16)) (-2494 (((-719) (-1 (-110) |#2|) $) 14) (((-719) |#2| $) NIL)) (-1515 (((-110) (-1 (-110) |#2|) $) 15)) (-2167 (((-719) $) 11)))
-(((-143 |#1| |#2|) (-10 -8 (-15 -2939 (|#1| |#1|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2180 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2272 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|))) (-144 |#2|) (-1135)) (T -143))
-NIL
-(-10 -8 (-15 -2939 (|#1| |#1|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2180 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2272 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2180 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2939 (($ $) 41 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270))) (($ |#1| $) 42 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 40 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 49)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2380 (((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719)) 70)) (-2704 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|) 52)) (-4183 (((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3650 ((|#1| |#3| |#3|) 40)) (-4098 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-2814 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|) 49)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4183 ((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2704 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -2380 ((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -3650 (|#1| |#3| |#3|)) (-15 -4098 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|))) (T -141))
+((-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-4098 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1157 *3)))) (-3650 (*1 *2 *3 *3) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))) (-2704 (*1 *2 *3) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2065 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
+(-10 -7 (-15 -4183 ((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2704 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -2380 ((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -3650 (|#1| |#3| |#3|)) (-15 -4098 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|)))
+((-1708 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 32)))
+(((-142 |#1| |#2|) (-10 -7 (-15 -1708 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)))) (-515) (-156 |#1|)) (T -142))
+((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5)))))
+(-10 -7 (-15 -1708 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))))
+((-2283 (($ (-1 (-110) |#2|) $) 29)) (-3077 (($ $) 36)) (-2383 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-1533 (((-110) (-1 (-110) |#2|) $) 16)) (-2632 (((-719) (-1 (-110) |#2|) $) 14) (((-719) |#2| $) NIL)) (-3889 (((-110) (-1 (-110) |#2|) $) 15)) (-2267 (((-719) $) 11)))
+(((-143 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|))) (-144 |#2|) (-1135)) (T -143))
+NIL
+(-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2283 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 41 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269))) (($ |#1| $) 42 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 40 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 49)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-144 |#1|) (-133) (-1135)) (T -144))
-((-2268 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-144 *3)))) (-4221 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-3856 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-3856 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-2180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-3856 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2272 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2939 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))))
-(-13 (-468 |t#1|) (-10 -8 (-15 -2268 ($ (-597 |t#1|))) (-15 -4221 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2272 ($ (-1 (-110) |t#1|) $)) (-15 -2180 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2272 ($ |t#1| $)) (-15 -2939 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) 86)) (-3150 (((-110) $) NIL)) (-2575 (($ |#2| (-597 (-862))) 56)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1324 (($ (-862)) 47)) (-1248 (((-130)) 23)) (-2258 (((-804) $) 69) (($ (-530)) 45) (($ |#2|) 46)) (-2782 ((|#2| $ (-597 (-862))) 59)) (-1667 (((-719)) 20)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 40 T CONST)) (-2955 (($) 43 T CONST)) (-2148 (((-110) $ $) 26)) (-2257 (($ $ |#2|) NIL)) (-2245 (($ $) 34) (($ $ $) 32)) (-2234 (($ $ $) 30)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-145 |#1| |#2| |#3|) (-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1324 ($ (-862))) (-15 -2575 ($ |#2| (-597 (-862)))) (-15 -2782 (|#2| $ (-597 (-862)))) (-15 -1673 ((-3 $ "failed") $)))) (-862) (-344) (-933 |#1| |#2|)) (T -145))
-((-1673 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344)) (-14 *4 (-933 *2 *3)))) (-1324 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-933 *3 *4)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-4 *2 (-344)) (-14 *5 (-933 *4 *2)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-14 *5 (-933 *4 *2)))))
-(-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1324 ($ (-862))) (-15 -2575 ($ |#2| (-597 (-862)))) (-15 -2782 (|#2| $ (-597 (-862)))) (-15 -1673 ((-3 $ "failed") $))))
-((-4244 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-4232 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 63) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 64)) (-2946 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208))))) 67) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208)))) 66) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 58) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 59)))
-(((-146) (-10 -7 (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -4232 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -4232 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -4244 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))) (T -146))
-((-2946 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208))))))) (-2946 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208)))))) (-4244 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 *4)))) (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4)))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))) (-4232 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-2946 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))))
-(-10 -7 (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -4232 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -4232 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -4244 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -2946 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))
-((-1313 (((-597 (-159 |#2|)) |#1| |#2|) 45)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -1313 ((-597 (-159 |#2|)) |#1| |#2|))) (-1157 (-159 (-530))) (-13 (-344) (-793))) (T -147))
-((-1313 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1313 ((-597 (-159 |#2|)) |#1| |#2|)))
-((-2246 (((-110) $ $) NIL)) (-1246 (($) 15)) (-1257 (($) 14)) (-1216 (((-862)) 22)) (-3443 (((-1082) $) NIL)) (-2436 (((-530) $) 19)) (-2485 (((-1046) $) NIL)) (-1234 (($) 16)) (-2424 (($ (-530)) 23)) (-2258 (((-804) $) 29)) (-1224 (($) 17)) (-2148 (((-110) $ $) 13)) (-2234 (($ $ $) 11)) (* (($ (-862) $) 21) (($ (-208) $) 8)))
-(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2234 ($ $ $)) (-15 -1257 ($)) (-15 -1246 ($)) (-15 -1234 ($)) (-15 -1224 ($)) (-15 -2436 ((-530) $)) (-15 -1216 ((-862))) (-15 -2424 ($ (-530)))))) (T -148))
-((-2234 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-1257 (*1 *1) (-5 *1 (-148))) (-1246 (*1 *1) (-5 *1 (-148))) (-1234 (*1 *1) (-5 *1 (-148))) (-1224 (*1 *1) (-5 *1 (-148))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148)))) (-1216 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2234 ($ $ $)) (-15 -1257 ($)) (-15 -1246 ($)) (-15 -1234 ($)) (-15 -1224 ($)) (-15 -2436 ((-530) $)) (-15 -1216 ((-862))) (-15 -2424 ($ (-530)))))
-((-1397 ((|#2| |#2| (-1020 |#2|)) 88) ((|#2| |#2| (-1099)) 68)) (-3374 ((|#2| |#2| (-1020 |#2|)) 87) ((|#2| |#2| (-1099)) 67)) (-1364 ((|#2| |#2| |#2|) 27)) (-2221 (((-112) (-112)) 99)) (-1329 ((|#2| (-597 |#2|)) 117)) (-1296 ((|#2| (-597 |#2|)) 135)) (-1284 ((|#2| (-597 |#2|)) 125)) (-1263 ((|#2| |#2|) 123)) (-1307 ((|#2| (-597 |#2|)) 111)) (-1318 ((|#2| (-597 |#2|)) 112)) (-1274 ((|#2| (-597 |#2|)) 133)) (-1408 ((|#2| |#2| (-1099)) 56) ((|#2| |#2|) 55)) (-1339 ((|#2| |#2|) 23)) (-1464 ((|#2| |#2| |#2|) 26)) (-2212 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -1464 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2| |#2|)) (-15 -1339 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -1408 (|#2| |#2| (-1099))) (-15 -1397 (|#2| |#2| (-1099))) (-15 -1397 (|#2| |#2| (-1020 |#2|))) (-15 -3374 (|#2| |#2| (-1099))) (-15 -3374 (|#2| |#2| (-1020 |#2|))) (-15 -1263 (|#2| |#2|)) (-15 -1274 (|#2| (-597 |#2|))) (-15 -1284 (|#2| (-597 |#2|))) (-15 -1296 (|#2| (-597 |#2|))) (-15 -1307 (|#2| (-597 |#2|))) (-15 -1318 (|#2| (-597 |#2|))) (-15 -1329 (|#2| (-597 |#2|)))) (-13 (-795) (-522)) (-411 |#1|)) (T -149))
-((-1329 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1284 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-1263 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-3374 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-3374 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-1408 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1339 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1364 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1464 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4)) (-4 *4 (-411 *3)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4)))))
-(-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -1464 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2| |#2|)) (-15 -1339 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -1408 (|#2| |#2| (-1099))) (-15 -1397 (|#2| |#2| (-1099))) (-15 -1397 (|#2| |#2| (-1020 |#2|))) (-15 -3374 (|#2| |#2| (-1099))) (-15 -3374 (|#2| |#2| (-1020 |#2|))) (-15 -1263 (|#2| |#2|)) (-15 -1274 (|#2| (-597 |#2|))) (-15 -1284 (|#2| (-597 |#2|))) (-15 -1296 (|#2| (-597 |#2|))) (-15 -1307 (|#2| (-597 |#2|))) (-15 -1318 (|#2| (-597 |#2|))) (-15 -1329 (|#2| (-597 |#2|))))
-((-1387 ((|#1| |#1| |#1|) 53)) (-1374 ((|#1| |#1| |#1|) 50)) (-1364 ((|#1| |#1| |#1|) 44)) (-3008 ((|#1| |#1|) 35)) (-1352 ((|#1| |#1| (-597 |#1|)) 43)) (-1339 ((|#1| |#1|) 37)) (-1464 ((|#1| |#1| |#1|) 40)))
-(((-150 |#1|) (-10 -7 (-15 -1464 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-597 |#1|))) (-15 -3008 (|#1| |#1|)) (-15 -1364 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|))) (-515)) (T -150))
-((-1387 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1374 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1364 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-3008 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1352 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))) (-1339 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1464 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(-10 -7 (-15 -1464 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-597 |#1|))) (-15 -3008 (|#1| |#1|)) (-15 -1364 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)))
-((-1397 (($ $ (-1099)) 12) (($ $ (-1020 $)) 11)) (-3374 (($ $ (-1099)) 10) (($ $ (-1020 $)) 9)) (-1364 (($ $ $) 8)) (-1408 (($ $) 14) (($ $ (-1099)) 13)) (-1339 (($ $) 7)) (-1464 (($ $ $) 6)))
+((-2377 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-144 *3)))) (-1437 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2134 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2134 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-2134 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2383 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-3077 (*1 *1 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -2377 ($ (-597 |t#1|))) (-15 -1437 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4269)) (PROGN (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2383 ($ (-1 (-110) |t#1|) $)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2383 ($ |t#1| $)) (-15 -3077 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 86)) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-597 (-862))) 56)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1313 (($ (-862)) 47)) (-2488 (((-130)) 23)) (-2366 (((-804) $) 69) (($ (-530)) 45) (($ |#2|) 46)) (-4085 ((|#2| $ (-597 (-862))) 59)) (-3300 (((-719)) 20)) (-3080 (($) 40 T CONST)) (-3093 (($) 43 T CONST)) (-2248 (((-110) $ $) 26)) (-2364 (($ $ |#2|) NIL)) (-2351 (($ $) 34) (($ $ $) 32)) (-2339 (($ $ $) 30)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-145 |#1| |#2| |#3|) (-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1313 ($ (-862))) (-15 -2725 ($ |#2| (-597 (-862)))) (-15 -4085 (|#2| $ (-597 (-862)))) (-15 -2707 ((-3 $ "failed") $)))) (-862) (-344) (-933 |#1| |#2|)) (T -145))
+((-2707 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344)) (-14 *4 (-933 *2 *3)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-933 *3 *4)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-4 *2 (-344)) (-14 *5 (-933 *4 *2)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-14 *5 (-933 *4 *2)))))
+(-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1313 ($ (-862))) (-15 -2725 ($ |#2| (-597 (-862)))) (-15 -4085 (|#2| $ (-597 (-862)))) (-15 -2707 ((-3 $ "failed") $))))
+((-2084 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-3307 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 63) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 64)) (-1802 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208))))) 67) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208)))) 66) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 58) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 59)))
+(((-146) (-10 -7 (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -2084 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))) (T -146))
+((-1802 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208))))))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208)))))) (-2084 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 *4)))) (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4)))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))) (-3307 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))))
+(-10 -7 (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -2084 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))
+((-3270 (((-597 (-159 |#2|)) |#1| |#2|) 45)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -3270 ((-597 (-159 |#2|)) |#1| |#2|))) (-1157 (-159 (-530))) (-13 (-344) (-793))) (T -147))
+((-3270 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -3270 ((-597 (-159 |#2|)) |#1| |#2|)))
+((-2352 (((-110) $ $) NIL)) (-3323 (($) 15)) (-2207 (($) 14)) (-2094 (((-862)) 22)) (-1424 (((-1082) $) NIL)) (-3886 (((-530) $) 19)) (-2624 (((-1046) $) NIL)) (-2188 (($) 16)) (-3073 (($ (-530)) 23)) (-2366 (((-804) $) 29)) (-3591 (($) 17)) (-2248 (((-110) $ $) 13)) (-2339 (($ $ $) 11)) (* (($ (-862) $) 21) (($ (-208) $) 8)))
+(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2339 ($ $ $)) (-15 -2207 ($)) (-15 -3323 ($)) (-15 -2188 ($)) (-15 -3591 ($)) (-15 -3886 ((-530) $)) (-15 -2094 ((-862))) (-15 -3073 ($ (-530)))))) (T -148))
+((-2339 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-2207 (*1 *1) (-5 *1 (-148))) (-3323 (*1 *1) (-5 *1 (-148))) (-2188 (*1 *1) (-5 *1 (-148))) (-3591 (*1 *1) (-5 *1 (-148))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148)))) (-2094 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2339 ($ $ $)) (-15 -2207 ($)) (-15 -3323 ($)) (-15 -2188 ($)) (-15 -3591 ($)) (-15 -3886 ((-530) $)) (-15 -2094 ((-862))) (-15 -3073 ($ (-530)))))
+((-4017 ((|#2| |#2| (-1020 |#2|)) 88) ((|#2| |#2| (-1099)) 68)) (-2801 ((|#2| |#2| (-1020 |#2|)) 87) ((|#2| |#2| (-1099)) 67)) (-2937 ((|#2| |#2| |#2|) 27)) (-4124 (((-112) (-112)) 99)) (-2578 ((|#2| (-597 |#2|)) 117)) (-2048 ((|#2| (-597 |#2|)) 135)) (-3723 ((|#2| (-597 |#2|)) 125)) (-3339 ((|#2| |#2|) 123)) (-3898 ((|#2| (-597 |#2|)) 111)) (-4187 ((|#2| (-597 |#2|)) 112)) (-2060 ((|#2| (-597 |#2|)) 133)) (-2896 ((|#2| |#2| (-1099)) 56) ((|#2| |#2|) 55)) (-1303 ((|#2| |#2|) 23)) (-2947 ((|#2| |#2| |#2|) 26)) (-4195 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2896 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1020 |#2|))) (-15 -2801 (|#2| |#2| (-1099))) (-15 -2801 (|#2| |#2| (-1020 |#2|))) (-15 -3339 (|#2| |#2|)) (-15 -2060 (|#2| (-597 |#2|))) (-15 -3723 (|#2| (-597 |#2|))) (-15 -2048 (|#2| (-597 |#2|))) (-15 -3898 (|#2| (-597 |#2|))) (-15 -4187 (|#2| (-597 |#2|))) (-15 -2578 (|#2| (-597 |#2|)))) (-13 (-795) (-522)) (-411 |#1|)) (T -149))
+((-2578 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2896 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2937 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2947 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4)) (-4 *4 (-411 *3)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4)))))
+(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2896 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1020 |#2|))) (-15 -2801 (|#2| |#2| (-1099))) (-15 -2801 (|#2| |#2| (-1020 |#2|))) (-15 -3339 (|#2| |#2|)) (-15 -2060 (|#2| (-597 |#2|))) (-15 -3723 (|#2| (-597 |#2|))) (-15 -2048 (|#2| (-597 |#2|))) (-15 -3898 (|#2| (-597 |#2|))) (-15 -4187 (|#2| (-597 |#2|))) (-15 -2578 (|#2| (-597 |#2|))))
+((-2402 ((|#1| |#1| |#1|) 53)) (-1551 ((|#1| |#1| |#1|) 50)) (-2937 ((|#1| |#1| |#1|) 44)) (-1444 ((|#1| |#1|) 35)) (-4168 ((|#1| |#1| (-597 |#1|)) 43)) (-1303 ((|#1| |#1|) 37)) (-2947 ((|#1| |#1| |#1|) 40)))
+(((-150 |#1|) (-10 -7 (-15 -2947 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-597 |#1|))) (-15 -1444 (|#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|))) (-515)) (T -150))
+((-2402 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-2937 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1444 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-4168 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))) (-1303 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-2947 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(-10 -7 (-15 -2947 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-597 |#1|))) (-15 -1444 (|#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|)))
+((-4017 (($ $ (-1099)) 12) (($ $ (-1020 $)) 11)) (-2801 (($ $ (-1099)) 10) (($ $ (-1020 $)) 9)) (-2937 (($ $ $) 8)) (-2896 (($ $) 14) (($ $ (-1099)) 13)) (-1303 (($ $) 7)) (-2947 (($ $ $) 6)))
(((-151) (-133)) (T -151))
-((-1408 (*1 *1 *1) (-4 *1 (-151))) (-1408 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))) (-3374 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))))
-(-13 (-136) (-10 -8 (-15 -1408 ($ $)) (-15 -1408 ($ $ (-1099))) (-15 -1397 ($ $ (-1099))) (-15 -1397 ($ $ (-1020 $))) (-15 -3374 ($ $ (-1099))) (-15 -3374 ($ $ (-1020 $)))))
+((-2896 (*1 *1 *1) (-4 *1 (-151))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-4017 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))) (-2801 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))))
+(-13 (-136) (-10 -8 (-15 -2896 ($ $)) (-15 -2896 ($ $ (-1099))) (-15 -4017 ($ $ (-1099))) (-15 -4017 ($ $ (-1020 $))) (-15 -2801 ($ $ (-1099))) (-15 -2801 ($ $ (-1020 $)))))
(((-136) . T))
-((-2246 (((-110) $ $) NIL)) (-1419 (($ (-530)) 13) (($ $ $) 14)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 17)) (-2148 (((-110) $ $) 9)))
-(((-152) (-13 (-1027) (-10 -8 (-15 -1419 ($ (-530))) (-15 -1419 ($ $ $))))) (T -152))
-((-1419 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))) (-1419 (*1 *1 *1 *1) (-5 *1 (-152))))
-(-13 (-1027) (-10 -8 (-15 -1419 ($ (-530))) (-15 -1419 ($ $ $))))
-((-2221 (((-112) (-1099)) 97)))
-(((-153) (-10 -7 (-15 -2221 ((-112) (-1099))))) (T -153))
-((-2221 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153)))))
-(-10 -7 (-15 -2221 ((-112) (-1099))))
-((-2646 ((|#3| |#3|) 19)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -2646 (|#3| |#3|))) (-984) (-1157 |#1|) (-1157 |#2|)) (T -154))
-((-2646 (*1 *2 *2) (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1157 *4)))))
-(-10 -7 (-15 -2646 (|#3| |#3|)))
-((-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 217)) (-1380 ((|#2| $) 96)) (-2276 (($ $) 247)) (-2144 (($ $) 241)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 40)) (-2253 (($ $) 245)) (-2121 (($ $) 239)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 139)) (-3607 (($ $ $) 222)) (-1298 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 155) (((-637 |#2|) (-637 $)) 149)) (-3856 (($ (-1095 |#2|)) 119) (((-3 $ "failed") (-388 (-1095 |#2|))) NIL)) (-1673 (((-3 $ "failed") $) 209)) (-1936 (((-3 (-388 (-530)) "failed") $) 199)) (-1928 (((-110) $) 194)) (-1917 (((-388 (-530)) $) 197)) (-4113 (((-862)) 89)) (-3588 (($ $ $) 224)) (-1429 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1877 (($) 236)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 186) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 191)) (-1717 ((|#2| $) 94)) (-3873 (((-1095 |#2|) $) 121)) (-3114 (($ (-1 |#2| |#2|) $) 102)) (-2070 (($ $) 238)) (-3844 (((-1095 |#2|) $) 120)) (-2359 (($ $) 202)) (-1440 (($) 97)) (-1818 (((-399 (-1095 $)) (-1095 $)) 88)) (-3707 (((-399 (-1095 $)) (-1095 $)) 57)) (-3562 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2693 (($ $) 237)) (-1934 (((-719) $) 219)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 229)) (-2341 ((|#2| (-1181 $)) NIL) ((|#2|) 91)) (-3211 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-4212 (((-1095 |#2|)) 114)) (-2263 (($ $) 246)) (-2133 (($ $) 240)) (-3351 (((-1181 |#2|) $ (-1181 $)) 128) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 110) (((-637 |#2|) (-1181 $)) NIL)) (-3173 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) (((-1095 |#2|) $) NIL) (($ (-1095 |#2|)) NIL) (((-833 (-530)) $) 177) (((-833 (-360)) $) 181) (((-159 (-360)) $) 167) (((-159 (-208)) $) 162) (((-506) $) 173)) (-1800 (($ $) 98)) (-2258 (((-804) $) 138) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-388 (-530))) NIL) (($ $) NIL)) (-1640 (((-1095 |#2|) $) 23)) (-1667 (((-719)) 100)) (-2339 (($ $) 250)) (-2211 (($ $) 244)) (-2318 (($ $) 248)) (-2192 (($ $) 242)) (-2027 ((|#2| $) 233)) (-2328 (($ $) 249)) (-2202 (($ $) 243)) (-2218 (($ $) 157)) (-2148 (((-110) $ $) 104)) (-2172 (((-110) $ $) 193)) (-2245 (($ $) 106) (($ $ $) NIL)) (-2234 (($ $ $) 105)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) 267) (($ $ $) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
-(((-155 |#1| |#2|) (-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -2258 (|#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1934 ((-719) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-159 (-208)) |#1|)) (-15 -3173 ((-159 (-360)) |#1|)) (-15 -2144 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1877 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -1429 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2027 (|#2| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1800 (|#1| |#1|)) (-15 -1440 (|#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3856 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -3844 ((-1095 |#2|) |#1|)) (-15 -3173 (|#1| (-1095 |#2|))) (-15 -3856 (|#1| (-1095 |#2|))) (-15 -4212 ((-1095 |#2|))) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 ((-1095 |#2|) |#1|)) (-15 -2341 (|#2|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3873 ((-1095 |#2|) |#1|)) (-15 -1640 ((-1095 |#2|) |#1|)) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1717 (|#2| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -4113 ((-862))) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
-((-1667 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-4113 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-2341 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-4212 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
-(-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -2258 (|#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1934 ((-719) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-159 (-208)) |#1|)) (-15 -3173 ((-159 (-360)) |#1|)) (-15 -2144 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1877 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -1429 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2027 (|#2| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1800 (|#1| |#1|)) (-15 -1440 (|#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3856 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -3844 ((-1095 |#2|) |#1|)) (-15 -3173 (|#1| (-1095 |#2|))) (-15 -3856 (|#1| (-1095 |#2|))) (-15 -4212 ((-1095 |#2|))) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 ((-1095 |#2|) |#1|)) (-15 -2341 (|#2|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3873 ((-1095 |#2|) |#1|)) (-15 -1640 ((-1095 |#2|) |#1|)) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1717 (|#2| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -4113 ((-862))) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 93 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3031 (($ $) 94 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3006 (((-110) $) 96 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3359 (((-637 |#1|) (-1181 $)) 46) (((-637 |#1|)) 61)) (-1380 ((|#1| $) 52)) (-2276 (($ $) 228 (|has| |#1| (-1121)))) (-2144 (($ $) 211 (|has| |#1| (-1121)))) (-1621 (((-1109 (-862) (-719)) (-530)) 147 (|has| |#1| (-330)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1359 (($ $) 113 (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3550 (((-399 $) $) 114 (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2487 (($ $) 241 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 245 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1945 (((-110) $ $) 104 (|has| |#1| (-289)))) (-2879 (((-719)) 87 (|has| |#1| (-349)))) (-2253 (($ $) 227 (|has| |#1| (-1121)))) (-2121 (($ $) 212 (|has| |#1| (-1121)))) (-2297 (($ $) 226 (|has| |#1| (-1121)))) (-2169 (($ $) 213 (|has| |#1| (-1121)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 169 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 167 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 166)) (-2446 (((-530) $) 170 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 168 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 165)) (-3477 (($ (-1181 |#1|) (-1181 $)) 48) (($ (-1181 |#1|)) 64)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-330)))) (-3607 (($ $ $) 108 (|has| |#1| (-289)))) (-3348 (((-637 |#1|) $ (-1181 $)) 53) (((-637 |#1|) $) 59)) (-1298 (((-637 (-530)) (-637 $)) 164 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 163 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 162) (((-637 |#1|) (-637 $)) 161)) (-3856 (($ (-1095 |#1|)) 158) (((-3 $ "failed") (-388 (-1095 |#1|))) 155 (|has| |#1| (-344)))) (-1673 (((-3 $ "failed") $) 34)) (-2499 ((|#1| $) 253)) (-1936 (((-3 (-388 (-530)) "failed") $) 246 (|has| |#1| (-515)))) (-1928 (((-110) $) 248 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 247 (|has| |#1| (-515)))) (-4113 (((-862)) 54)) (-1376 (($) 90 (|has| |#1| (-349)))) (-3588 (($ $ $) 107 (|has| |#1| (-289)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 102 (|has| |#1| (-289)))) (-2563 (($) 149 (|has| |#1| (-330)))) (-1674 (((-110) $) 150 (|has| |#1| (-330)))) (-3175 (($ $ (-719)) 141 (|has| |#1| (-330))) (($ $) 140 (|has| |#1| (-330)))) (-2049 (((-110) $) 115 (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-1429 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1877 (($) 238 (|has| |#1| (-1121)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 261 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 260 (|has| |#1| (-827 (-360))))) (-1334 (((-862) $) 152 (|has| |#1| (-330))) (((-781 (-862)) $) 138 (|has| |#1| (-330)))) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 240 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1717 ((|#1| $) 51)) (-1560 (((-3 $ "failed") $) 142 (|has| |#1| (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 111 (|has| |#1| (-289)))) (-3873 (((-1095 |#1|) $) 44 (|has| |#1| (-344)))) (-4194 (($ $ $) 207 (|has| |#1| (-795)))) (-1757 (($ $ $) 206 (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) 262)) (-3830 (((-862) $) 89 (|has| |#1| (-349)))) (-2070 (($ $) 235 (|has| |#1| (-1121)))) (-3844 (((-1095 |#1|) $) 156)) (-2072 (($ (-597 $)) 100 (-1476 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 99 (-1476 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 116 (|has| |#1| (-344)))) (-3677 (($) 143 (|has| |#1| (-330)) CONST)) (-1910 (($ (-862)) 88 (|has| |#1| (-349)))) (-1440 (($) 257)) (-2510 ((|#1| $) 254)) (-2485 (((-1046) $) 10)) (-1898 (($) 160)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 101 (-1476 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2108 (($ (-597 $)) 98 (-1476 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 97 (-1476 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 146 (|has| |#1| (-330)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 244 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3707 (((-399 (-1095 $)) (-1095 $)) 243 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2473 (((-399 $) $) 112 (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 109 (|has| |#1| (-289)))) (-3562 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 92 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 103 (|has| |#1| (-289)))) (-2693 (($ $) 236 (|has| |#1| (-1121)))) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) 268 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 266 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 265 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 264 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 263 (|has| |#1| (-491 (-1099) |#1|)))) (-1934 (((-719) $) 105 (|has| |#1| (-289)))) (-1832 (($ $ |#1|) 269 (|has| |#1| (-268 |#1| |#1|)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 106 (|has| |#1| (-289)))) (-2341 ((|#1| (-1181 $)) 47) ((|#1|) 60)) (-3187 (((-719) $) 151 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 139 (|has| |#1| (-330)))) (-3211 (($ $ (-1 |#1| |#1|) (-719)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-597 (-1099)) (-597 (-719))) 130 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 131 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 132 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 133 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 135 (-1476 (-3340 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 137 (-1476 (-3340 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3340 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-3139 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-344)))) (-4212 (((-1095 |#1|)) 159)) (-2308 (($ $) 225 (|has| |#1| (-1121)))) (-2181 (($ $) 214 (|has| |#1| (-1121)))) (-1612 (($) 148 (|has| |#1| (-330)))) (-2287 (($ $) 224 (|has| |#1| (-1121)))) (-2155 (($ $) 215 (|has| |#1| (-1121)))) (-2263 (($ $) 223 (|has| |#1| (-1121)))) (-2133 (($ $) 216 (|has| |#1| (-1121)))) (-3351 (((-1181 |#1|) $ (-1181 $)) 50) (((-637 |#1|) (-1181 $) (-1181 $)) 49) (((-1181 |#1|) $) 66) (((-637 |#1|) (-1181 $)) 65)) (-3173 (((-1181 |#1|) $) 63) (($ (-1181 |#1|)) 62) (((-1095 |#1|) $) 171) (($ (-1095 |#1|)) 157) (((-833 (-530)) $) 259 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 258 (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) 210 (|has| |#1| (-960))) (((-159 (-208)) $) 209 (|has| |#1| (-960))) (((-506) $) 208 (|has| |#1| (-572 (-506))))) (-1800 (($ $) 256)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 145 (-1476 (-3340 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-330))))) (-4136 (($ |#1| |#1|) 255)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37) (($ (-388 (-530))) 86 (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) 91 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1795 (($ $) 144 (|has| |#1| (-330))) (((-3 $ "failed") $) 43 (-1476 (-3340 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-138))))) (-1640 (((-1095 |#1|) $) 45)) (-1667 (((-719)) 29)) (-3853 (((-1181 $)) 67)) (-2339 (($ $) 234 (|has| |#1| (-1121)))) (-2211 (($ $) 222 (|has| |#1| (-1121)))) (-3020 (((-110) $ $) 95 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2318 (($ $) 233 (|has| |#1| (-1121)))) (-2192 (($ $) 221 (|has| |#1| (-1121)))) (-2361 (($ $) 232 (|has| |#1| (-1121)))) (-2230 (($ $) 220 (|has| |#1| (-1121)))) (-2027 ((|#1| $) 250 (|has| |#1| (-1121)))) (-2910 (($ $) 231 (|has| |#1| (-1121)))) (-2241 (($ $) 219 (|has| |#1| (-1121)))) (-2349 (($ $) 230 (|has| |#1| (-1121)))) (-2220 (($ $) 218 (|has| |#1| (-1121)))) (-2328 (($ $) 229 (|has| |#1| (-1121)))) (-2202 (($ $) 217 (|has| |#1| (-1121)))) (-2218 (($ $) 251 (|has| |#1| (-993)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 117 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1 |#1| |#1|) (-719)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-597 (-1099)) (-597 (-719))) 126 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 127 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 128 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 129 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 134 (-1476 (-3340 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 136 (-1476 (-3340 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3340 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2204 (((-110) $ $) 204 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 203 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 205 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 202 (|has| |#1| (-795)))) (-2257 (($ $ $) 121 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-388 (-530))) 239 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) 237 (|has| |#1| (-1121))) (($ $ (-530)) 118 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-388 (-530)) $) 120 (|has| |#1| (-344))) (($ $ (-388 (-530))) 119 (|has| |#1| (-344)))))
+((-2352 (((-110) $ $) NIL)) (-1616 (($ (-530)) 13) (($ $ $) 14)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 17)) (-2248 (((-110) $ $) 9)))
+(((-152) (-13 (-1027) (-10 -8 (-15 -1616 ($ (-530))) (-15 -1616 ($ $ $))))) (T -152))
+((-1616 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))) (-1616 (*1 *1 *1 *1) (-5 *1 (-152))))
+(-13 (-1027) (-10 -8 (-15 -1616 ($ (-530))) (-15 -1616 ($ $ $))))
+((-4124 (((-112) (-1099)) 97)))
+(((-153) (-10 -7 (-15 -4124 ((-112) (-1099))))) (T -153))
+((-4124 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153)))))
+(-10 -7 (-15 -4124 ((-112) (-1099))))
+((-1760 ((|#3| |#3|) 19)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -1760 (|#3| |#3|))) (-984) (-1157 |#1|) (-1157 |#2|)) (T -154))
+((-1760 (*1 *2 *2) (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1157 *4)))))
+(-10 -7 (-15 -1760 (|#3| |#3|)))
+((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 217)) (-1367 ((|#2| $) 96)) (-2386 (($ $) 247)) (-2244 (($ $) 241)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 40)) (-2360 (($ $) 245)) (-2219 (($ $) 239)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 139)) (-3590 (($ $ $) 222)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 155) (((-637 |#2|) (-637 $)) 149)) (-2134 (($ (-1095 |#2|)) 119) (((-3 $ "failed") (-388 (-1095 |#2|))) NIL)) (-2707 (((-3 $ "failed") $) 209)) (-2180 (((-3 (-388 (-530)) "failed") $) 199)) (-3016 (((-110) $) 194)) (-3370 (((-388 (-530)) $) 197)) (-2426 (((-862)) 89)) (-3571 (($ $ $) 224)) (-3284 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1948 (($) 236)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 186) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 191)) (-2376 ((|#2| $) 94)) (-1359 (((-1095 |#2|) $) 121)) (-3217 (($ (-1 |#2| |#2|) $) 102)) (-2168 (($ $) 238)) (-2123 (((-1095 |#2|) $) 120)) (-2483 (($ $) 202)) (-1254 (($) 97)) (-3845 (((-399 (-1095 $)) (-1095 $)) 88)) (-1473 (((-399 (-1095 $)) (-1095 $)) 57)) (-3551 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2853 (($ $) 237)) (-2356 (((-719) $) 219)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 229)) (-3060 ((|#2| (-1181 $)) NIL) ((|#2|) 91)) (-3289 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1781 (((-1095 |#2|)) 114)) (-2373 (($ $) 246)) (-2231 (($ $) 240)) (-2328 (((-1181 |#2|) $ (-1181 $)) 128) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 110) (((-637 |#2|) (-1181 $)) NIL)) (-3260 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) (((-1095 |#2|) $) NIL) (($ (-1095 |#2|)) NIL) (((-833 (-530)) $) 177) (((-833 (-360)) $) 181) (((-159 (-360)) $) 167) (((-159 (-208)) $) 162) (((-506) $) 173)) (-2555 (($ $) 98)) (-2366 (((-804) $) 138) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-388 (-530))) NIL) (($ $) NIL)) (-1814 (((-1095 |#2|) $) 23)) (-3300 (((-719)) 100)) (-2459 (($ $) 250)) (-2314 (($ $) 244)) (-2434 (($ $) 248)) (-2293 (($ $) 242)) (-3117 ((|#2| $) 233)) (-2446 (($ $) 249)) (-2304 (($ $) 243)) (-3934 (($ $) 157)) (-2248 (((-110) $ $) 104)) (-2272 (((-110) $ $) 193)) (-2351 (($ $) 106) (($ $ $) NIL)) (-2339 (($ $ $) 105)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) 267) (($ $ $) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
+(((-155 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2366 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-159 (-208)) |#1|)) (-15 -3260 ((-159 (-360)) |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3284 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2555 (|#1| |#1|)) (-15 -1254 (|#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2134 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -2123 ((-1095 |#2|) |#1|)) (-15 -3260 (|#1| (-1095 |#2|))) (-15 -2134 (|#1| (-1095 |#2|))) (-15 -1781 ((-1095 |#2|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1814 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -2376 (|#2| |#1|)) (-15 -1367 (|#2| |#1|)) (-15 -2426 ((-862))) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
+((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-2426 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3060 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-1781 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
+(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2366 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-159 (-208)) |#1|)) (-15 -3260 ((-159 (-360)) |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3284 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2555 (|#1| |#1|)) (-15 -1254 (|#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2134 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -2123 ((-1095 |#2|) |#1|)) (-15 -3260 (|#1| (-1095 |#2|))) (-15 -2134 (|#1| (-1095 |#2|))) (-15 -1781 ((-1095 |#2|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1814 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -2376 (|#2| |#1|)) (-15 -1367 (|#2| |#1|)) (-15 -2426 ((-862))) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3446 (($ $) 92 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1276 (((-110) $) 94 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-2386 (($ $) 225 (|has| |#1| (-1121)))) (-2244 (($ $) 208 (|has| |#1| (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 239 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3544 (($ $) 111 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3272 (((-399 $) $) 112 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2625 (($ $) 238 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1426 (((-110) $ $) 102 (|has| |#1| (-289)))) (-3023 (((-719)) 85 (|has| |#1| (-349)))) (-2360 (($ $) 224 (|has| |#1| (-1121)))) (-2219 (($ $) 209 (|has| |#1| (-1121)))) (-2409 (($ $) 223 (|has| |#1| (-1121)))) (-2269 (($ $) 210 (|has| |#1| (-1121)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 163)) (-2585 (((-530) $) 167 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 165 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 162)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3590 (($ $ $) 106 (|has| |#1| (-289)))) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 159) (((-637 |#1|) (-637 $)) 158)) (-2134 (($ (-1095 |#1|)) 155) (((-3 $ "failed") (-388 (-1095 |#1|))) 152 (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 250)) (-2180 (((-3 (-388 (-530)) "failed") $) 243 (|has| |#1| (-515)))) (-3016 (((-110) $) 245 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 244 (|has| |#1| (-515)))) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| |#1| (-349)))) (-3571 (($ $ $) 105 (|has| |#1| (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| |#1| (-289)))) (-1677 (($) 146 (|has| |#1| (-330)))) (-2798 (((-110) $) 147 (|has| |#1| (-330)))) (-3948 (($ $ (-719)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-3295 (((-110) $) 113 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3284 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1948 (($) 235 (|has| |#1| (-1121)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 258 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 257 (|has| |#1| (-827 (-360))))) (-2031 (((-862) $) 149 (|has| |#1| (-330))) (((-781 (-862)) $) 135 (|has| |#1| (-330)))) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 237 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-2376 ((|#1| $) 49)) (-2972 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| |#1| (-289)))) (-1359 (((-1095 |#1|) $) 42 (|has| |#1| (-344)))) (-2508 (($ $ $) 204 (|has| |#1| (-795)))) (-1817 (($ $ $) 203 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 259)) (-1905 (((-862) $) 87 (|has| |#1| (-349)))) (-2168 (($ $) 232 (|has| |#1| (-1121)))) (-2123 (((-1095 |#1|) $) 153)) (-2170 (($ (-597 $)) 98 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 97 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 114 (|has| |#1| (-344)))) (-3657 (($) 140 (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| |#1| (-349)))) (-1254 (($) 254)) (-2649 ((|#1| $) 251)) (-2624 (((-1046) $) 10)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2204 (($ (-597 $)) 96 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 95 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 241 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) 240 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2611 (((-399 $) $) 110 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| |#1| (-289)))) (-3551 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 90 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| |#1| (-289)))) (-2853 (($ $) 233 (|has| |#1| (-1121)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 265 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 263 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 262 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 261 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 260 (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) 103 (|has| |#1| (-289)))) (-1902 (($ $ |#1|) 266 (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| |#1| (-289)))) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-1823 (((-719) $) 148 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 136 (|has| |#1| (-330)))) (-3289 (($ $ (-1 |#1| |#1|) (-719)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-597 (-1099)) (-597 (-719))) 127 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 128 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 129 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 130 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 132 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 134 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-1781 (((-1095 |#1|)) 156)) (-2421 (($ $) 222 (|has| |#1| (-1121)))) (-2281 (($ $) 211 (|has| |#1| (-1121)))) (-3406 (($) 145 (|has| |#1| (-330)))) (-2398 (($ $) 221 (|has| |#1| (-1121)))) (-2254 (($ $) 212 (|has| |#1| (-1121)))) (-2373 (($ $) 220 (|has| |#1| (-1121)))) (-2231 (($ $) 213 (|has| |#1| (-1121)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60) (((-1095 |#1|) $) 168) (($ (-1095 |#1|)) 154) (((-833 (-530)) $) 256 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 255 (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) 207 (|has| |#1| (-960))) (((-159 (-208)) $) 206 (|has| |#1| (-960))) (((-506) $) 205 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 253)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (-1461 (-3380 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-330))))) (-4146 (($ |#1| |#1|) 252)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 84 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) 89 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3251 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (-1461 (-3380 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-138))))) (-1814 (((-1095 |#1|) $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-2459 (($ $) 231 (|has| |#1| (-1121)))) (-2314 (($ $) 219 (|has| |#1| (-1121)))) (-3944 (((-110) $ $) 93 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2434 (($ $) 230 (|has| |#1| (-1121)))) (-2293 (($ $) 218 (|has| |#1| (-1121)))) (-2485 (($ $) 229 (|has| |#1| (-1121)))) (-2334 (($ $) 217 (|has| |#1| (-1121)))) (-3117 ((|#1| $) 247 (|has| |#1| (-1121)))) (-3632 (($ $) 228 (|has| |#1| (-1121)))) (-2347 (($ $) 216 (|has| |#1| (-1121)))) (-2472 (($ $) 227 (|has| |#1| (-1121)))) (-2324 (($ $) 215 (|has| |#1| (-1121)))) (-2446 (($ $) 226 (|has| |#1| (-1121)))) (-2304 (($ $) 214 (|has| |#1| (-1121)))) (-3934 (($ $) 248 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#1| |#1|) (-719)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-597 (-1099)) (-597 (-719))) 123 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 124 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 125 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 126 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 131 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 133 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2306 (((-110) $ $) 201 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 200 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 202 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 199 (|has| |#1| (-795)))) (-2364 (($ $ $) 118 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-388 (-530))) 236 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) 234 (|has| |#1| (-1121))) (($ $ (-530)) 115 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-530)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-530))) 116 (|has| |#1| (-344)))))
(((-156 |#1|) (-133) (-162)) (T -156))
-((-1717 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1440 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4136 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-2218 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-1936 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
-(-13 (-673 |t#1| (-1095 |t#1|)) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-825 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -4136) (-15 -1440 ($)) (-15 -1800 ($ $)) (-15 -4136 ($ |t#1| |t#1|)) (-15 -2510 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -1717 (|t#1| $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-522)) (-15 -3562 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4269)) (-6 -4269) |%noBranch|) (IF (|has| |t#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-572 (-159 (-208)))) (-6 (-572 (-159 (-360))))) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -2218 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1121)) (PROGN (-6 (-1121)) (-15 -2027 (|t#1| $)) (IF (|has| |t#1| (-941)) (-6 (-941)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -1429 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-850)) (IF (|has| |t#1| (-289)) (-6 (-850)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1121)) ((-93) |has| |#1| (-1121)) ((-99) . T) ((-109 #0# #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1476 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-159 (-208))) |has| |#1| (-960)) ((-572 (-159 (-360))) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-572 #1=(-1095 |#1|)) . T) ((-214 |#1|) . T) ((-216) -1476 (|has| |#1| (-330)) (|has| |#1| (-216))) ((-226) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1121)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1476 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -1476 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1476 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| #1#) . T) ((-390 |#1| #1#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1121)) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) -1476 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-599 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-673 |#1| #1#) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) -12 (|has| |#1| (-289)) (|has| |#1| (-850))) ((-861) -1476 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-941) -12 (|has| |#1| (-941)) (|has| |#1| (-1121))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1121) |has| |#1| (-1121)) ((-1124) |has| |#1| (-1121)) ((-1135) . T) ((-1139) -1476 (|has| |#1| (-330)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))
-((-2473 (((-399 |#2|) |#2|) 63)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -2473 ((-399 |#2|) |#2|))) (-289) (-1157 (-159 |#1|))) (T -157))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(-10 -7 (-15 -2473 ((-399 |#2|) |#2|)))
-((-3114 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -3114 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))))
-(-10 -7 (-15 -3114 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 33)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3031 (($ $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3006 (((-110) $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3359 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-1380 ((|#1| $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-1121)))) (-2144 (($ $) NIL (|has| |#1| (-1121)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1359 (($ $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3550 (((-399 $) $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2487 (($ $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-289)))) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-2253 (($ $) NIL (|has| |#1| (-1121)))) (-2121 (($ $) NIL (|has| |#1| (-1121)))) (-2297 (($ $) NIL (|has| |#1| (-1121)))) (-2169 (($ $) NIL (|has| |#1| (-1121)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-3477 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3607 (($ $ $) NIL (|has| |#1| (-289)))) (-3348 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3856 (($ (-1095 |#1|)) NIL) (((-3 $ "failed") (-388 (-1095 |#1|))) NIL (|has| |#1| (-344)))) (-1673 (((-3 $ "failed") $) NIL)) (-2499 ((|#1| $) 13)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-1928 (((-110) $) NIL (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-4113 (((-862)) NIL)) (-1376 (($) NIL (|has| |#1| (-349)))) (-3588 (($ $ $) NIL (|has| |#1| (-289)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-289)))) (-2563 (($) NIL (|has| |#1| (-330)))) (-1674 (((-110) $) NIL (|has| |#1| (-330)))) (-3175 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2049 (((-110) $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-1429 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1877 (($) NIL (|has| |#1| (-1121)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-1334 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-3150 (((-110) $) 35)) (-1817 (($ $ (-530)) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1717 ((|#1| $) 46)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-3873 (((-1095 |#1|) $) NIL (|has| |#1| (-344)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-2070 (($ $) NIL (|has| |#1| (-1121)))) (-3844 (((-1095 |#1|) $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-3677 (($) NIL (|has| |#1| (-330)) CONST)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-1440 (($) NIL)) (-2510 ((|#1| $) 15)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-289)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| |#1| (-330)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2473 (((-399 $) $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-289)))) (-3562 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 47 (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-2693 (($ $) NIL (|has| |#1| (-1121)))) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1934 (((-719) $) NIL (|has| |#1| (-289)))) (-1832 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-289)))) (-2341 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3211 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-3139 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-4212 (((-1095 |#1|)) NIL)) (-2308 (($ $) NIL (|has| |#1| (-1121)))) (-2181 (($ $) NIL (|has| |#1| (-1121)))) (-1612 (($) NIL (|has| |#1| (-330)))) (-2287 (($ $) NIL (|has| |#1| (-1121)))) (-2155 (($ $) NIL (|has| |#1| (-1121)))) (-2263 (($ $) NIL (|has| |#1| (-1121)))) (-2133 (($ $) NIL (|has| |#1| (-1121)))) (-3351 (((-1181 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-3173 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) (((-1095 |#1|) $) NIL) (($ (-1095 |#1|)) NIL) (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) NIL (|has| |#1| (-960))) (((-159 (-208)) $) NIL (|has| |#1| (-960))) (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-1800 (($ $) 45)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-330))))) (-4136 (($ |#1| |#1|) 37)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 36) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1795 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1640 (((-1095 |#1|) $) NIL)) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL)) (-2339 (($ $) NIL (|has| |#1| (-1121)))) (-2211 (($ $) NIL (|has| |#1| (-1121)))) (-3020 (((-110) $ $) NIL (-1476 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-2318 (($ $) NIL (|has| |#1| (-1121)))) (-2192 (($ $) NIL (|has| |#1| (-1121)))) (-2361 (($ $) NIL (|has| |#1| (-1121)))) (-2230 (($ $) NIL (|has| |#1| (-1121)))) (-2027 ((|#1| $) NIL (|has| |#1| (-1121)))) (-2910 (($ $) NIL (|has| |#1| (-1121)))) (-2241 (($ $) NIL (|has| |#1| (-1121)))) (-2349 (($ $) NIL (|has| |#1| (-1121)))) (-2220 (($ $) NIL (|has| |#1| (-1121)))) (-2328 (($ $) NIL (|has| |#1| (-1121)))) (-2202 (($ $) NIL (|has| |#1| (-1121)))) (-2218 (($ $) NIL (|has| |#1| (-993)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 28 T CONST)) (-2955 (($) 30 T CONST)) (-2437 (((-1082) $) 23 (|has| |#1| (-776))) (((-1082) $ (-110)) 25 (|has| |#1| (-776))) (((-1186) (-770) $) 26 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 27 (|has| |#1| (-776)))) (-3286 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 39)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) NIL (|has| |#1| (-1121))) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
+((-2376 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1254 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2555 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4146 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
+(-13 (-673 |t#1| (-1095 |t#1|)) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-825 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -4146) (-15 -1254 ($)) (-15 -2555 ($ $)) (-15 -4146 ($ |t#1| |t#1|)) (-15 -2649 (|t#1| $)) (-15 -2637 (|t#1| $)) (-15 -2376 (|t#1| $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4268)) (-6 -4268) |%noBranch|) (IF (|has| |t#1| (-6 -4265)) (-6 -4265) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-572 (-159 (-208)))) (-6 (-572 (-159 (-360))))) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1121)) (PROGN (-6 (-1121)) (-15 -3117 (|t#1| $)) (IF (|has| |t#1| (-941)) (-6 (-941)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3284 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-850)) (IF (|has| |t#1| (-289)) (-6 (-850)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1121)) ((-93) |has| |#1| (-1121)) ((-99) . T) ((-109 #0# #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-159 (-208))) |has| |#1| (-960)) ((-572 (-159 (-360))) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-572 #1=(-1095 |#1|)) . T) ((-214 |#1|) . T) ((-216) -1461 (|has| |#1| (-330)) (|has| |#1| (-216))) ((-226) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1121)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1461 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| #1#) . T) ((-390 |#1| #1#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1121)) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-599 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-673 |#1| #1#) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) -12 (|has| |#1| (-289)) (|has| |#1| (-850))) ((-861) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-941) -12 (|has| |#1| (-941)) (|has| |#1| (-1121))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1121) |has| |#1| (-1121)) ((-1124) |has| |#1| (-1121)) ((-1135) . T) ((-1139) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))
+((-2611 (((-399 |#2|) |#2|) 63)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2611 ((-399 |#2|) |#2|))) (-289) (-1157 (-159 |#1|))) (T -157))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(-10 -7 (-15 -2611 ((-399 |#2|) |#2|)))
+((-3217 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -3217 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))))
+(-10 -7 (-15 -3217 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1863 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-1367 ((|#1| $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-1121)))) (-2244 (($ $) NIL (|has| |#1| (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3544 (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3272 (((-399 $) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2625 (($ $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-289)))) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2360 (($ $) NIL (|has| |#1| (-1121)))) (-2219 (($ $) NIL (|has| |#1| (-1121)))) (-2409 (($ $) NIL (|has| |#1| (-1121)))) (-2269 (($ $) NIL (|has| |#1| (-1121)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3590 (($ $ $) NIL (|has| |#1| (-289)))) (-1984 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2134 (($ (-1095 |#1|)) NIL) (((-3 $ "failed") (-388 (-1095 |#1|))) NIL (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 13)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-289)))) (-1677 (($) NIL (|has| |#1| (-330)))) (-2798 (((-110) $) NIL (|has| |#1| (-330)))) (-3948 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-3295 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3284 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1948 (($) NIL (|has| |#1| (-1121)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-2031 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-2731 (((-110) $) 35)) (-3741 (($ $ (-530)) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-2376 ((|#1| $) 46)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-1359 (((-1095 |#1|) $) NIL (|has| |#1| (-344)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2168 (($ $) NIL (|has| |#1| (-1121)))) (-2123 (((-1095 |#1|) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-3657 (($) NIL (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1254 (($) NIL)) (-2649 ((|#1| $) 15)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-289)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2611 (((-399 $) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-289)))) (-3551 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 47 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-2853 (($ $) NIL (|has| |#1| (-1121)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) NIL (|has| |#1| (-289)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-289)))) (-3060 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3289 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1781 (((-1095 |#1|)) NIL)) (-2421 (($ $) NIL (|has| |#1| (-1121)))) (-2281 (($ $) NIL (|has| |#1| (-1121)))) (-3406 (($) NIL (|has| |#1| (-330)))) (-2398 (($ $) NIL (|has| |#1| (-1121)))) (-2254 (($ $) NIL (|has| |#1| (-1121)))) (-2373 (($ $) NIL (|has| |#1| (-1121)))) (-2231 (($ $) NIL (|has| |#1| (-1121)))) (-2328 (((-1181 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) (((-1095 |#1|) $) NIL) (($ (-1095 |#1|)) NIL) (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) NIL (|has| |#1| (-960))) (((-159 (-208)) $) NIL (|has| |#1| (-960))) (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) 45)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-330))))) (-4146 (($ |#1| |#1|) 37)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 36) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3251 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1814 (((-1095 |#1|) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL)) (-2459 (($ $) NIL (|has| |#1| (-1121)))) (-2314 (($ $) NIL (|has| |#1| (-1121)))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-2434 (($ $) NIL (|has| |#1| (-1121)))) (-2293 (($ $) NIL (|has| |#1| (-1121)))) (-2485 (($ $) NIL (|has| |#1| (-1121)))) (-2334 (($ $) NIL (|has| |#1| (-1121)))) (-3117 ((|#1| $) NIL (|has| |#1| (-1121)))) (-3632 (($ $) NIL (|has| |#1| (-1121)))) (-2347 (($ $) NIL (|has| |#1| (-1121)))) (-2472 (($ $) NIL (|has| |#1| (-1121)))) (-2324 (($ $) NIL (|has| |#1| (-1121)))) (-2446 (($ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $) NIL (|has| |#1| (-1121)))) (-3934 (($ $) NIL (|has| |#1| (-993)))) (-3080 (($) 28 T CONST)) (-3093 (($) 30 T CONST)) (-3987 (((-1082) $) 23 (|has| |#1| (-776))) (((-1082) $ (-110)) 25 (|has| |#1| (-776))) (((-1186) (-770) $) 26 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 27 (|has| |#1| (-776)))) (-3340 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 39)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) NIL (|has| |#1| (-1121))) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
(((-159 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|))) (-162)) (T -159))
NIL
(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|)))
-((-3173 (((-833 |#1|) |#3|) 22)))
-(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3173 ((-833 |#1|) |#3|))) (-1027) (-13 (-572 (-833 |#1|)) (-162)) (-156 |#2|)) (T -160))
-((-3173 (*1 *2 *3) (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-833 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5)))))
-(-10 -7 (-15 -3173 ((-833 |#1|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-1460 (((-110) $) 9)) (-1450 (((-110) $ (-110)) 11)) (-3547 (($) 12)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2441 (($ $) 13)) (-2258 (((-804) $) 17)) (-1872 (((-110) $) 8)) (-2252 (((-110) $ (-110)) 10)) (-2148 (((-110) $ $) NIL)))
-(((-161) (-13 (-1027) (-10 -8 (-15 -3547 ($)) (-15 -1872 ((-110) $)) (-15 -1460 ((-110) $)) (-15 -2252 ((-110) $ (-110))) (-15 -1450 ((-110) $ (-110))) (-15 -2441 ($ $))))) (T -161))
-((-3547 (*1 *1) (-5 *1 (-161))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2252 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-1450 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2441 (*1 *1 *1) (-5 *1 (-161))))
-(-13 (-1027) (-10 -8 (-15 -3547 ($)) (-15 -1872 ((-110) $)) (-15 -1460 ((-110) $)) (-15 -2252 ((-110) $ (-110))) (-15 -1450 ((-110) $ (-110))) (-15 -2441 ($ $))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-3260 (((-833 |#1|) |#3|) 22)))
+(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3260 ((-833 |#1|) |#3|))) (-1027) (-13 (-572 (-833 |#1|)) (-162)) (-156 |#2|)) (T -160))
+((-3260 (*1 *2 *3) (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-833 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5)))))
+(-10 -7 (-15 -3260 ((-833 |#1|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-2647 (((-110) $) 9)) (-4006 (((-110) $ (-110)) 11)) (-3538 (($) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2579 (($ $) 13)) (-2366 (((-804) $) 17)) (-1732 (((-110) $) 8)) (-2361 (((-110) $ (-110)) 10)) (-2248 (((-110) $ $) NIL)))
+(((-161) (-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1732 ((-110) $)) (-15 -2647 ((-110) $)) (-15 -2361 ((-110) $ (-110))) (-15 -4006 ((-110) $ (-110))) (-15 -2579 ($ $))))) (T -161))
+((-3538 (*1 *1) (-5 *1 (-161))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2361 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-4006 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2579 (*1 *1 *1) (-5 *1 (-161))))
+(-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1732 ((-110) $)) (-15 -2647 ((-110) $)) (-15 -2361 ((-110) $ (-110))) (-15 -4006 ((-110) $ (-110))) (-15 -2579 ($ $))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-162) (-133)) (T -162))
NIL
-(-13 (-984) (-109 $ $) (-10 -7 (-6 (-4272 "*"))))
+(-13 (-984) (-109 $ $) (-10 -7 (-6 (-4271 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 ((|#1| $) 75)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL)) (-1518 (($ $) 19)) (-4147 (($ |#1| (-1080 |#1|)) 48)) (-1673 (((-3 $ "failed") $) 117)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-4108 (((-1080 |#1|) $) 82)) (-4134 (((-1080 |#1|) $) 79)) (-4121 (((-1080 |#1|) $) 80)) (-3150 (((-110) $) NIL)) (-1483 (((-1080 |#1|) $) 88)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2072 (($ (-597 $)) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-1312 (($ $ (-530)) 91)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-1472 (((-1080 |#1|) $) 89)) (-1496 (((-1080 (-388 |#1|)) $) 14)) (-2136 (($ (-388 |#1|)) 17) (($ |#1| (-1080 |#1|) (-1080 |#1|)) 38)) (-3021 (($ $) 93)) (-2258 (((-804) $) 127) (($ (-530)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-530))) NIL) (($ $) NIL)) (-1667 (((-719)) 64)) (-3020 (((-110) $ $) NIL)) (-1508 (((-1080 (-388 |#1|)) $) 18)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 25 T CONST)) (-2955 (($) 28 T CONST)) (-2148 (((-110) $ $) 35)) (-2257 (($ $ $) 115)) (-2245 (($ $) 106) (($ $ $) 103)) (-2234 (($ $ $) 101)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
-(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2136 ($ (-388 |#1|))) (-15 -2136 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -4147 ($ |#1| (-1080 |#1|))) (-15 -4134 ((-1080 |#1|) $)) (-15 -4121 ((-1080 |#1|) $)) (-15 -4108 ((-1080 |#1|) $)) (-15 -1694 (|#1| $)) (-15 -1518 ($ $)) (-15 -1508 ((-1080 (-388 |#1|)) $)) (-15 -1496 ((-1080 (-388 |#1|)) $)) (-15 -1483 ((-1080 |#1|) $)) (-15 -1472 ((-1080 |#1|) $)) (-15 -1312 ($ $ (-530))) (-15 -3021 ($ $)))) (-289)) (T -163))
-((-2136 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-2136 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1694 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1518 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3021 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
-(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2136 ($ (-388 |#1|))) (-15 -2136 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -4147 ($ |#1| (-1080 |#1|))) (-15 -4134 ((-1080 |#1|) $)) (-15 -4121 ((-1080 |#1|) $)) (-15 -4108 ((-1080 |#1|) $)) (-15 -1694 (|#1| $)) (-15 -1518 ($ $)) (-15 -1508 ((-1080 (-388 |#1|)) $)) (-15 -1496 ((-1080 (-388 |#1|)) $)) (-15 -1483 ((-1080 |#1|) $)) (-15 -1472 ((-1080 |#1|) $)) (-15 -1312 ($ $ (-530))) (-15 -3021 ($ $))))
-((-4160 (($ (-106) $) 13)) (-3313 (((-3 (-106) "failed") (-1099) $) 12)) (-2258 (((-804) $) 16)) (-4170 (((-597 (-106)) $) 8)))
-(((-164) (-13 (-571 (-804)) (-10 -8 (-15 -4170 ((-597 (-106)) $)) (-15 -4160 ($ (-106) $)) (-15 -3313 ((-3 (-106) "failed") (-1099) $))))) (T -164))
-((-4170 (*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-3313 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -4170 ((-597 (-106)) $)) (-15 -4160 ($ (-106) $)) (-15 -3313 ((-3 (-106) "failed") (-1099) $))))
-((-1270 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 40)) (-4215 (((-884 |#1|) (-884 |#1|)) 19)) (-1227 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 36)) (-4192 (((-884 |#1|) (-884 |#1|)) 17)) (-4247 (((-884 |#1|) (-884 |#1|)) 25)) (-4235 (((-884 |#1|) (-884 |#1|)) 24)) (-4224 (((-884 |#1|) (-884 |#1|)) 23)) (-1238 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 37)) (-1219 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 35)) (-1275 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 34)) (-4203 (((-884 |#1|) (-884 |#1|)) 18)) (-1280 (((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|) 43)) (-4182 (((-884 |#1|) (-884 |#1|)) 8)) (-1258 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 39)) (-1249 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 38)))
-(((-165 |#1|) (-10 -7 (-15 -4182 ((-884 |#1|) (-884 |#1|))) (-15 -4192 ((-884 |#1|) (-884 |#1|))) (-15 -4203 ((-884 |#1|) (-884 |#1|))) (-15 -4215 ((-884 |#1|) (-884 |#1|))) (-15 -4224 ((-884 |#1|) (-884 |#1|))) (-15 -4235 ((-884 |#1|) (-884 |#1|))) (-15 -4247 ((-884 |#1|) (-884 |#1|))) (-15 -1275 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1219 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1227 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1238 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1249 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1258 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1270 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1280 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|))) (-13 (-344) (-1121) (-941))) (T -165))
-((-1280 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1270 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1258 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1249 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1238 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1227 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1219 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1275 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))))
-(-10 -7 (-15 -4182 ((-884 |#1|) (-884 |#1|))) (-15 -4192 ((-884 |#1|) (-884 |#1|))) (-15 -4203 ((-884 |#1|) (-884 |#1|))) (-15 -4215 ((-884 |#1|) (-884 |#1|))) (-15 -4224 ((-884 |#1|) (-884 |#1|))) (-15 -4235 ((-884 |#1|) (-884 |#1|))) (-15 -4247 ((-884 |#1|) (-884 |#1|))) (-15 -1275 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1219 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1227 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1238 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1249 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1258 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1270 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1280 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|)))
-((-1640 ((|#2| |#3|) 27)))
-(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1640 (|#2| |#3|))) (-162) (-1157 |#1|) (-673 |#1| |#2|)) (T -166))
-((-1640 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-673 *4 *2)))))
-(-10 -7 (-15 -1640 (|#2| |#3|)))
-((-3431 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 47 (|has| (-893 |#2|) (-827 |#1|)))))
-(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|)) (-1027) (-13 (-827 |#1|) (-162)) (-156 |#2|)) (T -167))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5)) (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|))
-((-1302 (((-597 |#1|) (-597 |#1|) |#1|) 38)) (-1290 (((-597 |#1|) |#1| (-597 |#1|)) 19)) (-3233 (((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|)) 33) ((|#1| (-597 |#1|) (-597 |#1|)) 31)))
-(((-168 |#1|) (-10 -7 (-15 -1290 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -3233 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -3233 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -1302 ((-597 |#1|) (-597 |#1|) |#1|))) (-289)) (T -168))
-((-1302 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-3233 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-3233 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-1290 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(-10 -7 (-15 -1290 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -3233 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -3233 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -1302 ((-597 |#1|) (-597 |#1|) |#1|)))
-((-1404 (((-2 (|:| |start| |#2|) (|:| -4162 (-399 |#2|))) |#2|) 61)) (-1393 ((|#1| |#1|) 54)) (-1383 (((-159 |#1|) |#2|) 84)) (-1370 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1360 ((|#2| |#2|) 83)) (-1346 (((-399 |#2|) |#2| |#1|) 113) (((-399 |#2|) |#2| |#1| (-110)) 81)) (-1717 ((|#1| |#2|) 112)) (-1335 ((|#2| |#2|) 119)) (-2473 (((-399 |#2|) |#2|) 134) (((-399 |#2|) |#2| |#1|) 32) (((-399 |#2|) |#2| |#1| (-110)) 133)) (-1325 (((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2|) 132) (((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2| (-110)) 76)) (-1313 (((-597 (-159 |#1|)) |#2| |#1|) 40) (((-597 (-159 |#1|)) |#2|) 41)))
-(((-169 |#1| |#2|) (-10 -7 (-15 -1313 ((-597 (-159 |#1|)) |#2|)) (-15 -1313 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -1325 ((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2| (-110))) (-15 -1325 ((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2|)) (-15 -2473 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2473 ((-399 |#2|) |#2| |#1|)) (-15 -2473 ((-399 |#2|) |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -1717 (|#1| |#2|)) (-15 -1346 ((-399 |#2|) |#2| |#1| (-110))) (-15 -1346 ((-399 |#2|) |#2| |#1|)) (-15 -1360 (|#2| |#2|)) (-15 -1370 (|#1| |#2| |#1|)) (-15 -1370 (|#1| |#2|)) (-15 -1383 ((-159 |#1|) |#2|)) (-15 -1393 (|#1| |#1|)) (-15 -1404 ((-2 (|:| |start| |#2|) (|:| -4162 (-399 |#2|))) |#2|))) (-13 (-344) (-793)) (-1157 (-159 |#1|))) (T -169))
-((-1404 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-2 (|:| |start| *3) (|:| -4162 (-399 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1393 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))) (-1370 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1370 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-1346 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1717 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2473 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2473 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1325 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -4162 (-597 *3)) (|:| -3906 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1325 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -4162 (-597 *3)) (|:| -3906 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5))))) (-1313 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1313 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(-10 -7 (-15 -1313 ((-597 (-159 |#1|)) |#2|)) (-15 -1313 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -1325 ((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2| (-110))) (-15 -1325 ((-597 (-2 (|:| -4162 (-597 |#2|)) (|:| -3906 |#1|))) |#2| |#2|)) (-15 -2473 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2473 ((-399 |#2|) |#2| |#1|)) (-15 -2473 ((-399 |#2|) |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -1717 (|#1| |#2|)) (-15 -1346 ((-399 |#2|) |#2| |#1| (-110))) (-15 -1346 ((-399 |#2|) |#2| |#1|)) (-15 -1360 (|#2| |#2|)) (-15 -1370 (|#1| |#2| |#1|)) (-15 -1370 (|#1| |#2|)) (-15 -1383 ((-159 |#1|) |#2|)) (-15 -1393 (|#1| |#1|)) (-15 -1404 ((-2 (|:| |start| |#2|) (|:| -4162 (-399 |#2|))) |#2|)))
-((-1415 (((-3 |#2| "failed") |#2|) 14)) (-1425 (((-719) |#2|) 16)) (-1435 ((|#2| |#2| |#2|) 18)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -1415 ((-3 |#2| "failed") |#2|)) (-15 -1425 ((-719) |#2|)) (-15 -1435 (|#2| |#2| |#2|))) (-1135) (-624 |#1|)) (T -170))
-((-1435 (*1 *2 *2 *2) (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3)) (-4 *3 (-624 *4)))) (-1415 (*1 *2 *2) (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
-(-10 -7 (-15 -1415 ((-3 |#2| "failed") |#2|)) (-15 -1425 ((-719) |#2|)) (-15 -1435 (|#2| |#2| |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2398 (((-1099) $) 10)) (-2258 (((-804) $) 17)) (-2582 (((-597 (-1104)) $) 12)) (-2148 (((-110) $ $) 15)))
-(((-171) (-13 (-1027) (-10 -8 (-15 -2398 ((-1099) $)) (-15 -2582 ((-597 (-1104)) $))))) (T -171))
-((-2398 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-171)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
-(-13 (-1027) (-10 -8 (-15 -2398 ((-1099) $)) (-15 -2582 ((-597 (-1104)) $))))
-((-2438 ((|#2| |#2|) 28)) (-2451 (((-110) |#2|) 19)) (-2499 (((-297 |#1|) |#2|) 12)) (-2510 (((-297 |#1|) |#2|) 14)) (-2414 ((|#2| |#2| (-1099)) 68) ((|#2| |#2|) 69)) (-2463 (((-159 (-297 |#1|)) |#2|) 10)) (-2428 ((|#2| |#2| (-1099)) 65) ((|#2| |#2|) 59)))
-(((-172 |#1| |#2|) (-10 -7 (-15 -2414 (|#2| |#2|)) (-15 -2414 (|#2| |#2| (-1099))) (-15 -2428 (|#2| |#2|)) (-15 -2428 (|#2| |#2| (-1099))) (-15 -2499 ((-297 |#1|) |#2|)) (-15 -2510 ((-297 |#1|) |#2|)) (-15 -2451 ((-110) |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2463 ((-159 (-297 |#1|)) |#2|))) (-13 (-522) (-795) (-975 (-530))) (-13 (-27) (-1121) (-411 (-159 |#1|)))) (T -172))
-((-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2428 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))))
-(-10 -7 (-15 -2414 (|#2| |#2|)) (-15 -2414 (|#2| |#2| (-1099))) (-15 -2428 (|#2| |#2|)) (-15 -2428 (|#2| |#2| (-1099))) (-15 -2499 ((-297 |#1|) |#2|)) (-15 -2510 ((-297 |#1|) |#2|)) (-15 -2451 ((-110) |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2463 ((-159 (-297 |#1|)) |#2|)))
-((-1446 (((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|))) 24)) (-2258 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))) 33)))
-(((-173 |#1|) (-10 -7 (-15 -1446 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2258 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))))) (-162)) (T -173))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-388 (-893 *4))))) (-5 *1 (-173 *4)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
-(-10 -7 (-15 -1446 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2258 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|)))))
-((-1536 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 66)) (-1557 (((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530))) 75)) (-1456 (((-1101 (-388 (-530))) (-530)) 40)) (-3768 (((-1101 (-388 (-530))) (-530)) 52)) (-4084 (((-388 (-530)) (-1101 (-388 (-530)))) 62)) (-1468 (((-1101 (-388 (-530))) (-530)) 32)) (-1504 (((-1101 (-388 (-530))) (-530)) 48)) (-1492 (((-1101 (-388 (-530))) (-530)) 46)) (-1525 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 60)) (-3021 (((-1101 (-388 (-530))) (-530)) 25)) (-1514 (((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 64)) (-1479 (((-1101 (-388 (-530))) (-530)) 30)) (-1546 (((-1101 (-388 (-530))) (-597 (-530))) 72)))
-(((-174) (-10 -7 (-15 -3021 ((-1101 (-388 (-530))) (-530))) (-15 -1456 ((-1101 (-388 (-530))) (-530))) (-15 -1468 ((-1101 (-388 (-530))) (-530))) (-15 -1479 ((-1101 (-388 (-530))) (-530))) (-15 -1492 ((-1101 (-388 (-530))) (-530))) (-15 -1504 ((-1101 (-388 (-530))) (-530))) (-15 -3768 ((-1101 (-388 (-530))) (-530))) (-15 -1514 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -1525 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4084 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -1536 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -1546 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -1557 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))) (T -174))
-((-1557 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-1536 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-1525 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-1514 (*1 *2 *3 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-3768 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1504 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1479 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1468 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1456 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(-10 -7 (-15 -3021 ((-1101 (-388 (-530))) (-530))) (-15 -1456 ((-1101 (-388 (-530))) (-530))) (-15 -1468 ((-1101 (-388 (-530))) (-530))) (-15 -1479 ((-1101 (-388 (-530))) (-530))) (-15 -1492 ((-1101 (-388 (-530))) (-530))) (-15 -1504 ((-1101 (-388 (-530))) (-530))) (-15 -3768 ((-1101 (-388 (-530))) (-530))) (-15 -1514 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -1525 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4084 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -1536 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -1546 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -1557 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))
-((-1577 (((-399 (-1095 (-530))) (-530)) 28)) (-1568 (((-597 (-1095 (-530))) (-530)) 23)) (-3492 (((-1095 (-530)) (-530)) 21)))
-(((-175) (-10 -7 (-15 -1568 ((-597 (-1095 (-530))) (-530))) (-15 -3492 ((-1095 (-530)) (-530))) (-15 -1577 ((-399 (-1095 (-530))) (-530))))) (T -175))
-((-1577 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530)))) (-1568 (*1 *2 *3) (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
-(-10 -7 (-15 -1568 ((-597 (-1095 (-530))) (-530))) (-15 -3492 ((-1095 (-530)) (-530))) (-15 -1577 ((-399 (-1095 (-530))) (-530))))
-((-2738 (((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-1798 (((-597 (-1082)) (-1080 (-208))) NIL)) (-1587 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-2717 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) NIL)) (-1792 (((-597 (-1082)) (-597 (-208))) NIL)) (-1807 (((-208) (-1022 (-788 (-208)))) 24)) (-1815 (((-208) (-1022 (-788 (-208)))) 25)) (-1608 (((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1597 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1772 (((-1082) (-208)) NIL)) (-2962 (((-1082) (-597 (-1082))) 20)) (-1617 (((-973) (-1099) (-1099) (-973)) 13)))
-(((-176) (-10 -7 (-15 -1587 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1597 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -1608 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2717 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))) (-15 -2962 ((-1082) (-597 (-1082)))) (-15 -1617 ((-973) (-1099) (-1099) (-973))))) (T -176))
-((-1617 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-176)))) (-2717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-176)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
-(-10 -7 (-15 -1587 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1597 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -1608 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2717 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))) (-15 -2962 ((-1082) (-597 (-1082)))) (-15 -1617 ((-973) (-1099) (-1099) (-973))))
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 55) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#1| $) 75)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-1697 (($ $) 19)) (-1868 (($ |#1| (-1080 |#1|)) 48)) (-2707 (((-3 $ "failed") $) 117)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3664 (((-1080 |#1|) $) 82)) (-3296 (((-1080 |#1|) $) 79)) (-2158 (((-1080 |#1|) $) 80)) (-2731 (((-110) $) NIL)) (-3949 (((-1080 |#1|) $) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3168 (($ $ (-530)) 91)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2399 (((-1080 |#1|) $) 89)) (-2613 (((-1080 (-388 |#1|)) $) 14)) (-2054 (($ (-388 |#1|)) 17) (($ |#1| (-1080 |#1|) (-1080 |#1|)) 38)) (-4050 (($ $) 93)) (-2366 (((-804) $) 127) (($ (-530)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-530))) NIL) (($ $) NIL)) (-3300 (((-719)) 64)) (-3944 (((-110) $ $) NIL)) (-2415 (((-1080 (-388 |#1|)) $) 18)) (-3080 (($) 25 T CONST)) (-3093 (($) 28 T CONST)) (-2248 (((-110) $ $) 35)) (-2364 (($ $ $) 115)) (-2351 (($ $) 106) (($ $ $) 103)) (-2339 (($ $ $) 101)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
+(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2054 ($ (-388 |#1|))) (-15 -2054 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -1868 ($ |#1| (-1080 |#1|))) (-15 -3296 ((-1080 |#1|) $)) (-15 -2158 ((-1080 |#1|) $)) (-15 -3664 ((-1080 |#1|) $)) (-15 -1612 (|#1| $)) (-15 -1697 ($ $)) (-15 -2415 ((-1080 (-388 |#1|)) $)) (-15 -2613 ((-1080 (-388 |#1|)) $)) (-15 -3949 ((-1080 |#1|) $)) (-15 -2399 ((-1080 |#1|) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $)))) (-289)) (T -163))
+((-2054 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-2054 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1868 (*1 *1 *2 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1612 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1697 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2054 ($ (-388 |#1|))) (-15 -2054 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -1868 ($ |#1| (-1080 |#1|))) (-15 -3296 ((-1080 |#1|) $)) (-15 -2158 ((-1080 |#1|) $)) (-15 -3664 ((-1080 |#1|) $)) (-15 -1612 (|#1| $)) (-15 -1697 ($ $)) (-15 -2415 ((-1080 (-388 |#1|)) $)) (-15 -2613 ((-1080 (-388 |#1|)) $)) (-15 -3949 ((-1080 |#1|) $)) (-15 -2399 ((-1080 |#1|) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $))))
+((-1735 (($ (-106) $) 13)) (-3475 (((-3 (-106) "failed") (-1099) $) 12)) (-2366 (((-804) $) 16)) (-3359 (((-597 (-106)) $) 8)))
+(((-164) (-13 (-571 (-804)) (-10 -8 (-15 -3359 ((-597 (-106)) $)) (-15 -1735 ($ (-106) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $))))) (T -164))
+((-3359 (*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-3475 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3359 ((-597 (-106)) $)) (-15 -1735 ($ (-106) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $))))
+((-2878 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 40)) (-2089 (((-884 |#1|) (-884 |#1|)) 19)) (-2946 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 36)) (-1652 (((-884 |#1|) (-884 |#1|)) 17)) (-1236 (((-884 |#1|) (-884 |#1|)) 25)) (-2538 (((-884 |#1|) (-884 |#1|)) 24)) (-3618 (((-884 |#1|) (-884 |#1|)) 23)) (-1221 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 37)) (-2186 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 35)) (-2174 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 34)) (-2715 (((-884 |#1|) (-884 |#1|)) 18)) (-1475 (((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|) 43)) (-1916 (((-884 |#1|) (-884 |#1|)) 8)) (-2326 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 39)) (-2567 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 38)))
+(((-165 |#1|) (-10 -7 (-15 -1916 ((-884 |#1|) (-884 |#1|))) (-15 -1652 ((-884 |#1|) (-884 |#1|))) (-15 -2715 ((-884 |#1|) (-884 |#1|))) (-15 -2089 ((-884 |#1|) (-884 |#1|))) (-15 -3618 ((-884 |#1|) (-884 |#1|))) (-15 -2538 ((-884 |#1|) (-884 |#1|))) (-15 -1236 ((-884 |#1|) (-884 |#1|))) (-15 -2174 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2186 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2946 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1221 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2567 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2326 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2878 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1475 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|))) (-13 (-344) (-1121) (-941))) (T -165))
+((-1475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1221 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2946 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2186 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1236 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-1916 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))))
+(-10 -7 (-15 -1916 ((-884 |#1|) (-884 |#1|))) (-15 -1652 ((-884 |#1|) (-884 |#1|))) (-15 -2715 ((-884 |#1|) (-884 |#1|))) (-15 -2089 ((-884 |#1|) (-884 |#1|))) (-15 -3618 ((-884 |#1|) (-884 |#1|))) (-15 -2538 ((-884 |#1|) (-884 |#1|))) (-15 -1236 ((-884 |#1|) (-884 |#1|))) (-15 -2174 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2186 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2946 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1221 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2567 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2326 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2878 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1475 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|)))
+((-1814 ((|#2| |#3|) 27)))
+(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1814 (|#2| |#3|))) (-162) (-1157 |#1|) (-673 |#1| |#2|)) (T -166))
+((-1814 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-673 *4 *2)))))
+(-10 -7 (-15 -1814 (|#2| |#3|)))
+((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 47 (|has| (-893 |#2|) (-827 |#1|)))))
+(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|)) (-1027) (-13 (-827 |#1|) (-162)) (-156 |#2|)) (T -167))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5)) (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|))
+((-4199 (((-597 |#1|) (-597 |#1|) |#1|) 38)) (-2712 (((-597 |#1|) |#1| (-597 |#1|)) 19)) (-4164 (((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|)) 33) ((|#1| (-597 |#1|) (-597 |#1|)) 31)))
+(((-168 |#1|) (-10 -7 (-15 -2712 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -4164 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -4164 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -4199 ((-597 |#1|) (-597 |#1|) |#1|))) (-289)) (T -168))
+((-4199 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-4164 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-4164 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-2712 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(-10 -7 (-15 -2712 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -4164 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -4164 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -4199 ((-597 |#1|) (-597 |#1|) |#1|)))
+((-3573 (((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|) 61)) (-1765 ((|#1| |#1|) 54)) (-1935 (((-159 |#1|) |#2|) 84)) (-2358 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3608 ((|#2| |#2|) 83)) (-3788 (((-399 |#2|) |#2| |#1|) 113) (((-399 |#2|) |#2| |#1| (-110)) 81)) (-2376 ((|#1| |#2|) 112)) (-3147 ((|#2| |#2|) 119)) (-2611 (((-399 |#2|) |#2|) 134) (((-399 |#2|) |#2| |#1|) 32) (((-399 |#2|) |#2| |#1| (-110)) 133)) (-2056 (((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|) 132) (((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110)) 76)) (-3270 (((-597 (-159 |#1|)) |#2| |#1|) 40) (((-597 (-159 |#1|)) |#2|) 41)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -3270 ((-597 (-159 |#1|)) |#2|)) (-15 -3270 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110))) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|)) (-15 -2611 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2611 ((-399 |#2|) |#2| |#1|)) (-15 -2611 ((-399 |#2|) |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2376 (|#1| |#2|)) (-15 -3788 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3788 ((-399 |#2|) |#2| |#1|)) (-15 -3608 (|#2| |#2|)) (-15 -2358 (|#1| |#2| |#1|)) (-15 -2358 (|#1| |#2|)) (-15 -1935 ((-159 |#1|) |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -3573 ((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|))) (-13 (-344) (-793)) (-1157 (-159 |#1|))) (T -169))
+((-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-2 (|:| |start| *3) (|:| -3721 (-399 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1765 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1935 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))) (-2358 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-2358 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-3788 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2376 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2611 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2056 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2056 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5))))) (-3270 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(-10 -7 (-15 -3270 ((-597 (-159 |#1|)) |#2|)) (-15 -3270 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110))) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|)) (-15 -2611 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2611 ((-399 |#2|) |#2| |#1|)) (-15 -2611 ((-399 |#2|) |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2376 (|#1| |#2|)) (-15 -3788 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3788 ((-399 |#2|) |#2| |#1|)) (-15 -3608 (|#2| |#2|)) (-15 -2358 (|#1| |#2| |#1|)) (-15 -2358 (|#1| |#2|)) (-15 -1935 ((-159 |#1|) |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -3573 ((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|)))
+((-2436 (((-3 |#2| "failed") |#2|) 14)) (-4034 (((-719) |#2|) 16)) (-1926 ((|#2| |#2| |#2|) 18)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -2436 ((-3 |#2| "failed") |#2|)) (-15 -4034 ((-719) |#2|)) (-15 -1926 (|#2| |#2| |#2|))) (-1135) (-624 |#1|)) (T -170))
+((-1926 (*1 *2 *2 *2) (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3)) (-4 *3 (-624 *4)))) (-2436 (*1 *2 *2) (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
+(-10 -7 (-15 -2436 ((-3 |#2| "failed") |#2|)) (-15 -4034 ((-719) |#2|)) (-15 -1926 (|#2| |#2| |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2529 (((-1099) $) 10)) (-2366 (((-804) $) 17)) (-2739 (((-597 (-1104)) $) 12)) (-2248 (((-110) $ $) 15)))
+(((-171) (-13 (-1027) (-10 -8 (-15 -2529 ((-1099) $)) (-15 -2739 ((-597 (-1104)) $))))) (T -171))
+((-2529 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-171)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
+(-13 (-1027) (-10 -8 (-15 -2529 ((-1099) $)) (-15 -2739 ((-597 (-1104)) $))))
+((-4069 ((|#2| |#2|) 28)) (-2597 (((-110) |#2|) 19)) (-2637 (((-297 |#1|) |#2|) 12)) (-2649 (((-297 |#1|) |#2|) 14)) (-3580 ((|#2| |#2| (-1099)) 68) ((|#2| |#2|) 69)) (-2359 (((-159 (-297 |#1|)) |#2|) 10)) (-1992 ((|#2| |#2| (-1099)) 65) ((|#2| |#2|) 59)))
+(((-172 |#1| |#2|) (-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -2637 ((-297 |#1|) |#2|)) (-15 -2649 ((-297 |#1|) |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2359 ((-159 (-297 |#1|)) |#2|))) (-13 (-522) (-795) (-975 (-530))) (-13 (-27) (-1121) (-411 (-159 |#1|)))) (T -172))
+((-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2637 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-1992 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))))
+(-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -2637 ((-297 |#1|) |#2|)) (-15 -2649 ((-297 |#1|) |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2359 ((-159 (-297 |#1|)) |#2|)))
+((-3656 (((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|))) 24)) (-2366 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))) 33)))
+(((-173 |#1|) (-10 -7 (-15 -3656 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2366 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))))) (-162)) (T -173))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-388 (-893 *4))))) (-5 *1 (-173 *4)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
+(-10 -7 (-15 -3656 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2366 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|)))))
+((-2109 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 66)) (-2590 (((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530))) 75)) (-3391 (((-1101 (-388 (-530))) (-530)) 40)) (-2928 (((-1101 (-388 (-530))) (-530)) 52)) (-4098 (((-388 (-530)) (-1101 (-388 (-530)))) 62)) (-1973 (((-1101 (-388 (-530))) (-530)) 32)) (-1425 (((-1101 (-388 (-530))) (-530)) 48)) (-3376 (((-1101 (-388 (-530))) (-530)) 46)) (-2849 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 60)) (-4050 (((-1101 (-388 (-530))) (-530)) 25)) (-3790 (((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 64)) (-1759 (((-1101 (-388 (-530))) (-530)) 30)) (-3742 (((-1101 (-388 (-530))) (-597 (-530))) 72)))
+(((-174) (-10 -7 (-15 -4050 ((-1101 (-388 (-530))) (-530))) (-15 -3391 ((-1101 (-388 (-530))) (-530))) (-15 -1973 ((-1101 (-388 (-530))) (-530))) (-15 -1759 ((-1101 (-388 (-530))) (-530))) (-15 -3376 ((-1101 (-388 (-530))) (-530))) (-15 -1425 ((-1101 (-388 (-530))) (-530))) (-15 -2928 ((-1101 (-388 (-530))) (-530))) (-15 -3790 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -2849 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4098 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -2109 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -3742 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -2590 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))) (T -174))
+((-2590 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-2849 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-2928 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-3376 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-4050 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+(-10 -7 (-15 -4050 ((-1101 (-388 (-530))) (-530))) (-15 -3391 ((-1101 (-388 (-530))) (-530))) (-15 -1973 ((-1101 (-388 (-530))) (-530))) (-15 -1759 ((-1101 (-388 (-530))) (-530))) (-15 -3376 ((-1101 (-388 (-530))) (-530))) (-15 -1425 ((-1101 (-388 (-530))) (-530))) (-15 -2928 ((-1101 (-388 (-530))) (-530))) (-15 -3790 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -2849 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4098 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -2109 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -3742 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -2590 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))
+((-4196 (((-399 (-1095 (-530))) (-530)) 28)) (-1589 (((-597 (-1095 (-530))) (-530)) 23)) (-3570 (((-1095 (-530)) (-530)) 21)))
+(((-175) (-10 -7 (-15 -1589 ((-597 (-1095 (-530))) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -4196 ((-399 (-1095 (-530))) (-530))))) (T -175))
+((-4196 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
+(-10 -7 (-15 -1589 ((-597 (-1095 (-530))) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -4196 ((-399 (-1095 (-530))) (-530))))
+((-1950 (((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-3493 (((-597 (-1082)) (-1080 (-208))) NIL)) (-2897 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-1869 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) NIL)) (-4093 (((-597 (-1082)) (-597 (-208))) NIL)) (-1384 (((-208) (-1022 (-788 (-208)))) 24)) (-1674 (((-208) (-1022 (-788 (-208)))) 25)) (-4185 (((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1379 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1922 (((-1082) (-208)) NIL)) (-4160 (((-1082) (-597 (-1082))) 20)) (-2772 (((-973) (-1099) (-1099) (-973)) 13)))
+(((-176) (-10 -7 (-15 -2897 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1379 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -4185 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -4160 ((-1082) (-597 (-1082)))) (-15 -2772 ((-973) (-1099) (-1099) (-973))))) (T -176))
+((-2772 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-176)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-176)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
+(-10 -7 (-15 -2897 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1379 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -4185 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -4160 ((-1082) (-597 (-1082)))) (-15 -2772 ((-973) (-1099) (-1099) (-973))))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 55) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-177) (-735)) (T -177))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 60) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 60) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-178) (-735)) (T -178))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 69) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 69) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-179) (-735)) (T -179))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 56) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 56) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-180) (-735)) (T -180))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 67) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 67) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-181) (-735)) (T -181))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 73) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 73) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-182) (-735)) (T -182))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 80) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 80) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-183) (-735)) (T -183))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 70) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 70) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-184) (-735)) (T -184))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 66)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 66)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-185) (-735)) (T -185))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 63)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 63)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-186) (-735)) (T -186))
NIL
(-735)
-((-2246 (((-110) $ $) NIL)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 90) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 90) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-187) (-735)) (T -187))
NIL
(-735)
-((-1626 (((-3 (-2 (|:| -4135 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-1648 (((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1638 (((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73)))
-(((-188) (-10 -7 (-15 -1626 ((-3 (-2 (|:| -4135 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1638 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1648 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188))
-((-1648 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-530)) (-5 *1 (-188)))) (-1638 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-188)))) (-1626 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -4135 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
-(-10 -7 (-15 -1626 ((-3 (-2 (|:| -4135 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1638 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1648 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-3561 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-3551 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-3538 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208)))) 89)) (-1670 (((-360) (-637 (-297 (-208)))) 113)) (-3897 (((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099))) 110)) (-3597 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-3573 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4084 (((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208)))) 102)) (-1658 (((-360) (-360) (-597 (-360))) 107) (((-360) (-360) (-360)) 105)) (-3586 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36)))
-(((-189) (-10 -7 (-15 -1658 ((-360) (-360) (-360))) (-15 -1658 ((-360) (-360) (-597 (-360)))) (-15 -1670 ((-360) (-637 (-297 (-208))))) (-15 -3897 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4084 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -3538 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3551 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3561 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3573 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3586 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3597 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189))
-((-3597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-4084 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 (-297 (-208)))) (-5 *3 (-597 (-1099))) (-5 *4 (-1181 (-297 (-208)))) (-5 *1 (-189)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1658 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1658 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189)))))
-(-10 -7 (-15 -1658 ((-360) (-360) (-360))) (-15 -1658 ((-360) (-360) (-597 (-360)))) (-15 -1670 ((-360) (-637 (-297 (-208))))) (-15 -3897 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4084 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -3538 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3551 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3561 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3573 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3586 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3597 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3884 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-2148 (((-110) $ $) NIL)))
+((-2045 (((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-1249 (((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1634 (((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73)))
+(((-188) (-10 -7 (-15 -2045 ((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1634 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1249 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188))
+((-1249 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-530)) (-5 *1 (-188)))) (-1634 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-188)))) (-2045 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -4145 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(-10 -7 (-15 -2045 ((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1634 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1249 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-1892 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-3343 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-1582 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208)))) 89)) (-3518 (((-360) (-637 (-297 (-208)))) 113)) (-2028 (((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099))) 110)) (-4220 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-3748 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4098 (((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208)))) 102)) (-3837 (((-360) (-360) (-597 (-360))) 107) (((-360) (-360) (-360)) 105)) (-2556 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36)))
+(((-189) (-10 -7 (-15 -3837 ((-360) (-360) (-360))) (-15 -3837 ((-360) (-360) (-597 (-360)))) (-15 -3518 ((-360) (-637 (-297 (-208))))) (-15 -2028 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4098 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -1582 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3343 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1892 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3748 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2556 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4220 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189))
+((-4220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-4098 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 (-297 (-208)))) (-5 *3 (-597 (-1099))) (-5 *4 (-1181 (-297 (-208)))) (-5 *1 (-189)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3837 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189)))))
+(-10 -7 (-15 -3837 ((-360) (-360) (-360))) (-15 -3837 ((-360) (-360) (-597 (-360)))) (-15 -3518 ((-360) (-637 (-297 (-208))))) (-15 -2028 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4098 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -1582 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3343 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1892 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3748 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2556 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4220 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-2248 (((-110) $ $) NIL)))
(((-190) (-748)) (T -190))
NIL
(-748)
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3884 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-2248 (((-110) $ $) NIL)))
(((-191) (-748)) (T -191))
NIL
(-748)
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3884 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-2248 (((-110) $ $) NIL)))
(((-192) (-748)) (T -192))
NIL
(-748)
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-3884 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-2248 (((-110) $ $) NIL)))
(((-193) (-748)) (T -193))
NIL
(-748)
-((-3717 (((-597 (-1099)) (-1099) (-719)) 23)) (-3606 (((-297 (-208)) (-297 (-208))) 31)) (-3623 (((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 74)) (-3614 (((-110) (-208) (-208) (-597 (-297 (-208)))) 45)))
-(((-194) (-10 -7 (-15 -3717 ((-597 (-1099)) (-1099) (-719))) (-15 -3606 ((-297 (-208)) (-297 (-208)))) (-15 -3614 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -3623 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))) (T -194))
-((-3623 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-3614 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-194)) (-5 *3 (-1099)))))
-(-10 -7 (-15 -3717 ((-597 (-1099)) (-1099) (-719))) (-15 -3606 ((-297 (-208)) (-297 (-208)))) (-15 -3614 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -3623 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 26)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-1488 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 57)) (-2148 (((-110) $ $) NIL)))
+((-3702 (((-597 (-1099)) (-1099) (-719)) 23)) (-4030 (((-297 (-208)) (-297 (-208))) 31)) (-4247 (((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 74)) (-2672 (((-110) (-208) (-208) (-597 (-297 (-208)))) 45)))
+(((-194) (-10 -7 (-15 -3702 ((-597 (-1099)) (-1099) (-719))) (-15 -4030 ((-297 (-208)) (-297 (-208)))) (-15 -2672 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -4247 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))) (T -194))
+((-4247 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-2672 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-4030 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-194)) (-5 *3 (-1099)))))
+(-10 -7 (-15 -3702 ((-597 (-1099)) (-1099) (-719))) (-15 -4030 ((-297 (-208)) (-297 (-208)))) (-15 -2672 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -4247 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 26)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 57)) (-2248 (((-110) $ $) NIL)))
(((-195) (-836)) (T -195))
NIL
(-836)
-((-2246 (((-110) $ $) NIL)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 21)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-1488 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) NIL)) (-2248 (((-110) $ $) NIL)))
(((-196) (-836)) (T -196))
NIL
(-836)
-((-2246 (((-110) $ $) NIL)) (-2416 ((|#2| $ (-719) |#2|) 11)) (-3547 (($) 8)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1832 ((|#2| $ (-719)) 10)) (-2258 (((-804) $) 18)) (-2148 (((-110) $ $) 13)))
-(((-197 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3547 ($)) (-15 -1832 (|#2| $ (-719))) (-15 -2416 (|#2| $ (-719) |#2|)))) (-862) (-1027)) (T -197))
-((-3547 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-862)) (-4 *3 (-1027)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)) (-4 *2 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -3547 ($)) (-15 -1832 (|#2| $ (-719))) (-15 -2416 (|#2| $ (-719) |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1671 (((-1186) $) 36) (((-1186) $ (-862) (-862)) 38)) (-1832 (($ $ (-929)) 19) (((-228 (-1082)) $ (-1099)) 15)) (-2278 (((-1186) $) 34)) (-2258 (((-804) $) 31) (($ (-597 |#1|)) 8)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $ $) 27)) (-2234 (($ $ $) 22)))
-(((-198 |#1|) (-13 (-1027) (-10 -8 (-15 -1832 ($ $ (-929))) (-15 -1832 ((-228 (-1082)) $ (-1099))) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2258 ($ (-597 |#1|))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $)) (-15 -1671 ((-1186) $ (-862) (-862))))) (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))) (T -198))
-((-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-228 (-1082))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ *3)) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))))) (-2234 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))))) (-2245 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $))))) (-5 *1 (-198 *3)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $)) (-15 -1671 (*2 $))))))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $)) (-15 -1671 (*2 $))))))) (-1671 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $)) (-15 -1671 (*2 $))))))))
-(-13 (-1027) (-10 -8 (-15 -1832 ($ $ (-929))) (-15 -1832 ((-228 (-1082)) $ (-1099))) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2258 ($ (-597 |#1|))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $)) (-15 -1671 ((-1186) $ (-862) (-862)))))
-((-3632 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3632 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199))
-((-3632 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
-(-10 -7 (-15 -3632 (|#2| |#4| (-1 |#2| |#2|))))
-((-3668 ((|#2| |#2| (-719) |#2|) 42)) (-3659 ((|#2| |#2| (-719) |#2|) 38)) (-3960 (((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|)))) 57)) (-3650 (((-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|))) |#2|) 53)) (-3675 (((-110) |#2|) 50)) (-2101 (((-399 |#2|) |#2|) 77)) (-2473 (((-399 |#2|) |#2|) 76)) (-3970 ((|#2| |#2| (-719) |#2|) 36)) (-3639 (((-2 (|:| |cont| |#1|) (|:| -4162 (-597 (-2 (|:| |irr| |#2|) (|:| -3001 (-530)))))) |#2| (-110)) 69)))
-(((-200 |#1| |#2|) (-10 -7 (-15 -2473 ((-399 |#2|) |#2|)) (-15 -2101 ((-399 |#2|) |#2|)) (-15 -3639 ((-2 (|:| |cont| |#1|) (|:| -4162 (-597 (-2 (|:| |irr| |#2|) (|:| -3001 (-530)))))) |#2| (-110))) (-15 -3650 ((-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|))) |#2|)) (-15 -3960 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|))))) (-15 -3970 (|#2| |#2| (-719) |#2|)) (-15 -3659 (|#2| |#2| (-719) |#2|)) (-15 -3668 (|#2| |#2| (-719) |#2|)) (-15 -3675 ((-110) |#2|))) (-330) (-1157 |#1|)) (T -200))
-((-3675 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-3668 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-3659 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-3970 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -3007 *5)))) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5)) (-5 *1 (-200 *4 *5)))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -3007 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-330)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2473 ((-399 |#2|) |#2|)) (-15 -2101 ((-399 |#2|) |#2|)) (-15 -3639 ((-2 (|:| |cont| |#1|) (|:| -4162 (-597 (-2 (|:| |irr| |#2|) (|:| -3001 (-530)))))) |#2| (-110))) (-15 -3650 ((-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|))) |#2|)) (-15 -3960 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -3007 |#2|))))) (-15 -3970 (|#2| |#2| (-719) |#2|)) (-15 -3659 (|#2| |#2| (-719) |#2|)) (-15 -3668 (|#2| |#2| (-719) |#2|)) (-15 -3675 ((-110) |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-530) $) NIL (|has| (-530) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-530) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2446 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-530) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-530) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-530) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-3002 (((-110) $) NIL (|has| (-530) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-530) (-795)))) (-3114 (($ (-1 (-530) (-530)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-530) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-1702 (((-530) $) NIL (|has| (-530) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-530) $) NIL)) (-3684 (($ (-388 (-530))) 9)) (-3173 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 10) $) 10)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-530) $) NIL (|has| (-530) (-515)))) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| (-530) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2257 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-201) (-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 10) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -3684 ($ (-388 (-530))))))) (T -201))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 10) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -3684 ($ (-388 (-530))))))
-((-1637 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082)) 28) (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|))) 24)) (-3692 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)) 17)))
-(((-202 |#1| |#2|) (-10 -7 (-15 -1637 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1637 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -3692 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -202))
-((-3692 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1099)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-1121) (-900) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 *3))) (-5 *5 (-1082)) (-4 *3 (-13 (-1121) (-900) (-29 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6 *3)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 *3))) (-4 *3 (-13 (-1121) (-900) (-29 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5 *3)))))
-(-10 -7 (-15 -1637 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1637 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -3692 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110))))
-((-1637 (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)) 46) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|))))) 43) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082)) 47) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|)))) 20)))
-(((-203 |#1|) (-10 -7 (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (T -203))
-((-1637 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *6))))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *5))))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1020 (-788 (-297 *6)))) (-5 *5 (-1082)) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1020 (-788 (-297 *5)))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))))
-(-10 -7 (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1637 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082))))
-((-3856 (((-2 (|:| -3770 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|)) 21)) (-2147 (((-597 (-297 |#2|)) (-297 |#2|) (-862)) 42)))
-(((-204 |#1| |#2|) (-10 -7 (-15 -3856 ((-2 (|:| -3770 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2147 ((-597 (-297 |#2|)) (-297 |#2|) (-862)))) (-984) (-13 (-522) (-795))) (T -204))
-((-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *6 (-13 (-522) (-795))) (-5 *2 (-597 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) (-4 *5 (-984)))) (-3856 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-2 (|:| -3770 (-1095 *4)) (|:| |deg| (-862)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795))))))
-(-10 -7 (-15 -3856 ((-2 (|:| -3770 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2147 ((-597 (-297 |#2|)) (-297 |#2|) (-862))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4033 ((|#1| $) NIL)) (-1596 ((|#1| $) 25)) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-2896 (($ $) NIL)) (-1389 (($ $) 31)) (-2882 ((|#1| |#1| $) NIL)) (-2870 ((|#1| $) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-2171 (((-719) $) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) NIL)) (-4012 ((|#1| |#1| $) 28)) (-4003 ((|#1| |#1| $) 30)) (-3440 (($ |#1| $) NIL)) (-4150 (((-719) $) 27)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2886 ((|#1| $) NIL)) (-3992 ((|#1| $) 26)) (-3983 ((|#1| $) 24)) (-3287 ((|#1| $) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-2915 ((|#1| |#1| $) NIL)) (-1262 (((-110) $) 9)) (-4227 (($) NIL)) (-2904 ((|#1| $) NIL)) (-4043 (($) NIL) (($ (-597 |#1|)) 16)) (-4219 (((-719) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-4023 ((|#1| $) 13)) (-3298 (($ (-597 |#1|)) NIL)) (-2876 ((|#1| $) NIL)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -4043 ($ (-597 |#1|))))) (-1027)) (T -205))
-((-4043 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3)))))
-(-13 (-236 |#1|) (-10 -8 (-15 -4043 ($ (-597 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3709 (($ (-297 |#1|)) 23)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1466 (((-110) $) NIL)) (-3012 (((-3 (-297 |#1|) "failed") $) NIL)) (-2446 (((-297 |#1|) $) NIL)) (-2425 (($ $) 31)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3114 (($ (-1 (-297 |#1|) (-297 |#1|)) $) NIL)) (-2402 (((-297 |#1|) $) NIL)) (-3730 (($ $) 30)) (-3443 (((-1082) $) NIL)) (-3720 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($ (-719)) NIL)) (-3700 (($ $) 32)) (-3409 (((-530) $) NIL)) (-2258 (((-804) $) 57) (($ (-530)) NIL) (($ (-297 |#1|)) NIL)) (-2782 (((-297 |#1|) $ $) NIL)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 25 T CONST)) (-2955 (($) 50 T CONST)) (-2148 (((-110) $ $) 28)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 24) (($ (-297 |#1|) $) 18)))
-(((-206 |#1| |#2|) (-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2402 ((-297 |#1|) $)) (-15 -3730 ($ $)) (-15 -2425 ($ $)) (-15 -2782 ((-297 |#1|) $ $)) (-15 -1898 ($ (-719))) (-15 -3720 ((-110) $)) (-15 -1466 ((-110) $)) (-15 -3409 ((-530) $)) (-15 -3114 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3709 ($ (-297 |#1|))) (-15 -3700 ($ $)))) (-13 (-984) (-795)) (-597 (-1099))) (T -206))
-((-2402 (*1 *2 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-2782 (*1 *2 *1 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-3700 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))))
-(-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2402 ((-297 |#1|) $)) (-15 -3730 ($ $)) (-15 -2425 ($ $)) (-15 -2782 ((-297 |#1|) $ $)) (-15 -1898 ($ (-719))) (-15 -3720 ((-110) $)) (-15 -1466 ((-110) $)) (-15 -3409 ((-530) $)) (-15 -3114 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3709 ($ (-297 |#1|))) (-15 -3700 ($ $))))
-((-3739 (((-110) (-1082)) 22)) (-3748 (((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110)) 32)) (-3759 (((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)) 73) (((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110)) 74)))
-(((-207 |#1| |#2|) (-10 -7 (-15 -3739 ((-110) (-1082))) (-15 -3748 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3759 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3759 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -207))
-((-3759 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6)) (-4 *6 (-13 (-1121) (-29 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *5 *6)))) (-3759 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099)) (-5 *5 (-788 *7)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-3748 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1121) (-29 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *6 *4)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
-(-10 -7 (-15 -3739 ((-110) (-1082))) (-15 -3748 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3759 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3759 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 89)) (-1694 (((-530) $) 99)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-1323 (($ $) NIL)) (-2276 (($ $) 77)) (-2144 (($ $) 65)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) 56)) (-1945 (((-110) $ $) NIL)) (-2253 (($ $) 75)) (-2121 (($ $) 63)) (-3592 (((-530) $) 116)) (-2297 (($ $) 80)) (-2169 (($ $) 67)) (-3956 (($) NIL T CONST)) (-1676 (($ $) NIL)) (-3012 (((-3 (-530) "failed") $) 115) (((-3 (-388 (-530)) "failed") $) 112)) (-2446 (((-530) $) 113) (((-388 (-530)) $) 110)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) 92)) (-2931 (((-388 (-530)) $ (-719)) 108) (((-388 (-530)) $ (-719) (-719)) 107)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-1214 (((-862)) 29) (((-862) (-862)) NIL (|has| $ (-6 -4261)))) (-2991 (((-110) $) NIL)) (-1877 (($) 39)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-1334 (((-530) $) 35)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL)) (-1717 (($ $) NIL)) (-3002 (((-110) $) 88)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) 53) (($) 34 (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-1757 (($ $ $) 52) (($) 33 (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-3102 (((-530) $) 27)) (-2919 (($ $) 30)) (-1873 (($ $) 57)) (-2070 (($ $) 62)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3214 (((-862) (-530)) NIL (|has| $ (-6 -4261)))) (-2485 (((-1046) $) NIL) (((-530) $) 90)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL)) (-1702 (($ $) NIL)) (-2873 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) 100)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3059 (((-530) $) 28)) (-2908 (($) 38)) (-2693 (($ $) 61)) (-1934 (((-719) $) NIL)) (-3769 (((-1082) (-1082)) 8)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2124 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4261)))) (-3211 (($ $ (-719)) NIL) (($ $) 93)) (-3200 (((-862) (-530)) NIL (|has| $ (-6 -4261)))) (-2308 (($ $) 78)) (-2181 (($ $) 68)) (-2287 (($ $) 79)) (-2155 (($ $) 66)) (-2263 (($ $) 76)) (-2133 (($ $) 64)) (-3173 (((-360) $) 104) (((-208) $) 101) (((-833 (-360)) $) NIL) (((-506) $) 45)) (-2258 (((-804) $) 42) (($ (-530)) 60) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 60) (($ (-388 (-530))) NIL)) (-1667 (((-719)) NIL)) (-1709 (($ $) NIL)) (-3227 (((-862)) 32) (((-862) (-862)) NIL (|has| $ (-6 -4261)))) (-3256 (((-862)) 25)) (-2339 (($ $) 83)) (-2211 (($ $) 71) (($ $ $) 109)) (-3020 (((-110) $ $) NIL)) (-2318 (($ $) 81)) (-2192 (($ $) 69)) (-2361 (($ $) 86)) (-2230 (($ $) 74)) (-2910 (($ $) 84)) (-2241 (($ $) 72)) (-2349 (($ $) 85)) (-2220 (($ $) 73)) (-2328 (($ $) 82)) (-2202 (($ $) 70)) (-2218 (($ $) 117)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 36 T CONST)) (-2955 (($) 37 T CONST)) (-2437 (((-1082) $) 19) (((-1082) $ (-110)) 21) (((-1186) (-770) $) 22) (((-1186) (-770) $ (-110)) 23)) (-2261 (($ $) 96)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2227 (($ $ $) 98)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 46)) (-2257 (($ $ $) 87) (($ $ (-530)) 55)) (-2245 (($ $) 47) (($ $ $) 49)) (-2234 (($ $ $) 48)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 58) (($ $ (-388 (-530))) 129) (($ $ $) 59)) (* (($ (-862) $) 31) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 50) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-208) (-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2257 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -2908 ($)) (-15 -2485 ((-530) $)) (-15 -2919 ($ $)) (-15 -1873 ($ $)) (-15 -2211 ($ $ $)) (-15 -2261 ($ $)) (-15 -2227 ($ $ $)) (-15 -3769 ((-1082) (-1082))) (-15 -2931 ((-388 (-530)) $ (-719))) (-15 -2931 ((-388 (-530)) $ (-719) (-719)))))) (T -208))
-((** (*1 *1 *1 *1) (-5 *1 (-208))) (-2257 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-2908 (*1 *1) (-5 *1 (-208))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-2919 (*1 *1 *1) (-5 *1 (-208))) (-1873 (*1 *1 *1) (-5 *1 (-208))) (-2211 (*1 *1 *1 *1) (-5 *1 (-208))) (-2261 (*1 *1 *1) (-5 *1 (-208))) (-2227 (*1 *1 *1 *1) (-5 *1 (-208))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))) (-2931 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))) (-2931 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))))
-(-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2257 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -2908 ($)) (-15 -2485 ((-530) $)) (-15 -2919 ($ $)) (-15 -1873 ($ $)) (-15 -2211 ($ $ $)) (-15 -2261 ($ $)) (-15 -2227 ($ $ $)) (-15 -3769 ((-1082) (-1082))) (-15 -2931 ((-388 (-530)) $ (-719))) (-15 -2931 ((-388 (-530)) $ (-719) (-719)))))
-((-2249 (((-159 (-208)) (-719) (-159 (-208))) 11) (((-208) (-719) (-208)) 12)) (-3780 (((-159 (-208)) (-159 (-208))) 13) (((-208) (-208)) 14)) (-3790 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 19) (((-208) (-208) (-208)) 22)) (-2237 (((-159 (-208)) (-159 (-208))) 25) (((-208) (-208)) 24)) (-2283 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 43) (((-208) (-208) (-208)) 35)) (-2304 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 48) (((-208) (-208) (-208)) 45)) (-2271 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 15) (((-208) (-208) (-208)) 16)) (-2293 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 17) (((-208) (-208) (-208)) 18)) (-2326 (((-159 (-208)) (-159 (-208))) 60) (((-208) (-208)) 59)) (-2315 (((-208) (-208)) 54) (((-159 (-208)) (-159 (-208))) 58)) (-2261 (((-159 (-208)) (-159 (-208))) 8) (((-208) (-208)) 9)) (-2227 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 30) (((-208) (-208) (-208)) 26)))
-(((-209) (-10 -7 (-15 -2261 ((-208) (-208))) (-15 -2261 ((-159 (-208)) (-159 (-208)))) (-15 -2227 ((-208) (-208) (-208))) (-15 -2227 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3780 ((-208) (-208))) (-15 -3780 ((-159 (-208)) (-159 (-208)))) (-15 -2237 ((-208) (-208))) (-15 -2237 ((-159 (-208)) (-159 (-208)))) (-15 -2249 ((-208) (-719) (-208))) (-15 -2249 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2271 ((-208) (-208) (-208))) (-15 -2271 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2283 ((-208) (-208) (-208))) (-15 -2283 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2293 ((-208) (-208) (-208))) (-15 -2293 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2304 ((-208) (-208) (-208))) (-15 -2304 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2315 ((-159 (-208)) (-159 (-208)))) (-15 -2315 ((-208) (-208))) (-15 -2326 ((-208) (-208))) (-15 -2326 ((-159 (-208)) (-159 (-208)))) (-15 -3790 ((-208) (-208) (-208))) (-15 -3790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))) (T -209))
-((-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2304 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2304 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2293 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2293 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2227 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2227 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2261 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2261 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))))
-(-10 -7 (-15 -2261 ((-208) (-208))) (-15 -2261 ((-159 (-208)) (-159 (-208)))) (-15 -2227 ((-208) (-208) (-208))) (-15 -2227 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3780 ((-208) (-208))) (-15 -3780 ((-159 (-208)) (-159 (-208)))) (-15 -2237 ((-208) (-208))) (-15 -2237 ((-159 (-208)) (-159 (-208)))) (-15 -2249 ((-208) (-719) (-208))) (-15 -2249 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2271 ((-208) (-208) (-208))) (-15 -2271 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2283 ((-208) (-208) (-208))) (-15 -2283 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2293 ((-208) (-208) (-208))) (-15 -2293 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2304 ((-208) (-208) (-208))) (-15 -2304 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2315 ((-159 (-208)) (-159 (-208)))) (-15 -2315 ((-208) (-208))) (-15 -2326 ((-208) (-208))) (-15 -2326 ((-159 (-208)) (-159 (-208)))) (-15 -3790 ((-208) (-208) (-208))) (-15 -3790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719) (-719)) NIL)) (-3698 (($ $ $) NIL)) (-1350 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-2126 (($ |#1| |#1| |#1|) 32)) (-1623 (((-110) $) NIL)) (-3689 (($ $ (-530) (-530)) NIL)) (-3681 (($ $ (-530) (-530)) NIL)) (-3672 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3714 (($ $) NIL)) (-1645 (((-110) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-3665 (($ $ (-530) (-530) $) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2992 (($ $ (-530) (-1181 |#1|)) NIL)) (-2979 (($ $ (-530) (-1181 |#1|)) NIL)) (-3708 (($ |#1| |#1| |#1|) 31)) (-2944 (($ (-719) |#1|) NIL)) (-3956 (($) NIL T CONST)) (-1543 (($ $) NIL (|has| |#1| (-289)))) (-1564 (((-1181 |#1|) $ (-530)) NIL)) (-3799 (($ |#1|) 30)) (-3809 (($ |#1|) 29)) (-3818 (($ |#1|) 28)) (-4113 (((-719) $) NIL (|has| |#1| (-522)))) (-2858 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2787 ((|#1| $ (-530) (-530)) NIL)) (-2456 (((-597 |#1|) $) NIL)) (-1532 (((-719) $) NIL (|has| |#1| (-522)))) (-1522 (((-597 (-1181 |#1|)) $) NIL (|has| |#1| (-522)))) (-3531 (((-719) $) NIL)) (-3547 (($ (-719) (-719) |#1|) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-2892 ((|#1| $) NIL (|has| |#1| (-6 (-4272 "*"))))) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2162 (($ (-597 (-597 |#1|))) 11)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3285 (((-597 (-597 |#1|)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3248 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3829 (($) 12)) (-3705 (($ $ $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2933 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1635 (((-110) $) NIL)) (-2900 ((|#1| $) NIL (|has| |#1| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-1554 (((-1181 |#1|) $ (-530)) NIL)) (-2258 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) 15) (((-1181 |#1|) (-1181 |#1|) $) NIL) (((-884 |#1|) $ (-884 |#1|)) 20)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-210 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3829 ($)) (-15 -3818 ($ |#1|)) (-15 -3809 ($ |#1|)) (-15 -3799 ($ |#1|)) (-15 -3708 ($ |#1| |#1| |#1|)) (-15 -2126 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1121))) (T -210))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121))) (-5 *1 (-210 *3)))) (-3829 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3818 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3809 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3799 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3708 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2126 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3829 ($)) (-15 -3818 ($ |#1|)) (-15 -3809 ($ |#1|)) (-15 -3799 ($ |#1|)) (-15 -3708 ($ |#1| |#1| |#1|)) (-15 -2126 ($ |#1| |#1| |#1|))))
-((-2421 (($ (-1 (-110) |#2|) $) 16)) (-1283 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-3839 (($) NIL) (($ (-597 |#2|)) 11)) (-2148 (((-110) $ $) 23)))
-(((-211 |#1| |#2|) (-10 -8 (-15 -2421 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -3839 (|#1| (-597 |#2|))) (-15 -3839 (|#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-212 |#2|) (-1027)) (T -211))
-NIL
-(-10 -8 (-15 -2421 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -3839 (|#1| (-597 |#2|))) (-15 -3839 (|#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-2552 ((|#2| $ (-719) |#2|) 11)) (-3538 (($) 8)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#2| $ (-719)) 10)) (-2366 (((-804) $) 18)) (-2248 (((-110) $ $) 13)))
+(((-197 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1902 (|#2| $ (-719))) (-15 -2552 (|#2| $ (-719) |#2|)))) (-862) (-1027)) (T -197))
+((-3538 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-862)) (-4 *3 (-1027)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)) (-4 *2 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1902 (|#2| $ (-719))) (-15 -2552 (|#2| $ (-719) |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3595 (((-1186) $) 36) (((-1186) $ (-862) (-862)) 38)) (-1902 (($ $ (-929)) 19) (((-228 (-1082)) $ (-1099)) 15)) (-2388 (((-1186) $) 34)) (-2366 (((-804) $) 31) (($ (-597 |#1|)) 8)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $ $) 27)) (-2339 (($ $ $) 22)))
+(((-198 |#1|) (-13 (-1027) (-10 -8 (-15 -1902 ($ $ (-929))) (-15 -1902 ((-228 (-1082)) $ (-1099))) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2366 ($ (-597 |#1|))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -3595 ((-1186) $ (-862) (-862))))) (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))) (T -198))
+((-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-228 (-1082))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ *3)) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2351 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))) (-5 *1 (-198 *3)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))))
+(-13 (-1027) (-10 -8 (-15 -1902 ($ $ (-929))) (-15 -1902 ((-228 (-1082)) $ (-1099))) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2366 ($ (-597 |#1|))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -3595 ((-1186) $ (-862) (-862)))))
+((-3154 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3154 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199))
+((-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
+(-10 -7 (-15 -3154 (|#2| |#4| (-1 |#2| |#2|))))
+((-3559 ((|#2| |#2| (-719) |#2|) 42)) (-3917 ((|#2| |#2| (-719) |#2|) 38)) (-1311 (((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|)))) 57)) (-2495 (((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|) 53)) (-3027 (((-110) |#2|) 50)) (-1550 (((-399 |#2|) |#2|) 77)) (-2611 (((-399 |#2|) |#2|) 76)) (-4120 ((|#2| |#2| (-719) |#2|) 36)) (-2758 (((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110)) 69)))
+(((-200 |#1| |#2|) (-10 -7 (-15 -2611 ((-399 |#2|) |#2|)) (-15 -1550 ((-399 |#2|) |#2|)) (-15 -2758 ((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110))) (-15 -2495 ((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|)) (-15 -1311 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))))) (-15 -4120 (|#2| |#2| (-719) |#2|)) (-15 -3917 (|#2| |#2| (-719) |#2|)) (-15 -3559 (|#2| |#2| (-719) |#2|)) (-15 -3027 ((-110) |#2|))) (-330) (-1157 |#1|)) (T -200))
+((-3027 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-3559 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-3917 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-4120 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *5)))) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5)) (-5 *1 (-200 *4 *5)))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-330)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -2611 ((-399 |#2|) |#2|)) (-15 -1550 ((-399 |#2|) |#2|)) (-15 -2758 ((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110))) (-15 -2495 ((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|)) (-15 -1311 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))))) (-15 -4120 (|#2| |#2| (-719) |#2|)) (-15 -3917 (|#2| |#2| (-719) |#2|)) (-15 -3559 (|#2| |#2| (-719) |#2|)) (-15 -3027 ((-110) |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-1295 (($ (-388 (-530))) 9)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 10) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
+(((-201) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 10) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1295 ($ (-388 (-530))))))) (T -201))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
+(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 10) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1295 ($ (-388 (-530))))))
+((-1545 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082)) 28) (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|))) 24)) (-1602 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)) 17)))
+(((-202 |#1| |#2|) (-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -1602 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -202))
+((-1602 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1099)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-1121) (-900) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 *3))) (-5 *5 (-1082)) (-4 *3 (-13 (-1121) (-900) (-29 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6 *3)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 *3))) (-4 *3 (-13 (-1121) (-900) (-29 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5 *3)))))
+(-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -1602 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110))))
+((-1545 (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)) 46) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|))))) 43) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082)) 47) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|)))) 20)))
+(((-203 |#1|) (-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (T -203))
+((-1545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *6))))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *5))))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1020 (-788 (-297 *6)))) (-5 *5 (-1082)) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1020 (-788 (-297 *5)))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))))
+(-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082))))
+((-2134 (((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|)) 21)) (-2246 (((-597 (-297 |#2|)) (-297 |#2|) (-862)) 42)))
+(((-204 |#1| |#2|) (-10 -7 (-15 -2134 ((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2246 ((-597 (-297 |#2|)) (-297 |#2|) (-862)))) (-984) (-13 (-522) (-795))) (T -204))
+((-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *6 (-13 (-522) (-795))) (-5 *2 (-597 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) (-4 *5 (-984)))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-2 (|:| -3109 (-1095 *4)) (|:| |deg| (-862)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795))))))
+(-10 -7 (-15 -2134 ((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2246 ((-597 (-297 |#2|)) (-297 |#2|) (-862))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3468 ((|#1| $) NIL)) (-1598 ((|#1| $) 25)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1907 (($ $) NIL)) (-1337 (($ $) 31)) (-3684 ((|#1| |#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-4109 (((-719) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) NIL)) (-1260 ((|#1| |#1| $) 28)) (-1848 ((|#1| |#1| $) 30)) (-2441 (($ |#1| $) NIL)) (-4156 (((-719) $) 27)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3288 ((|#1| $) NIL)) (-1458 ((|#1| $) 26)) (-3083 ((|#1| $) 24)) (-2738 ((|#1| $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3203 ((|#1| |#1| $) NIL)) (-3250 (((-110) $) 9)) (-3958 (($) NIL)) (-1540 ((|#1| $) NIL)) (-1909 (($) NIL) (($ (-597 |#1|)) 16)) (-4218 (((-719) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3871 ((|#1| $) 13)) (-2242 (($ (-597 |#1|)) NIL)) (-1371 ((|#1| $) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -1909 ($ (-597 |#1|))))) (-1027)) (T -205))
+((-1909 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3)))))
+(-13 (-236 |#1|) (-10 -8 (-15 -1909 ($ (-597 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1656 (($ (-297 |#1|)) 23)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3038 (((-110) $) NIL)) (-3139 (((-3 (-297 |#1|) "failed") $) NIL)) (-2585 (((-297 |#1|) $) NIL)) (-2562 (($ $) 31)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-3217 (($ (-1 (-297 |#1|) (-297 |#1|)) $) NIL)) (-2533 (((-297 |#1|) $) NIL)) (-2773 (($ $) 30)) (-1424 (((-1082) $) NIL)) (-3141 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) NIL)) (-4019 (($ $) 32)) (-1429 (((-530) $) NIL)) (-2366 (((-804) $) 57) (($ (-530)) NIL) (($ (-297 |#1|)) NIL)) (-4085 (((-297 |#1|) $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 25 T CONST)) (-3093 (($) 50 T CONST)) (-2248 (((-110) $ $) 28)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 24) (($ (-297 |#1|) $) 18)))
+(((-206 |#1| |#2|) (-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2533 ((-297 |#1|) $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 ((-297 |#1|) $ $)) (-15 -1974 ($ (-719))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -3217 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -1656 ($ (-297 |#1|))) (-15 -4019 ($ $)))) (-13 (-984) (-795)) (-597 (-1099))) (T -206))
+((-2533 (*1 *2 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-4085 (*1 *2 *1 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-4019 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))))
+(-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2533 ((-297 |#1|) $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 ((-297 |#1|) $ $)) (-15 -1974 ($ (-719))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -3217 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -1656 ($ (-297 |#1|))) (-15 -4019 ($ $))))
+((-2299 (((-110) (-1082)) 22)) (-1833 (((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110)) 32)) (-3215 (((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)) 73) (((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110)) 74)))
+(((-207 |#1| |#2|) (-10 -7 (-15 -2299 ((-110) (-1082))) (-15 -1833 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -207))
+((-3215 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6)) (-4 *6 (-13 (-1121) (-29 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *5 *6)))) (-3215 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099)) (-5 *5 (-788 *7)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-1833 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1121) (-29 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *6 *4)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
+(-10 -7 (-15 -2299 ((-110) (-1082))) (-15 -1833 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 89)) (-1612 (((-530) $) 99)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) NIL)) (-2386 (($ $) 77)) (-2244 (($ $) 65)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) 56)) (-1426 (((-110) $ $) NIL)) (-2360 (($ $) 75)) (-2219 (($ $) 63)) (-1867 (((-530) $) 116)) (-2409 (($ $) 80)) (-2269 (($ $) 67)) (-2350 (($) NIL T CONST)) (-2963 (($ $) NIL)) (-3139 (((-3 (-530) "failed") $) 115) (((-3 (-388 (-530)) "failed") $) 112)) (-2585 (((-530) $) 113) (((-388 (-530)) $) 110)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 92)) (-3171 (((-388 (-530)) $ (-719)) 108) (((-388 (-530)) $ (-719) (-719)) 107)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 29) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-2514 (((-110) $) NIL)) (-1948 (($) 39)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-2031 (((-530) $) 35)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (($ $) NIL)) (-2166 (((-110) $) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) 53) (($) 34 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-1817 (($ $ $) 52) (($) 33 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 27)) (-3433 (($ $) 30)) (-1945 (($ $) 57)) (-2168 (($ $) 62)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2887 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL) (((-530) $) 90)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL)) (-3175 (($ $) NIL)) (-3018 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) 100)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 28)) (-1878 (($) 38)) (-2853 (($ $) 61)) (-2356 (((-719) $) NIL)) (-3010 (((-1082) (-1082)) 8)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-3289 (($ $ (-719)) NIL) (($ $) 93)) (-1764 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2421 (($ $) 78)) (-2281 (($ $) 68)) (-2398 (($ $) 79)) (-2254 (($ $) 66)) (-2373 (($ $) 76)) (-2231 (($ $) 64)) (-3260 (((-360) $) 104) (((-208) $) 101) (((-833 (-360)) $) NIL) (((-506) $) 45)) (-2366 (((-804) $) 42) (($ (-530)) 60) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 60) (($ (-388 (-530))) NIL)) (-3300 (((-719)) NIL)) (-2748 (($ $) NIL)) (-1711 (((-862)) 32) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1510 (((-862)) 25)) (-2459 (($ $) 83)) (-2314 (($ $) 71) (($ $ $) 109)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 81)) (-2293 (($ $) 69)) (-2485 (($ $) 86)) (-2334 (($ $) 74)) (-3632 (($ $) 84)) (-2347 (($ $) 72)) (-2472 (($ $) 85)) (-2324 (($ $) 73)) (-2446 (($ $) 82)) (-2304 (($ $) 70)) (-3934 (($ $) 117)) (-3080 (($) 36 T CONST)) (-3093 (($) 37 T CONST)) (-3987 (((-1082) $) 19) (((-1082) $ (-110)) 21) (((-1186) (-770) $) 22) (((-1186) (-770) $ (-110)) 23)) (-3187 (($ $) 96)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-3564 (($ $ $) 98)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 54)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 46)) (-2364 (($ $ $) 87) (($ $ (-530)) 55)) (-2351 (($ $) 47) (($ $ $) 49)) (-2339 (($ $ $) 48)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 58) (($ $ (-388 (-530))) 129) (($ $ $) 59)) (* (($ (-862) $) 31) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 50) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-208) (-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1878 ($)) (-15 -2624 ((-530) $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -2314 ($ $ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -3010 ((-1082) (-1082))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719)))))) (T -208))
+((** (*1 *1 *1 *1) (-5 *1 (-208))) (-2364 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-1878 (*1 *1) (-5 *1 (-208))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-3433 (*1 *1 *1) (-5 *1 (-208))) (-1945 (*1 *1 *1) (-5 *1 (-208))) (-2314 (*1 *1 *1 *1) (-5 *1 (-208))) (-3187 (*1 *1 *1) (-5 *1 (-208))) (-3564 (*1 *1 *1 *1) (-5 *1 (-208))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))))
+(-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1878 ($)) (-15 -2624 ((-530) $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -2314 ($ $ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -3010 ((-1082) (-1082))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719)))))
+((-1751 (((-159 (-208)) (-719) (-159 (-208))) 11) (((-208) (-719) (-208)) 12)) (-1524 (((-159 (-208)) (-159 (-208))) 13) (((-208) (-208)) 14)) (-4245 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 19) (((-208) (-208) (-208)) 22)) (-2101 (((-159 (-208)) (-159 (-208))) 25) (((-208) (-208)) 24)) (-2323 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 43) (((-208) (-208) (-208)) 35)) (-3981 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 48) (((-208) (-208) (-208)) 45)) (-2790 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 15) (((-208) (-208) (-208)) 16)) (-1374 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 17) (((-208) (-208) (-208)) 18)) (-3179 (((-159 (-208)) (-159 (-208))) 60) (((-208) (-208)) 59)) (-1607 (((-208) (-208)) 54) (((-159 (-208)) (-159 (-208))) 58)) (-3187 (((-159 (-208)) (-159 (-208))) 8) (((-208) (-208)) 9)) (-3564 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 30) (((-208) (-208) (-208)) 26)))
+(((-209) (-10 -7 (-15 -3187 ((-208) (-208))) (-15 -3187 ((-159 (-208)) (-159 (-208)))) (-15 -3564 ((-208) (-208) (-208))) (-15 -3564 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1524 ((-208) (-208))) (-15 -1524 ((-159 (-208)) (-159 (-208)))) (-15 -2101 ((-208) (-208))) (-15 -2101 ((-159 (-208)) (-159 (-208)))) (-15 -1751 ((-208) (-719) (-208))) (-15 -1751 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2790 ((-208) (-208) (-208))) (-15 -2790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2323 ((-208) (-208) (-208))) (-15 -2323 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1374 ((-208) (-208) (-208))) (-15 -1374 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3981 ((-208) (-208) (-208))) (-15 -3981 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1607 ((-159 (-208)) (-159 (-208)))) (-15 -1607 ((-208) (-208))) (-15 -3179 ((-208) (-208))) (-15 -3179 ((-159 (-208)) (-159 (-208)))) (-15 -4245 ((-208) (-208) (-208))) (-15 -4245 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))) (T -209))
+((-4245 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-4245 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3981 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3981 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1374 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1374 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2323 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2323 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))))
+(-10 -7 (-15 -3187 ((-208) (-208))) (-15 -3187 ((-159 (-208)) (-159 (-208)))) (-15 -3564 ((-208) (-208) (-208))) (-15 -3564 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1524 ((-208) (-208))) (-15 -1524 ((-159 (-208)) (-159 (-208)))) (-15 -2101 ((-208) (-208))) (-15 -2101 ((-159 (-208)) (-159 (-208)))) (-15 -1751 ((-208) (-719) (-208))) (-15 -1751 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2790 ((-208) (-208) (-208))) (-15 -2790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2323 ((-208) (-208) (-208))) (-15 -2323 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1374 ((-208) (-208) (-208))) (-15 -1374 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3981 ((-208) (-208) (-208))) (-15 -3981 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1607 ((-159 (-208)) (-159 (-208)))) (-15 -1607 ((-208) (-208))) (-15 -3179 ((-208) (-208))) (-15 -3179 ((-159 (-208)) (-159 (-208)))) (-15 -4245 ((-208) (-208) (-208))) (-15 -4245 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) NIL)) (-3844 (($ $ $) NIL)) (-4114 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-2223 (($ |#1| |#1| |#1|) 32)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) NIL)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-1181 |#1|)) NIL)) (-3959 (($ $ (-530) (-1181 |#1|)) NIL)) (-1573 (($ |#1| |#1| |#1|) 31)) (-1570 (($ (-719) |#1|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) NIL (|has| |#1| (-289)))) (-1325 (((-1181 |#1|) $ (-530)) NIL)) (-2796 (($ |#1|) 30)) (-2290 (($ |#1|) 29)) (-3248 (($ |#1|) 28)) (-2426 (((-719) $) NIL (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) NIL (|has| |#1| (-522)))) (-2515 (((-597 (-1181 |#1|)) $) NIL (|has| |#1| (-522)))) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) NIL (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#1|))) 11)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3054 (($) 12)) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) NIL (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-1181 |#1|) $ (-530)) NIL)) (-2366 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) 15) (((-1181 |#1|) (-1181 |#1|) $) NIL) (((-884 |#1|) $ (-884 |#1|)) 20)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-210 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3054 ($)) (-15 -3248 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -2796 ($ |#1|)) (-15 -1573 ($ |#1| |#1| |#1|)) (-15 -2223 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1121))) (T -210))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121))) (-5 *1 (-210 *3)))) (-3054 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3248 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2290 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2796 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-1573 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2223 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
+(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3054 ($)) (-15 -3248 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -2796 ($ |#1|)) (-15 -1573 ($ |#1| |#1| |#1|)) (-15 -2223 ($ |#1| |#1| |#1|))))
+((-2901 (($ (-1 (-110) |#2|) $) 16)) (-1842 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-1560 (($) NIL) (($ (-597 |#2|)) 11)) (-2248 (((-110) $ $) 23)))
+(((-211 |#1| |#2|) (-10 -8 (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-212 |#2|) (-1027)) (T -211))
+NIL
+(-10 -8 (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-212 |#1|) (-133) (-1027)) (T -212))
NIL
(-13 (-218 |t#1|))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) 11) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 19) (($ $ (-719)) NIL) (($ $) 16)) (-3286 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-719)) 14) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)))
-(((-213 |#1| |#2|) (-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3286 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3286 (|#1| |#1| (-1099))) (-15 -3286 (|#1| |#1| (-597 (-1099)))) (-15 -3286 (|#1| |#1| (-1099) (-719))) (-15 -3286 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3286 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3286 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-984)) (T -213))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) 11) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 19) (($ $ (-719)) NIL) (($ $) 16)) (-3340 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-719)) 14) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)))
+(((-213 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1099))) (-15 -3340 (|#1| |#1| (-597 (-1099)))) (-15 -3340 (|#1| |#1| (-1099) (-719))) (-15 -3340 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-984)) (T -213))
NIL
-(-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3286 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3286 (|#1| |#1| (-1099))) (-15 -3286 (|#1| |#1| (-597 (-1099)))) (-15 -3286 (|#1| |#1| (-1099) (-719))) (-15 -3286 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3286 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3286 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3211 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-719)) 51) (($ $ (-597 (-1099)) (-597 (-719))) 44 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 43 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 42 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 41 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 39 (|has| |#1| (-216))) (($ $) 37 (|has| |#1| (-216)))) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 48 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 47 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 46 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 45 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 40 (|has| |#1| (-216))) (($ $) 38 (|has| |#1| (-216)))) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1099))) (-15 -3340 (|#1| |#1| (-597 (-1099)))) (-15 -3340 (|#1| |#1| (-1099) (-719))) (-15 -3340 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 42 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 41 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 40 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 39 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 37 (|has| |#1| (-216))) (($ $) 35 (|has| |#1| (-216)))) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-719)) 47) (($ $ (-597 (-1099)) (-597 (-719))) 46 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 45 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 44 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 43 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 38 (|has| |#1| (-216))) (($ $) 36 (|has| |#1| (-216)))) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-214 |#1|) (-133) (-984)) (T -214))
-((-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))))
-(-13 (-984) (-10 -8 (-15 -3211 ($ $ (-1 |t#1| |t#1|))) (-15 -3211 ($ $ (-1 |t#1| |t#1|) (-719))) (-15 -3286 ($ $ (-1 |t#1| |t#1|))) (-15 -3286 ($ $ (-1 |t#1| |t#1|) (-719))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)))
+((-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))))
+(-13 (-984) (-10 -8 (-15 -3289 ($ $ (-1 |t#1| |t#1|))) (-15 -3289 ($ $ (-1 |t#1| |t#1|) (-719))) (-15 -3340 ($ $ (-1 |t#1| |t#1|))) (-15 -3340 ($ $ (-1 |t#1| |t#1|) (-719))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-216) |has| |#1| (-216)) ((-599 $) . T) ((-675) . T) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3211 (($ $) NIL) (($ $ (-719)) 10)) (-3286 (($ $) 8) (($ $ (-719)) 12)))
-(((-215 |#1|) (-10 -8 (-15 -3286 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3286 (|#1| |#1|)) (-15 -3211 (|#1| |#1|))) (-216)) (T -215))
+((-3289 (($ $) NIL) (($ $ (-719)) 10)) (-3340 (($ $) 8) (($ $ (-719)) 12)))
+(((-215 |#1|) (-10 -8 (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1|))) (-216)) (T -215))
NIL
-(-10 -8 (-15 -3286 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3286 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3211 (($ $) 38) (($ $ (-719)) 36)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $) 37) (($ $ (-719)) 35)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $) 36) (($ $ (-719)) 34)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 35) (($ $ (-719)) 33)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-216) (-133)) (T -216))
-((-3211 (*1 *1 *1) (-4 *1 (-216))) (-3286 (*1 *1 *1) (-4 *1 (-216))) (-3211 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))) (-3286 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))))
-(-13 (-984) (-10 -8 (-15 -3211 ($ $)) (-15 -3286 ($ $)) (-15 -3211 ($ $ (-719))) (-15 -3286 ($ $ (-719)))))
+((-3289 (*1 *1 *1) (-4 *1 (-216))) (-3340 (*1 *1 *1) (-4 *1 (-216))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))))
+(-13 (-984) (-10 -8 (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3839 (($) 12) (($ (-597 |#2|)) NIL)) (-2441 (($ $) 14)) (-2268 (($ (-597 |#2|)) 10)) (-2258 (((-804) $) 21)))
-(((-217 |#1| |#2|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -3839 (|#1| (-597 |#2|))) (-15 -3839 (|#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -2441 (|#1| |#1|))) (-218 |#2|) (-1027)) (T -217))
+((-1560 (($) 12) (($ (-597 |#2|)) NIL)) (-2579 (($ $) 14)) (-2377 (($ (-597 |#2|)) 10)) (-2366 (((-804) $) 21)))
+(((-217 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2579 (|#1| |#1|))) (-218 |#2|) (-1027)) (T -217))
NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -3839 (|#1| (-597 |#2|))) (-15 -3839 (|#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -2441 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2579 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-218 |#1|) (-133) (-1027)) (T -218))
-((-3839 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3)))) (-1283 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))) (-2421 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))))
-(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -3839 ($)) (-15 -3839 ($ (-597 |t#1|))) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1283 ($ |t#1| $)) (-15 -1283 ($ (-1 (-110) |t#1|) $)) (-15 -2421 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3851 (((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530)))) 27)))
-(((-219) (-10 -7 (-15 -3851 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))) (T -219))
-((-3851 (*1 *2 *3) (-12 (-5 *3 (-276 (-893 (-530)))) (-5 *2 (-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719)))))) (-5 *1 (-219)))))
-(-10 -7 (-15 -3851 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))
-((-2879 (((-719)) 51)) (-1298 (((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 49) (((-637 |#3|) (-637 $)) 41) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1248 (((-130)) 57)) (-3211 (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-2258 (((-1181 |#3|) $) NIL) (($ |#3|) NIL) (((-804) $) NIL) (($ (-530)) 12) (($ (-388 (-530))) NIL)) (-1667 (((-719)) 15)) (-2257 (($ $ |#3|) 54)))
-(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)) (-15 -1667 ((-719))) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2258 (|#1| |#3|)) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -1298 ((-637 |#3|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2879 ((-719))) (-15 -2257 (|#1| |#1| |#3|)) (-15 -1248 ((-130))) (-15 -2258 ((-1181 |#3|) |#1|))) (-221 |#2| |#3|) (-719) (-1135)) (T -220))
-((-1248 (*1 *2) (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-2879 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-1667 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))))
-(-10 -8 (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)) (-15 -1667 ((-719))) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2258 (|#1| |#3|)) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -1298 ((-637 |#3|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2879 ((-719))) (-15 -2257 (|#1| |#1| |#3|)) (-15 -1248 ((-130))) (-15 -2258 ((-1181 |#3|) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-3015 (((-110) $) 72 (|has| |#2| (-128)))) (-1909 (($ (-862)) 127 (|has| |#2| (-984)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-3821 (($ $ $) 123 (|has| |#2| (-741)))) (-3618 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-4102 (((-110) $ (-719)) 8)) (-2879 (((-719)) 109 (|has| |#2| (-349)))) (-3592 (((-530) $) 121 (|has| |#2| (-793)))) (-2416 ((|#2| $ (-530) |#2|) 52 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-3012 (((-3 (-530) "failed") $) 67 (-3340 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) 64 (-3340 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1027)))) (-2446 (((-530) $) 68 (-3340 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) 65 (-3340 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 60 (|has| |#2| (-1027)))) (-1298 (((-637 (-530)) (-637 $)) 108 (-3340 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 107 (-3340 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 106 (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) 105 (|has| |#2| (-984)))) (-1673 (((-3 $ "failed") $) 80 (|has| |#2| (-675)))) (-1376 (($) 112 (|has| |#2| (-349)))) (-2858 ((|#2| $ (-530) |#2|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#2| $ (-530)) 51)) (-2991 (((-110) $) 119 (|has| |#2| (-793)))) (-2456 (((-597 |#2|) $) 30 (|has| $ (-6 -4270)))) (-3150 (((-110) $) 83 (|has| |#2| (-675)))) (-3002 (((-110) $) 120 (|has| |#2| (-793)))) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 118 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-3252 (((-597 |#2|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 117 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2847 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2|) $) 35)) (-3830 (((-862) $) 111 (|has| |#2| (-349)))) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#2| (-1027)))) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-1910 (($ (-862)) 110 (|has| |#2| (-349)))) (-2485 (((-1046) $) 21 (|has| |#2| (-1027)))) (-2907 ((|#2| $) 42 (|has| (-530) (-795)))) (-1946 (($ $ |#2|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#2| $ (-530) |#2|) 50) ((|#2| $ (-530)) 49)) (-1796 ((|#2| $ $) 126 (|has| |#2| (-984)))) (-2515 (($ (-1181 |#2|)) 128)) (-1248 (((-130)) 125 (|has| |#2| (-344)))) (-3211 (($ $) 100 (-3340 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 98 (-3340 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 96 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 95 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 94 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 93 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 86 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-984)))) (-2494 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4270))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-1181 |#2|) $) 129) (($ (-530)) 66 (-1476 (-3340 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) 63 (-3340 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 62 (|has| |#2| (-1027))) (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-1667 (((-719)) 104 (|has| |#2| (-984)))) (-1515 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4270)))) (-2218 (($ $) 122 (|has| |#2| (-793)))) (-2723 (($ $ (-719)) 81 (|has| |#2| (-675))) (($ $ (-862)) 77 (|has| |#2| (-675)))) (-2943 (($) 71 (|has| |#2| (-128)) CONST)) (-2955 (($) 84 (|has| |#2| (-675)) CONST)) (-3286 (($ $) 99 (-3340 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 97 (-3340 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 92 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 91 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 90 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 89 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 88 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-984)))) (-2204 (((-110) $ $) 115 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2182 (((-110) $ $) 114 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2195 (((-110) $ $) 116 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2172 (((-110) $ $) 113 (-1476 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2257 (($ $ |#2|) 124 (|has| |#2| (-344)))) (-2245 (($ $ $) 102 (|has| |#2| (-984))) (($ $) 101 (|has| |#2| (-984)))) (-2234 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-719)) 82 (|has| |#2| (-675))) (($ $ (-862)) 78 (|has| |#2| (-675)))) (* (($ (-530) $) 103 (|has| |#2| (-984))) (($ $ $) 79 (|has| |#2| (-675))) (($ $ |#2|) 76 (|has| |#2| (-675))) (($ |#2| $) 75 (|has| |#2| (-675))) (($ (-719) $) 73 (|has| |#2| (-128))) (($ (-862) $) 70 (|has| |#2| (-25)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-1560 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3)))) (-1842 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))))
+(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -1560 ($)) (-15 -1560 ($ (-597 |t#1|))) (IF (|has| $ (-6 -4269)) (PROGN (-15 -1842 ($ |t#1| $)) (-15 -1842 ($ (-1 (-110) |t#1|) $)) (-15 -2901 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-3142 (((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530)))) 27)))
+(((-219) (-10 -7 (-15 -3142 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))) (T -219))
+((-3142 (*1 *2 *3) (-12 (-5 *3 (-276 (-893 (-530)))) (-5 *2 (-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719)))))) (-5 *1 (-219)))))
+(-10 -7 (-15 -3142 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))
+((-3023 (((-719)) 51)) (-2329 (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 49) (((-637 |#3|) (-637 $)) 41) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2488 (((-130)) 57)) (-3289 (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (($ |#3|) NIL) (((-804) $) NIL) (($ (-530)) 12) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 15)) (-2364 (($ $ |#3|) 54)))
+(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)) (-15 -3300 ((-719))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -3023 ((-719))) (-15 -2364 (|#1| |#1| |#3|)) (-15 -2488 ((-130))) (-15 -2366 ((-1181 |#3|) |#1|))) (-221 |#2| |#3|) (-719) (-1135)) (T -220))
+((-2488 (*1 *2) (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3023 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3300 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))))
+(-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)) (-15 -3300 ((-719))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -3023 ((-719))) (-15 -2364 (|#1| |#1| |#3|)) (-15 -2488 ((-130))) (-15 -2366 ((-1181 |#3|) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-1813 (((-110) $) 72 (|has| |#2| (-128)))) (-3930 (($ (-862)) 125 (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3418 (($ $ $) 121 (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) 8)) (-3023 (((-719)) 107 (|has| |#2| (-349)))) (-1867 (((-530) $) 119 (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) 52 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3139 (((-3 (-530) "failed") $) 67 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) 64 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1027)))) (-2585 (((-530) $) 68 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) 65 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 60 (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) 106 (-3380 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 105 (-3380 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 104 (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) 103 (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) 79 (|has| |#2| (-675)))) (-1364 (($) 110 (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 51)) (-2514 (((-110) $) 117 (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) 30 (|has| $ (-6 -4269)))) (-2731 (((-110) $) 81 (|has| |#2| (-675)))) (-2166 (((-110) $) 118 (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 116 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2395 (((-597 |#2|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 115 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-3583 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 35)) (-1905 (((-862) $) 109 (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-1986 (($ (-862)) 108 (|has| |#2| (-349)))) (-2624 (((-1046) $) 21 (|has| |#2| (-1027)))) (-3048 ((|#2| $) 42 (|has| (-530) (-795)))) (-1522 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ (-530) |#2|) 50) ((|#2| $ (-530)) 49)) (-3334 ((|#2| $ $) 124 (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) 126)) (-2488 (((-130)) 123 (|has| |#2| (-344)))) (-3289 (($ $) 98 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 96 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 94 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 93 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 92 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 91 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 84 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-1181 |#2|) $) 127) (($ (-530)) 66 (-1461 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) 63 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 62 (|has| |#2| (-1027))) (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-3300 (((-719)) 102 (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-3934 (($ $) 120 (|has| |#2| (-793)))) (-3080 (($) 71 (|has| |#2| (-128)) CONST)) (-3093 (($) 82 (|has| |#2| (-675)) CONST)) (-3340 (($ $) 97 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 95 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 90 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 89 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 88 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 87 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 86 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-984)))) (-2306 (((-110) $ $) 113 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2284 (((-110) $ $) 112 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2248 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2297 (((-110) $ $) 114 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2272 (((-110) $ $) 111 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2364 (($ $ |#2|) 122 (|has| |#2| (-344)))) (-2351 (($ $ $) 100 (|has| |#2| (-984))) (($ $) 99 (|has| |#2| (-984)))) (-2339 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-719)) 80 (|has| |#2| (-675))) (($ $ (-862)) 77 (|has| |#2| (-675)))) (* (($ (-530) $) 101 (|has| |#2| (-984))) (($ $ $) 78 (|has| |#2| (-675))) (($ $ |#2|) 76 (|has| |#2| (-675))) (($ |#2| $) 75 (|has| |#2| (-675))) (($ (-719) $) 73 (|has| |#2| (-128))) (($ (-862) $) 70 (|has| |#2| (-25)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-221 |#1| |#2|) (-133) (-719) (-1135)) (T -221))
-((-2515 (*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1135)) (-4 *1 (-221 *3 *4)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984)) (-4 *4 (-1135)))) (-1796 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))))
-(-13 (-563 (-530) |t#2|) (-571 (-1181 |t#2|)) (-10 -8 (-6 -4270) (-15 -2515 ($ (-1181 |t#2|))) (IF (|has| |t#2| (-1027)) (-6 (-392 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-984)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -1909 ($ (-862))) (-15 -1796 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-675)) (PROGN (-6 (-675)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1188 |t#2|)) |%noBranch|)))
-(((-21) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1476 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1476 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-571 (-804)) -1476 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-571 (-804))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-571 (-1181 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-984)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-984))) ((-268 #0=(-530) |#2|) . T) ((-270 #0# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-984)) ((-392 |#2|) |has| |#2| (-1027)) ((-468 |#2|) . T) ((-563 #0# |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) -1476 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-599 $) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-593 (-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))) ((-593 |#2|) |has| |#2| (-984)) ((-666 |#2|) -1476 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-675) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-739) |has| |#2| (-793)) ((-740) -1476 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-741) |has| |#2| (-741)) ((-742) -1476 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-743) -1476 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-793) |has| |#2| (-793)) ((-795) -1476 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-841 (-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))) ((-975 (-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))) ((-975 (-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) ((-975 |#2|) |has| |#2| (-1027)) ((-990 |#2|) -1476 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-990 $) |has| |#2| (-162)) ((-984) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-991) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-1039) -1476 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-1027) -1476 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1135) . T) ((-1188 |#2|) |has| |#2| (-344)))
-((-1802 (((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 21)) (-3856 ((|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 23)) (-3114 (((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)) 18)))
-(((-222 |#1| |#2| |#3|) (-10 -7 (-15 -1802 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3856 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3114 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) (-719) (-1135) (-1135)) (T -222))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-5 *2 (-223 *5 *7)) (-5 *1 (-222 *5 *6 *7)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719)) (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5)) (-5 *1 (-222 *6 *7 *5)))))
-(-10 -7 (-15 -1802 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3856 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3114 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|))))
-((-2246 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3015 (((-110) $) NIL (|has| |#2| (-128)))) (-1909 (($ (-862)) 56 (|has| |#2| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) 60 (|has| |#2| (-741)))) (-3618 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-4102 (((-110) $ (-719)) 17)) (-2879 (((-719)) NIL (|has| |#2| (-349)))) (-3592 (((-530) $) NIL (|has| |#2| (-793)))) (-2416 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1027)))) (-2446 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 27 (|has| |#2| (-1027)))) (-1298 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-1673 (((-3 $ "failed") $) 53 (|has| |#2| (-675)))) (-1376 (($) NIL (|has| |#2| (-349)))) (-2858 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ (-530)) 51)) (-2991 (((-110) $) NIL (|has| |#2| (-793)))) (-2456 (((-597 |#2|) $) 15 (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (|has| |#2| (-675)))) (-3002 (((-110) $) NIL (|has| |#2| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 20 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3252 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 (((-530) $) 50 (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2|) $) 41)) (-3830 (((-862) $) NIL (|has| |#2| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#2| (-1027)))) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#2| (-349)))) (-2485 (((-1046) $) NIL (|has| |#2| (-1027)))) (-2907 ((|#2| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) 21)) (-1796 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2515 (($ (-1181 |#2|)) 18)) (-1248 (((-130)) NIL (|has| |#2| (-344)))) (-3211 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2494 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#2|) $) 10) (($ (-530)) NIL (-1476 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 13 (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-1667 (((-719)) NIL (|has| |#2| (-984)))) (-1515 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#2| (-793)))) (-2723 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (-2943 (($) 35 (|has| |#2| (-128)) CONST)) (-2955 (($) 38 (|has| |#2| (-675)) CONST)) (-3286 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2148 (((-110) $ $) 26 (|has| |#2| (-1027)))) (-2195 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2172 (((-110) $ $) 58 (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2234 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) 44 (|has| |#2| (-675))) (($ $ |#2|) 42 (|has| |#2| (-675))) (($ |#2| $) 43 (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2658 (*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1135)) (-4 *1 (-221 *3 *4)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984)) (-4 *4 (-1135)))) (-3334 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))))
+(-13 (-563 (-530) |t#2|) (-571 (-1181 |t#2|)) (-10 -8 (-6 -4269) (-15 -2658 ($ (-1181 |t#2|))) (IF (|has| |t#2| (-1027)) (-6 (-392 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-984)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -3930 ($ (-862))) (-15 -3334 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-675)) (PROGN (-6 (-675)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1188 |t#2|)) |%noBranch|)))
+(((-21) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-571 (-804))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-571 (-1181 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-984)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-984))) ((-268 #0=(-530) |#2|) . T) ((-270 #0# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-984)) ((-392 |#2|) |has| |#2| (-1027)) ((-468 |#2|) . T) ((-563 #0# |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-599 $) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-593 (-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))) ((-593 |#2|) |has| |#2| (-984)) ((-666 |#2|) -1461 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-675) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-739) |has| |#2| (-793)) ((-740) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-741) |has| |#2| (-741)) ((-742) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-743) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-793) |has| |#2| (-793)) ((-795) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-841 (-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))) ((-975 (-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))) ((-975 (-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) ((-975 |#2|) |has| |#2| (-1027)) ((-990 |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-990 $) |has| |#2| (-162)) ((-984) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-991) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-1039) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-1027) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1135) . T) ((-1188 |#2|) |has| |#2| (-344)))
+((-2753 (((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 21)) (-2134 ((|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 23)) (-3217 (((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)) 18)))
+(((-222 |#1| |#2| |#3|) (-10 -7 (-15 -2753 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -2134 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3217 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) (-719) (-1135) (-1135)) (T -222))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-5 *2 (-223 *5 *7)) (-5 *1 (-222 *5 *6 *7)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719)) (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5)) (-5 *1 (-222 *6 *7 *5)))))
+(-10 -7 (-15 -2753 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -2134 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3217 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|))))
+((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) 56 (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) 60 (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) 17)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 27 (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) 53 (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 51)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) 15 (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 20 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) 50 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 41)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) 21)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) 18)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) 10) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 13 (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) 35 (|has| |#2| (-128)) CONST)) (-3093 (($) 38 (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) 26 (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 58 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) 44 (|has| |#2| (-675))) (($ $ |#2|) 42 (|has| |#2| (-675))) (($ |#2| $) 43 (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-223 |#1| |#2|) (-221 |#1| |#2|) (-719) (-1135)) (T -223))
NIL
(-221 |#1| |#2|)
-((-3881 (((-530) (-597 (-1082))) 24) (((-530) (-1082)) 19)) (-2408 (((-1186) (-597 (-1082))) 29) (((-1186) (-1082)) 28)) (-3862 (((-1082)) 14)) (-3872 (((-1082) (-530) (-1082)) 16)) (-3721 (((-597 (-1082)) (-597 (-1082)) (-530) (-1082)) 25) (((-1082) (-1082) (-530) (-1082)) 23)) (-1728 (((-597 (-1082)) (-597 (-1082))) 13) (((-597 (-1082)) (-1082)) 11)))
-(((-224) (-10 -7 (-15 -1728 ((-597 (-1082)) (-1082))) (-15 -1728 ((-597 (-1082)) (-597 (-1082)))) (-15 -3862 ((-1082))) (-15 -3872 ((-1082) (-530) (-1082))) (-15 -3721 ((-1082) (-1082) (-530) (-1082))) (-15 -3721 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2408 ((-1186) (-1082))) (-15 -2408 ((-1186) (-597 (-1082)))) (-15 -3881 ((-530) (-1082))) (-15 -3881 ((-530) (-597 (-1082)))))) (T -224))
-((-3881 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1186)) (-5 *1 (-224)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-224)))) (-3721 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 (-1082))) (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *1 (-224)))) (-3721 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-3872 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-3862 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082)))))
-(-10 -7 (-15 -1728 ((-597 (-1082)) (-1082))) (-15 -1728 ((-597 (-1082)) (-597 (-1082)))) (-15 -3862 ((-1082))) (-15 -3872 ((-1082) (-530) (-1082))) (-15 -3721 ((-1082) (-1082) (-530) (-1082))) (-15 -3721 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2408 ((-1186) (-1082))) (-15 -2408 ((-1186) (-597 (-1082)))) (-15 -3881 ((-530) (-1082))) (-15 -3881 ((-530) (-597 (-1082)))))
-((-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 9)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 18)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) 25) (($ $ (-388 (-530))) NIL)))
-(((-225 |#1|) (-10 -8 (-15 -2723 (|#1| |#1| (-530))) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2723 (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -2723 (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-226)) (T -225))
-NIL
-(-10 -8 (-15 -2723 (|#1| |#1| (-530))) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2723 (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -2723 (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 39)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 44)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 40)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 41)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 43) (($ $ (-388 (-530))) 42)))
+((-1576 (((-530) (-597 (-1082))) 24) (((-530) (-1082)) 19)) (-2541 (((-1186) (-597 (-1082))) 29) (((-1186) (-1082)) 28)) (-2839 (((-1082)) 14)) (-1275 (((-1082) (-530) (-1082)) 16)) (-3705 (((-597 (-1082)) (-597 (-1082)) (-530) (-1082)) 25) (((-1082) (-1082) (-530) (-1082)) 23)) (-1774 (((-597 (-1082)) (-597 (-1082))) 13) (((-597 (-1082)) (-1082)) 11)))
+(((-224) (-10 -7 (-15 -1774 ((-597 (-1082)) (-1082))) (-15 -1774 ((-597 (-1082)) (-597 (-1082)))) (-15 -2839 ((-1082))) (-15 -1275 ((-1082) (-530) (-1082))) (-15 -3705 ((-1082) (-1082) (-530) (-1082))) (-15 -3705 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2541 ((-1186) (-1082))) (-15 -2541 ((-1186) (-597 (-1082)))) (-15 -1576 ((-530) (-1082))) (-15 -1576 ((-530) (-597 (-1082)))))) (T -224))
+((-1576 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1186)) (-5 *1 (-224)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-224)))) (-3705 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 (-1082))) (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *1 (-224)))) (-3705 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-1275 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-2839 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)))) (-1774 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082)))))
+(-10 -7 (-15 -1774 ((-597 (-1082)) (-1082))) (-15 -1774 ((-597 (-1082)) (-597 (-1082)))) (-15 -2839 ((-1082))) (-15 -1275 ((-1082) (-530) (-1082))) (-15 -3705 ((-1082) (-1082) (-530) (-1082))) (-15 -3705 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2541 ((-1186) (-1082))) (-15 -2541 ((-1186) (-597 (-1082)))) (-15 -1576 ((-530) (-1082))) (-15 -1576 ((-530) (-597 (-1082)))))
+((** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 16)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) 23) (($ $ (-388 (-530))) NIL)))
+(((-225 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-226)) (T -225))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 37)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 41)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 38)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 40) (($ $ (-388 (-530))) 39)))
(((-226) (-133)) (T -226))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530)))) (-2723 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530)))) (-2359 (*1 *1 *1) (-4 *1 (-226))))
-(-13 (-272) (-37 (-388 (-530))) (-10 -8 (-15 ** ($ $ (-530))) (-15 -2723 ($ $ (-530))) (-15 -2359 ($ $))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530)))) (-2483 (*1 *1 *1) (-4 *1 (-226))))
+(-13 (-272) (-37 (-388 (-530))) (-10 -8 (-15 ** ($ $ (-530))) (-15 -2483 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-272) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-675) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-2040 (($ $) 57)) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-3902 (($ $ $) 53 (|has| $ (-6 -4271)))) (-3892 (($ $ $) 52 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-3386 (($ $) 56)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4037 (($ $) 55)) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2294 ((|#1| $) 59)) (-4144 (($ $) 58)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47)) (-1984 (((-530) $ $) 44)) (-3663 (((-110) $) 46)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-1501 (($ $ $) 54 (|has| $ (-6 -4271)))) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-2133 (($ $) 57)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1259 (($ $ $) 53 (|has| $ (-6 -4270)))) (-2756 (($ $ $) 52 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-1642 (($ $) 56)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4052 (($ $) 55)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 59)) (-2846 (($ $) 58)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-1328 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-227 |#1|) (-133) (-1135)) (T -227))
-((-2294 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-4144 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-3386 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1501 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-3902 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-3892 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -2294 (|t#1| $)) (-15 -4144 ($ $)) (-15 -2040 ($ $)) (-15 -3386 ($ $)) (-15 -4037 ($ $)) (IF (|has| $ (-6 -4271)) (PROGN (-15 -1501 ($ $ $)) (-15 -3902 ($ $ $)) (-15 -3892 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) NIL)) (-3165 ((|#1| $) NIL)) (-2040 (($ $) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-4017 (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-1317 (($ $) 10 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1467 (($ $ $) NIL (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "rest" $) NIL (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) NIL)) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3152 ((|#1| $) NIL)) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2918 (($ $) NIL) (($ $ (-719)) NIL)) (-3929 (($ $) NIL (|has| |#1| (-1027)))) (-2939 (($ $) 7 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2272 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1539 (((-110) $) NIL)) (-1944 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-2767 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3842 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2783 (($ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2294 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3440 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1549 (((-110) $) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-719) $ "count") 16)) (-1984 (((-530) $ $) NIL)) (-2434 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-4058 (($ (-597 |#1|)) 22)) (-3663 (((-110) $) NIL)) (-1513 (($ $) NIL)) (-1489 (($ $) NIL (|has| $ (-6 -4271)))) (-1524 (((-719) $) NIL)) (-1534 (($ $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-1501 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3476 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2258 (($ (-597 |#1|)) 17) (((-597 |#1|) $) 18) (((-804) $) 21 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) 14 (|has| $ (-6 -4270)))))
-(((-228 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -2258 ($ (-597 |#1|))) (-15 -2258 ((-597 |#1|) $)) (-15 -4058 ($ (-597 |#1|))) (-15 -1832 ($ $ "unique")) (-15 -1832 ($ $ "sort")) (-15 -1832 ((-719) $ "count")))) (-795)) (T -228))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795)))))
-(-13 (-617 |#1|) (-10 -8 (-15 -2258 ($ (-597 |#1|))) (-15 -2258 ((-597 |#1|) $)) (-15 -4058 ($ (-597 |#1|))) (-15 -1832 ($ $ "unique")) (-15 -1832 ($ $ "sort")) (-15 -1832 ((-719) $ "count"))))
-((-3913 (((-3 (-719) "failed") |#1| |#1| (-719)) 27)))
-(((-229 |#1|) (-10 -7 (-15 -3913 ((-3 (-719) "failed") |#1| |#1| (-719)))) (-13 (-675) (-349) (-10 -7 (-15 ** (|#1| |#1| (-530)))))) (T -229))
-((-3913 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-719)) (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530)))))) (-5 *1 (-229 *3)))))
-(-10 -7 (-15 -3913 ((-3 (-719) "failed") |#1| |#1| (-719))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-806 |#1|)) $) NIL)) (-2439 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3031 (($ $) NIL (|has| |#2| (-522)))) (-3006 (((-110) $) NIL (|has| |#2| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL (|has| |#2| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-2330 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1416 (($ $ (-597 (-530))) NIL)) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#2| (-850)))) (-2097 (($ $ |#2| (-223 (-2167 |#1|) (-719)) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#2| (-223 (-2167 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-806 |#1|)) NIL)) (-3674 (((-223 (-2167 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-2107 (($ (-1 (-223 (-2167 |#1|) (-719)) (-223 (-2167 |#1|) (-719))) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-1367 (((-3 (-806 |#1|) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#2| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3059 (-719))) "failed") $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#2| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-2341 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3211 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3409 (((-223 (-2167 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-223 (-2167 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#2| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-230 |#1| |#2|) (-13 (-890 |#2| (-223 (-2167 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -230))
-((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(-13 (-890 |#2| (-223 (-2167 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530))))))
-((-2246 (((-110) $ $) NIL)) (-1353 (((-1186) $) 15)) (-3934 (((-171) $) 9)) (-3924 (($ (-171)) 10)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 7)) (-2148 (((-110) $ $) 13)))
-(((-231) (-13 (-1027) (-10 -8 (-15 -3934 ((-171) $)) (-15 -3924 ($ (-171))) (-15 -1353 ((-1186) $))))) (T -231))
-((-3934 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-231)))))
-(-13 (-1027) (-10 -8 (-15 -3934 ((-171) $)) (-15 -3924 ($ (-171))) (-15 -1353 ((-1186) $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1909 (($ (-862)) NIL (|has| |#4| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) NIL (|has| |#4| (-741)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#4| (-349)))) (-3592 (((-530) $) NIL (|has| |#4| (-793)))) (-2416 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-2446 ((|#4| $) NIL (|has| |#4| (-1027))) (((-530) $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-1298 (((-2 (|:| -1896 (-637 |#4|)) (|:| |vec| (-1181 |#4|))) (-637 $) (-1181 $)) NIL (|has| |#4| (-984))) (((-637 |#4|) (-637 $)) NIL (|has| |#4| (-984))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))))) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-1376 (($) NIL (|has| |#4| (-349)))) (-2858 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#4| $ (-530)) NIL)) (-2991 (((-110) $) NIL (|has| |#4| (-793)))) (-2456 (((-597 |#4|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-3002 (((-110) $) NIL (|has| |#4| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-3252 (((-597 |#4|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2847 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#4| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#4| (-349)))) (-2485 (((-1046) $) NIL)) (-2907 ((|#4| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#4|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2002 (((-597 |#4|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#4| $ (-530) |#4|) NIL) ((|#4| $ (-530)) 12)) (-1796 ((|#4| $ $) NIL (|has| |#4| (-984)))) (-2515 (($ (-1181 |#4|)) NIL)) (-1248 (((-130)) NIL (|has| |#4| (-344)))) (-3211 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2494 (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270))) (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#4|) $) NIL) (((-804) $) NIL) (($ |#4|) NIL (|has| |#4| (-1027))) (($ (-530)) NIL (-1476 (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027))) (|has| |#4| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-1667 (((-719)) NIL (|has| |#4| (-984)))) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#4| (-793)))) (-2723 (($ $ (-719)) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) CONST)) (-3286 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2172 (((-110) $ $) NIL (-1476 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2257 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (* (($ |#2| $) 14) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-675))) (($ |#4| $) NIL (|has| |#4| (-675))) (($ $ $) NIL (-1476 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2407 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2846 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1642 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-4052 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1259 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2756 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -2407 (|t#1| $)) (-15 -2846 ($ $)) (-15 -2133 ($ $)) (-15 -1642 ($ $)) (-15 -4052 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1328 ($ $ $)) (-15 -1259 ($ $ $)) (-15 -2756 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) 10 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $) NIL) (($ $ (-719)) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) 7 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-719) $ "count") 16)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2365 (($ (-597 |#1|)) 22)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (($ (-597 |#1|)) 17) (((-597 |#1|) $) 18) (((-804) $) 21 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 14 (|has| $ (-6 -4269)))))
+(((-228 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -2366 ($ (-597 |#1|))) (-15 -2366 ((-597 |#1|) $)) (-15 -2365 ($ (-597 |#1|))) (-15 -1902 ($ $ "unique")) (-15 -1902 ($ $ "sort")) (-15 -1902 ((-719) $ "count")))) (-795)) (T -228))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795)))))
+(-13 (-617 |#1|) (-10 -8 (-15 -2366 ($ (-597 |#1|))) (-15 -2366 ((-597 |#1|) $)) (-15 -2365 ($ (-597 |#1|))) (-15 -1902 ($ $ "unique")) (-15 -1902 ($ $ "sort")) (-15 -1902 ((-719) $ "count"))))
+((-4092 (((-3 (-719) "failed") |#1| |#1| (-719)) 27)))
+(((-229 |#1|) (-10 -7 (-15 -4092 ((-3 (-719) "failed") |#1| |#1| (-719)))) (-13 (-675) (-349) (-10 -7 (-15 ** (|#1| |#1| (-530)))))) (T -229))
+((-4092 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-719)) (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530)))))) (-5 *1 (-229 *3)))))
+(-10 -7 (-15 -4092 ((-3 (-719) "failed") |#1| |#1| (-719))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) NIL)) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-223 (-2267 |#1|) (-719)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-223 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-223 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-223 (-2267 |#1|) (-719)) (-223 (-2267 |#1|) (-719))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-223 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-223 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-230 |#1| |#2|) (-13 (-890 |#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -230))
+((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
+(-13 (-890 |#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
+((-2352 (((-110) $ $) NIL)) (-1341 (((-1186) $) 15)) (-1479 (((-171) $) 9)) (-2961 (($ (-171)) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 13)))
+(((-231) (-13 (-1027) (-10 -8 (-15 -1479 ((-171) $)) (-15 -2961 ($ (-171))) (-15 -1341 ((-1186) $))))) (T -231))
+((-1479 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-231)))))
+(-13 (-1027) (-10 -8 (-15 -1479 ((-171) $)) (-15 -2961 ($ (-171))) (-15 -1341 ((-1186) $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3930 (($ (-862)) NIL (|has| |#4| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#4| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#4| (-349)))) (-1867 (((-530) $) NIL (|has| |#4| (-793)))) (-2552 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-2585 ((|#4| $) NIL (|has| |#4| (-1027))) (((-530) $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-2329 (((-2 (|:| -2030 (-637 |#4|)) (|:| |vec| (-1181 |#4|))) (-637 $) (-1181 $)) NIL (|has| |#4| (-984))) (((-637 |#4|) (-637 $)) NIL (|has| |#4| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-1364 (($) NIL (|has| |#4| (-349)))) (-3592 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#4| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#4| (-793)))) (-3779 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2166 (((-110) $) NIL (|has| |#4| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2395 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-3583 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#4| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#4| (-349)))) (-2624 (((-1046) $) NIL)) (-3048 ((|#4| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#4|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2261 (((-597 |#4|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#4| $ (-530) |#4|) NIL) ((|#4| $ (-530)) 12)) (-3334 ((|#4| $ $) NIL (|has| |#4| (-984)))) (-2658 (($ (-1181 |#4|)) NIL)) (-2488 (((-130)) NIL (|has| |#4| (-344)))) (-3289 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2632 (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#4|) $) NIL) (((-804) $) NIL) (($ |#4|) NIL (|has| |#4| (-1027))) (($ (-530)) NIL (-1461 (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027))) (|has| |#4| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-3300 (((-719)) NIL (|has| |#4| (-984)))) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#4| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) CONST)) (-3340 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2272 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2364 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (* (($ |#2| $) 14) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-675))) (($ |#4| $) NIL (|has| |#4| (-675))) (($ $ $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-232 |#1| |#2| |#3| |#4|) (-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|)) (-862) (-984) (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-599 |#2|)) (T -232))
NIL
(-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1909 (($ (-862)) NIL (|has| |#3| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) NIL (|has| |#3| (-741)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#3| (-349)))) (-3592 (((-530) $) NIL (|has| |#3| (-793)))) (-2416 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-2446 ((|#3| $) NIL (|has| |#3| (-1027))) (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-1298 (((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))))) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-1376 (($) NIL (|has| |#3| (-349)))) (-2858 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#3| $ (-530)) NIL)) (-2991 (((-110) $) NIL (|has| |#3| (-793)))) (-2456 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-3002 (((-110) $) NIL (|has| |#3| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3252 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#3| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#3| (-349)))) (-2485 (((-1046) $) NIL)) (-2907 ((|#3| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#3|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-2002 (((-597 |#3|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) 11)) (-1796 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2515 (($ (-1181 |#3|)) NIL)) (-1248 (((-130)) NIL (|has| |#3| (-344)))) (-3211 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2494 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#3|) $) NIL) (((-804) $) NIL) (($ |#3|) NIL (|has| |#3| (-1027))) (($ (-530)) NIL (-1476 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-1667 (((-719)) NIL (|has| |#3| (-984)))) (-1515 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#3| (-793)))) (-2723 (($ $ (-719)) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) CONST)) (-3286 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2172 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2257 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (* (($ |#2| $) 13) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ $ $) NIL (-1476 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3930 (($ (-862)) NIL (|has| |#3| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#3| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#3| (-349)))) (-1867 (((-530) $) NIL (|has| |#3| (-793)))) (-2552 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-2585 ((|#3| $) NIL (|has| |#3| (-1027))) (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-2329 (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-1364 (($) NIL (|has| |#3| (-349)))) (-3592 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#3| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#3| (-793)))) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2166 (((-110) $) NIL (|has| |#3| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#3| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#3| (-349)))) (-2624 (((-1046) $) NIL)) (-3048 ((|#3| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2261 (((-597 |#3|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) 11)) (-3334 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2658 (($ (-1181 |#3|)) NIL)) (-2488 (((-130)) NIL (|has| |#3| (-344)))) (-3289 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2632 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (((-804) $) NIL) (($ |#3|) NIL (|has| |#3| (-1027))) (($ (-530)) NIL (-1461 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-3300 (((-719)) NIL (|has| |#3| (-984)))) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#3| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) CONST)) (-3340 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2272 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (* (($ |#2| $) 13) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ $ $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-233 |#1| |#2| |#3|) (-13 (-221 |#1| |#3|) (-599 |#2|)) (-719) (-984) (-599 |#2|)) (T -233))
NIL
(-13 (-221 |#1| |#3|) (-599 |#2|))
-((-3964 (((-597 (-719)) $) 47) (((-597 (-719)) $ |#3|) 50)) (-3073 (((-719) $) 49) (((-719) $ |#3|) 52)) (-3943 (($ $) 65)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1334 (((-719) $ |#3|) 39) (((-719) $) 36)) (-3085 (((-1 $ (-719)) |#3|) 15) (((-1 $ (-719)) $) 77)) (-2790 ((|#4| $) 58)) (-3952 (((-110) $) 56)) (-2273 (($ $) 64)) (-4084 (($ $ (-597 (-276 $))) 97) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-597 |#3|) (-597 |#2|)) 84)) (-3211 (($ $ |#4|) NIL) (($ $ (-597 |#4|)) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) NIL) (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3974 (((-597 |#3|) $) 75)) (-3409 ((|#5| $) NIL) (((-719) $ |#4|) NIL) (((-597 (-719)) $ (-597 |#4|)) NIL) (((-719) $ |#3|) 44)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-530))) NIL) (($ $) NIL)))
-(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -4084 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#3| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#3| |#1|)) (-15 -3085 ((-1 |#1| (-719)) |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2790 (|#4| |#1|)) (-15 -3952 ((-110) |#1|)) (-15 -3073 ((-719) |#1| |#3|)) (-15 -3964 ((-597 (-719)) |#1| |#3|)) (-15 -3073 ((-719) |#1|)) (-15 -3964 ((-597 (-719)) |#1|)) (-15 -3409 ((-719) |#1| |#3|)) (-15 -1334 ((-719) |#1|)) (-15 -1334 ((-719) |#1| |#3|)) (-15 -3974 ((-597 |#3|) |#1|)) (-15 -3085 ((-1 |#1| (-719)) |#3|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -2258 (|#1| |#3|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3409 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -3409 ((-719) |#1| |#4|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -2258 (|#1| |#4|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#4| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#4| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3409 (|#5| |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3211 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3211 (|#1| |#1| |#4| (-719))) (-15 -3211 (|#1| |#1| (-597 |#4|))) (-15 -3211 (|#1| |#1| |#4|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-984) (-795) (-248 |#3|) (-741)) (T -234))
+((-1772 (((-597 (-719)) $) 47) (((-597 (-719)) $ |#3|) 50)) (-2001 (((-719) $) 49) (((-719) $ |#3|) 52)) (-3373 (($ $) 65)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2031 (((-719) $ |#3|) 39) (((-719) $) 36)) (-3135 (((-1 $ (-719)) |#3|) 15) (((-1 $ (-719)) $) 77)) (-2948 ((|#4| $) 58)) (-2003 (((-110) $) 56)) (-2384 (($ $) 64)) (-4098 (($ $ (-597 (-276 $))) 97) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-597 |#3|) (-597 |#2|)) 84)) (-3289 (($ $ |#4|) NIL) (($ $ (-597 |#4|)) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) NIL) (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3353 (((-597 |#3|) $) 75)) (-1429 ((|#5| $) NIL) (((-719) $ |#4|) NIL) (((-597 (-719)) $ (-597 |#4|)) NIL) (((-719) $ |#3|) 44)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-530))) NIL) (($ $) NIL)))
+(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#3| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#3| |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#1|)) (-15 -3373 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2948 (|#4| |#1|)) (-15 -2003 ((-110) |#1|)) (-15 -2001 ((-719) |#1| |#3|)) (-15 -1772 ((-597 (-719)) |#1| |#3|)) (-15 -2001 ((-719) |#1|)) (-15 -1772 ((-597 (-719)) |#1|)) (-15 -1429 ((-719) |#1| |#3|)) (-15 -2031 ((-719) |#1|)) (-15 -2031 ((-719) |#1| |#3|)) (-15 -3353 ((-597 |#3|) |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#3|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -1429 ((-719) |#1| |#4|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 (|#5| |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3289 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#4| (-719))) (-15 -3289 (|#1| |#1| (-597 |#4|))) (-15 -3289 (|#1| |#1| |#4|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-984) (-795) (-248 |#3|) (-741)) (T -234))
NIL
-(-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -4084 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#3| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#3| |#1|)) (-15 -3085 ((-1 |#1| (-719)) |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2790 (|#4| |#1|)) (-15 -3952 ((-110) |#1|)) (-15 -3073 ((-719) |#1| |#3|)) (-15 -3964 ((-597 (-719)) |#1| |#3|)) (-15 -3073 ((-719) |#1|)) (-15 -3964 ((-597 (-719)) |#1|)) (-15 -3409 ((-719) |#1| |#3|)) (-15 -1334 ((-719) |#1|)) (-15 -1334 ((-719) |#1| |#3|)) (-15 -3974 ((-597 |#3|) |#1|)) (-15 -3085 ((-1 |#1| (-719)) |#3|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -2258 (|#1| |#3|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3409 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -3409 ((-719) |#1| |#4|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -2258 (|#1| |#4|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#4| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#4| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3409 (|#5| |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3211 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3211 (|#1| |#1| |#4| (-719))) (-15 -3211 (|#1| |#1| (-597 |#4|))) (-15 -3211 (|#1| |#1| |#4|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3964 (((-597 (-719)) $) 214) (((-597 (-719)) $ |#2|) 212)) (-3073 (((-719) $) 213) (((-719) $ |#2|) 211)) (-2596 (((-597 |#3|) $) 110)) (-2439 (((-1095 $) $ |#3|) 125) (((-1095 |#1|) $) 124)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 87 (|has| |#1| (-522)))) (-3031 (($ $) 88 (|has| |#1| (-522)))) (-3006 (((-110) $) 90 (|has| |#1| (-522)))) (-3667 (((-719) $) 112) (((-719) $ (-597 |#3|)) 111)) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1359 (($ $) 98 (|has| |#1| (-432)))) (-3550 (((-399 $) $) 97 (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 103 (|has| |#1| (-850)))) (-3943 (($ $) 207)) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 164) (((-3 (-388 (-530)) "failed") $) 162 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 160 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2446 ((|#1| $) 165) (((-388 (-530)) $) 161 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 159 (|has| |#1| (-975 (-530)))) ((|#3| $) 135) ((|#2| $) 220)) (-2330 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-2425 (($ $) 154)) (-1298 (((-637 (-530)) (-637 $)) 134 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-1673 (((-3 $ "failed") $) 34)) (-3703 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-2411 (((-597 $) $) 109)) (-2049 (((-110) $) 96 (|has| |#1| (-850)))) (-2097 (($ $ |#1| |#4| $) 172)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 83 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ |#2|) 217) (((-719) $) 216)) (-3150 (((-110) $) 31)) (-3239 (((-719) $) 169)) (-2586 (($ (-1095 |#1|) |#3|) 117) (($ (-1095 $) |#3|) 116)) (-3683 (((-597 $) $) 126)) (-3327 (((-110) $) 152)) (-2575 (($ |#1| |#4|) 153) (($ $ |#3| (-719)) 119) (($ $ (-597 |#3|) (-597 (-719))) 118)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#3|) 120)) (-3674 ((|#4| $) 170) (((-719) $ |#3|) 122) (((-597 (-719)) $ (-597 |#3|)) 121)) (-4194 (($ $ $) 79 (|has| |#1| (-795)))) (-1757 (($ $ $) 78 (|has| |#1| (-795)))) (-2107 (($ (-1 |#4| |#4|) $) 171)) (-3114 (($ (-1 |#1| |#1|) $) 151)) (-3085 (((-1 $ (-719)) |#2|) 219) (((-1 $ (-719)) $) 206 (|has| |#1| (-216)))) (-1367 (((-3 |#3| "failed") $) 123)) (-2388 (($ $) 149)) (-2402 ((|#1| $) 148)) (-2790 ((|#3| $) 209)) (-2072 (($ (-597 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3443 (((-1082) $) 9)) (-3952 (((-110) $) 210)) (-2457 (((-3 (-597 $) "failed") $) 114)) (-3691 (((-3 (-597 $) "failed") $) 115)) (-2467 (((-3 (-2 (|:| |var| |#3|) (|:| -3059 (-719))) "failed") $) 113)) (-2273 (($ $) 208)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 166)) (-2375 ((|#1| $) 167)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 95 (|has| |#1| (-432)))) (-2108 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 102 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 99 (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) 145) (($ $ (-276 $)) 144) (($ $ $ $) 143) (($ $ (-597 $) (-597 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-597 |#3|) (-597 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-597 |#3|) (-597 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) 204 (|has| |#1| (-216))) (($ $ |#2| |#1|) 203 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) 202 (|has| |#1| (-216)))) (-2341 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3211 (($ $ |#3|) 42) (($ $ (-597 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-597 |#3|) (-597 (-719))) 39) (($ $) 238 (|has| |#1| (-216))) (($ $ (-719)) 236 (|has| |#1| (-216))) (($ $ (-1099)) 234 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 233 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 232 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 231 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3974 (((-597 |#2|) $) 218)) (-3409 ((|#4| $) 150) (((-719) $ |#3|) 130) (((-597 (-719)) $ (-597 |#3|)) 129) (((-719) $ |#2|) 215)) (-3173 (((-833 (-360)) $) 82 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 81 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 80 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 104 (-3340 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-388 (-530))) 72 (-1476 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 85 (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) 168)) (-2782 ((|#1| $ |#4|) 155) (($ $ |#3| (-719)) 128) (($ $ (-597 |#3|) (-597 (-719))) 127)) (-1795 (((-3 $ "failed") $) 73 (-1476 (-3340 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 29)) (-2084 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 89 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ |#3|) 38) (($ $ (-597 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-597 |#3|) (-597 (-719))) 35) (($ $) 237 (|has| |#1| (-216))) (($ $ (-719)) 235 (|has| |#1| (-216))) (($ $ (-1099)) 230 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 229 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 228 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 227 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2204 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 157 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#3| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#3| |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#1|)) (-15 -3373 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2948 (|#4| |#1|)) (-15 -2003 ((-110) |#1|)) (-15 -2001 ((-719) |#1| |#3|)) (-15 -1772 ((-597 (-719)) |#1| |#3|)) (-15 -2001 ((-719) |#1|)) (-15 -1772 ((-597 (-719)) |#1|)) (-15 -1429 ((-719) |#1| |#3|)) (-15 -2031 ((-719) |#1|)) (-15 -2031 ((-719) |#1| |#3|)) (-15 -3353 ((-597 |#3|) |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#3|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -1429 ((-719) |#1| |#4|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 (|#5| |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3289 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#4| (-719))) (-15 -3289 (|#1| |#1| (-597 |#4|))) (-15 -3289 (|#1| |#1| |#4|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1772 (((-597 (-719)) $) 212) (((-597 (-719)) $ |#2|) 210)) (-2001 (((-719) $) 211) (((-719) $ |#2|) 209)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-3373 (($ $) 205)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133) ((|#2| $) 218)) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| |#4| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ |#2|) 215) (((-719) $) 214)) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#4|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-2944 ((|#4| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#4| |#4|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-3135 (((-1 $ (-719)) |#2|) 217) (((-1 $ (-719)) $) 204 (|has| |#1| (-216)))) (-2040 (((-3 |#3| "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2948 ((|#3| $) 207)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-2003 (((-110) $) 208)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2384 (($ $) 206)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) 202 (|has| |#1| (-216))) (($ $ |#2| |#1|) 201 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) 200 (|has| |#1| (-216)))) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37) (($ $) 236 (|has| |#1| (-216))) (($ $ (-719)) 234 (|has| |#1| (-216))) (($ $ (-1099)) 232 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 231 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 230 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 229 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3353 (((-597 |#2|) $) 216)) (-1429 ((|#4| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127) (((-719) $ |#2|) 213)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#4|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33) (($ $) 235 (|has| |#1| (-216))) (($ $ (-719)) 233 (|has| |#1| (-216))) (($ $ (-1099)) 228 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 227 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 226 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 225 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-235 |#1| |#2| |#3| |#4|) (-133) (-984) (-795) (-248 |t#2|) (-741)) (T -235))
-((-3085 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))) (-1334 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-3409 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-3964 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-3073 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-4 *2 (-248 *4)))) (-2273 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3085 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6)))))
-(-13 (-890 |t#1| |t#4| |t#3|) (-214 |t#1|) (-975 |t#2|) (-10 -8 (-15 -3085 ((-1 $ (-719)) |t#2|)) (-15 -3974 ((-597 |t#2|) $)) (-15 -1334 ((-719) $ |t#2|)) (-15 -1334 ((-719) $)) (-15 -3409 ((-719) $ |t#2|)) (-15 -3964 ((-597 (-719)) $)) (-15 -3073 ((-719) $)) (-15 -3964 ((-597 (-719)) $ |t#2|)) (-15 -3073 ((-719) $ |t#2|)) (-15 -3952 ((-110) $)) (-15 -2790 (|t#3| $)) (-15 -2273 ($ $)) (-15 -3943 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-491 |t#2| |t#1|)) (-6 (-491 |t#2| $)) (-6 (-291 $)) (-15 -3085 ((-1 $ (-719)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#2| |#1|) |has| |#1| (-216)) ((-491 |#2| $) |has| |#1| (-216)) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#4| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#2|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4033 ((|#1| $) 54)) (-1596 ((|#1| $) 44)) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2896 (($ $) 60)) (-1389 (($ $) 48)) (-2882 ((|#1| |#1| $) 46)) (-2870 ((|#1| $) 45)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-2171 (((-719) $) 61)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-4012 ((|#1| |#1| $) 52)) (-4003 ((|#1| |#1| $) 51)) (-3440 (($ |#1| $) 40)) (-4150 (((-719) $) 55)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2886 ((|#1| $) 62)) (-3992 ((|#1| $) 50)) (-3983 ((|#1| $) 49)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-2915 ((|#1| |#1| $) 58)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2904 ((|#1| $) 59)) (-4043 (($) 57) (($ (-597 |#1|)) 56)) (-4219 (((-719) $) 43)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-4023 ((|#1| $) 53)) (-3298 (($ (-597 |#1|)) 42)) (-2876 ((|#1| $) 63)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3135 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1429 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1772 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-2001 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-4 *2 (-248 *4)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3373 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3135 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6)))))
+(-13 (-890 |t#1| |t#4| |t#3|) (-214 |t#1|) (-975 |t#2|) (-10 -8 (-15 -3135 ((-1 $ (-719)) |t#2|)) (-15 -3353 ((-597 |t#2|) $)) (-15 -2031 ((-719) $ |t#2|)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $ |t#2|)) (-15 -1772 ((-597 (-719)) $)) (-15 -2001 ((-719) $)) (-15 -1772 ((-597 (-719)) $ |t#2|)) (-15 -2001 ((-719) $ |t#2|)) (-15 -2003 ((-110) $)) (-15 -2948 (|t#3| $)) (-15 -2384 ($ $)) (-15 -3373 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-491 |t#2| |t#1|)) (-6 (-491 |t#2| $)) (-6 (-291 $)) (-15 -3135 ((-1 $ (-719)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#2| |#1|) |has| |#1| (-216)) ((-491 |#2| $) |has| |#1| (-216)) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#4| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#2|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3468 ((|#1| $) 54)) (-1598 ((|#1| $) 44)) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-1907 (($ $) 60)) (-1337 (($ $) 48)) (-3684 ((|#1| |#1| $) 46)) (-2176 ((|#1| $) 45)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-4109 (((-719) $) 61)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-1260 ((|#1| |#1| $) 52)) (-1848 ((|#1| |#1| $) 51)) (-2441 (($ |#1| $) 40)) (-4156 (((-719) $) 55)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3288 ((|#1| $) 62)) (-1458 ((|#1| $) 50)) (-3083 ((|#1| $) 49)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3203 ((|#1| |#1| $) 58)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1540 ((|#1| $) 59)) (-1909 (($) 57) (($ (-597 |#1|)) 56)) (-4218 (((-719) $) 43)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3871 ((|#1| $) 53)) (-2242 (($ (-597 |#1|)) 42)) (-1371 ((|#1| $) 63)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-236 |#1|) (-133) (-1135)) (T -236))
-((-4043 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-4023 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-4012 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-4003 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1389 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(-13 (-1047 |t#1|) (-934 |t#1|) (-10 -8 (-15 -4043 ($)) (-15 -4043 ($ (-597 |t#1|))) (-15 -4150 ((-719) $)) (-15 -4033 (|t#1| $)) (-15 -4023 (|t#1| $)) (-15 -4012 (|t#1| |t#1| $)) (-15 -4003 (|t#1| |t#1| $)) (-15 -3992 (|t#1| $)) (-15 -3983 (|t#1| $)) (-15 -1389 ($ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-934 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1047 |#1|) . T) ((-1135) . T))
-((-4053 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-1958 (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 160) (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 158) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 163) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 159) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 150) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 149) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 129) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 127) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360))) 128) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 125)) (-1920 (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 162) (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 161) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 165) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 164) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 152) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 151) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 135) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 134) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360))) 133) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 132) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360))) 100) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 99) (((-1182) (-1 (-208) (-208)) (-1022 (-360))) 96) (((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245))) 95)))
-(((-237) (-10 -7 (-15 -1920 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1920 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1920 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1920 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -4053 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -237))
-((-4053 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))))
-(-10 -7 (-15 -1920 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1920 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1920 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1920 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1958 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -4053 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
-((-1920 (((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))) 96)))
-(((-238 |#1| |#2|) (-10 -7 (-15 -1920 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))))) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|)) (T -238))
-((-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-1099)) (-5 *5 (-597 (-245))) (-4 *7 (-411 *6)) (-4 *6 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-1182)) (-5 *1 (-238 *6 *7)))))
-(-10 -7 (-15 -1920 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245)))))
-((-4085 (((-530) (-530)) 50)) (-2872 (((-530) (-530)) 51)) (-2884 (((-208) (-208)) 52)) (-4074 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208))) 49)) (-4065 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110)) 47)))
-(((-239) (-10 -7 (-15 -4065 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -4074 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -4085 ((-530) (-530))) (-15 -2872 ((-530) (-530))) (-15 -2884 ((-208) (-208))))) (T -239))
-((-2884 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-4085 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-4074 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *2 (-1183)) (-5 *1 (-239)))) (-4065 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
-(-10 -7 (-15 -4065 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -4074 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -4085 ((-530) (-530))) (-15 -2872 ((-530) (-530))) (-15 -2884 ((-208) (-208))))
-((-2258 (((-1020 (-360)) (-1020 (-297 |#1|))) 16)))
-(((-240 |#1|) (-10 -7 (-15 -2258 ((-1020 (-360)) (-1020 (-297 |#1|))))) (-13 (-795) (-522) (-572 (-360)))) (T -240))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-1020 (-297 *4))) (-4 *4 (-13 (-795) (-522) (-572 (-360)))) (-5 *2 (-1020 (-360))) (-5 *1 (-240 *4)))))
-(-10 -7 (-15 -2258 ((-1020 (-360)) (-1020 (-297 |#1|)))))
-((-1958 (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 71) (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 70) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360))) 61) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 60) (((-1059 (-208)) (-820 |#1|) (-1020 (-360))) 52) (((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 51)) (-1920 (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 74) (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 73) (((-1183) |#1| (-1020 (-360)) (-1020 (-360))) 64) (((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 63) (((-1183) (-820 |#1|) (-1020 (-360))) 56) (((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 55) (((-1182) (-818 |#1|) (-1020 (-360))) 43) (((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245))) 42) (((-1182) |#1| (-1020 (-360))) 35) (((-1182) |#1| (-1020 (-360)) (-597 (-245))) 34)))
-(((-241 |#1|) (-10 -7 (-15 -1920 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) |#1| (-1020 (-360)))) (-15 -1920 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1920 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1920 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1920 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))))) (-13 (-572 (-506)) (-1027))) (T -241))
-((-1958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-1958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-1958 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-1958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *5)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *6)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))))
-(-10 -7 (-15 -1920 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) |#1| (-1020 (-360)))) (-15 -1920 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1920 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1920 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1920 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1920 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -1958 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1958 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))))
-((-1920 (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245))) 23) (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208))) 24) (((-1182) (-597 (-884 (-208))) (-597 (-245))) 16) (((-1182) (-597 (-884 (-208)))) 17) (((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245))) 20) (((-1182) (-597 (-208)) (-597 (-208))) 21)))
-(((-242) (-10 -7 (-15 -1920 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1920 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1920 ((-1182) (-597 (-884 (-208))))) (-15 -1920 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1920 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1920 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))) (T -242))
-((-1920 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1920 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1920 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1920 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1182)) (-5 *1 (-242)))))
-(-10 -7 (-15 -1920 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1920 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1920 ((-1182) (-597 (-884 (-208))))) (-15 -1920 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1920 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1920 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))
-((-3991 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-3027 (((-862) (-597 (-245)) (-862)) 53)) (-3019 (((-862) (-597 (-245)) (-862)) 52)) (-1786 (((-597 (-360)) (-597 (-245)) (-597 (-360))) 69)) (-3062 (((-360) (-597 (-245)) (-360)) 58)) (-3052 (((-862) (-597 (-245)) (-862)) 54)) (-2982 (((-110) (-597 (-245)) (-110)) 28)) (-1291 (((-1082) (-597 (-245)) (-1082)) 20)) (-2971 (((-1082) (-597 (-245)) (-1082)) 27)) (-3039 (((-1059 (-208)) (-597 (-245))) 47)) (-1314 (((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360)))) 41)) (-2994 (((-815) (-597 (-245)) (-815)) 33)) (-3005 (((-815) (-597 (-245)) (-815)) 34)) (-2319 (((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208)))) 64)) (-2958 (((-110) (-597 (-245)) (-110)) 16)) (-1260 (((-110) (-597 (-245)) (-110)) 15)))
-(((-243) (-10 -7 (-15 -1260 ((-110) (-597 (-245)) (-110))) (-15 -2958 ((-110) (-597 (-245)) (-110))) (-15 -3991 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1291 ((-1082) (-597 (-245)) (-1082))) (-15 -2971 ((-1082) (-597 (-245)) (-1082))) (-15 -2982 ((-110) (-597 (-245)) (-110))) (-15 -2994 ((-815) (-597 (-245)) (-815))) (-15 -3005 ((-815) (-597 (-245)) (-815))) (-15 -1314 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3019 ((-862) (-597 (-245)) (-862))) (-15 -3027 ((-862) (-597 (-245)) (-862))) (-15 -3039 ((-1059 (-208)) (-597 (-245)))) (-15 -3052 ((-862) (-597 (-245)) (-862))) (-15 -3062 ((-360) (-597 (-245)) (-360))) (-15 -2319 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1786 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))) (T -243))
-((-1786 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-360))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3062 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243)))) (-3027 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3019 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1314 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3005 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2994 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2982 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2971 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1291 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3991 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2958 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1260 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(-10 -7 (-15 -1260 ((-110) (-597 (-245)) (-110))) (-15 -2958 ((-110) (-597 (-245)) (-110))) (-15 -3991 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1291 ((-1082) (-597 (-245)) (-1082))) (-15 -2971 ((-1082) (-597 (-245)) (-1082))) (-15 -2982 ((-110) (-597 (-245)) (-110))) (-15 -2994 ((-815) (-597 (-245)) (-815))) (-15 -3005 ((-815) (-597 (-245)) (-815))) (-15 -1314 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3019 ((-862) (-597 (-245)) (-862))) (-15 -3027 ((-862) (-597 (-245)) (-862))) (-15 -3039 ((-1059 (-208)) (-597 (-245)))) (-15 -3052 ((-862) (-597 (-245)) (-862))) (-15 -3062 ((-360) (-597 (-245)) (-360))) (-15 -2319 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1786 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))
-((-1924 (((-3 |#1| "failed") (-597 (-245)) (-1099)) 17)))
-(((-244 |#1|) (-10 -7 (-15 -1924 ((-3 |#1| "failed") (-597 (-245)) (-1099)))) (-1135)) (T -244))
-((-1924 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *1 (-244 *2)) (-4 *2 (-1135)))))
-(-10 -7 (-15 -1924 ((-3 |#1| "failed") (-597 (-245)) (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3991 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-3027 (($ (-862)) 76)) (-3019 (($ (-862)) 75)) (-3251 (($ (-597 (-360))) 82)) (-3062 (($ (-360)) 58)) (-3052 (($ (-862)) 77)) (-2982 (($ (-110)) 23)) (-1291 (($ (-1082)) 18)) (-2971 (($ (-1082)) 19)) (-3039 (($ (-1059 (-208))) 71)) (-1314 (($ (-597 (-1022 (-360)))) 67)) (-2902 (($ (-597 (-1022 (-360)))) 59) (($ (-597 (-1022 (-388 (-530))))) 66)) (-2936 (($ (-360)) 29) (($ (-815)) 33)) (-2894 (((-110) (-597 $) (-1099)) 91)) (-1924 (((-3 (-51) "failed") (-597 $) (-1099)) 93)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2924 (($ (-360)) 34) (($ (-815)) 35)) (-3351 (($ (-1 (-884 (-208)) (-884 (-208)))) 57)) (-2319 (($ (-1 (-884 (-208)) (-884 (-208)))) 78)) (-2913 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-2258 (((-804) $) 87)) (-2946 (($ (-110)) 24) (($ (-597 (-1022 (-360)))) 52)) (-1260 (($ (-110)) 25)) (-2148 (((-110) $ $) 89)))
-(((-245) (-13 (-1027) (-10 -8 (-15 -1260 ($ (-110))) (-15 -2946 ($ (-110))) (-15 -3991 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1291 ($ (-1082))) (-15 -2971 ($ (-1082))) (-15 -2982 ($ (-110))) (-15 -2946 ($ (-597 (-1022 (-360))))) (-15 -3351 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2936 ($ (-360))) (-15 -2936 ($ (-815))) (-15 -2924 ($ (-360))) (-15 -2924 ($ (-815))) (-15 -2913 ($ (-1 (-208) (-208)))) (-15 -2913 ($ (-1 (-208) (-208) (-208)))) (-15 -2913 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3062 ($ (-360))) (-15 -2902 ($ (-597 (-1022 (-360))))) (-15 -2902 ($ (-597 (-1022 (-388 (-530)))))) (-15 -1314 ($ (-597 (-1022 (-360))))) (-15 -3039 ($ (-1059 (-208)))) (-15 -3019 ($ (-862))) (-15 -3027 ($ (-862))) (-15 -3052 ($ (-862))) (-15 -2319 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -3251 ($ (-597 (-360)))) (-15 -1924 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2894 ((-110) (-597 $) (-1099)))))) (T -245))
-((-1260 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-3991 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-245)))) (-1291 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-2982 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-3351 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) (-3062 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3027 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245)))) (-1924 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-51)) (-5 *1 (-245)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110)) (-5 *1 (-245)))))
-(-13 (-1027) (-10 -8 (-15 -1260 ($ (-110))) (-15 -2946 ($ (-110))) (-15 -3991 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1291 ($ (-1082))) (-15 -2971 ($ (-1082))) (-15 -2982 ($ (-110))) (-15 -2946 ($ (-597 (-1022 (-360))))) (-15 -3351 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2936 ($ (-360))) (-15 -2936 ($ (-815))) (-15 -2924 ($ (-360))) (-15 -2924 ($ (-815))) (-15 -2913 ($ (-1 (-208) (-208)))) (-15 -2913 ($ (-1 (-208) (-208) (-208)))) (-15 -2913 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3062 ($ (-360))) (-15 -2902 ($ (-597 (-1022 (-360))))) (-15 -2902 ($ (-597 (-1022 (-388 (-530)))))) (-15 -1314 ($ (-597 (-1022 (-360))))) (-15 -3039 ($ (-1059 (-208)))) (-15 -3019 ($ (-862))) (-15 -3027 ($ (-862))) (-15 -3052 ($ (-862))) (-15 -2319 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -3251 ($ (-597 (-360)))) (-15 -1924 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2894 ((-110) (-597 $) (-1099)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3964 (((-597 (-719)) $) NIL) (((-597 (-719)) $ |#2|) NIL)) (-3073 (((-719) $) NIL) (((-719) $ |#2|) NIL)) (-2596 (((-597 |#3|) $) NIL)) (-2439 (((-1095 $) $ |#3|) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 |#3|)) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3943 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1051 |#1| |#2|) "failed") $) 21)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1051 |#1| |#2|) $) NIL)) (-2330 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-502 |#3|) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))))) (-1334 (((-719) $ |#2|) NIL) (((-719) $) 10)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#1|) |#3|) NIL) (($ (-1095 $) |#3|) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#3|) NIL)) (-3674 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 |#3|) (-502 |#3|)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3085 (((-1 $ (-719)) |#2|) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-1367 (((-3 |#3| "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2790 ((|#3| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-3952 (((-110) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| |#3|) (|:| -3059 (-719))) "failed") $) NIL)) (-2273 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-597 |#3|) (-597 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-2341 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3211 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3974 (((-597 |#2|) $) NIL)) (-3409 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL) (((-719) $ |#2|) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1051 |#1| |#2|)) 30) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1909 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1260 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1848 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(-13 (-1047 |t#1|) (-934 |t#1|) (-10 -8 (-15 -1909 ($)) (-15 -1909 ($ (-597 |t#1|))) (-15 -4156 ((-719) $)) (-15 -3468 (|t#1| $)) (-15 -3871 (|t#1| $)) (-15 -1260 (|t#1| |t#1| $)) (-15 -1848 (|t#1| |t#1| $)) (-15 -1458 (|t#1| $)) (-15 -3083 (|t#1| $)) (-15 -1337 ($ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-934 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1047 |#1|) . T) ((-1135) . T))
+((-1433 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-2042 (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 160) (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 158) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 163) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 159) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 150) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 149) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 129) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 127) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360))) 128) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 125)) (-1997 (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 162) (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 161) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 165) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 164) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 152) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 151) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 135) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 134) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360))) 133) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 132) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360))) 100) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 99) (((-1182) (-1 (-208) (-208)) (-1022 (-360))) 96) (((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245))) 95)))
+(((-237) (-10 -7 (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1433 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -237))
+((-1433 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))))
+(-10 -7 (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1433 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-1997 (((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))) 96)))
+(((-238 |#1| |#2|) (-10 -7 (-15 -1997 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))))) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|)) (T -238))
+((-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-1099)) (-5 *5 (-597 (-245))) (-4 *7 (-411 *6)) (-4 *6 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-1182)) (-5 *1 (-238 *6 *7)))))
+(-10 -7 (-15 -1997 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245)))))
+((-2234 (((-530) (-530)) 50)) (-4215 (((-530) (-530)) 51)) (-4225 (((-208) (-208)) 52)) (-3642 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208))) 49)) (-4038 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110)) 47)))
+(((-239) (-10 -7 (-15 -4038 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -3642 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2234 ((-530) (-530))) (-15 -4215 ((-530) (-530))) (-15 -4225 ((-208) (-208))))) (T -239))
+((-4225 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-3642 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *2 (-1183)) (-5 *1 (-239)))) (-4038 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
+(-10 -7 (-15 -4038 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -3642 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2234 ((-530) (-530))) (-15 -4215 ((-530) (-530))) (-15 -4225 ((-208) (-208))))
+((-2366 (((-1020 (-360)) (-1020 (-297 |#1|))) 16)))
+(((-240 |#1|) (-10 -7 (-15 -2366 ((-1020 (-360)) (-1020 (-297 |#1|))))) (-13 (-795) (-522) (-572 (-360)))) (T -240))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-1020 (-297 *4))) (-4 *4 (-13 (-795) (-522) (-572 (-360)))) (-5 *2 (-1020 (-360))) (-5 *1 (-240 *4)))))
+(-10 -7 (-15 -2366 ((-1020 (-360)) (-1020 (-297 |#1|)))))
+((-2042 (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 71) (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 70) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360))) 61) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 60) (((-1059 (-208)) (-820 |#1|) (-1020 (-360))) 52) (((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 51)) (-1997 (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 74) (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 73) (((-1183) |#1| (-1020 (-360)) (-1020 (-360))) 64) (((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 63) (((-1183) (-820 |#1|) (-1020 (-360))) 56) (((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 55) (((-1182) (-818 |#1|) (-1020 (-360))) 43) (((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245))) 42) (((-1182) |#1| (-1020 (-360))) 35) (((-1182) |#1| (-1020 (-360)) (-597 (-245))) 34)))
+(((-241 |#1|) (-10 -7 (-15 -1997 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) |#1| (-1020 (-360)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))))) (-13 (-572 (-506)) (-1027))) (T -241))
+((-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))))
+(-10 -7 (-15 -1997 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) |#1| (-1020 (-360)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))))
+((-1997 (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245))) 23) (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208))) 24) (((-1182) (-597 (-884 (-208))) (-597 (-245))) 16) (((-1182) (-597 (-884 (-208)))) 17) (((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245))) 20) (((-1182) (-597 (-208)) (-597 (-208))) 21)))
+(((-242) (-10 -7 (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1997 ((-1182) (-597 (-884 (-208))))) (-15 -1997 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))) (T -242))
+((-1997 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1182)) (-5 *1 (-242)))))
+(-10 -7 (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1997 ((-1182) (-597 (-884 (-208))))) (-15 -1997 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))
+((-1375 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-3249 (((-862) (-597 (-245)) (-862)) 53)) (-3842 (((-862) (-597 (-245)) (-862)) 52)) (-1854 (((-597 (-360)) (-597 (-245)) (-597 (-360))) 69)) (-3424 (((-360) (-597 (-245)) (-360)) 58)) (-3713 (((-862) (-597 (-245)) (-862)) 54)) (-4191 (((-110) (-597 (-245)) (-110)) 28)) (-1283 (((-1082) (-597 (-245)) (-1082)) 20)) (-1618 (((-1082) (-597 (-245)) (-1082)) 27)) (-3134 (((-1059 (-208)) (-597 (-245))) 47)) (-3694 (((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360)))) 41)) (-2831 (((-815) (-597 (-245)) (-815)) 33)) (-2451 (((-815) (-597 (-245)) (-815)) 34)) (-3672 (((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208)))) 64)) (-3900 (((-110) (-597 (-245)) (-110)) 16)) (-4178 (((-110) (-597 (-245)) (-110)) 15)))
+(((-243) (-10 -7 (-15 -4178 ((-110) (-597 (-245)) (-110))) (-15 -3900 ((-110) (-597 (-245)) (-110))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ((-1082) (-597 (-245)) (-1082))) (-15 -1618 ((-1082) (-597 (-245)) (-1082))) (-15 -4191 ((-110) (-597 (-245)) (-110))) (-15 -2831 ((-815) (-597 (-245)) (-815))) (-15 -2451 ((-815) (-597 (-245)) (-815))) (-15 -3694 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3842 ((-862) (-597 (-245)) (-862))) (-15 -3249 ((-862) (-597 (-245)) (-862))) (-15 -3134 ((-1059 (-208)) (-597 (-245)))) (-15 -3713 ((-862) (-597 (-245)) (-862))) (-15 -3424 ((-360) (-597 (-245)) (-360))) (-15 -3672 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1854 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))) (T -243))
+((-1854 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-360))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3672 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3424 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3713 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3694 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2451 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2831 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-4191 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1283 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1375 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3900 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
+(-10 -7 (-15 -4178 ((-110) (-597 (-245)) (-110))) (-15 -3900 ((-110) (-597 (-245)) (-110))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ((-1082) (-597 (-245)) (-1082))) (-15 -1618 ((-1082) (-597 (-245)) (-1082))) (-15 -4191 ((-110) (-597 (-245)) (-110))) (-15 -2831 ((-815) (-597 (-245)) (-815))) (-15 -2451 ((-815) (-597 (-245)) (-815))) (-15 -3694 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3842 ((-862) (-597 (-245)) (-862))) (-15 -3249 ((-862) (-597 (-245)) (-862))) (-15 -3134 ((-1059 (-208)) (-597 (-245)))) (-15 -3713 ((-862) (-597 (-245)) (-862))) (-15 -3424 ((-360) (-597 (-245)) (-360))) (-15 -3672 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1854 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))
+((-2007 (((-3 |#1| "failed") (-597 (-245)) (-1099)) 17)))
+(((-244 |#1|) (-10 -7 (-15 -2007 ((-3 |#1| "failed") (-597 (-245)) (-1099)))) (-1135)) (T -244))
+((-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *1 (-244 *2)) (-4 *2 (-1135)))))
+(-10 -7 (-15 -2007 ((-3 |#1| "failed") (-597 (-245)) (-1099))))
+((-2352 (((-110) $ $) NIL)) (-1375 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-3249 (($ (-862)) 76)) (-3842 (($ (-862)) 75)) (-2291 (($ (-597 (-360))) 82)) (-3424 (($ (-360)) 58)) (-3713 (($ (-862)) 77)) (-4191 (($ (-110)) 23)) (-1283 (($ (-1082)) 18)) (-1618 (($ (-1082)) 19)) (-3134 (($ (-1059 (-208))) 71)) (-3694 (($ (-597 (-1022 (-360)))) 67)) (-1300 (($ (-597 (-1022 (-360)))) 59) (($ (-597 (-1022 (-388 (-530))))) 66)) (-2332 (($ (-360)) 29) (($ (-815)) 33)) (-2927 (((-110) (-597 $) (-1099)) 91)) (-2007 (((-3 (-51) "failed") (-597 $) (-1099)) 93)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2705 (($ (-360)) 34) (($ (-815)) 35)) (-2328 (($ (-1 (-884 (-208)) (-884 (-208)))) 57)) (-3672 (($ (-1 (-884 (-208)) (-884 (-208)))) 78)) (-4110 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-2366 (((-804) $) 87)) (-1802 (($ (-110)) 24) (($ (-597 (-1022 (-360)))) 52)) (-4178 (($ (-110)) 25)) (-2248 (((-110) $ $) 89)))
+(((-245) (-13 (-1027) (-10 -8 (-15 -4178 ($ (-110))) (-15 -1802 ($ (-110))) (-15 -1375 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ($ (-1082))) (-15 -1618 ($ (-1082))) (-15 -4191 ($ (-110))) (-15 -1802 ($ (-597 (-1022 (-360))))) (-15 -2328 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2332 ($ (-360))) (-15 -2332 ($ (-815))) (-15 -2705 ($ (-360))) (-15 -2705 ($ (-815))) (-15 -4110 ($ (-1 (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3424 ($ (-360))) (-15 -1300 ($ (-597 (-1022 (-360))))) (-15 -1300 ($ (-597 (-1022 (-388 (-530)))))) (-15 -3694 ($ (-597 (-1022 (-360))))) (-15 -3134 ($ (-1059 (-208)))) (-15 -3842 ($ (-862))) (-15 -3249 ($ (-862))) (-15 -3713 ($ (-862))) (-15 -3672 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2291 ($ (-597 (-360)))) (-15 -2007 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2927 ((-110) (-597 $) (-1099)))))) (T -245))
+((-4178 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-245)))) (-1283 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-4191 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-2291 (*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245)))) (-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-51)) (-5 *1 (-245)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110)) (-5 *1 (-245)))))
+(-13 (-1027) (-10 -8 (-15 -4178 ($ (-110))) (-15 -1802 ($ (-110))) (-15 -1375 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ($ (-1082))) (-15 -1618 ($ (-1082))) (-15 -4191 ($ (-110))) (-15 -1802 ($ (-597 (-1022 (-360))))) (-15 -2328 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2332 ($ (-360))) (-15 -2332 ($ (-815))) (-15 -2705 ($ (-360))) (-15 -2705 ($ (-815))) (-15 -4110 ($ (-1 (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3424 ($ (-360))) (-15 -1300 ($ (-597 (-1022 (-360))))) (-15 -1300 ($ (-597 (-1022 (-388 (-530)))))) (-15 -3694 ($ (-597 (-1022 (-360))))) (-15 -3134 ($ (-1059 (-208)))) (-15 -3842 ($ (-862))) (-15 -3249 ($ (-862))) (-15 -3713 ($ (-862))) (-15 -3672 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2291 ($ (-597 (-360)))) (-15 -2007 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2927 ((-110) (-597 $) (-1099)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ |#2|) NIL)) (-2001 (((-719) $) NIL) (((-719) $ |#2|) NIL)) (-2746 (((-597 |#3|) $) NIL)) (-2577 (((-1095 $) $ |#3|) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#3|)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1051 |#1| |#2|) "failed") $) 21)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1051 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 |#3|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))))) (-2031 (((-719) $ |#2|) NIL) (((-719) $) 10)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) |#3|) NIL) (($ (-1095 $) |#3|) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) NIL)) (-2944 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#3|) (-502 |#3|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) |#2|) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 |#3| "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-597 |#3|) (-597 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 |#2|) $) NIL)) (-1429 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL) (((-719) $ |#2|) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1051 |#1| |#2|)) 30) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-246 |#1| |#2| |#3|) (-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1051 |#1| |#2|))) (-984) (-795) (-248 |#2|)) (T -246))
NIL
(-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1051 |#1| |#2|)))
-((-3073 (((-719) $) 30)) (-3012 (((-3 |#2| "failed") $) 17)) (-2446 ((|#2| $) 27)) (-3211 (($ $) 12) (($ $ (-719)) 15)) (-2258 (((-804) $) 26) (($ |#2|) 10)) (-2148 (((-110) $ $) 20)) (-2172 (((-110) $ $) 29)))
-(((-247 |#1| |#2|) (-10 -8 (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3073 ((-719) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-248 |#2|) (-795)) (T -247))
+((-2001 (((-719) $) 30)) (-3139 (((-3 |#2| "failed") $) 17)) (-2585 ((|#2| $) 27)) (-3289 (($ $) 12) (($ $ (-719)) 15)) (-2366 (((-804) $) 26) (($ |#2|) 10)) (-2248 (((-110) $ $) 20)) (-2272 (((-110) $ $) 29)))
+(((-247 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2001 ((-719) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-248 |#2|) (-795)) (T -247))
NIL
-(-10 -8 (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3073 ((-719) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3073 (((-719) $) 22)) (-3994 ((|#1| $) 23)) (-3012 (((-3 |#1| "failed") $) 27)) (-2446 ((|#1| $) 26)) (-1334 (((-719) $) 24)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3085 (($ |#1| (-719)) 25)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3211 (($ $) 21) (($ $ (-719)) 20)) (-2258 (((-804) $) 11) (($ |#1|) 28)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)))
+(-10 -8 (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2001 ((-719) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2001 (((-719) $) 22)) (-4007 ((|#1| $) 23)) (-3139 (((-3 |#1| "failed") $) 27)) (-2585 ((|#1| $) 26)) (-2031 (((-719) $) 24)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3135 (($ |#1| (-719)) 25)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $) 21) (($ $ (-719)) 20)) (-2366 (((-804) $) 11) (($ |#1|) 28)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
(((-248 |#1|) (-133) (-795)) (T -248))
-((-2258 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 |t#1|) (-10 -8 (-15 -3085 ($ |t#1| (-719))) (-15 -1334 ((-719) $)) (-15 -3994 (|t#1| $)) (-15 -3073 ((-719) $)) (-15 -3211 ($ $)) (-15 -3211 ($ $ (-719))) (-15 -2258 ($ |t#1|))))
+((-2366 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3135 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 |t#1|) (-10 -8 (-15 -3135 ($ |t#1| (-719))) (-15 -2031 ((-719) $)) (-15 -4007 (|t#1| $)) (-15 -2001 ((-719) $)) (-15 -3289 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -2366 ($ |t#1|))))
(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-2596 (((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 41)) (-3717 (((-597 (-1099)) (-297 (-208)) (-719)) 80)) (-3121 (((-3 (-297 (-208)) "failed") (-297 (-208))) 51)) (-3132 (((-297 (-208)) (-297 (-208))) 67)) (-3109 (((-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26)) (-3143 (((-110) (-597 (-297 (-208)))) 84)) (-3192 (((-110) (-297 (-208))) 24)) (-3220 (((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))))) 106)) (-3181 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 88)) (-3168 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 86)) (-3156 (((-637 (-208)) (-597 (-297 (-208))) (-719)) 95)) (-3377 (((-110) (-297 (-208))) 20) (((-110) (-597 (-297 (-208)))) 85)) (-3097 (((-597 (-208)) (-597 (-788 (-208))) (-208)) 14)) (-2840 (((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 101)) (-3206 (((-973) (-1099) (-973)) 34)))
-(((-249) (-10 -7 (-15 -3097 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -3109 ((-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3121 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3132 ((-297 (-208)) (-297 (-208)))) (-15 -3143 ((-110) (-597 (-297 (-208))))) (-15 -3377 ((-110) (-597 (-297 (-208))))) (-15 -3377 ((-110) (-297 (-208)))) (-15 -3156 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -3168 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3181 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3192 ((-110) (-297 (-208)))) (-15 -2596 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -3717 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3206 ((-973) (-1099) (-973))) (-15 -2840 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -3220 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))))))) (T -249))
-((-3220 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))))) (-5 *2 (-597 (-1082))) (-5 *1 (-249)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) (-5 *2 (-360)) (-5 *1 (-249)))) (-3206 (*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-249)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-3121 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-3109 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-249)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4)) (-5 *1 (-249)))))
-(-10 -7 (-15 -3097 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -3109 ((-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3121 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3132 ((-297 (-208)) (-297 (-208)))) (-15 -3143 ((-110) (-597 (-297 (-208))))) (-15 -3377 ((-110) (-597 (-297 (-208))))) (-15 -3377 ((-110) (-297 (-208)))) (-15 -3156 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -3168 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3181 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3192 ((-110) (-297 (-208)))) (-15 -2596 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -3717 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3206 ((-973) (-1099) (-973))) (-15 -2840 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -3220 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))))))
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2746 (((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 41)) (-3702 (((-597 (-1099)) (-297 (-208)) (-719)) 80)) (-3367 (((-3 (-297 (-208)) "failed") (-297 (-208))) 51)) (-2020 (((-297 (-208)) (-297 (-208))) 67)) (-1604 (((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26)) (-3800 (((-110) (-597 (-297 (-208)))) 84)) (-2367 (((-110) (-297 (-208))) 24)) (-2161 (((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) 106)) (-3421 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 88)) (-1448 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 86)) (-2700 (((-637 (-208)) (-597 (-297 (-208))) (-719)) 95)) (-3052 (((-110) (-297 (-208))) 20) (((-110) (-597 (-297 (-208)))) 85)) (-3019 (((-597 (-208)) (-597 (-788 (-208))) (-208)) 14)) (-2268 (((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 101)) (-3997 (((-973) (-1099) (-973)) 34)))
+(((-249) (-10 -7 (-15 -3019 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -1604 ((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3367 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2020 ((-297 (-208)) (-297 (-208)))) (-15 -3800 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-297 (-208)))) (-15 -2700 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -1448 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3421 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -2367 ((-110) (-297 (-208)))) (-15 -2746 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3702 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3997 ((-973) (-1099) (-973))) (-15 -2268 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2161 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))))) (T -249))
+((-2161 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *2 (-597 (-1082))) (-5 *1 (-249)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-360)) (-5 *1 (-249)))) (-3997 (*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-249)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-3367 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-249)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4)) (-5 *1 (-249)))))
+(-10 -7 (-15 -3019 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -1604 ((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3367 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2020 ((-297 (-208)) (-297 (-208)))) (-15 -3800 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-297 (-208)))) (-15 -2700 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -1448 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3421 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -2367 ((-110) (-297 (-208)))) (-15 -2746 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3702 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3997 ((-973) (-1099) (-973))) (-15 -2268 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2161 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-250) (-784)) (T -250))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 58) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 54)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 34) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 36)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 58) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 54)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 34) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 36)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-251) (-784)) (T -251))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 76) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 55)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 76) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 55)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-252) (-784)) (T -252))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 31) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 31) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-253) (-784)) (T -253))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-254) (-784)) (T -254))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-255) (-784)) (T -255))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 77)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 25) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2148 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 77)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 25) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
(((-256) (-784)) (T -256))
NIL
(-784)
-((-2246 (((-110) $ $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3244 (((-597 (-530)) $) 19)) (-3409 (((-719) $) 17)) (-2258 (((-804) $) 23) (($ (-597 (-530))) 15)) (-3232 (($ (-719)) 20)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 11)))
-(((-257) (-13 (-795) (-10 -8 (-15 -2258 ($ (-597 (-530)))) (-15 -3409 ((-719) $)) (-15 -3244 ((-597 (-530)) $)) (-15 -3232 ($ (-719)))))) (T -257))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
-(-13 (-795) (-10 -8 (-15 -2258 ($ (-597 (-530)))) (-15 -3409 ((-719) $)) (-15 -3244 ((-597 (-530)) $)) (-15 -3232 ($ (-719)))))
-((-2276 ((|#2| |#2|) 77)) (-2144 ((|#2| |#2|) 65)) (-2316 (((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2253 ((|#2| |#2|) 75)) (-2121 ((|#2| |#2|) 63)) (-2297 ((|#2| |#2|) 79)) (-2169 ((|#2| |#2|) 67)) (-1877 ((|#2|) 46)) (-2221 (((-112) (-112)) 95)) (-2070 ((|#2| |#2|) 61)) (-2327 (((-110) |#2|) 134)) (-3470 ((|#2| |#2|) 181)) (-3329 ((|#2| |#2|) 157)) (-3269 ((|#2|) 59)) (-3257 ((|#2|) 58)) (-3448 ((|#2| |#2|) 177)) (-3304 ((|#2| |#2|) 153)) (-3494 ((|#2| |#2|) 185)) (-3354 ((|#2| |#2|) 161)) (-3293 ((|#2| |#2|) 149)) (-3281 ((|#2| |#2|) 151)) (-3505 ((|#2| |#2|) 187)) (-3365 ((|#2| |#2|) 163)) (-3483 ((|#2| |#2|) 183)) (-3342 ((|#2| |#2|) 159)) (-3459 ((|#2| |#2|) 179)) (-3316 ((|#2| |#2|) 155)) (-2274 ((|#2| |#2|) 193)) (-3399 ((|#2| |#2|) 169)) (-3516 ((|#2| |#2|) 189)) (-3375 ((|#2| |#2|) 165)) (-2295 ((|#2| |#2|) 197)) (-3423 ((|#2| |#2|) 173)) (-2306 ((|#2| |#2|) 199)) (-3436 ((|#2| |#2|) 175)) (-2285 ((|#2| |#2|) 195)) (-3411 ((|#2| |#2|) 171)) (-2262 ((|#2| |#2|) 191)) (-3388 ((|#2| |#2|) 167)) (-2693 ((|#2| |#2|) 62)) (-2308 ((|#2| |#2|) 80)) (-2181 ((|#2| |#2|) 68)) (-2287 ((|#2| |#2|) 78)) (-2155 ((|#2| |#2|) 66)) (-2263 ((|#2| |#2|) 76)) (-2133 ((|#2| |#2|) 64)) (-2212 (((-110) (-112)) 93)) (-2339 ((|#2| |#2|) 83)) (-2211 ((|#2| |#2|) 71)) (-2318 ((|#2| |#2|) 81)) (-2192 ((|#2| |#2|) 69)) (-2361 ((|#2| |#2|) 85)) (-2230 ((|#2| |#2|) 73)) (-2910 ((|#2| |#2|) 86)) (-2241 ((|#2| |#2|) 74)) (-2349 ((|#2| |#2|) 84)) (-2220 ((|#2| |#2|) 72)) (-2328 ((|#2| |#2|) 82)) (-2202 ((|#2| |#2|) 70)))
-(((-258 |#1| |#2|) (-10 -7 (-15 -2693 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -2121 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -1877 (|#2|)) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -3257 (|#2|)) (-15 -3269 (|#2|)) (-15 -3281 (|#2| |#2|)) (-15 -3293 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -3316 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3423 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2285 (|#2| |#2|)) (-15 -2295 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2316 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -2327 ((-110) |#2|))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941))) (T -258))
-((-2327 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-411 *4) (-941))))) (-2316 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-258 *4 *2)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2295 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3423 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3399 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3316 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3293 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3281 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3269 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-3257 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-411 *3) (-941))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941))))) (-1877 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2308 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2169 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2133 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2121 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))))
-(-10 -7 (-15 -2693 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -2121 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -2202 (|#2| |#2|)) (-15 -2211 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2308 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -1877 (|#2|)) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -3257 (|#2|)) (-15 -3269 (|#2|)) (-15 -3281 (|#2| |#2|)) (-15 -3293 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -3316 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3365 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -3423 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3516 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2285 (|#2| |#2|)) (-15 -2295 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2316 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -2327 ((-110) |#2|)))
-((-2357 (((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099)) 135)) (-2374 ((|#2| (-388 (-530)) |#2|) 51)) (-2365 ((|#2| |#2| (-570 |#2|)) 128)) (-2335 (((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099)) 127)) (-2346 ((|#2| |#2| (-1099)) 20) ((|#2| |#2|) 23)) (-1579 ((|#2| |#2| (-1099)) 141) ((|#2| |#2|) 139)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -1579 (|#2| |#2|)) (-15 -1579 (|#2| |#2| (-1099))) (-15 -2335 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| (-1099))) (-15 -2357 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -2365 (|#2| |#2| (-570 |#2|))) (-15 -2374 (|#2| (-388 (-530)) |#2|))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -259))
-((-2374 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)))) (-2357 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *5 *2)))) (-2346 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3))) (|:| |vals| (-597 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-1579 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(-10 -7 (-15 -1579 (|#2| |#2|)) (-15 -1579 (|#2| |#2| (-1099))) (-15 -2335 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| (-1099))) (-15 -2357 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -2365 (|#2| |#2| (-570 |#2|))) (-15 -2374 (|#2| (-388 (-530)) |#2|)))
-((-2639 (((-3 |#3| "failed") |#3|) 110)) (-2276 ((|#3| |#3|) 131)) (-2519 (((-3 |#3| "failed") |#3|) 82)) (-2144 ((|#3| |#3|) 121)) (-2618 (((-3 |#3| "failed") |#3|) 58)) (-2253 ((|#3| |#3|) 129)) (-2496 (((-3 |#3| "failed") |#3|) 46)) (-2121 ((|#3| |#3|) 119)) (-2660 (((-3 |#3| "failed") |#3|) 112)) (-2297 ((|#3| |#3|) 133)) (-2538 (((-3 |#3| "failed") |#3|) 84)) (-2169 ((|#3| |#3|) 123)) (-2460 (((-3 |#3| "failed") |#3| (-719)) 36)) (-2482 (((-3 |#3| "failed") |#3|) 74)) (-2070 ((|#3| |#3|) 118)) (-2470 (((-3 |#3| "failed") |#3|) 44)) (-2693 ((|#3| |#3|) 117)) (-2669 (((-3 |#3| "failed") |#3|) 113)) (-2308 ((|#3| |#3|) 134)) (-2547 (((-3 |#3| "failed") |#3|) 85)) (-2181 ((|#3| |#3|) 124)) (-2649 (((-3 |#3| "failed") |#3|) 111)) (-2287 ((|#3| |#3|) 132)) (-2528 (((-3 |#3| "failed") |#3|) 83)) (-2155 ((|#3| |#3|) 122)) (-2629 (((-3 |#3| "failed") |#3|) 60)) (-2263 ((|#3| |#3|) 130)) (-2507 (((-3 |#3| "failed") |#3|) 48)) (-2133 ((|#3| |#3|) 120)) (-2697 (((-3 |#3| "failed") |#3|) 66)) (-2339 ((|#3| |#3|) 137)) (-2576 (((-3 |#3| "failed") |#3|) 104)) (-2211 ((|#3| |#3|) 142)) (-2678 (((-3 |#3| "failed") |#3|) 62)) (-2318 ((|#3| |#3|) 135)) (-2556 (((-3 |#3| "failed") |#3|) 50)) (-2192 ((|#3| |#3|) 125)) (-2719 (((-3 |#3| "failed") |#3|) 70)) (-2361 ((|#3| |#3|) 139)) (-2597 (((-3 |#3| "failed") |#3|) 54)) (-2230 ((|#3| |#3|) 127)) (-2730 (((-3 |#3| "failed") |#3|) 72)) (-2910 ((|#3| |#3|) 140)) (-2606 (((-3 |#3| "failed") |#3|) 56)) (-2241 ((|#3| |#3|) 128)) (-2708 (((-3 |#3| "failed") |#3|) 68)) (-2349 ((|#3| |#3|) 138)) (-2587 (((-3 |#3| "failed") |#3|) 107)) (-2220 ((|#3| |#3|) 143)) (-2687 (((-3 |#3| "failed") |#3|) 64)) (-2328 ((|#3| |#3|) 136)) (-2566 (((-3 |#3| "failed") |#3|) 52)) (-2202 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
-(((-260 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2693 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2121 (|#3| |#3|)) (-15 -2133 (|#3| |#3|)) (-15 -2144 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2169 (|#3| |#3|)) (-15 -2181 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2202 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2230 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2263 (|#3| |#3|)) (-15 -2276 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2308 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2361 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)))) (-37 (-388 (-530))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -260))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2121 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2133 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2169 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2308 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
-(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2693 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2121 (|#3| |#3|)) (-15 -2133 (|#3| |#3|)) (-15 -2144 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2169 (|#3| |#3|)) (-15 -2181 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2202 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2230 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2263 (|#3| |#3|)) (-15 -2276 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2308 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2361 (|#3| |#3|)) (-15 -2910 (|#3| |#3|))))
-((-2639 (((-3 |#3| "failed") |#3|) 66)) (-2276 ((|#3| |#3|) 129)) (-2519 (((-3 |#3| "failed") |#3|) 50)) (-2144 ((|#3| |#3|) 117)) (-2618 (((-3 |#3| "failed") |#3|) 62)) (-2253 ((|#3| |#3|) 127)) (-2496 (((-3 |#3| "failed") |#3|) 46)) (-2121 ((|#3| |#3|) 115)) (-2660 (((-3 |#3| "failed") |#3|) 70)) (-2297 ((|#3| |#3|) 131)) (-2538 (((-3 |#3| "failed") |#3|) 54)) (-2169 ((|#3| |#3|) 119)) (-2460 (((-3 |#3| "failed") |#3| (-719)) 35)) (-2482 (((-3 |#3| "failed") |#3|) 44)) (-2070 ((|#3| |#3|) 104)) (-2470 (((-3 |#3| "failed") |#3|) 42)) (-2693 ((|#3| |#3|) 114)) (-2669 (((-3 |#3| "failed") |#3|) 72)) (-2308 ((|#3| |#3|) 132)) (-2547 (((-3 |#3| "failed") |#3|) 56)) (-2181 ((|#3| |#3|) 120)) (-2649 (((-3 |#3| "failed") |#3|) 68)) (-2287 ((|#3| |#3|) 130)) (-2528 (((-3 |#3| "failed") |#3|) 52)) (-2155 ((|#3| |#3|) 118)) (-2629 (((-3 |#3| "failed") |#3|) 64)) (-2263 ((|#3| |#3|) 128)) (-2507 (((-3 |#3| "failed") |#3|) 48)) (-2133 ((|#3| |#3|) 116)) (-2697 (((-3 |#3| "failed") |#3|) 74)) (-2339 ((|#3| |#3|) 135)) (-2576 (((-3 |#3| "failed") |#3|) 58)) (-2211 ((|#3| |#3|) 123)) (-2678 (((-3 |#3| "failed") |#3|) 105)) (-2318 ((|#3| |#3|) 133)) (-2556 (((-3 |#3| "failed") |#3|) 94)) (-2192 ((|#3| |#3|) 121)) (-2719 (((-3 |#3| "failed") |#3|) 109)) (-2361 ((|#3| |#3|) 137)) (-2597 (((-3 |#3| "failed") |#3|) 101)) (-2230 ((|#3| |#3|) 125)) (-2730 (((-3 |#3| "failed") |#3|) 110)) (-2910 ((|#3| |#3|) 138)) (-2606 (((-3 |#3| "failed") |#3|) 103)) (-2241 ((|#3| |#3|) 126)) (-2708 (((-3 |#3| "failed") |#3|) 76)) (-2349 ((|#3| |#3|) 136)) (-2587 (((-3 |#3| "failed") |#3|) 60)) (-2220 ((|#3| |#3|) 124)) (-2687 (((-3 |#3| "failed") |#3|) 106)) (-2328 ((|#3| |#3|) 134)) (-2566 (((-3 |#3| "failed") |#3|) 97)) (-2202 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
-(((-261 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2693 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2121 (|#3| |#3|)) (-15 -2133 (|#3| |#3|)) (-15 -2144 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2169 (|#3| |#3|)) (-15 -2181 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2202 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2230 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2263 (|#3| |#3|)) (-15 -2276 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2308 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2361 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)))) (-37 (-388 (-530))) (-1141 |#1|) (-1164 |#1| |#2|) (-923 |#2|)) (T -261))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-923 *5)))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2121 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2133 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2169 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2211 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2308 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))))
-(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2693 (|#3| |#3|)) (-15 -2070 (|#3| |#3|)) (-15 -2121 (|#3| |#3|)) (-15 -2133 (|#3| |#3|)) (-15 -2144 (|#3| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -2169 (|#3| |#3|)) (-15 -2181 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2202 (|#3| |#3|)) (-15 -2211 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2230 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2263 (|#3| |#3|)) (-15 -2276 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2308 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2361 (|#3| |#3|)) (-15 -2910 (|#3| |#3|))))
-((-2726 (((-110) $) 19)) (-1567 (((-171) $) 7)) (-3034 (((-3 (-1099) "failed") $) 14)) (-4250 (((-3 (-597 $) "failed") $) NIL)) (-2399 (((-3 (-1099) "failed") $) 21)) (-2409 (((-3 (-1031) "failed") $) 17)) (-3445 (((-110) $) 15)) (-2258 (((-804) $) NIL)) (-2385 (((-110) $) 9)))
-(((-262) (-13 (-571 (-804)) (-10 -8 (-15 -1567 ((-171) $)) (-15 -3445 ((-110) $)) (-15 -2409 ((-3 (-1031) "failed") $)) (-15 -2726 ((-110) $)) (-15 -2399 ((-3 (-1099) "failed") $)) (-15 -2385 ((-110) $)) (-15 -3034 ((-3 (-1099) "failed") $)) (-15 -4250 ((-3 (-597 $) "failed") $))))) (T -262))
-((-1567 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2409 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2399 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-4250 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -1567 ((-171) $)) (-15 -3445 ((-110) $)) (-15 -2409 ((-3 (-1031) "failed") $)) (-15 -2726 ((-110) $)) (-15 -2399 ((-3 (-1099) "failed") $)) (-15 -2385 ((-110) $)) (-15 -3034 ((-3 (-1099) "failed") $)) (-15 -4250 ((-3 (-597 $) "failed") $))))
-((-2180 (($ (-1 (-110) |#2|) $) 24)) (-2939 (($ $) 36)) (-1283 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2272 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-2767 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4016 (($ |#2| $ (-530)) 20) (($ $ $ (-530)) 22)) (-1778 (($ $ (-530)) 11) (($ $ (-1148 (-530))) 14)) (-1501 (($ $ |#2|) 30) (($ $ $) NIL)) (-3476 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-597 $)) NIL)))
-(((-263 |#1| |#2|) (-10 -8 (-15 -2767 (|#1| |#1| |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -2767 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -2272 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2180 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -2939 (|#1| |#1|))) (-264 |#2|) (-1135)) (T -263))
-NIL
-(-10 -8 (-15 -2767 (|#1| |#1| |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -2767 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -2272 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2180 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -2939 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) 85)) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-3929 (($ $) 83 (|has| |#1| (-1027)))) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1027)))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-2767 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3440 (($ |#1| $ (-530)) 88) (($ $ $ (-530)) 87)) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-2434 (($ $ (-530)) 91) (($ $ (-1148 (-530))) 90)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 70)) (-1501 (($ $ |#1|) 93) (($ $ $) 92)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2863 (((-597 (-530)) $) 19)) (-1429 (((-719) $) 17)) (-2366 (((-804) $) 23) (($ (-597 (-530))) 15)) (-4023 (($ (-719)) 20)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 9)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 11)))
+(((-257) (-13 (-795) (-10 -8 (-15 -2366 ($ (-597 (-530)))) (-15 -1429 ((-719) $)) (-15 -2863 ((-597 (-530)) $)) (-15 -4023 ($ (-719)))))) (T -257))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
+(-13 (-795) (-10 -8 (-15 -2366 ($ (-597 (-530)))) (-15 -1429 ((-719) $)) (-15 -2863 ((-597 (-530)) $)) (-15 -4023 ($ (-719)))))
+((-2386 ((|#2| |#2|) 77)) (-2244 ((|#2| |#2|) 65)) (-1699 (((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2360 ((|#2| |#2|) 75)) (-2219 ((|#2| |#2|) 63)) (-2409 ((|#2| |#2|) 79)) (-2269 ((|#2| |#2|) 67)) (-1948 ((|#2|) 46)) (-4124 (((-112) (-112)) 95)) (-2168 ((|#2| |#2|) 61)) (-3242 (((-110) |#2|) 134)) (-2243 ((|#2| |#2|) 181)) (-3738 ((|#2| |#2|) 157)) (-1775 ((|#2|) 59)) (-1521 ((|#2|) 58)) (-1623 ((|#2| |#2|) 177)) (-1724 ((|#2| |#2|) 153)) (-2650 ((|#2| |#2|) 185)) (-1281 ((|#2| |#2|) 161)) (-2945 ((|#2| |#2|) 149)) (-1710 ((|#2| |#2|) 151)) (-2227 ((|#2| |#2|) 187)) (-4193 ((|#2| |#2|) 163)) (-4004 ((|#2| |#2|) 183)) (-2549 ((|#2| |#2|) 159)) (-3428 ((|#2| |#2|) 179)) (-2716 ((|#2| |#2|) 155)) (-2892 ((|#2| |#2|) 193)) (-3791 ((|#2| |#2|) 169)) (-3267 ((|#2| |#2|) 189)) (-2873 ((|#2| |#2|) 165)) (-1469 ((|#2| |#2|) 197)) (-3308 ((|#2| |#2|) 173)) (-4051 ((|#2| |#2|) 199)) (-2043 ((|#2| |#2|) 175)) (-2419 ((|#2| |#2|) 195)) (-1594 ((|#2| |#2|) 171)) (-3255 ((|#2| |#2|) 191)) (-1435 ((|#2| |#2|) 167)) (-2853 ((|#2| |#2|) 62)) (-2421 ((|#2| |#2|) 80)) (-2281 ((|#2| |#2|) 68)) (-2398 ((|#2| |#2|) 78)) (-2254 ((|#2| |#2|) 66)) (-2373 ((|#2| |#2|) 76)) (-2231 ((|#2| |#2|) 64)) (-4195 (((-110) (-112)) 93)) (-2459 ((|#2| |#2|) 83)) (-2314 ((|#2| |#2|) 71)) (-2434 ((|#2| |#2|) 81)) (-2293 ((|#2| |#2|) 69)) (-2485 ((|#2| |#2|) 85)) (-2334 ((|#2| |#2|) 73)) (-3632 ((|#2| |#2|) 86)) (-2347 ((|#2| |#2|) 74)) (-2472 ((|#2| |#2|) 84)) (-2324 ((|#2| |#2|) 72)) (-2446 ((|#2| |#2|) 82)) (-2304 ((|#2| |#2|) 70)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -2853 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1948 (|#2|)) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1521 (|#2|)) (-15 -1775 (|#2|)) (-15 -1710 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2873 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1699 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3242 ((-110) |#2|))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941))) (T -258))
+((-3242 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-411 *4) (-941))))) (-1699 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-258 *4 *2)))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3267 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3308 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2873 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1281 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1775 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-1521 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-411 *3) (-941))))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941))))) (-1948 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))))
+(-10 -7 (-15 -2853 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1948 (|#2|)) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1521 (|#2|)) (-15 -1775 (|#2|)) (-15 -1710 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2873 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1699 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3242 ((-110) |#2|)))
+((-1519 (((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099)) 135)) (-3622 ((|#2| (-388 (-530)) |#2|) 51)) (-3954 ((|#2| |#2| (-570 |#2|)) 128)) (-2717 (((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099)) 127)) (-2250 ((|#2| |#2| (-1099)) 20) ((|#2| |#2|) 23)) (-3258 ((|#2| |#2| (-1099)) 141) ((|#2| |#2|) 139)))
+(((-259 |#1| |#2|) (-10 -7 (-15 -3258 (|#2| |#2|)) (-15 -3258 (|#2| |#2| (-1099))) (-15 -2717 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1099))) (-15 -1519 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -3954 (|#2| |#2| (-570 |#2|))) (-15 -3622 (|#2| (-388 (-530)) |#2|))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -259))
+((-3622 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3954 (*1 *2 *2 *3) (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)))) (-1519 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *5 *2)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3))) (|:| |vals| (-597 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3258 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3258 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
+(-10 -7 (-15 -3258 (|#2| |#2|)) (-15 -3258 (|#2| |#2| (-1099))) (-15 -2717 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1099))) (-15 -1519 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -3954 (|#2| |#2| (-570 |#2|))) (-15 -3622 (|#2| (-388 (-530)) |#2|)))
+((-1229 (((-3 |#3| "failed") |#3|) 110)) (-2386 ((|#3| |#3|) 131)) (-2697 (((-3 |#3| "failed") |#3|) 82)) (-2244 ((|#3| |#3|) 121)) (-2481 (((-3 |#3| "failed") |#3|) 58)) (-2360 ((|#3| |#3|) 129)) (-2010 (((-3 |#3| "failed") |#3|) 46)) (-2219 ((|#3| |#3|) 119)) (-3352 (((-3 |#3| "failed") |#3|) 112)) (-2409 ((|#3| |#3|) 133)) (-3610 (((-3 |#3| "failed") |#3|) 84)) (-2269 ((|#3| |#3|) 123)) (-2120 (((-3 |#3| "failed") |#3| (-719)) 36)) (-3432 (((-3 |#3| "failed") |#3|) 74)) (-2168 ((|#3| |#3|) 118)) (-3626 (((-3 |#3| "failed") |#3|) 44)) (-2853 ((|#3| |#3|) 117)) (-3026 (((-3 |#3| "failed") |#3|) 113)) (-2421 ((|#3| |#3|) 134)) (-3517 (((-3 |#3| "failed") |#3|) 85)) (-2281 ((|#3| |#3|) 124)) (-3722 (((-3 |#3| "failed") |#3|) 111)) (-2398 ((|#3| |#3|) 132)) (-1963 (((-3 |#3| "failed") |#3|) 83)) (-2254 ((|#3| |#3|) 122)) (-1709 (((-3 |#3| "failed") |#3|) 60)) (-2373 ((|#3| |#3|) 130)) (-3765 (((-3 |#3| "failed") |#3|) 48)) (-2231 ((|#3| |#3|) 120)) (-3498 (((-3 |#3| "failed") |#3|) 66)) (-2459 ((|#3| |#3|) 137)) (-2771 (((-3 |#3| "failed") |#3|) 104)) (-2314 ((|#3| |#3|) 142)) (-1304 (((-3 |#3| "failed") |#3|) 62)) (-2434 ((|#3| |#3|) 135)) (-2198 (((-3 |#3| "failed") |#3|) 50)) (-2293 ((|#3| |#3|) 125)) (-3874 (((-3 |#3| "failed") |#3|) 70)) (-2485 ((|#3| |#3|) 139)) (-4057 (((-3 |#3| "failed") |#3|) 54)) (-2334 ((|#3| |#3|) 127)) (-3619 (((-3 |#3| "failed") |#3|) 72)) (-3632 ((|#3| |#3|) 140)) (-2655 (((-3 |#3| "failed") |#3|) 56)) (-2347 ((|#3| |#3|) 128)) (-2222 (((-3 |#3| "failed") |#3|) 68)) (-2472 ((|#3| |#3|) 138)) (-2510 (((-3 |#3| "failed") |#3|) 107)) (-2324 ((|#3| |#3|) 143)) (-3728 (((-3 |#3| "failed") |#3|) 64)) (-2446 ((|#3| |#3|) 136)) (-4071 (((-3 |#3| "failed") |#3|) 52)) (-2304 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
+(((-260 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)))) (-37 (-388 (-530))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -260))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
+(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|))))
+((-1229 (((-3 |#3| "failed") |#3|) 66)) (-2386 ((|#3| |#3|) 129)) (-2697 (((-3 |#3| "failed") |#3|) 50)) (-2244 ((|#3| |#3|) 117)) (-2481 (((-3 |#3| "failed") |#3|) 62)) (-2360 ((|#3| |#3|) 127)) (-2010 (((-3 |#3| "failed") |#3|) 46)) (-2219 ((|#3| |#3|) 115)) (-3352 (((-3 |#3| "failed") |#3|) 70)) (-2409 ((|#3| |#3|) 131)) (-3610 (((-3 |#3| "failed") |#3|) 54)) (-2269 ((|#3| |#3|) 119)) (-2120 (((-3 |#3| "failed") |#3| (-719)) 35)) (-3432 (((-3 |#3| "failed") |#3|) 44)) (-2168 ((|#3| |#3|) 104)) (-3626 (((-3 |#3| "failed") |#3|) 42)) (-2853 ((|#3| |#3|) 114)) (-3026 (((-3 |#3| "failed") |#3|) 72)) (-2421 ((|#3| |#3|) 132)) (-3517 (((-3 |#3| "failed") |#3|) 56)) (-2281 ((|#3| |#3|) 120)) (-3722 (((-3 |#3| "failed") |#3|) 68)) (-2398 ((|#3| |#3|) 130)) (-1963 (((-3 |#3| "failed") |#3|) 52)) (-2254 ((|#3| |#3|) 118)) (-1709 (((-3 |#3| "failed") |#3|) 64)) (-2373 ((|#3| |#3|) 128)) (-3765 (((-3 |#3| "failed") |#3|) 48)) (-2231 ((|#3| |#3|) 116)) (-3498 (((-3 |#3| "failed") |#3|) 74)) (-2459 ((|#3| |#3|) 135)) (-2771 (((-3 |#3| "failed") |#3|) 58)) (-2314 ((|#3| |#3|) 123)) (-1304 (((-3 |#3| "failed") |#3|) 105)) (-2434 ((|#3| |#3|) 133)) (-2198 (((-3 |#3| "failed") |#3|) 94)) (-2293 ((|#3| |#3|) 121)) (-3874 (((-3 |#3| "failed") |#3|) 109)) (-2485 ((|#3| |#3|) 137)) (-4057 (((-3 |#3| "failed") |#3|) 101)) (-2334 ((|#3| |#3|) 125)) (-3619 (((-3 |#3| "failed") |#3|) 110)) (-3632 ((|#3| |#3|) 138)) (-2655 (((-3 |#3| "failed") |#3|) 103)) (-2347 ((|#3| |#3|) 126)) (-2222 (((-3 |#3| "failed") |#3|) 76)) (-2472 ((|#3| |#3|) 136)) (-2510 (((-3 |#3| "failed") |#3|) 60)) (-2324 ((|#3| |#3|) 124)) (-3728 (((-3 |#3| "failed") |#3|) 106)) (-2446 ((|#3| |#3|) 134)) (-4071 (((-3 |#3| "failed") |#3|) 97)) (-2304 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
+(((-261 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)))) (-37 (-388 (-530))) (-1141 |#1|) (-1164 |#1| |#2|) (-923 |#2|)) (T -261))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-923 *5)))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))))
+(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|))))
+((-3311 (((-110) $) 19)) (-1564 (((-171) $) 7)) (-2671 (((-3 (-1099) "failed") $) 14)) (-1566 (((-3 (-597 $) "failed") $) NIL)) (-3692 (((-3 (-1099) "failed") $) 21)) (-3246 (((-3 (-1031) "failed") $) 17)) (-1613 (((-110) $) 15)) (-2366 (((-804) $) NIL)) (-2121 (((-110) $) 9)))
+(((-262) (-13 (-571 (-804)) (-10 -8 (-15 -1564 ((-171) $)) (-15 -1613 ((-110) $)) (-15 -3246 ((-3 (-1031) "failed") $)) (-15 -3311 ((-110) $)) (-15 -3692 ((-3 (-1099) "failed") $)) (-15 -2121 ((-110) $)) (-15 -2671 ((-3 (-1099) "failed") $)) (-15 -1566 ((-3 (-597 $) "failed") $))))) (T -262))
+((-1564 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3692 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2671 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-1566 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -1564 ((-171) $)) (-15 -1613 ((-110) $)) (-15 -3246 ((-3 (-1031) "failed") $)) (-15 -3311 ((-110) $)) (-15 -3692 ((-3 (-1099) "failed") $)) (-15 -2121 ((-110) $)) (-15 -2671 ((-3 (-1099) "failed") $)) (-15 -1566 ((-3 (-597 $) "failed") $))))
+((-2283 (($ (-1 (-110) |#2|) $) 24)) (-3077 (($ $) 36)) (-1842 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2383 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-2090 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4028 (($ |#2| $ (-530)) 20) (($ $ $ (-530)) 22)) (-1843 (($ $ (-530)) 11) (($ $ (-1148 (-530))) 14)) (-1328 (($ $ |#2|) 30) (($ $ $) NIL)) (-3483 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-597 $)) NIL)))
+(((-263 |#1| |#2|) (-10 -8 (-15 -2090 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -3077 (|#1| |#1|))) (-264 |#2|) (-1135)) (T -263))
+NIL
+(-10 -8 (-15 -2090 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -3077 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 85)) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 83 (|has| |#1| (-1027)))) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1027)))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2090 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2441 (($ |#1| $ (-530)) 88) (($ $ $ (-530)) 87)) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3715 (($ $ (-530)) 91) (($ $ (-1148 (-530))) 90)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-1328 (($ $ |#1|) 93) (($ $ $) 92)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-264 |#1|) (-133) (-1135)) (T -264))
-((-1501 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-1501 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-3440 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-3440 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2767 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2421 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1283 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-3929 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
-(-13 (-602 |t#1|) (-10 -8 (-6 -4271) (-15 -1501 ($ $ |t#1|)) (-15 -1501 ($ $ $)) (-15 -2434 ($ $ (-530))) (-15 -2434 ($ $ (-1148 (-530)))) (-15 -1283 ($ (-1 (-110) |t#1|) $)) (-15 -3440 ($ |t#1| $ (-530))) (-15 -3440 ($ $ $ (-530))) (-15 -2767 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2421 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -1283 ($ |t#1| $)) (-15 -3929 ($ $))) |%noBranch|) (IF (|has| |t#1| (-795)) (-15 -2767 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-1328 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2441 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-2441 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2090 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1842 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2287 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2090 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
+(-13 (-602 |t#1|) (-10 -8 (-6 -4270) (-15 -1328 ($ $ |t#1|)) (-15 -1328 ($ $ $)) (-15 -3715 ($ $ (-530))) (-15 -3715 ($ $ (-1148 (-530)))) (-15 -1842 ($ (-1 (-110) |t#1|) $)) (-15 -2441 ($ |t#1| $ (-530))) (-15 -2441 ($ $ $ (-530))) (-15 -2090 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2901 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -1842 ($ |t#1| $)) (-15 -2287 ($ $))) |%noBranch|) (IF (|has| |t#1| (-795)) (-15 -2090 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
((** (($ $ $) 10)))
(((-265 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-266)) (T -265))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2070 (($ $) 6)) (-2693 (($ $) 7)) (** (($ $ $) 8)))
+((-2168 (($ $) 6)) (-2853 (($ $) 7)) (** (($ $ $) 8)))
(((-266) (-133)) (T -266))
-((** (*1 *1 *1 *1) (-4 *1 (-266))) (-2693 (*1 *1 *1) (-4 *1 (-266))) (-2070 (*1 *1 *1) (-4 *1 (-266))))
-(-13 (-10 -8 (-15 -2070 ($ $)) (-15 -2693 ($ $)) (-15 ** ($ $ $))))
-((-2468 (((-597 (-1080 |#1|)) (-1080 |#1|) |#1|) 35)) (-2447 ((|#2| |#2| |#1|) 38)) (-2458 ((|#2| |#2| |#1|) 40)) (-4059 ((|#2| |#2| |#1|) 39)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -2447 (|#2| |#2| |#1|)) (-15 -4059 (|#2| |#2| |#1|)) (-15 -2458 (|#2| |#2| |#1|)) (-15 -2468 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|))) (-344) (-1172 |#1|)) (T -267))
-((-2468 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))) (-2458 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-4059 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-2447 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -2447 (|#2| |#2| |#1|)) (-15 -4059 (|#2| |#2| |#1|)) (-15 -2458 (|#2| |#2| |#1|)) (-15 -2468 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|)))
-((-1832 ((|#2| $ |#1|) 6)))
+((** (*1 *1 *1 *1) (-4 *1 (-266))) (-2853 (*1 *1 *1) (-4 *1 (-266))) (-2168 (*1 *1 *1) (-4 *1 (-266))))
+(-13 (-10 -8 (-15 -2168 ($ $)) (-15 -2853 ($ $)) (-15 ** ($ $ $))))
+((-1619 (((-597 (-1080 |#1|)) (-1080 |#1|) |#1|) 35)) (-3355 ((|#2| |#2| |#1|) 38)) (-1931 ((|#2| |#2| |#1|) 40)) (-4074 ((|#2| |#2| |#1|) 39)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -3355 (|#2| |#2| |#1|)) (-15 -4074 (|#2| |#2| |#1|)) (-15 -1931 (|#2| |#2| |#1|)) (-15 -1619 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|))) (-344) (-1172 |#1|)) (T -267))
+((-1619 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))) (-1931 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-4074 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-3355 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -3355 (|#2| |#2| |#1|)) (-15 -4074 (|#2| |#2| |#1|)) (-15 -1931 (|#2| |#2| |#1|)) (-15 -1619 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|)))
+((-1902 ((|#2| $ |#1|) 6)))
(((-268 |#1| |#2|) (-133) (-1027) (-1135)) (T -268))
-((-1832 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -1832 (|t#2| $ |t#1|))))
-((-2858 ((|#3| $ |#2| |#3|) 12)) (-2787 ((|#3| $ |#2|) 10)))
-(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -2858 (|#3| |#1| |#2| |#3|)) (-15 -2787 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1027) (-1135)) (T -269))
+((-1902 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
+(-13 (-10 -8 (-15 -1902 (|t#2| $ |t#1|))))
+((-3592 ((|#3| $ |#2| |#3|) 12)) (-3532 ((|#3| $ |#2|) 10)))
+(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -3592 (|#3| |#1| |#2| |#3|)) (-15 -3532 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1027) (-1135)) (T -269))
NIL
-(-10 -8 (-15 -2858 (|#3| |#1| |#2| |#3|)) (-15 -2787 (|#3| |#1| |#2|)))
-((-2416 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4271)))) (-2858 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) 11)) (-1832 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(-10 -8 (-15 -3592 (|#3| |#1| |#2| |#3|)) (-15 -3532 (|#3| |#1| |#2|)))
+((-2552 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4270)))) (-3592 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 11)) (-1902 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
(((-270 |#1| |#2|) (-133) (-1027) (-1135)) (T -270))
-((-1832 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2416 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2858 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
-(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -1832 (|t#2| $ |t#1| |t#2|)) (-15 -2787 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4271)) (PROGN (-15 -2416 (|t#2| $ |t#1| |t#2|)) (-15 -2858 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-1902 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-3532 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-3592 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
+(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -1902 (|t#2| $ |t#1| |t#2|)) (-15 -3532 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -2552 (|t#2| $ |t#1| |t#2|)) (-15 -3592 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-268 |#1| |#2|) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 35)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 40)) (-3031 (($ $) 38)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) 33)) (-3856 (($ |#2| |#3|) 19)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2113 ((|#3| $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 20)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3069 (((-3 $ "failed") $ $) NIL)) (-1934 (((-719) $) 34)) (-1832 ((|#2| $ |#2|) 42)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 24)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 29 T CONST)) (-2955 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 37)))
-(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -2113 (|#3| $)) (-15 -2258 (|#2| $)) (-15 -3856 ($ |#2| |#3|)) (-15 -3069 ((-3 $ "failed") $ $)) (-15 -1673 ((-3 $ "failed") $)) (-15 -2359 ($ $)) (-15 -1832 (|#2| $ |#2|)))) (-162) (-1157 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271))
-((-1673 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2113 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2258 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3856 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3069 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2359 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1832 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1157 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-289) (-10 -8 (-15 -2113 (|#3| $)) (-15 -2258 (|#2| $)) (-15 -3856 ($ |#2| |#3|)) (-15 -3069 ((-3 $ "failed") $ $)) (-15 -1673 ((-3 $ "failed") $)) (-15 -2359 ($ $)) (-15 -1832 (|#2| $ |#2|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 35)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 40)) (-3446 (($ $) 38)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) 33)) (-2134 (($ |#2| |#3|) 19)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 ((|#3| $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 20)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2943 (((-3 $ "failed") $ $) NIL)) (-2356 (((-719) $) 34)) (-1902 ((|#2| $ |#2|) 42)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 24)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 29 T CONST)) (-3093 (($) 36 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 37)))
+(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -4076 (|#3| $)) (-15 -2366 (|#2| $)) (-15 -2134 ($ |#2| |#3|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -1902 (|#2| $ |#2|)))) (-162) (-1157 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271))
+((-2707 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4076 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2134 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1902 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1157 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-289) (-10 -8 (-15 -4076 (|#3| $)) (-15 -2366 (|#2| $)) (-15 -2134 ($ |#2| |#3|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -1902 (|#2| $ |#2|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-272) (-133)) (T -272))
NIL
-(-13 (-984) (-109 $ $) (-10 -7 (-6 -4263)))
+(-13 (-984) (-109 $ $) (-10 -7 (-6 -4262)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2516 (($ (-1099) (-1099) (-1031) $) 17)) (-2493 (($ (-1099) (-597 (-906)) $) 22)) (-2535 (((-597 (-1014)) $) 10)) (-2526 (((-3 (-1031) "failed") (-1099) (-1099) $) 16)) (-2504 (((-3 (-597 (-906)) "failed") (-1099) $) 21)) (-4227 (($) 7)) (-3568 (($) 23)) (-2258 (((-804) $) 27)) (-2480 (($) 24)))
-(((-273) (-13 (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -2535 ((-597 (-1014)) $)) (-15 -2526 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -2516 ($ (-1099) (-1099) (-1031) $)) (-15 -2504 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -2493 ($ (-1099) (-597 (-906)) $)) (-15 -3568 ($)) (-15 -2480 ($))))) (T -273))
-((-4227 (*1 *1) (-5 *1 (-273))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))) (-2526 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))) (-2516 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))) (-2504 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))) (-2493 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))) (-3568 (*1 *1) (-5 *1 (-273))) (-2480 (*1 *1) (-5 *1 (-273))))
-(-13 (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -2535 ((-597 (-1014)) $)) (-15 -2526 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -2516 ($ (-1099) (-1099) (-1031) $)) (-15 -2504 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -2493 ($ (-1099) (-597 (-906)) $)) (-15 -3568 ($)) (-15 -2480 ($))))
-((-2573 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 85)) (-2564 (((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|)))) 80) (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719)) 38)) (-2584 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 82)) (-2554 (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|)))) 62)) (-2545 (((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|)))) 61)) (-1640 (((-893 |#1|) (-637 (-388 (-893 |#1|)))) 50) (((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099)) 51)))
-(((-274 |#1|) (-10 -7 (-15 -1640 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1640 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -2545 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -2554 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -2564 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -2564 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -2573 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2584 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))))) (-432)) (T -274))
-((-2584 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-2573 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-2564 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6)))) (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6)))))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432)) (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))) (-5 *1 (-274 *4)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099)) (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))))
-(-10 -7 (-15 -1640 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1640 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -2545 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -2554 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -2564 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -2564 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -2573 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2584 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))))
-((-3114 (((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)) 14)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -3114 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) (-1135) (-1135)) (T -275))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6)))))
-(-10 -7 (-15 -3114 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3015 (((-110) $) NIL (|has| |#1| (-21)))) (-2646 (($ $) 12)) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3155 (($ $ $) 94 (|has| |#1| (-284)))) (-3956 (($) NIL (-1476 (|has| |#1| (-21)) (|has| |#1| (-675))) CONST)) (-2627 (($ $) 50 (|has| |#1| (-21)))) (-2604 (((-3 $ "failed") $) 61 (|has| |#1| (-675)))) (-1503 ((|#1| $) 11)) (-1673 (((-3 $ "failed") $) 59 (|has| |#1| (-675)))) (-3150 (((-110) $) NIL (|has| |#1| (-675)))) (-3114 (($ (-1 |#1| |#1|) $) 14)) (-1491 ((|#1| $) 10)) (-2637 (($ $) 49 (|has| |#1| (-21)))) (-2616 (((-3 $ "failed") $) 60 (|has| |#1| (-675)))) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2359 (($ $) 63 (-1476 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2594 (((-597 $) $) 84 (|has| |#1| (-522)))) (-4084 (($ $ $) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 $)) 28 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 21 (|has| |#1| (-491 (-1099) |#1|)))) (-1663 (($ |#1| |#1|) 9)) (-1248 (((-130)) 89 (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 86 (|has| |#1| (-841 (-1099))))) (-1800 (($ $ $) NIL (|has| |#1| (-453)))) (-1527 (($ $ $) NIL (|has| |#1| (-453)))) (-2258 (($ (-530)) NIL (|has| |#1| (-984))) (((-110) $) 36 (|has| |#1| (-1027))) (((-804) $) 35 (|has| |#1| (-1027)))) (-1667 (((-719)) 66 (|has| |#1| (-984)))) (-2723 (($ $ (-530)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-862)) NIL (|has| |#1| (-1039)))) (-2943 (($) 46 (|has| |#1| (-21)) CONST)) (-2955 (($) 56 (|has| |#1| (-675)) CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099))))) (-2148 (($ |#1| |#1|) 8) (((-110) $ $) 31 (|has| |#1| (-1027)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-1476 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2245 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2234 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-530)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-862)) NIL (|has| |#1| (-1039)))) (* (($ $ |#1|) 54 (|has| |#1| (-1039))) (($ |#1| $) 53 (|has| |#1| (-1039))) (($ $ $) 52 (|has| |#1| (-1039))) (($ (-530) $) 69 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-25)))))
-(((-276 |#1|) (-13 (-1135) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1663 ($ |#1| |#1|)) (-15 -2646 ($ $)) (-15 -1491 (|#1| $)) (-15 -1503 (|#1| $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4084 ($ $ $)) (-15 -4084 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2234 ($ |#1| $)) (-15 -2234 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2637 ($ $)) (-15 -2627 ($ $)) (-15 -2245 ($ |#1| $)) (-15 -2245 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2616 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2616 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -2594 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2257 ($ $ $)) (-15 -2359 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3155 ($ $ $)) |%noBranch|))) (-1135)) (T -276))
-((-2148 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1663 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-2646 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1491 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1503 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-4084 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)) (-5 *1 (-276 *2)))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2245 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2616 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-2604 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522)) (-4 *3 (-1135)))) (-3155 (*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (-2257 (*1 *1 *1 *1) (-1476 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))) (-2359 (*1 *1 *1) (-1476 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))))
-(-13 (-1135) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1663 ($ |#1| |#1|)) (-15 -2646 ($ $)) (-15 -1491 (|#1| $)) (-15 -1503 (|#1| $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4084 ($ $ $)) (-15 -4084 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2234 ($ |#1| $)) (-15 -2234 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2637 ($ $)) (-15 -2627 ($ $)) (-15 -2245 ($ |#1| $)) (-15 -2245 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2616 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2616 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -2594 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2257 ($ $ $)) (-15 -2359 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3155 ($ $ $)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) NIL)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) NIL)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-277 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270))) (-1027) (-1027)) (T -277))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270)))
-((-3906 (((-293) (-1082) (-597 (-1082))) 16) (((-293) (-1082) (-1082)) 15) (((-293) (-597 (-1082))) 14) (((-293) (-1082)) 12)))
-(((-278) (-10 -7 (-15 -3906 ((-293) (-1082))) (-15 -3906 ((-293) (-597 (-1082)))) (-15 -3906 ((-293) (-1082) (-1082))) (-15 -3906 ((-293) (-1082) (-597 (-1082)))))) (T -278))
-((-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1082))) (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3906 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-293)) (-5 *1 (-278)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))))
-(-10 -7 (-15 -3906 ((-293) (-1082))) (-15 -3906 ((-293) (-597 (-1082)))) (-15 -3906 ((-293) (-1082) (-1082))) (-15 -3906 ((-293) (-1082) (-597 (-1082)))))
-((-3114 ((|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)) 18)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -3114 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)))) (-284) (-1135)) (T -279))
-((-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1082)) (-5 *5 (-570 *6)) (-4 *6 (-284)) (-4 *2 (-1135)) (-5 *1 (-279 *6 *2)))))
-(-10 -7 (-15 -3114 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|))))
-((-3114 ((|#2| (-1 |#2| |#1|) (-570 |#1|)) 17)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -3114 (|#2| (-1 |#2| |#1|) (-570 |#1|)))) (-284) (-284)) (T -280))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-570 *5)) (-4 *5 (-284)) (-4 *2 (-284)) (-5 *1 (-280 *5 *2)))))
-(-10 -7 (-15 -3114 (|#2| (-1 |#2| |#1|) (-570 |#1|))))
-((-3651 (((-110) (-208)) 10)))
-(((-281 |#1| |#2|) (-10 -7 (-15 -3651 ((-110) (-208)))) (-208) (-208)) (T -281))
-((-3651 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3651 ((-110) (-208))))
-((-2728 (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 93)) (-2738 (((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208)))) 107) (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 61)) (-1798 (((-597 (-1082)) (-1080 (-208))) NIL)) (-2717 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) 58)) (-2747 (((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208)))) 49)) (-1792 (((-597 (-1082)) (-597 (-208))) NIL)) (-1807 (((-208) (-1022 (-788 (-208)))) 25)) (-1815 (((-208) (-1022 (-788 (-208)))) 26)) (-2706 (((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1772 (((-1082) (-208)) NIL)))
-(((-282) (-10 -7 (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -2706 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2717 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -2728 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2747 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))))) (T -282))
-((-1798 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-2738 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-2738 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-2717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-282)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))))
-(-10 -7 (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -2706 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2717 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -2728 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2738 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -2747 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))))
-((-2350 (((-597 (-570 $)) $) 30)) (-3155 (($ $ (-276 $)) 81) (($ $ (-597 (-276 $))) 123) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3012 (((-3 (-570 $) "failed") $) 113)) (-2446 (((-570 $) $) 112)) (-2986 (($ $) 19) (($ (-597 $)) 56)) (-2676 (((-597 (-112)) $) 38)) (-2221 (((-112) (-112)) 91)) (-1555 (((-110) $) 131)) (-3114 (($ (-1 $ $) (-570 $)) 89)) (-2685 (((-3 (-570 $) "failed") $) 93)) (-1912 (($ (-112) $) 61) (($ (-112) (-597 $)) 100)) (-2300 (((-110) $ (-112)) 117) (((-110) $ (-1099)) 116)) (-4150 (((-719) $) 46)) (-2667 (((-110) $ $) 59) (((-110) $ (-1099)) 51)) (-1565 (((-110) $) 129)) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) 121) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 84) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) 69) (($ $ (-1099) (-1 $ $)) 75) (($ $ (-597 (-112)) (-597 (-1 $ $))) 83) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 85) (($ $ (-112) (-1 $ (-597 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-1832 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-597 $)) 109)) (-2695 (($ $) 53) (($ $ $) 119)) (-3998 (($ $) 17) (($ (-597 $)) 55)) (-2212 (((-110) (-112)) 22)))
-(((-283 |#1|) (-10 -8 (-15 -1555 ((-110) |#1|)) (-15 -1565 ((-110) |#1|)) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2667 ((-110) |#1| (-1099))) (-15 -2667 ((-110) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1912 (|#1| (-112) (-597 |#1|))) (-15 -1912 (|#1| (-112) |#1|)) (-15 -2300 ((-110) |#1| (-1099))) (-15 -2300 ((-110) |#1| (-112))) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2676 ((-597 (-112)) |#1|)) (-15 -2350 ((-597 (-570 |#1|)) |#1|)) (-15 -2685 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4150 ((-719) |#1|)) (-15 -2695 (|#1| |#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2986 (|#1| (-597 |#1|))) (-15 -2986 (|#1| |#1|)) (-15 -3998 (|#1| (-597 |#1|))) (-15 -3998 (|#1| |#1|)) (-15 -3155 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -3155 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3155 (|#1| |#1| (-276 |#1|))) (-15 -1832 (|#1| (-112) (-597 |#1|))) (-15 -1832 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2446 ((-570 |#1|) |#1|)) (-15 -3012 ((-3 (-570 |#1|) "failed") |#1|))) (-284)) (T -283))
-((-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284)))))
-(-10 -8 (-15 -1555 ((-110) |#1|)) (-15 -1565 ((-110) |#1|)) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2667 ((-110) |#1| (-1099))) (-15 -2667 ((-110) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1912 (|#1| (-112) (-597 |#1|))) (-15 -1912 (|#1| (-112) |#1|)) (-15 -2300 ((-110) |#1| (-1099))) (-15 -2300 ((-110) |#1| (-112))) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2676 ((-597 (-112)) |#1|)) (-15 -2350 ((-597 (-570 |#1|)) |#1|)) (-15 -2685 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4150 ((-719) |#1|)) (-15 -2695 (|#1| |#1| |#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2986 (|#1| (-597 |#1|))) (-15 -2986 (|#1| |#1|)) (-15 -3998 (|#1| (-597 |#1|))) (-15 -3998 (|#1| |#1|)) (-15 -3155 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -3155 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3155 (|#1| |#1| (-276 |#1|))) (-15 -1832 (|#1| (-112) (-597 |#1|))) (-15 -1832 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2446 ((-570 |#1|) |#1|)) (-15 -3012 ((-3 (-570 |#1|) "failed") |#1|)))
-((-2246 (((-110) $ $) 7)) (-2350 (((-597 (-570 $)) $) 44)) (-3155 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-3012 (((-3 (-570 $) "failed") $) 69)) (-2446 (((-570 $) $) 68)) (-2986 (($ $) 51) (($ (-597 $)) 50)) (-2676 (((-597 (-112)) $) 43)) (-2221 (((-112) (-112)) 42)) (-1555 (((-110) $) 22 (|has| $ (-975 (-530))))) (-2657 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3114 (($ (-1 $ $) (-570 $)) 36)) (-2685 (((-3 (-570 $) "failed") $) 46)) (-3443 (((-1082) $) 9)) (-2422 (((-597 (-570 $)) $) 45)) (-1912 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-2300 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-4150 (((-719) $) 47)) (-2485 (((-1046) $) 10)) (-2667 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-1565 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-1832 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-2695 (($ $) 49) (($ $ $) 48)) (-4212 (($ $) 24 (|has| $ (-984)))) (-2258 (((-804) $) 11) (($ (-570 $)) 70)) (-3998 (($ $) 53) (($ (-597 $)) 52)) (-2212 (((-110) (-112)) 41)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)))
+((-1657 (($ (-1099) (-1099) (-1031) $) 17)) (-3032 (($ (-1099) (-597 (-906)) $) 22)) (-1535 (((-597 (-1014)) $) 10)) (-2999 (((-3 (-1031) "failed") (-1099) (-1099) $) 16)) (-1686 (((-3 (-597 (-906)) "failed") (-1099) $) 21)) (-3958 (($) 7)) (-3556 (($) 23)) (-2366 (((-804) $) 27)) (-3261 (($) 24)))
+(((-273) (-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1535 ((-597 (-1014)) $)) (-15 -2999 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -1657 ($ (-1099) (-1099) (-1031) $)) (-15 -1686 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -3032 ($ (-1099) (-597 (-906)) $)) (-15 -3556 ($)) (-15 -3261 ($))))) (T -273))
+((-3958 (*1 *1) (-5 *1 (-273))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))) (-2999 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))) (-1657 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))) (-1686 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))) (-3032 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))) (-3556 (*1 *1) (-5 *1 (-273))) (-3261 (*1 *1) (-5 *1 (-273))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1535 ((-597 (-1014)) $)) (-15 -2999 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -1657 ($ (-1099) (-1099) (-1031) $)) (-15 -1686 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -3032 ($ (-1099) (-597 (-906)) $)) (-15 -3556 ($)) (-15 -3261 ($))))
+((-3600 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 85)) (-3876 (((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|)))) 80) (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719)) 38)) (-2258 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 82)) (-1987 (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|)))) 62)) (-3290 (((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|)))) 61)) (-1814 (((-893 |#1|) (-637 (-388 (-893 |#1|)))) 50) (((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099)) 51)))
+(((-274 |#1|) (-10 -7 (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -3290 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -1987 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -3600 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2258 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))))) (-432)) (T -274))
+((-2258 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-3876 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6)))) (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6)))))) (-1987 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432)) (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))) (-5 *1 (-274 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099)) (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))))
+(-10 -7 (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -3290 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -1987 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -3600 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2258 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))))
+((-3217 (((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)) 14)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -3217 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) (-1135) (-1135)) (T -275))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -3217 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1760 (($ $) 12)) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1416 (($ $ $) 94 (|has| |#1| (-284)))) (-2350 (($) NIL (-1461 (|has| |#1| (-21)) (|has| |#1| (-675))) CONST)) (-1507 (($ $) 50 (|has| |#1| (-21)))) (-3569 (((-3 $ "failed") $) 61 (|has| |#1| (-675)))) (-1491 ((|#1| $) 11)) (-2707 (((-3 $ "failed") $) 59 (|has| |#1| (-675)))) (-2731 (((-110) $) NIL (|has| |#1| (-675)))) (-3217 (($ (-1 |#1| |#1|) $) 14)) (-1478 ((|#1| $) 10)) (-4104 (($ $) 49 (|has| |#1| (-21)))) (-2264 (((-3 $ "failed") $) 60 (|has| |#1| (-675)))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2483 (($ $) 63 (-1461 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3818 (((-597 $) $) 84 (|has| |#1| (-522)))) (-4098 (($ $ $) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 $)) 28 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 21 (|has| |#1| (-491 (-1099) |#1|)))) (-1685 (($ |#1| |#1|) 9)) (-2488 (((-130)) 89 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 86 (|has| |#1| (-841 (-1099))))) (-2555 (($ $ $) NIL (|has| |#1| (-453)))) (-2607 (($ $ $) NIL (|has| |#1| (-453)))) (-2366 (($ (-530)) NIL (|has| |#1| (-984))) (((-110) $) 36 (|has| |#1| (-1027))) (((-804) $) 35 (|has| |#1| (-1027)))) (-3300 (((-719)) 66 (|has| |#1| (-984)))) (-3080 (($) 46 (|has| |#1| (-21)) CONST)) (-3093 (($) 56 (|has| |#1| (-675)) CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099))))) (-2248 (($ |#1| |#1|) 8) (((-110) $ $) 31 (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-1461 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2351 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2339 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-530)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-862)) NIL (|has| |#1| (-1039)))) (* (($ $ |#1|) 54 (|has| |#1| (-1039))) (($ |#1| $) 53 (|has| |#1| (-1039))) (($ $ $) 52 (|has| |#1| (-1039))) (($ (-530) $) 69 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-25)))))
+(((-276 |#1|) (-13 (-1135) (-10 -8 (-15 -2248 ($ |#1| |#1|)) (-15 -1685 ($ |#1| |#1|)) (-15 -1760 ($ $)) (-15 -1478 (|#1| $)) (-15 -1491 (|#1| $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4098 ($ $ $)) (-15 -4098 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2339 ($ |#1| $)) (-15 -2339 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4104 ($ $)) (-15 -1507 ($ $)) (-15 -2351 ($ |#1| $)) (-15 -2351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -3818 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2364 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -1416 ($ $ $)) |%noBranch|))) (-1135)) (T -276))
+((-2248 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1685 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1478 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1491 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)) (-5 *1 (-276 *2)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-2339 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-2339 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2351 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2351 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2264 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-3569 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522)) (-4 *3 (-1135)))) (-1416 (*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (-2364 (*1 *1 *1 *1) (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))) (-2483 (*1 *1 *1) (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))))
+(-13 (-1135) (-10 -8 (-15 -2248 ($ |#1| |#1|)) (-15 -1685 ($ |#1| |#1|)) (-15 -1760 ($ $)) (-15 -1478 (|#1| $)) (-15 -1491 (|#1| $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4098 ($ $ $)) (-15 -4098 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2339 ($ |#1| $)) (-15 -2339 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4104 ($ $)) (-15 -1507 ($ $)) (-15 -2351 ($ |#1| $)) (-15 -2351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -3818 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2364 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -1416 ($ $ $)) |%noBranch|)))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-277 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -277))
+NIL
+(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-3913 (((-293) (-1082) (-597 (-1082))) 16) (((-293) (-1082) (-1082)) 15) (((-293) (-597 (-1082))) 14) (((-293) (-1082)) 12)))
+(((-278) (-10 -7 (-15 -3913 ((-293) (-1082))) (-15 -3913 ((-293) (-597 (-1082)))) (-15 -3913 ((-293) (-1082) (-1082))) (-15 -3913 ((-293) (-1082) (-597 (-1082)))))) (T -278))
+((-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1082))) (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))))
+(-10 -7 (-15 -3913 ((-293) (-1082))) (-15 -3913 ((-293) (-597 (-1082)))) (-15 -3913 ((-293) (-1082) (-1082))) (-15 -3913 ((-293) (-1082) (-597 (-1082)))))
+((-3217 ((|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)) 18)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)))) (-284) (-1135)) (T -279))
+((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1082)) (-5 *5 (-570 *6)) (-4 *6 (-284)) (-4 *2 (-1135)) (-5 *1 (-279 *6 *2)))))
+(-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|))))
+((-3217 ((|#2| (-1 |#2| |#1|) (-570 |#1|)) 17)))
+(((-280 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-570 |#1|)))) (-284) (-284)) (T -280))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-570 *5)) (-4 *5 (-284)) (-4 *2 (-284)) (-5 *1 (-280 *5 *2)))))
+(-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-570 |#1|))))
+((-1332 (((-110) (-208)) 10)))
+(((-281 |#1| |#2|) (-10 -7 (-15 -1332 ((-110) (-208)))) (-208) (-208)) (T -281))
+((-1332 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1332 ((-110) (-208))))
+((-3460 (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 93)) (-1950 (((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208)))) 107) (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 61)) (-3493 (((-597 (-1082)) (-1080 (-208))) NIL)) (-1869 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) 58)) (-4025 (((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208)))) 49)) (-4093 (((-597 (-1082)) (-597 (-208))) NIL)) (-1384 (((-208) (-1022 (-788 (-208)))) 25)) (-1674 (((-208) (-1022 (-788 (-208)))) 26)) (-1975 (((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1922 (((-1082) (-208)) NIL)))
+(((-282) (-10 -7 (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -1975 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -3460 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -4025 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))))) (T -282))
+((-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282)))) (-4025 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-3460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-282)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))))
+(-10 -7 (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -1975 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -3460 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -4025 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))))
+((-2473 (((-597 (-570 $)) $) 30)) (-1416 (($ $ (-276 $)) 81) (($ $ (-597 (-276 $))) 123) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) 113)) (-2585 (((-570 $) $) 112)) (-3324 (($ $) 19) (($ (-597 $)) 56)) (-2381 (((-597 (-112)) $) 38)) (-4124 (((-112) (-112)) 91)) (-3457 (((-110) $) 131)) (-3217 (($ (-1 $ $) (-570 $)) 89)) (-3707 (((-3 (-570 $) "failed") $) 93)) (-1990 (($ (-112) $) 61) (($ (-112) (-597 $)) 100)) (-1826 (((-110) $ (-112)) 117) (((-110) $ (-1099)) 116)) (-4156 (((-719) $) 46)) (-2861 (((-110) $ $) 59) (((-110) $ (-1099)) 51)) (-1403 (((-110) $) 129)) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) 121) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 84) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) 69) (($ $ (-1099) (-1 $ $)) 75) (($ $ (-597 (-112)) (-597 (-1 $ $))) 83) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 85) (($ $ (-112) (-1 $ (-597 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-1902 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-597 $)) 109)) (-3313 (($ $) 53) (($ $ $) 119)) (-1678 (($ $) 17) (($ (-597 $)) 55)) (-4195 (((-110) (-112)) 22)))
+(((-283 |#1|) (-10 -8 (-15 -3457 ((-110) |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2861 ((-110) |#1| (-1099))) (-15 -2861 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1990 (|#1| (-112) (-597 |#1|))) (-15 -1990 (|#1| (-112) |#1|)) (-15 -1826 ((-110) |#1| (-1099))) (-15 -1826 ((-110) |#1| (-112))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2381 ((-597 (-112)) |#1|)) (-15 -2473 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4156 ((-719) |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3324 (|#1| (-597 |#1|))) (-15 -3324 (|#1| |#1|)) (-15 -1678 (|#1| (-597 |#1|))) (-15 -1678 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|))) (-284)) (T -283))
+((-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284)))))
+(-10 -8 (-15 -3457 ((-110) |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2861 ((-110) |#1| (-1099))) (-15 -2861 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1990 (|#1| (-112) (-597 |#1|))) (-15 -1990 (|#1| (-112) |#1|)) (-15 -1826 ((-110) |#1| (-1099))) (-15 -1826 ((-110) |#1| (-112))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2381 ((-597 (-112)) |#1|)) (-15 -2473 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4156 ((-719) |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3324 (|#1| (-597 |#1|))) (-15 -3324 (|#1| |#1|)) (-15 -1678 (|#1| (-597 |#1|))) (-15 -1678 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)))
+((-2352 (((-110) $ $) 7)) (-2473 (((-597 (-570 $)) $) 44)) (-1416 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-3139 (((-3 (-570 $) "failed") $) 69)) (-2585 (((-570 $) $) 68)) (-3324 (($ $) 51) (($ (-597 $)) 50)) (-2381 (((-597 (-112)) $) 43)) (-4124 (((-112) (-112)) 42)) (-3457 (((-110) $) 22 (|has| $ (-975 (-530))))) (-3210 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3217 (($ (-1 $ $) (-570 $)) 36)) (-3707 (((-3 (-570 $) "failed") $) 46)) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 45)) (-1990 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-1826 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-4156 (((-719) $) 47)) (-2624 (((-1046) $) 10)) (-2861 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-1403 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-1902 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-3313 (($ $) 49) (($ $ $) 48)) (-1781 (($ $) 24 (|has| $ (-984)))) (-2366 (((-804) $) 11) (($ (-570 $)) 70)) (-1678 (($ $) 53) (($ (-597 $)) 52)) (-4195 (((-110) (-112)) 41)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
(((-284) (-133)) (T -284))
-((-1832 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1832 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1832 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1832 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-3998 (*1 *1 *1) (-4 *1 (-284))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-2986 (*1 *1 *1) (-4 *1 (-284))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-2695 (*1 *1 *1) (-4 *1 (-284))) (-2695 (*1 *1 *1 *1) (-4 *1 (-284))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-719)))) (-2685 (*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))) (-2221 (*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-2212 (*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-2300 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-2300 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-1912 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-570 *1)) (-4 *1 (-284)))) (-2667 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))) (-2667 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284)) (-5 *2 (-1095 *1)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))))
-(-13 (-795) (-975 (-570 $)) (-491 (-570 $) $) (-291 $) (-10 -8 (-15 -1832 ($ (-112) $)) (-15 -1832 ($ (-112) $ $)) (-15 -1832 ($ (-112) $ $ $)) (-15 -1832 ($ (-112) $ $ $ $)) (-15 -1832 ($ (-112) (-597 $))) (-15 -3155 ($ $ (-276 $))) (-15 -3155 ($ $ (-597 (-276 $)))) (-15 -3155 ($ $ (-597 (-570 $)) (-597 $))) (-15 -3998 ($ $)) (-15 -3998 ($ (-597 $))) (-15 -2986 ($ $)) (-15 -2986 ($ (-597 $))) (-15 -2695 ($ $)) (-15 -2695 ($ $ $)) (-15 -4150 ((-719) $)) (-15 -2685 ((-3 (-570 $) "failed") $)) (-15 -2422 ((-597 (-570 $)) $)) (-15 -2350 ((-597 (-570 $)) $)) (-15 -2676 ((-597 (-112)) $)) (-15 -2221 ((-112) (-112))) (-15 -2212 ((-110) (-112))) (-15 -2300 ((-110) $ (-112))) (-15 -2300 ((-110) $ (-1099))) (-15 -1912 ($ (-112) $)) (-15 -1912 ($ (-112) (-597 $))) (-15 -3114 ($ (-1 $ $) (-570 $))) (-15 -2667 ((-110) $ $)) (-15 -2667 ((-110) $ (-1099))) (-15 -4084 ($ $ (-597 (-1099)) (-597 (-1 $ $)))) (-15 -4084 ($ $ (-597 (-1099)) (-597 (-1 $ (-597 $))))) (-15 -4084 ($ $ (-1099) (-1 $ (-597 $)))) (-15 -4084 ($ $ (-1099) (-1 $ $))) (-15 -4084 ($ $ (-597 (-112)) (-597 (-1 $ $)))) (-15 -4084 ($ $ (-597 (-112)) (-597 (-1 $ (-597 $))))) (-15 -4084 ($ $ (-112) (-1 $ (-597 $)))) (-15 -4084 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-984)) (PROGN (-15 -2657 ((-1095 $) (-570 $))) (-15 -4212 ($ $))) |%noBranch|) (IF (|has| $ (-975 (-530))) (PROGN (-15 -1565 ((-110) $)) (-15 -1555 ((-110) $))) |%noBranch|)))
+((-1902 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-1678 (*1 *1 *1) (-4 *1 (-284))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-3324 (*1 *1 *1) (-4 *1 (-284))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-3313 (*1 *1 *1) (-4 *1 (-284))) (-3313 (*1 *1 *1 *1) (-4 *1 (-284))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-719)))) (-3707 (*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))) (-4124 (*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-4195 (*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-1826 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-1826 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-1990 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1990 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-570 *1)) (-4 *1 (-284)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284)) (-5 *2 (-1095 *1)))) (-1781 (*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))))
+(-13 (-795) (-975 (-570 $)) (-491 (-570 $) $) (-291 $) (-10 -8 (-15 -1902 ($ (-112) $)) (-15 -1902 ($ (-112) $ $)) (-15 -1902 ($ (-112) $ $ $)) (-15 -1902 ($ (-112) $ $ $ $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -1416 ($ $ (-276 $))) (-15 -1416 ($ $ (-597 (-276 $)))) (-15 -1416 ($ $ (-597 (-570 $)) (-597 $))) (-15 -1678 ($ $)) (-15 -1678 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3313 ($ $)) (-15 -3313 ($ $ $)) (-15 -4156 ((-719) $)) (-15 -3707 ((-3 (-570 $) "failed") $)) (-15 -2560 ((-597 (-570 $)) $)) (-15 -2473 ((-597 (-570 $)) $)) (-15 -2381 ((-597 (-112)) $)) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (-15 -1990 ($ (-112) $)) (-15 -1990 ($ (-112) (-597 $))) (-15 -3217 ($ (-1 $ $) (-570 $))) (-15 -2861 ((-110) $ $)) (-15 -2861 ((-110) $ (-1099))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-1099) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-1099) (-1 $ $))) (-15 -4098 ($ $ (-597 (-112)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-112)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-112) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-984)) (PROGN (-15 -3210 ((-1095 $) (-570 $))) (-15 -1781 ($ $))) |%noBranch|) (IF (|has| $ (-975 (-530))) (PROGN (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $))) |%noBranch|)))
(((-99) . T) ((-571 (-804)) . T) ((-291 $) . T) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-795) . T) ((-975 (-570 $)) . T) ((-1027) . T))
-((-1905 (((-597 |#1|) (-597 |#1|)) 10)))
-(((-285 |#1|) (-10 -7 (-15 -1905 ((-597 |#1|) (-597 |#1|)))) (-793)) (T -285))
-((-1905 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
-(-10 -7 (-15 -1905 ((-597 |#1|) (-597 |#1|))))
-((-3114 (((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)) 17)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -3114 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)))) (-984) (-984)) (T -286))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-637 *6)) (-5 *1 (-286 *5 *6)))))
-(-10 -7 (-15 -3114 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|))))
-((-1766 (((-1181 (-297 (-360))) (-1181 (-297 (-208)))) 105)) (-2791 (((-1022 (-788 (-208))) (-1022 (-788 (-360)))) 40)) (-1798 (((-597 (-1082)) (-1080 (-208))) 87)) (-1859 (((-297 (-360)) (-893 (-208))) 50)) (-1868 (((-208) (-893 (-208))) 46)) (-1824 (((-1082) (-360)) 169)) (-2778 (((-788 (-208)) (-788 (-360))) 34)) (-2852 (((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208)))) 143)) (-1833 (((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) 181) (((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) 179)) (-1896 (((-637 (-208)) (-597 (-208)) (-719)) 14)) (-1748 (((-1181 (-647)) (-597 (-208))) 94)) (-1792 (((-597 (-1082)) (-597 (-208))) 75)) (-4088 (((-3 (-297 (-208)) "failed") (-297 (-208))) 120)) (-3651 (((-110) (-208) (-1022 (-788 (-208)))) 109)) (-1850 (((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) 198)) (-1807 (((-208) (-1022 (-788 (-208)))) 107)) (-1815 (((-208) (-1022 (-788 (-208)))) 108)) (-1888 (((-208) (-388 (-530))) 27)) (-1782 (((-1082) (-360)) 73)) (-2757 (((-208) (-360)) 17)) (-2840 (((-360) (-1181 (-297 (-208)))) 154)) (-2768 (((-297 (-208)) (-297 (-360))) 23)) (-2815 (((-388 (-530)) (-297 (-208))) 53)) (-1715 (((-297 (-388 (-530))) (-297 (-208))) 69)) (-1756 (((-297 (-360)) (-297 (-208))) 98)) (-2828 (((-208) (-297 (-208))) 54)) (-1733 (((-597 (-208)) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) 64)) (-1723 (((-1022 (-788 (-208))) (-1022 (-788 (-208)))) 61)) (-1772 (((-1082) (-208)) 72)) (-1740 (((-647) (-208)) 90)) (-2803 (((-388 (-530)) (-208)) 55)) (-1878 (((-297 (-360)) (-208)) 49)) (-3173 (((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360))))) 43)) (-3476 (((-973) (-597 (-973))) 165) (((-973) (-973) (-973)) 162)) (-1841 (((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-287) (-10 -7 (-15 -2757 ((-208) (-360))) (-15 -2768 ((-297 (-208)) (-297 (-360)))) (-15 -2778 ((-788 (-208)) (-788 (-360)))) (-15 -2791 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3173 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2803 ((-388 (-530)) (-208))) (-15 -2815 ((-388 (-530)) (-297 (-208)))) (-15 -2828 ((-208) (-297 (-208)))) (-15 -4088 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2840 ((-360) (-1181 (-297 (-208))))) (-15 -2852 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -1715 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1723 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -1733 ((-597 (-208)) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))) (-15 -1740 ((-647) (-208))) (-15 -1748 ((-1181 (-647)) (-597 (-208)))) (-15 -1756 ((-297 (-360)) (-297 (-208)))) (-15 -1766 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -3651 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1782 ((-1082) (-360))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))) (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -3476 ((-973) (-973) (-973))) (-15 -3476 ((-973) (-597 (-973)))) (-15 -1824 ((-1082) (-360))) (-15 -1833 ((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -1833 ((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -1841 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1850 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1859 ((-297 (-360)) (-893 (-208)))) (-15 -1868 ((-208) (-893 (-208)))) (-15 -1878 ((-297 (-360)) (-208))) (-15 -1888 ((-208) (-388 (-530)))) (-15 -1896 ((-637 (-208)) (-597 (-208)) (-719))))) (T -287))
-((-1896 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-287)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-597 (-973))) (-5 *2 (-973)) (-5 *1 (-287)))) (-3476 (*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-287)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-287)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360)))) (-5 *1 (-287)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *2 (-597 (-208))) (-5 *1 (-287)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530)))) (-5 *1 (-287)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530)))) (-5 *1 (-287)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))) (-4088 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-597 (-1022 (-788 (-360))))) (-5 *2 (-597 (-1022 (-788 (-208))))) (-5 *1 (-287)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
-(-10 -7 (-15 -2757 ((-208) (-360))) (-15 -2768 ((-297 (-208)) (-297 (-360)))) (-15 -2778 ((-788 (-208)) (-788 (-360)))) (-15 -2791 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3173 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2803 ((-388 (-530)) (-208))) (-15 -2815 ((-388 (-530)) (-297 (-208)))) (-15 -2828 ((-208) (-297 (-208)))) (-15 -4088 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2840 ((-360) (-1181 (-297 (-208))))) (-15 -2852 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -1715 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1723 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -1733 ((-597 (-208)) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))) (-15 -1740 ((-647) (-208))) (-15 -1748 ((-1181 (-647)) (-597 (-208)))) (-15 -1756 ((-297 (-360)) (-297 (-208)))) (-15 -1766 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -3651 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1772 ((-1082) (-208))) (-15 -1782 ((-1082) (-360))) (-15 -1792 ((-597 (-1082)) (-597 (-208)))) (-15 -1798 ((-597 (-1082)) (-1080 (-208)))) (-15 -1807 ((-208) (-1022 (-788 (-208))))) (-15 -1815 ((-208) (-1022 (-788 (-208))))) (-15 -3476 ((-973) (-973) (-973))) (-15 -3476 ((-973) (-597 (-973)))) (-15 -1824 ((-1082) (-360))) (-15 -1833 ((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -1833 ((-973) (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -1841 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1850 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1859 ((-297 (-360)) (-893 (-208)))) (-15 -1868 ((-208) (-893 (-208)))) (-15 -1878 ((-297 (-360)) (-208))) (-15 -1888 ((-208) (-388 (-530)))) (-15 -1896 ((-637 (-208)) (-597 (-208)) (-719))))
-((-1945 (((-110) $ $) 11)) (-3607 (($ $ $) 15)) (-3588 (($ $ $) 14)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 44)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 53)) (-2108 (($ $ $) 21) (($ (-597 $)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3562 (((-3 $ "failed") $ $) 17)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 46)))
-(((-288 |#1|) (-10 -8 (-15 -1915 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -1925 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1925 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -1945 ((-110) |#1| |#1|)) (-15 -4051 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -4063 ((-2 (|:| -1981 (-597 |#1|)) (|:| -1898 |#1|)) (-597 |#1|))) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288))
-NIL
-(-10 -8 (-15 -1915 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -1925 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1925 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -1945 ((-110) |#1| |#1|)) (-15 -4051 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -4063 ((-2 (|:| -1981 (-597 |#1|)) (|:| -1898 |#1|)) (-597 |#1|))) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-3150 (((-110) $) 31)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1670 (((-597 |#1|) (-597 |#1|)) 10)))
+(((-285 |#1|) (-10 -7 (-15 -1670 ((-597 |#1|) (-597 |#1|)))) (-793)) (T -285))
+((-1670 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
+(-10 -7 (-15 -1670 ((-597 |#1|) (-597 |#1|))))
+((-3217 (((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)) 17)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -3217 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)))) (-984) (-984)) (T -286))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-637 *6)) (-5 *1 (-286 *5 *6)))))
+(-10 -7 (-15 -3217 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|))))
+((-2574 (((-1181 (-297 (-360))) (-1181 (-297 (-208)))) 105)) (-3476 (((-1022 (-788 (-208))) (-1022 (-788 (-360)))) 40)) (-3493 (((-597 (-1082)) (-1080 (-208))) 87)) (-3500 (((-297 (-360)) (-893 (-208))) 50)) (-2093 (((-208) (-893 (-208))) 46)) (-4144 (((-1082) (-360)) 169)) (-3671 (((-788 (-208)) (-788 (-360))) 34)) (-3891 (((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208)))) 143)) (-2546 (((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) 181) (((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) 179)) (-2030 (((-637 (-208)) (-597 (-208)) (-719)) 14)) (-1651 (((-1181 (-647)) (-597 (-208))) 94)) (-4093 (((-597 (-1082)) (-597 (-208))) 75)) (-4101 (((-3 (-297 (-208)) "failed") (-297 (-208))) 120)) (-1332 (((-110) (-208) (-1022 (-788 (-208)))) 109)) (-3688 (((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) 198)) (-1384 (((-208) (-1022 (-788 (-208)))) 107)) (-1674 (((-208) (-1022 (-788 (-208)))) 108)) (-3490 (((-208) (-388 (-530))) 27)) (-1471 (((-1082) (-360)) 73)) (-2545 (((-208) (-360)) 17)) (-2268 (((-360) (-1181 (-297 (-208)))) 154)) (-2194 (((-297 (-208)) (-297 (-360))) 23)) (-2023 (((-388 (-530)) (-297 (-208))) 53)) (-2131 (((-297 (-388 (-530))) (-297 (-208))) 69)) (-4147 (((-297 (-360)) (-297 (-208))) 98)) (-2519 (((-208) (-297 (-208))) 54)) (-3237 (((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) 64)) (-1794 (((-1022 (-788 (-208))) (-1022 (-788 (-208)))) 61)) (-1922 (((-1082) (-208)) 72)) (-2727 (((-647) (-208)) 90)) (-2163 (((-388 (-530)) (-208)) 55)) (-3865 (((-297 (-360)) (-208)) 49)) (-3260 (((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360))))) 43)) (-3483 (((-973) (-597 (-973))) 165) (((-973) (-973) (-973)) 162)) (-2159 (((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-287) (-10 -7 (-15 -2545 ((-208) (-360))) (-15 -2194 ((-297 (-208)) (-297 (-360)))) (-15 -3671 ((-788 (-208)) (-788 (-360)))) (-15 -3476 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3260 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2163 ((-388 (-530)) (-208))) (-15 -2023 ((-388 (-530)) (-297 (-208)))) (-15 -2519 ((-208) (-297 (-208)))) (-15 -4101 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2268 ((-360) (-1181 (-297 (-208))))) (-15 -3891 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -2131 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1794 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -3237 ((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-15 -2727 ((-647) (-208))) (-15 -1651 ((-1181 (-647)) (-597 (-208)))) (-15 -4147 ((-297 (-360)) (-297 (-208)))) (-15 -2574 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -1332 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -1471 ((-1082) (-360))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -3483 ((-973) (-973) (-973))) (-15 -3483 ((-973) (-597 (-973)))) (-15 -4144 ((-1082) (-360))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -2159 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3688 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -3500 ((-297 (-360)) (-893 (-208)))) (-15 -2093 ((-208) (-893 (-208)))) (-15 -3865 ((-297 (-360)) (-208))) (-15 -3490 ((-208) (-388 (-530)))) (-15 -2030 ((-637 (-208)) (-597 (-208)) (-719))))) (T -287))
+((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-287)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-597 (-973))) (-5 *2 (-973)) (-5 *1 (-287)))) (-3483 (*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-287)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-287)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360)))) (-5 *1 (-287)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *2 (-597 (-208))) (-5 *1 (-287)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530)))) (-5 *1 (-287)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530)))) (-5 *1 (-287)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))) (-4101 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-597 (-1022 (-788 (-360))))) (-5 *2 (-597 (-1022 (-788 (-208))))) (-5 *1 (-287)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
+(-10 -7 (-15 -2545 ((-208) (-360))) (-15 -2194 ((-297 (-208)) (-297 (-360)))) (-15 -3671 ((-788 (-208)) (-788 (-360)))) (-15 -3476 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3260 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2163 ((-388 (-530)) (-208))) (-15 -2023 ((-388 (-530)) (-297 (-208)))) (-15 -2519 ((-208) (-297 (-208)))) (-15 -4101 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2268 ((-360) (-1181 (-297 (-208))))) (-15 -3891 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -2131 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1794 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -3237 ((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-15 -2727 ((-647) (-208))) (-15 -1651 ((-1181 (-647)) (-597 (-208)))) (-15 -4147 ((-297 (-360)) (-297 (-208)))) (-15 -2574 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -1332 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -1471 ((-1082) (-360))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -3483 ((-973) (-973) (-973))) (-15 -3483 ((-973) (-597 (-973)))) (-15 -4144 ((-1082) (-360))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -2159 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3688 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -3500 ((-297 (-360)) (-893 (-208)))) (-15 -2093 ((-208) (-893 (-208)))) (-15 -3865 ((-297 (-360)) (-208))) (-15 -3490 ((-208) (-388 (-530)))) (-15 -2030 ((-637 (-208)) (-597 (-208)) (-719))))
+((-1426 (((-110) $ $) 11)) (-3590 (($ $ $) 15)) (-3571 (($ $ $) 14)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 44)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 53)) (-2204 (($ $ $) 21) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3551 (((-3 $ "failed") $ $) 17)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 46)))
+(((-288 |#1|) (-10 -8 (-15 -3212 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -2832 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2832 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| |#1|)) (-15 -1286 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -3856 ((-2 (|:| -2065 (-597 |#1|)) (|:| -1974 |#1|)) (-597 |#1|))) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288))
+NIL
+(-10 -8 (-15 -3212 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -2832 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2832 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| |#1|)) (-15 -1286 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -3856 ((-2 (|:| -2065 (-597 |#1|)) (|:| -1974 |#1|)) (-597 |#1|))) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-289) (-133)) (T -289))
-((-1945 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))) (-3017 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-289)))) (-3588 (*1 *1 *1 *1) (-4 *1 (-289))) (-3607 (*1 *1 *1 *1) (-4 *1 (-289))) (-1925 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1))) (-4 *1 (-289)))) (-1925 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-1915 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
-(-13 (-861) (-10 -8 (-15 -1945 ((-110) $ $)) (-15 -1934 ((-719) $)) (-15 -3017 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -3588 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -1925 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $)) (-15 -1925 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1915 ((-3 (-597 $) "failed") (-597 $) $))))
+((-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-289)))) (-3571 (*1 *1 *1 *1) (-4 *1 (-289))) (-3590 (*1 *1 *1 *1) (-4 *1 (-289))) (-2832 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-289)))) (-2832 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-3212 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
+(-13 (-861) (-10 -8 (-15 -1426 ((-110) $ $)) (-15 -2356 ((-719) $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2832 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2832 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3212 ((-3 (-597 $) "failed") (-597 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-4084 (($ $ (-597 |#2|) (-597 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-276 |#2|)) 11) (($ $ (-597 (-276 |#2|))) NIL)))
-(((-290 |#1| |#2|) (-10 -8 (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|)))) (-291 |#2|) (-1027)) (T -290))
+((-4098 (($ $ (-597 |#2|) (-597 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-276 |#2|)) 11) (($ $ (-597 (-276 |#2|))) NIL)))
+(((-290 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|)))) (-291 |#2|) (-1027)) (T -290))
NIL
-(-10 -8 (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|))))
-((-4084 (($ $ (-597 |#1|) (-597 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-276 |#1|)) 11) (($ $ (-597 (-276 |#1|))) 10)))
+(-10 -8 (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))))
+((-4098 (($ $ (-597 |#1|) (-597 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-276 |#1|)) 11) (($ $ (-597 (-276 |#1|))) 10)))
(((-291 |#1|) (-133) (-1027)) (T -291))
-((-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027)))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027)))))
-(-13 (-491 |t#1| |t#1|) (-10 -8 (-15 -4084 ($ $ (-276 |t#1|))) (-15 -4084 ($ $ (-597 (-276 |t#1|))))))
+((-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027)))))
+(-13 (-491 |t#1| |t#1|) (-10 -8 (-15 -4098 ($ $ (-276 |t#1|))) (-15 -4098 ($ $ (-597 (-276 |t#1|))))))
(((-491 |#1| |#1|) . T))
-((-4084 ((|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))) 25)))
-(((-292 |#1|) (-10 -7 (-15 -4084 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))))) (-37 (-388 (-530)))) (T -292))
-((-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-530))) (-5 *4 (-1101 (-388 (-530)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-530)))))))
-(-10 -7 (-15 -4084 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530))))))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 7)) (-2148 (((-110) $ $) 9)))
+((-4098 ((|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))) 25)))
+(((-292 |#1|) (-10 -7 (-15 -4098 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))))) (-37 (-388 (-530)))) (T -292))
+((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-530))) (-5 *4 (-1101 (-388 (-530)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-530)))))))
+(-10 -7 (-15 -4098 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530))))))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 9)))
(((-293) (-1027)) (T -293))
NIL
(-1027)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 62)) (-1694 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-1167 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 25)) (-2446 (((-1167 |#1| |#2| |#3| |#4|) $) NIL) (((-1099) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1167 |#1| |#2| |#3| |#4|)))) (-637 $) (-1181 $)) NIL) (((-637 (-1167 |#1| |#2| |#3| |#4|)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-1167 |#1| |#2| |#3| |#4|) $) 21)) (-1560 (((-3 $ "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)))) (-3002 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-1757 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-3114 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL)) (-1434 (((-3 (-788 |#2|) "failed") $) 78)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-1702 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-1167 |#1| |#2| |#3| |#4|)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-276 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-276 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-1099)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1099) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-268 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-1167 |#1| |#2| |#3| |#4|) $) 17)) (-3173 (((-833 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-506)))) (((-360) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960))) (((-208) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-1167 |#1| |#2| |#3| |#4|)) 29) (($ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (($ (-1166 |#2| |#3| |#4|)) 36)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 41 T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2257 (($ $ $) 34) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 31)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-1167 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL)))
-(((-294 |#1| |#2| |#3| |#4|) (-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -1434 ((-3 (-788 |#2|) "failed") $)) (-15 -2258 ($ (-1166 |#2| |#3| |#4|))))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -294))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1166 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4) (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-1434 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
-(-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -1434 ((-3 (-788 |#2|) "failed") $)) (-15 -2258 ($ (-1166 |#2| |#3| |#4|)))))
-((-3114 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 13)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -3114 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-795) (-795)) (T -295))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6)))))
-(-10 -7 (-15 -3114 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
-((-2648 (((-51) |#2| (-276 |#2|) (-719)) 33) (((-51) |#2| (-276 |#2|)) 24) (((-51) |#2| (-719)) 28) (((-51) |#2|) 25) (((-51) (-1099)) 21)) (-4148 (((-51) |#2| (-276 |#2|) (-388 (-530))) 51) (((-51) |#2| (-276 |#2|)) 48) (((-51) |#2| (-388 (-530))) 50) (((-51) |#2|) 49) (((-51) (-1099)) 47)) (-2338 (((-51) |#2| (-276 |#2|) (-388 (-530))) 46) (((-51) |#2| (-276 |#2|)) 43) (((-51) |#2| (-388 (-530))) 45) (((-51) |#2|) 44) (((-51) (-1099)) 42)) (-2659 (((-51) |#2| (-276 |#2|) (-530)) 39) (((-51) |#2| (-276 |#2|)) 35) (((-51) |#2| (-530)) 38) (((-51) |#2|) 36) (((-51) (-1099)) 34)))
-(((-296 |#1| |#2|) (-10 -7 (-15 -2648 ((-51) (-1099))) (-15 -2648 ((-51) |#2|)) (-15 -2648 ((-51) |#2| (-719))) (-15 -2648 ((-51) |#2| (-276 |#2|))) (-15 -2648 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2659 ((-51) (-1099))) (-15 -2659 ((-51) |#2|)) (-15 -2659 ((-51) |#2| (-530))) (-15 -2659 ((-51) |#2| (-276 |#2|))) (-15 -2659 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2338 ((-51) (-1099))) (-15 -2338 ((-51) |#2|)) (-15 -2338 ((-51) |#2| (-388 (-530)))) (-15 -2338 ((-51) |#2| (-276 |#2|))) (-15 -2338 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -4148 ((-51) (-1099))) (-15 -4148 ((-51) |#2|)) (-15 -4148 ((-51) |#2| (-388 (-530)))) (-15 -4148 ((-51) |#2| (-276 |#2|))) (-15 -4148 ((-51) |#2| (-276 |#2|) (-388 (-530))))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -296))
-((-4148 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2338 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2338 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-530)) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2659 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2648 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-719)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2648 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))))
-(-10 -7 (-15 -2648 ((-51) (-1099))) (-15 -2648 ((-51) |#2|)) (-15 -2648 ((-51) |#2| (-719))) (-15 -2648 ((-51) |#2| (-276 |#2|))) (-15 -2648 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2659 ((-51) (-1099))) (-15 -2659 ((-51) |#2|)) (-15 -2659 ((-51) |#2| (-530))) (-15 -2659 ((-51) |#2| (-276 |#2|))) (-15 -2659 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2338 ((-51) (-1099))) (-15 -2338 ((-51) |#2|)) (-15 -2338 ((-51) |#2| (-388 (-530)))) (-15 -2338 ((-51) |#2| (-276 |#2|))) (-15 -2338 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -4148 ((-51) (-1099))) (-15 -4148 ((-51) |#2|)) (-15 -4148 ((-51) |#2| (-388 (-530)))) (-15 -4148 ((-51) |#2| (-276 |#2|))) (-15 -4148 ((-51) |#2| (-276 |#2|) (-388 (-530)))))
-((-2246 (((-110) $ $) NIL)) (-2728 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-4101 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-3015 (((-110) $) 27 (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2596 (((-597 (-1099)) $) 351)) (-2439 (((-388 (-1095 $)) $ (-570 $)) NIL (|has| |#1| (-522)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-2350 (((-597 (-570 $)) $) NIL)) (-2276 (($ $) 161 (|has| |#1| (-522)))) (-2144 (($ $) 137 (|has| |#1| (-522)))) (-1397 (($ $ (-1020 $)) 222 (|has| |#1| (-522))) (($ $ (-1099)) 218 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) NIL (-1476 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-3155 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) 368) (($ $ (-597 (-570 $)) (-597 $)) 412)) (-3715 (((-399 (-1095 $)) (-1095 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-1359 (($ $) NIL (|has| |#1| (-522)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-522)))) (-2487 (($ $) NIL (|has| |#1| (-522)))) (-1945 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2253 (($ $) 157 (|has| |#1| (-522)))) (-2121 (($ $) 133 (|has| |#1| (-522)))) (-1953 (($ $ (-530)) 72 (|has| |#1| (-522)))) (-2297 (($ $) 165 (|has| |#1| (-522)))) (-2169 (($ $) 141 (|has| |#1| (-522)))) (-3956 (($) NIL (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-4115 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-4189 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) 124 (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-3012 (((-3 (-570 $) "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-893 |#1|)) "failed") $) NIL (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) NIL (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 46 (-1476 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2446 (((-570 $) $) 11) (((-1099) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-893 |#1|)) $) NIL (|has| |#1| (-522))) (((-893 |#1|) $) NIL (|has| |#1| (-984))) (((-388 (-530)) $) 306 (-1476 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3607 (($ $ $) NIL (|has| |#1| (-522)))) (-1298 (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 117 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 107 (|has| |#1| (-984))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (-3856 (($ $) 89 (|has| |#1| (-522)))) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-3588 (($ $ $) NIL (|has| |#1| (-522)))) (-3374 (($ $ (-1020 $)) 226 (|has| |#1| (-522))) (($ $ (-1099)) 224 (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-522)))) (-2049 (((-110) $) NIL (|has| |#1| (-522)))) (-2249 (($ $ $) 192 (|has| |#1| (-522)))) (-1877 (($) 127 (|has| |#1| (-522)))) (-1364 (($ $ $) 212 (|has| |#1| (-522)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 374 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 381 (|has| |#1| (-827 (-360))))) (-2986 (($ $) NIL) (($ (-597 $)) NIL)) (-2676 (((-597 (-112)) $) NIL)) (-2221 (((-112) (-112)) 267)) (-3150 (((-110) $) 25 (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-1555 (((-110) $) NIL (|has| $ (-975 (-530))))) (-2854 (($ $) 71 (|has| |#1| (-984)))) (-1848 (((-1051 |#1| (-570 $)) $) 84 (|has| |#1| (-984)))) (-1964 (((-110) $) 64 (|has| |#1| (-522)))) (-1817 (($ $ (-530)) NIL (|has| |#1| (-522)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-2657 (((-1095 $) (-570 $)) 268 (|has| $ (-984)))) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 $ $) (-570 $)) 408)) (-2685 (((-3 (-570 $) "failed") $) NIL)) (-2070 (($ $) 131 (|has| |#1| (-522)))) (-1821 (($ $) 237 (|has| |#1| (-522)))) (-2072 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-3443 (((-1082) $) NIL)) (-2422 (((-597 (-570 $)) $) 49)) (-1912 (($ (-112) $) NIL) (($ (-112) (-597 $)) 413)) (-2457 (((-3 (-597 $) "failed") $) NIL (|has| |#1| (-1039)))) (-2479 (((-3 (-2 (|:| |val| $) (|:| -3059 (-530))) "failed") $) NIL (|has| |#1| (-984)))) (-3691 (((-3 (-597 $) "failed") $) 416 (|has| |#1| (-25)))) (-3500 (((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 $))) "failed") $) 420 (|has| |#1| (-25)))) (-2467 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-112)) NIL (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-1099)) NIL (|has| |#1| (-984)))) (-2300 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) 53)) (-2359 (($ $) NIL (-1476 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2553 (($ $ (-1099)) 241 (|has| |#1| (-522))) (($ $ (-1020 $)) 243 (|has| |#1| (-522)))) (-4150 (((-719) $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) 43)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 288 (|has| |#1| (-522)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-2667 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-1408 (($ $ (-1099)) 216 (|has| |#1| (-522))) (($ $) 214 (|has| |#1| (-522)))) (-1339 (($ $) 208 (|has| |#1| (-522)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-2473 (((-399 $) $) NIL (|has| |#1| (-522)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-522)))) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-2693 (($ $) 129 (|has| |#1| (-522)))) (-1565 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 407) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) 361) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) NIL (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-572 (-506)))) (($ $) NIL (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 349 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 348 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) NIL (|has| |#1| (-984)))) (-1934 (((-719) $) NIL (|has| |#1| (-522)))) (-2074 (($ $) 229 (|has| |#1| (-522)))) (-1832 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-2695 (($ $) NIL) (($ $ $) NIL)) (-2110 (($ $) 239 (|has| |#1| (-522)))) (-2237 (($ $) 190 (|has| |#1| (-522)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-2842 (($ $) 73 (|has| |#1| (-522)))) (-1857 (((-1051 |#1| (-570 $)) $) 86 (|has| |#1| (-522)))) (-4212 (($ $) 304 (|has| $ (-984)))) (-2308 (($ $) 167 (|has| |#1| (-522)))) (-2181 (($ $) 143 (|has| |#1| (-522)))) (-2287 (($ $) 163 (|has| |#1| (-522)))) (-2155 (($ $) 139 (|has| |#1| (-522)))) (-2263 (($ $) 159 (|has| |#1| (-522)))) (-2133 (($ $) 135 (|has| |#1| (-522)))) (-3173 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) NIL (|has| |#1| (-522))) (((-506) $) 346 (|has| |#1| (-572 (-506))))) (-1800 (($ $ $) NIL (|has| |#1| (-453)))) (-1527 (($ $ $) NIL (|has| |#1| (-453)))) (-2258 (((-804) $) 406) (($ (-570 $)) 397) (($ (-1099)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-522))) (($ (-47)) 299 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (($ (-1051 |#1| (-570 $))) 88 (|has| |#1| (-984))) (($ (-388 |#1|)) NIL (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) NIL (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) NIL (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) NIL (|has| |#1| (-522))) (($ (-893 |#1|)) NIL (|has| |#1| (-984))) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-522)) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 34 (-1476 (|has| |#1| (-975 (-530))) (|has| |#1| (-984))))) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL (|has| |#1| (-984)))) (-3998 (($ $) NIL) (($ (-597 $)) NIL)) (-1464 (($ $ $) 210 (|has| |#1| (-522)))) (-2283 (($ $ $) 196 (|has| |#1| (-522)))) (-2304 (($ $ $) 200 (|has| |#1| (-522)))) (-2271 (($ $ $) 194 (|has| |#1| (-522)))) (-2293 (($ $ $) 198 (|has| |#1| (-522)))) (-2212 (((-110) (-112)) 9)) (-2339 (($ $) 173 (|has| |#1| (-522)))) (-2211 (($ $) 149 (|has| |#1| (-522)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) 169 (|has| |#1| (-522)))) (-2192 (($ $) 145 (|has| |#1| (-522)))) (-2361 (($ $) 177 (|has| |#1| (-522)))) (-2230 (($ $) 153 (|has| |#1| (-522)))) (-2386 (($ (-1099) $) NIL) (($ (-1099) $ $) NIL) (($ (-1099) $ $ $) NIL) (($ (-1099) $ $ $ $) NIL) (($ (-1099) (-597 $)) NIL)) (-2326 (($ $) 204 (|has| |#1| (-522)))) (-2315 (($ $) 202 (|has| |#1| (-522)))) (-2910 (($ $) 179 (|has| |#1| (-522)))) (-2241 (($ $) 155 (|has| |#1| (-522)))) (-2349 (($ $) 175 (|has| |#1| (-522)))) (-2220 (($ $) 151 (|has| |#1| (-522)))) (-2328 (($ $) 171 (|has| |#1| (-522)))) (-2202 (($ $) 147 (|has| |#1| (-522)))) (-2218 (($ $) 182 (|has| |#1| (-522)))) (-2723 (($ $ (-530)) NIL (-1476 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-2943 (($) 20 (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) CONST)) (-2239 (($ $) 233 (|has| |#1| (-522)))) (-2955 (($) 22 (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-2261 (($ $) 184 (|has| |#1| (-522))) (($ $ $) 186 (|has| |#1| (-522)))) (-2250 (($ $) 231 (|has| |#1| (-522)))) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-2229 (($ $) 235 (|has| |#1| (-522)))) (-2227 (($ $ $) 188 (|has| |#1| (-522)))) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 81)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 80)) (-2257 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 98 (|has| |#1| (-522))) (($ $ $) 42 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2245 (($ $ $) 40 (-1476 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ $) 29 (-1476 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2234 (($ $ $) 38 (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (** (($ $ $) 66 (|has| |#1| (-522))) (($ $ (-388 (-530))) 301 (|has| |#1| (-522))) (($ $ (-530)) 76 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 74 (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ $ (-862)) 78 (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (* (($ (-388 (-530)) $) NIL (|has| |#1| (-522))) (($ $ (-388 (-530))) NIL (|has| |#1| (-522))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1476 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ (-530) $) 32 (-1476 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-719) $) NIL (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-862) $) NIL (-1476 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))))
-(((-297 |#1|) (-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -3856 ($ $)) (-15 -1964 ((-110) $)) (-15 -1953 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -3707 ((-399 (-1095 $)) (-1095 $))) (-15 -3715 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|))) (-795)) (T -297))
-((-3856 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1953 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-3707 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))))
-(-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -3856 ($ $)) (-15 -1964 ((-110) $)) (-15 -1953 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -3707 ((-399 (-1095 $)) (-1095 $))) (-15 -3715 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|)))
-((-1972 (((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)) 88) (((-51) |#2| (-112) (-276 |#2|) (-276 |#2|)) 84) (((-51) |#2| (-112) (-276 |#2|) |#2|) 86) (((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|) 87) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 80) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 82) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 83) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 81) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 89) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|)) 85)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -1972 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-522) (-572 (-506))) (-411 |#1|)) (T -298))
-((-1972 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3)) (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))) (-1972 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-1972 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-1972 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *5)))) (-1972 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8))) (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-1972 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-1972 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8)) (-5 *6 (-597 *8)) (-4 *8 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-1972 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-1972 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-1972 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *5 *6)))))
-(-10 -7 (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -1972 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -1972 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -1972 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -1972 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|))))
-((-1992 (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082)) 46) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530)) 47) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082)) 43) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530)) 44)) (-1982 (((-1 (-208) (-208)) (-208)) 45)))
-(((-299) (-10 -7 (-15 -1982 ((-1 (-208) (-208)) (-208))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))) (T -299))
-((-1992 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-1992 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-1992 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-1992 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
-(-10 -7 (-15 -1982 ((-1 (-208) (-208)) (-208))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -1992 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 25)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 20)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) 32)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) 16)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2001 (((-388 (-530)) $) 17)) (-1422 (($ (-1166 |#1| |#2| |#3|)) 11)) (-3059 (((-1166 |#1| |#2| |#3|) $) 12)) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-3409 (((-388 (-530)) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 10)) (-2258 (((-804) $) 38) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) 30)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) NIL)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 33)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-300 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-740) (-10 -8 (-15 -1422 ($ (-1166 |#1| |#2| |#3|))) (-15 -3059 ((-1166 |#1| |#2| |#3|) $)) (-15 -2001 ((-388 (-530)) $)))) (-13 (-344) (-795)) (-1099) |#1|) (T -300))
-((-1422 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
-(-13 (-1162 |#1|) (-740) (-10 -8 (-15 -1422 ($ (-1166 |#1| |#2| |#3|))) (-15 -3059 ((-1166 |#1| |#2| |#3|) $)) (-15 -2001 ((-388 (-530)) $))))
-((-1817 (((-2 (|:| -3059 (-719)) (|:| -1981 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719)) 24)) (-2070 (((-597 (-2 (|:| -1981 (-719)) (|:| |logand| |#1|))) (-399 |#1|)) 28)))
-(((-301 |#1|) (-10 -7 (-15 -1817 ((-2 (|:| -3059 (-719)) (|:| -1981 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2070 ((-597 (-2 (|:| -1981 (-719)) (|:| |logand| |#1|))) (-399 |#1|)))) (-522)) (T -301))
-((-2070 (*1 *2 *3) (-12 (-5 *3 (-399 *4)) (-4 *4 (-522)) (-5 *2 (-597 (-2 (|:| -1981 (-719)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *5)) (-4 *5 (-522)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *5) (|:| |radicand| (-597 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-719)))))
-(-10 -7 (-15 -1817 ((-2 (|:| -3059 (-719)) (|:| -1981 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2070 ((-597 (-2 (|:| -1981 (-719)) (|:| |logand| |#1|))) (-399 |#1|))))
-((-2596 (((-597 |#2|) (-1095 |#4|)) 43)) (-2044 ((|#3| (-530)) 46)) (-2026 (((-1095 |#4|) (-1095 |#3|)) 30)) (-2035 (((-1095 |#4|) (-1095 |#4|) (-530)) 56)) (-2018 (((-1095 |#3|) (-1095 |#4|)) 21)) (-3409 (((-597 (-719)) (-1095 |#4|) (-597 |#2|)) 40)) (-2009 (((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|)) 35)))
-(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2009 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -3409 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2596 ((-597 |#2|) (-1095 |#4|))) (-15 -2018 ((-1095 |#3|) (-1095 |#4|))) (-15 -2026 ((-1095 |#4|) (-1095 |#3|))) (-15 -2035 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -2044 (|#3| (-530)))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|)) (T -302))
-((-2044 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))) (-2035 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-597 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795)) (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984)) (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8)))) (-2009 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2009 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -3409 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2596 ((-597 |#2|) (-1095 |#4|))) (-15 -2018 ((-1095 |#3|) (-1095 |#4|))) (-15 -2026 ((-1095 |#4|) (-1095 |#3|))) (-15 -2035 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -2044 (|#3| (-530))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 14)) (-1344 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-530)))) $) 18)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719) $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-4173 ((|#1| $ (-530)) NIL)) (-2073 (((-530) $ (-530)) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-1320 (($ (-1 |#1| |#1|) $) NIL)) (-2062 (($ (-1 (-530) (-530)) $) 10)) (-3443 (((-1082) $) NIL)) (-2053 (($ $ $) NIL (|has| (-530) (-740)))) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL) (($ |#1|) NIL)) (-2782 (((-530) |#1| $) NIL)) (-2943 (($) 15 T CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) 21 (|has| |#1| (-795)))) (-2245 (($ $) 11) (($ $ $) 20)) (-2234 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL) (($ (-530) |#1|) 19)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 62)) (-1612 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1167 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 25)) (-2585 (((-1167 |#1| |#2| |#3| |#4|) $) NIL) (((-1099) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1167 |#1| |#2| |#3| |#4|)))) (-637 $) (-1181 $)) NIL) (((-637 (-1167 |#1| |#2| |#3| |#4|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-1167 |#1| |#2| |#3| |#4|) $) 21)) (-2972 (((-3 $ "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-1817 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-3217 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL)) (-2595 (((-3 (-788 |#2|) "failed") $) 78)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-3175 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-1167 |#1| |#2| |#3| |#4|)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-276 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-276 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-1099)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1099) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-268 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-1167 |#1| |#2| |#3| |#4|) $) 17)) (-3260 (((-833 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-506)))) (((-360) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960))) (((-208) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-1167 |#1| |#2| |#3| |#4|)) 29) (($ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (($ (-1166 |#2| |#3| |#4|)) 36)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3080 (($) 41 T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2364 (($ $ $) 34) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 31)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-1167 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL)))
+(((-294 |#1| |#2| |#3| |#4|) (-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -2366 ($ (-1166 |#2| |#3| |#4|))))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -294))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1166 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4) (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-2595 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
+(-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -2366 ($ (-1166 |#2| |#3| |#4|)))))
+((-3217 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 13)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -3217 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-795) (-795)) (T -295))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6)))))
+(-10 -7 (-15 -3217 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
+((-2805 (((-51) |#2| (-276 |#2|) (-719)) 33) (((-51) |#2| (-276 |#2|)) 24) (((-51) |#2| (-719)) 28) (((-51) |#2|) 25) (((-51) (-1099)) 21)) (-2460 (((-51) |#2| (-276 |#2|) (-388 (-530))) 51) (((-51) |#2| (-276 |#2|)) 48) (((-51) |#2| (-388 (-530))) 50) (((-51) |#2|) 49) (((-51) (-1099)) 47)) (-2457 (((-51) |#2| (-276 |#2|) (-388 (-530))) 46) (((-51) |#2| (-276 |#2|)) 43) (((-51) |#2| (-388 (-530))) 45) (((-51) |#2|) 44) (((-51) (-1099)) 42)) (-2817 (((-51) |#2| (-276 |#2|) (-530)) 39) (((-51) |#2| (-276 |#2|)) 35) (((-51) |#2| (-530)) 38) (((-51) |#2|) 36) (((-51) (-1099)) 34)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -2805 ((-51) (-1099))) (-15 -2805 ((-51) |#2|)) (-15 -2805 ((-51) |#2| (-719))) (-15 -2805 ((-51) |#2| (-276 |#2|))) (-15 -2805 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2817 ((-51) (-1099))) (-15 -2817 ((-51) |#2|)) (-15 -2817 ((-51) |#2| (-530))) (-15 -2817 ((-51) |#2| (-276 |#2|))) (-15 -2817 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2457 ((-51) (-1099))) (-15 -2457 ((-51) |#2|)) (-15 -2457 ((-51) |#2| (-388 (-530)))) (-15 -2457 ((-51) |#2| (-276 |#2|))) (-15 -2457 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -2460 ((-51) (-1099))) (-15 -2460 ((-51) |#2|)) (-15 -2460 ((-51) |#2| (-388 (-530)))) (-15 -2460 ((-51) |#2| (-276 |#2|))) (-15 -2460 ((-51) |#2| (-276 |#2|) (-388 (-530))))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -296))
+((-2460 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2457 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-530)) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2817 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-719)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2805 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))))
+(-10 -7 (-15 -2805 ((-51) (-1099))) (-15 -2805 ((-51) |#2|)) (-15 -2805 ((-51) |#2| (-719))) (-15 -2805 ((-51) |#2| (-276 |#2|))) (-15 -2805 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2817 ((-51) (-1099))) (-15 -2817 ((-51) |#2|)) (-15 -2817 ((-51) |#2| (-530))) (-15 -2817 ((-51) |#2| (-276 |#2|))) (-15 -2817 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2457 ((-51) (-1099))) (-15 -2457 ((-51) |#2|)) (-15 -2457 ((-51) |#2| (-388 (-530)))) (-15 -2457 ((-51) |#2| (-276 |#2|))) (-15 -2457 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -2460 ((-51) (-1099))) (-15 -2460 ((-51) |#2|)) (-15 -2460 ((-51) |#2| (-388 (-530)))) (-15 -2460 ((-51) |#2| (-276 |#2|))) (-15 -2460 ((-51) |#2| (-276 |#2|) (-388 (-530)))))
+((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-4202 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-1813 (((-110) $) 27 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2746 (((-597 (-1099)) $) 351)) (-2577 (((-388 (-1095 $)) $ (-570 $)) NIL (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2473 (((-597 (-570 $)) $) NIL)) (-2386 (($ $) 161 (|has| |#1| (-522)))) (-2244 (($ $) 137 (|has| |#1| (-522)))) (-4017 (($ $ (-1020 $)) 222 (|has| |#1| (-522))) (($ $ (-1099)) 218 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) 368) (($ $ (-597 (-570 $)) (-597 $)) 412)) (-4002 (((-399 (-1095 $)) (-1095 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-3544 (($ $) NIL (|has| |#1| (-522)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-522)))) (-2625 (($ $) NIL (|has| |#1| (-522)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2360 (($ $) 157 (|has| |#1| (-522)))) (-2219 (($ $) 133 (|has| |#1| (-522)))) (-3923 (($ $ (-530)) 72 (|has| |#1| (-522)))) (-2409 (($ $) 165 (|has| |#1| (-522)))) (-2269 (($ $) 141 (|has| |#1| (-522)))) (-2350 (($) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-2933 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-1326 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) 124 (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-3139 (((-3 (-570 $) "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-893 |#1|)) "failed") $) NIL (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) NIL (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 46 (-1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-570 $) $) 11) (((-1099) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-893 |#1|)) $) NIL (|has| |#1| (-522))) (((-893 |#1|) $) NIL (|has| |#1| (-984))) (((-388 (-530)) $) 306 (-1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) NIL (|has| |#1| (-522)))) (-2329 (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 117 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 107 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (-2134 (($ $) 89 (|has| |#1| (-522)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-3571 (($ $ $) NIL (|has| |#1| (-522)))) (-2801 (($ $ (-1020 $)) 226 (|has| |#1| (-522))) (($ $ (-1099)) 224 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-522)))) (-3295 (((-110) $) NIL (|has| |#1| (-522)))) (-1751 (($ $ $) 192 (|has| |#1| (-522)))) (-1948 (($) 127 (|has| |#1| (-522)))) (-2937 (($ $ $) 212 (|has| |#1| (-522)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 374 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 381 (|has| |#1| (-827 (-360))))) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) 267)) (-2731 (((-110) $) 25 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4127 (($ $) 71 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 84 (|has| |#1| (-984)))) (-1449 (((-110) $) 64 (|has| |#1| (-522)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-522)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-3210 (((-1095 $) (-570 $)) 268 (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) 408)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2168 (($ $) 131 (|has| |#1| (-522)))) (-1890 (($ $) 237 (|has| |#1| (-522)))) (-2170 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) 49)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) 413)) (-1862 (((-3 (-597 $) "failed") $) NIL (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) NIL (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 416 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 420 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) NIL (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) NIL (|has| |#1| (-984)))) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) 53)) (-2483 (($ $) NIL (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-1900 (($ $ (-1099)) 241 (|has| |#1| (-522))) (($ $ (-1020 $)) 243 (|has| |#1| (-522)))) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 43)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 288 (|has| |#1| (-522)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2896 (($ $ (-1099)) 216 (|has| |#1| (-522))) (($ $) 214 (|has| |#1| (-522)))) (-1303 (($ $) 208 (|has| |#1| (-522)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-2853 (($ $) 129 (|has| |#1| (-522)))) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 407) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) 361) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) NIL (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-572 (-506)))) (($ $) NIL (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 349 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 348 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) NIL (|has| |#1| (-984)))) (-2356 (((-719) $) NIL (|has| |#1| (-522)))) (-2172 (($ $) 229 (|has| |#1| (-522)))) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3313 (($ $) NIL) (($ $ $) NIL)) (-2206 (($ $) 239 (|has| |#1| (-522)))) (-2101 (($ $) 190 (|has| |#1| (-522)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-1269 (($ $) 73 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 86 (|has| |#1| (-522)))) (-1781 (($ $) 304 (|has| $ (-984)))) (-2421 (($ $) 167 (|has| |#1| (-522)))) (-2281 (($ $) 143 (|has| |#1| (-522)))) (-2398 (($ $) 163 (|has| |#1| (-522)))) (-2254 (($ $) 139 (|has| |#1| (-522)))) (-2373 (($ $) 159 (|has| |#1| (-522)))) (-2231 (($ $) 135 (|has| |#1| (-522)))) (-3260 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) NIL (|has| |#1| (-522))) (((-506) $) 346 (|has| |#1| (-572 (-506))))) (-2555 (($ $ $) NIL (|has| |#1| (-453)))) (-2607 (($ $ $) NIL (|has| |#1| (-453)))) (-2366 (((-804) $) 406) (($ (-570 $)) 397) (($ (-1099)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-522))) (($ (-47)) 299 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (($ (-1051 |#1| (-570 $))) 88 (|has| |#1| (-984))) (($ (-388 |#1|)) NIL (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) NIL (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) NIL (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) NIL (|has| |#1| (-522))) (($ (-893 |#1|)) NIL (|has| |#1| (-984))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-522)) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 34 (-1461 (|has| |#1| (-975 (-530))) (|has| |#1| (-984))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL (|has| |#1| (-984)))) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-2947 (($ $ $) 210 (|has| |#1| (-522)))) (-2323 (($ $ $) 196 (|has| |#1| (-522)))) (-3981 (($ $ $) 200 (|has| |#1| (-522)))) (-2790 (($ $ $) 194 (|has| |#1| (-522)))) (-1374 (($ $ $) 198 (|has| |#1| (-522)))) (-4195 (((-110) (-112)) 9)) (-2459 (($ $) 173 (|has| |#1| (-522)))) (-2314 (($ $) 149 (|has| |#1| (-522)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 169 (|has| |#1| (-522)))) (-2293 (($ $) 145 (|has| |#1| (-522)))) (-2485 (($ $) 177 (|has| |#1| (-522)))) (-2334 (($ $) 153 (|has| |#1| (-522)))) (-2520 (($ (-1099) $) NIL) (($ (-1099) $ $) NIL) (($ (-1099) $ $ $) NIL) (($ (-1099) $ $ $ $) NIL) (($ (-1099) (-597 $)) NIL)) (-3179 (($ $) 204 (|has| |#1| (-522)))) (-1607 (($ $) 202 (|has| |#1| (-522)))) (-3632 (($ $) 179 (|has| |#1| (-522)))) (-2347 (($ $) 155 (|has| |#1| (-522)))) (-2472 (($ $) 175 (|has| |#1| (-522)))) (-2324 (($ $) 151 (|has| |#1| (-522)))) (-2446 (($ $) 171 (|has| |#1| (-522)))) (-2304 (($ $) 147 (|has| |#1| (-522)))) (-3934 (($ $) 182 (|has| |#1| (-522)))) (-3080 (($) 20 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) CONST)) (-2318 (($ $) 233 (|has| |#1| (-522)))) (-3093 (($) 22 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-3187 (($ $) 184 (|has| |#1| (-522))) (($ $ $) 186 (|has| |#1| (-522)))) (-1870 (($ $) 231 (|has| |#1| (-522)))) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-2703 (($ $) 235 (|has| |#1| (-522)))) (-3564 (($ $ $) 188 (|has| |#1| (-522)))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 81)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 80)) (-2364 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 98 (|has| |#1| (-522))) (($ $ $) 42 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2351 (($ $ $) 40 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ $) 29 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2339 (($ $ $) 38 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (** (($ $ $) 66 (|has| |#1| (-522))) (($ $ (-388 (-530))) 301 (|has| |#1| (-522))) (($ $ (-530)) 76 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 74 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ $ (-862)) 78 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (* (($ (-388 (-530)) $) NIL (|has| |#1| (-522))) (($ $ (-388 (-530))) NIL (|has| |#1| (-522))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ (-530) $) 32 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-719) $) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-862) $) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))))
+(((-297 |#1|) (-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -2134 ($ $)) (-15 -1449 ((-110) $)) (-15 -3923 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -4002 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|))) (-795)) (T -297))
+((-2134 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))))
+(-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -2134 ($ $)) (-15 -1449 ((-110) $)) (-15 -3923 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -4002 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|)))
+((-3983 (((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)) 88) (((-51) |#2| (-112) (-276 |#2|) (-276 |#2|)) 84) (((-51) |#2| (-112) (-276 |#2|) |#2|) 86) (((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|) 87) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 80) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 82) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 83) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 81) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 89) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|)) 85)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-522) (-572 (-506))) (-411 |#1|)) (T -298))
+((-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3)) (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))) (-3983 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3983 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *5)))) (-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8))) (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8)) (-5 *6 (-597 *8)) (-4 *8 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *5 *6)))))
+(-10 -7 (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|))))
+((-3090 (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082)) 46) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530)) 47) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082)) 43) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530)) 44)) (-3494 (((-1 (-208) (-208)) (-208)) 45)))
+(((-299) (-10 -7 (-15 -3494 ((-1 (-208) (-208)) (-208))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))) (T -299))
+((-3090 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3494 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(-10 -7 (-15 -3494 ((-1 (-208) (-208)) (-208))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 25)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 20)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 32)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) 16)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1293 (((-388 (-530)) $) 17)) (-3734 (($ (-1166 |#1| |#2| |#3|)) 11)) (-3194 (((-1166 |#1| |#2| |#3|) $) 12)) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 10)) (-2366 (((-804) $) 38) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 30)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 27)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 33)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-300 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3734 ($ (-1166 |#1| |#2| |#3|))) (-15 -3194 ((-1166 |#1| |#2| |#3|) $)) (-15 -1293 ((-388 (-530)) $)))) (-13 (-344) (-795)) (-1099) |#1|) (T -300))
+((-3734 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
+(-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3734 ($ (-1166 |#1| |#2| |#3|))) (-15 -3194 ((-1166 |#1| |#2| |#3|) $)) (-15 -1293 ((-388 (-530)) $))))
+((-3741 (((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719)) 24)) (-2168 (((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|)) 28)))
+(((-301 |#1|) (-10 -7 (-15 -3741 ((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2168 ((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|)))) (-522)) (T -301))
+((-2168 (*1 *2 *3) (-12 (-5 *3 (-399 *4)) (-4 *4 (-522)) (-5 *2 (-597 (-2 (|:| -2065 (-719)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *5)) (-4 *5 (-522)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *5) (|:| |radicand| (-597 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-719)))))
+(-10 -7 (-15 -3741 ((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2168 ((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|))))
+((-2746 (((-597 |#2|) (-1095 |#4|)) 43)) (-4043 ((|#3| (-530)) 46)) (-3021 (((-1095 |#4|) (-1095 |#3|)) 30)) (-1399 (((-1095 |#4|) (-1095 |#4|) (-530)) 56)) (-3321 (((-1095 |#3|) (-1095 |#4|)) 21)) (-1429 (((-597 (-719)) (-1095 |#4|) (-597 |#2|)) 40)) (-1811 (((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|)) 35)))
+(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1811 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -1429 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2746 ((-597 |#2|) (-1095 |#4|))) (-15 -3321 ((-1095 |#3|) (-1095 |#4|))) (-15 -3021 ((-1095 |#4|) (-1095 |#3|))) (-15 -1399 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -4043 (|#3| (-530)))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|)) (T -302))
+((-4043 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))) (-1399 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-597 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-1429 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795)) (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984)) (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8)))) (-1811 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1811 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -1429 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2746 ((-597 |#2|) (-1095 |#4|))) (-15 -3321 ((-1095 |#3|) (-1095 |#4|))) (-15 -3021 ((-1095 |#4|) (-1095 |#3|))) (-15 -1399 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -4043 (|#3| (-530))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 14)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $) 18)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-4016 (((-530) $ (-530)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-2580 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (($ (-1 (-530) (-530)) $) 10)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) NIL (|has| (-530) (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-4085 (((-530) |#1| $) NIL)) (-3080 (($) 15 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 21 (|has| |#1| (-795)))) (-2351 (($ $) 11) (($ $ $) 20)) (-2339 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL) (($ (-530) |#1|) 19)))
(((-303 |#1|) (-13 (-21) (-666 (-530)) (-304 |#1| (-530)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -303))
NIL
(-13 (-21) (-666 (-530)) (-304 |#1| (-530)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1344 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))) $) 27)) (-3618 (((-3 $ "failed") $ $) 19)) (-2879 (((-719) $) 28)) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 32)) (-2446 ((|#1| $) 31)) (-4173 ((|#1| $ (-530)) 25)) (-2073 ((|#2| $ (-530)) 26)) (-1320 (($ (-1 |#1| |#1|) $) 22)) (-2062 (($ (-1 |#2| |#2|) $) 23)) (-3443 (((-1082) $) 9)) (-2053 (($ $ $) 21 (|has| |#2| (-740)))) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ |#1|) 33)) (-2782 ((|#2| |#1| $) 24)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2234 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ |#2| |#1|) 29)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 27)) (-1889 (((-3 $ "failed") $ $) 19)) (-3023 (((-719) $) 28)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 32)) (-2585 ((|#1| $) 31)) (-3519 ((|#1| $ (-530)) 25)) (-4016 ((|#2| $ (-530)) 26)) (-2580 (($ (-1 |#1| |#1|) $) 22)) (-1466 (($ (-1 |#2| |#2|) $) 23)) (-1424 (((-1082) $) 9)) (-3613 (($ $ $) 21 (|has| |#2| (-740)))) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ |#1|) 33)) (-4085 ((|#2| |#1| $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ |#2| |#1|) 29)))
(((-304 |#1| |#2|) (-133) (-1027) (-128)) (T -304))
-((-2234 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-719)))) (-1344 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4)))))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027)) (-4 *2 (-128)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1027)))) (-2782 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-2062 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-1320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-2053 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)) (-4 *3 (-740)))))
-(-13 (-128) (-975 |t#1|) (-10 -8 (-15 -2234 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2879 ((-719) $)) (-15 -1344 ((-597 (-2 (|:| |gen| |t#1|) (|:| -2693 |t#2|))) $)) (-15 -2073 (|t#2| $ (-530))) (-15 -4173 (|t#1| $ (-530))) (-15 -2782 (|t#2| |t#1| $)) (-15 -2062 ($ (-1 |t#2| |t#2|) $)) (-15 -1320 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-740)) (-15 -2053 ($ $ $)) |%noBranch|)))
+((-2339 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-719)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027)) (-4 *2 (-128)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1027)))) (-4085 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-1466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-3613 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)) (-4 *3 (-740)))))
+(-13 (-128) (-975 |t#1|) (-10 -8 (-15 -2339 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3023 ((-719) $)) (-15 -3678 ((-597 (-2 (|:| |gen| |t#1|) (|:| -2853 |t#2|))) $)) (-15 -4016 (|t#2| $ (-530))) (-15 -3519 (|t#1| $ (-530))) (-15 -4085 (|t#2| |t#1| $)) (-15 -1466 ($ (-1 |t#2| |t#2|) $)) (-15 -2580 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-740)) (-15 -3613 ($ $ $)) |%noBranch|)))
(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1344 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719) $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-4173 ((|#1| $ (-530)) NIL)) (-2073 (((-719) $ (-530)) NIL)) (-1320 (($ (-1 |#1| |#1|) $) NIL)) (-2062 (($ (-1 (-719) (-719)) $) NIL)) (-3443 (((-1082) $) NIL)) (-2053 (($ $ $) NIL (|has| (-719) (-740)))) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL) (($ |#1|) NIL)) (-2782 (((-719) |#1| $) NIL)) (-2943 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2234 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-719) |#1|) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-4016 (((-719) $ (-530)) NIL)) (-2580 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (($ (-1 (-719) (-719)) $) NIL)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) NIL (|has| (-719) (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-4085 (((-719) |#1| $) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-719) |#1|) NIL)))
(((-305 |#1|) (-304 |#1| (-719)) (-1027)) (T -305))
NIL
(-304 |#1| (-719))
-((-3703 (($ $) 53)) (-2097 (($ $ |#2| |#3| $) 14)) (-2107 (($ (-1 |#3| |#3|) $) 35)) (-2366 (((-110) $) 27)) (-2375 ((|#2| $) 29)) (-3562 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3658 ((|#2| $) 49)) (-1669 (((-597 |#2|) $) 38)) (-2084 (($ $ $ (-719)) 23)) (-2257 (($ $ |#2|) 42)))
-(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -3703 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2084 (|#1| |#1| |#1| (-719))) (-15 -2097 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1669 ((-597 |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2366 ((-110) |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2257 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-984) (-740)) (T -306))
+((-1239 (($ $) 53)) (-2410 (($ $ |#2| |#3| $) 14)) (-3756 (($ (-1 |#3| |#3|) $) 35)) (-2494 (((-110) $) 27)) (-2505 ((|#2| $) 29)) (-3551 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3829 ((|#2| $) 49)) (-3441 (((-597 |#2|) $) 38)) (-2659 (($ $ $ (-719)) 23)) (-2364 (($ $ |#2|) 42)))
+(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2659 (|#1| |#1| |#1| (-719))) (-15 -2410 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3756 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2364 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-984) (-740)) (T -306))
NIL
-(-10 -8 (-15 -3703 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2084 (|#1| |#1| |#1| (-719))) (-15 -2097 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2107 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1669 ((-597 |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2366 ((-110) |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2257 (|#1| |#1| |#2|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 90 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 88 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 87)) (-2446 (((-530) $) 91 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 89 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 86)) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-3703 (($ $) 75 (|has| |#1| (-432)))) (-2097 (($ $ |#1| |#2| $) 79)) (-3150 (((-110) $) 31)) (-3239 (((-719) $) 82)) (-3327 (((-110) $) 62)) (-2575 (($ |#1| |#2|) 61)) (-3674 ((|#2| $) 81)) (-2107 (($ (-1 |#2| |#2|) $) 80)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 85)) (-2375 ((|#1| $) 84)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-522)))) (-3409 ((|#2| $) 64)) (-3658 ((|#1| $) 76 (|has| |#1| (-432)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 49 (|has| |#1| (-522))) (($ |#1|) 47) (($ (-388 (-530))) 57 (-1476 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-1669 (((-597 |#1|) $) 83)) (-2782 ((|#1| $ |#2|) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-2084 (($ $ $ (-719)) 78 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+(-10 -8 (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2659 (|#1| |#1| |#1| (-719))) (-15 -2410 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3756 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2364 (|#1| |#1| |#2|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 88 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 86 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 85)) (-2585 (((-530) $) 89 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 87 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 84)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 73 (|has| |#1| (-432)))) (-2410 (($ $ |#1| |#2| $) 77)) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 80)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59)) (-2944 ((|#2| $) 79)) (-3756 (($ (-1 |#2| |#2|) $) 78)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 83)) (-2505 ((|#1| $) 82)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-3829 ((|#1| $) 74 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45) (($ (-388 (-530))) 55 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 81)) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 76 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-307 |#1| |#2|) (-133) (-984) (-740)) (T -307))
-((-2366 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-597 *3)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-719)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-2107 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-2097 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2084 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *3 (-162)))) (-3562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-522)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-432)))))
-(-13 (-46 |t#1| |t#2|) (-392 |t#1|) (-10 -8 (-15 -2366 ((-110) $)) (-15 -2375 (|t#1| $)) (-15 -1669 ((-597 |t#1|) $)) (-15 -3239 ((-719) $)) (-15 -3674 (|t#2| $)) (-15 -2107 ($ (-1 |t#2| |t#2|) $)) (-15 -2097 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -2084 ($ $ $ (-719))) |%noBranch|) (IF (|has| |t#1| (-522)) (-15 -3562 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3658 (|t#1| $)) (-15 -3703 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-392 |#1|) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-3710 (((-110) (-110)) NIL)) (-2416 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) NIL)) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-3929 (($ $) NIL (|has| |#1| (-1027)))) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3722 (($ $ (-530)) NIL)) (-3731 (((-719) $) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-2767 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3440 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3740 (($ (-597 |#1|)) NIL)) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2434 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-1501 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -3740 ($ (-597 |#1|))) (-15 -3731 ((-719) $)) (-15 -3722 ($ $ (-530))) (-15 -3710 ((-110) (-110))))) (-1135)) (T -308))
-((-3740 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-3722 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))))
-(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -3740 ($ (-597 |#1|))) (-15 -3731 ((-719) $)) (-15 -3722 ($ $ (-530))) (-15 -3710 ((-110) (-110)))))
-((-3280 (((-110) $) 42)) (-3242 (((-719)) 22)) (-1380 ((|#2| $) 46) (($ $ (-862)) 103)) (-2879 (((-719)) 98)) (-3477 (($ (-1181 |#2|)) 20)) (-3840 (((-110) $) 115)) (-1717 ((|#2| $) 48) (($ $ (-862)) 101)) (-3873 (((-1095 |#2|) $) NIL) (((-1095 $) $ (-862)) 95)) (-2130 (((-1095 |#2|) $) 83)) (-2120 (((-1095 |#2|) $) 80) (((-3 (-1095 |#2|) "failed") $ $) 77)) (-2142 (($ $ (-1095 |#2|)) 53)) (-3255 (((-781 (-862))) 28) (((-862)) 43)) (-1248 (((-130)) 25)) (-3409 (((-781 (-862)) $) 30) (((-862) $) 117)) (-2153 (($) 109)) (-3351 (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $)) 39)) (-1795 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3292 (((-110) $) 41)))
-(((-309 |#1| |#2|) (-10 -8 (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -2879 ((-719))) (-15 -1795 (|#1| |#1|)) (-15 -2120 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -2120 ((-1095 |#2|) |#1|)) (-15 -2130 ((-1095 |#2|) |#1|)) (-15 -2142 (|#1| |#1| (-1095 |#2|))) (-15 -3840 ((-110) |#1|)) (-15 -2153 (|#1|)) (-15 -1380 (|#1| |#1| (-862))) (-15 -1717 (|#1| |#1| (-862))) (-15 -3873 ((-1095 |#1|) |#1| (-862))) (-15 -1380 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -3409 ((-862) |#1|)) (-15 -3255 ((-862))) (-15 -3873 ((-1095 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3242 ((-719))) (-15 -3255 ((-781 (-862)))) (-15 -3409 ((-781 (-862)) |#1|)) (-15 -3280 ((-110) |#1|)) (-15 -3292 ((-110) |#1|)) (-15 -1248 ((-130)))) (-310 |#2|) (-344)) (T -309))
-((-1248 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3255 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3242 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3255 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-2879 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))))
-(-10 -8 (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -2879 ((-719))) (-15 -1795 (|#1| |#1|)) (-15 -2120 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -2120 ((-1095 |#2|) |#1|)) (-15 -2130 ((-1095 |#2|) |#1|)) (-15 -2142 (|#1| |#1| (-1095 |#2|))) (-15 -3840 ((-110) |#1|)) (-15 -2153 (|#1|)) (-15 -1380 (|#1| |#1| (-862))) (-15 -1717 (|#1| |#1| (-862))) (-15 -3873 ((-1095 |#1|) |#1| (-862))) (-15 -1380 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -3409 ((-862) |#1|)) (-15 -3255 ((-862))) (-15 -3873 ((-1095 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3242 ((-719))) (-15 -3255 ((-781 (-862)))) (-15 -3409 ((-781 (-862)) |#1|)) (-15 -3280 ((-110) |#1|)) (-15 -3292 ((-110) |#1|)) (-15 -1248 ((-130))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3280 (((-110) $) 94)) (-3242 (((-719)) 90)) (-1380 ((|#1| $) 140) (($ $ (-862)) 137 (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) 122 (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1945 (((-110) $ $) 59)) (-2879 (((-719)) 112 (|has| |#1| (-349)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 101)) (-2446 ((|#1| $) 100)) (-3477 (($ (-1181 |#1|)) 146)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-349)))) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-1376 (($) 109 (|has| |#1| (-349)))) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2563 (($) 124 (|has| |#1| (-349)))) (-1674 (((-110) $) 125 (|has| |#1| (-349)))) (-3175 (($ $ (-719)) 87 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 86 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) 71)) (-1334 (((-862) $) 127 (|has| |#1| (-349))) (((-781 (-862)) $) 84 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) 31)) (-3863 (($) 135 (|has| |#1| (-349)))) (-3840 (((-110) $) 134 (|has| |#1| (-349)))) (-1717 ((|#1| $) 141) (($ $ (-862)) 138 (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) 113 (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-3873 (((-1095 |#1|) $) 145) (((-1095 $) $ (-862)) 139 (|has| |#1| (-349)))) (-3830 (((-862) $) 110 (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) 131 (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) 130 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 129 (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) 132 (|has| |#1| (-349)))) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-3677 (($) 114 (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) 111 (|has| |#1| (-349)))) (-3268 (((-110) $) 93)) (-2485 (((-1046) $) 10)) (-1898 (($) 133 (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 121 (|has| |#1| (-349)))) (-2473 (((-399 $) $) 74)) (-3255 (((-781 (-862))) 91) (((-862)) 143)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3187 (((-719) $) 126 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 85 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) 99)) (-3211 (($ $) 118 (|has| |#1| (-349))) (($ $ (-719)) 116 (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) 92) (((-862) $) 142)) (-4212 (((-1095 |#1|)) 144)) (-1612 (($) 123 (|has| |#1| (-349)))) (-2153 (($) 136 (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) 148) (((-637 |#1|) (-1181 $)) 147)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 120 (|has| |#1| (-349)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ |#1|) 102)) (-1795 (($ $) 119 (|has| |#1| (-349))) (((-3 $ "failed") $) 83 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) 29)) (-3853 (((-1181 $)) 150) (((-1181 $) (-862)) 149)) (-3020 (((-110) $ $) 39)) (-3292 (((-110) $) 95)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3231 (($ $) 89 (|has| |#1| (-349))) (($ $ (-719)) 88 (|has| |#1| (-349)))) (-3286 (($ $) 117 (|has| |#1| (-349))) (($ $ (-719)) 115 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64) (($ $ |#1|) 98)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+((-2494 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-597 *3)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-3756 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-2410 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2659 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *3 (-162)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-522)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)) (-4 *2 (-432)))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-432)))))
+(-13 (-46 |t#1| |t#2|) (-392 |t#1|) (-10 -8 (-15 -2494 ((-110) $)) (-15 -2505 (|t#1| $)) (-15 -3441 ((-597 |t#1|) $)) (-15 -3579 ((-719) $)) (-15 -2944 (|t#2| $)) (-15 -3756 ($ (-1 |t#2| |t#2|) $)) (-15 -2410 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -2659 ($ $ $ (-719))) |%noBranch|) (IF (|has| |t#1| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3829 (|t#1| $)) (-15 -1239 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-392 |#1|) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1770 (((-110) (-110)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3219 (($ $ (-530)) NIL)) (-2871 (((-719) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2403 (($ (-597 |#1|)) NIL)) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110))))) (-1135)) (T -308))
+((-2403 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-3219 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110)))))
+((-2536 (((-110) $) 42)) (-2766 (((-719)) 22)) (-1367 ((|#2| $) 46) (($ $ (-862)) 103)) (-3023 (((-719)) 98)) (-1574 (($ (-1181 |#2|)) 20)) (-1672 (((-110) $) 115)) (-2376 ((|#2| $) 48) (($ $ (-862)) 101)) (-1359 (((-1095 |#2|) $) NIL) (((-1095 $) $ (-862)) 95)) (-3005 (((-1095 |#2|) $) 83)) (-3396 (((-1095 |#2|) $) 80) (((-3 (-1095 |#2|) "failed") $ $) 77)) (-1658 (($ $ (-1095 |#2|)) 53)) (-1415 (((-781 (-862))) 28) (((-862)) 43)) (-2488 (((-130)) 25)) (-1429 (((-781 (-862)) $) 30) (((-862) $) 117)) (-1698 (($) 109)) (-2328 (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $)) 39)) (-3251 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2856 (((-110) $) 41)))
+(((-309 |#1| |#2|) (-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -3023 ((-719))) (-15 -3251 (|#1| |#1|)) (-15 -3396 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -3396 ((-1095 |#2|) |#1|)) (-15 -3005 ((-1095 |#2|) |#1|)) (-15 -1658 (|#1| |#1| (-1095 |#2|))) (-15 -1672 ((-110) |#1|)) (-15 -1698 (|#1|)) (-15 -1367 (|#1| |#1| (-862))) (-15 -2376 (|#1| |#1| (-862))) (-15 -1359 ((-1095 |#1|) |#1| (-862))) (-15 -1367 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1429 ((-862) |#1|)) (-15 -1415 ((-862))) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2766 ((-719))) (-15 -1415 ((-781 (-862)))) (-15 -1429 ((-781 (-862)) |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)) (-15 -2488 ((-130)))) (-310 |#2|) (-344)) (T -309))
+((-2488 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-1415 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-1415 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3023 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))))
+(-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -3023 ((-719))) (-15 -3251 (|#1| |#1|)) (-15 -3396 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -3396 ((-1095 |#2|) |#1|)) (-15 -3005 ((-1095 |#2|) |#1|)) (-15 -1658 (|#1| |#1| (-1095 |#2|))) (-15 -1672 ((-110) |#1|)) (-15 -1698 (|#1|)) (-15 -1367 (|#1| |#1| (-862))) (-15 -2376 (|#1| |#1| (-862))) (-15 -1359 ((-1095 |#1|) |#1| (-862))) (-15 -1367 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1429 ((-862) |#1|)) (-15 -1415 ((-862))) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2766 ((-719))) (-15 -1415 ((-781 (-862)))) (-15 -1429 ((-781 (-862)) |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)) (-15 -2488 ((-130))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2536 (((-110) $) 91)) (-2766 (((-719)) 87)) (-1367 ((|#1| $) 137) (($ $ (-862)) 134 (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 119 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-3023 (((-719)) 109 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 98)) (-2585 ((|#1| $) 97)) (-1574 (($ (-1181 |#1|)) 143)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-349)))) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 106 (|has| |#1| (-349)))) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-1677 (($) 121 (|has| |#1| (-349)))) (-2798 (((-110) $) 122 (|has| |#1| (-349)))) (-3948 (($ $ (-719)) 84 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) 68)) (-2031 (((-862) $) 124 (|has| |#1| (-349))) (((-781 (-862)) $) 81 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) 30)) (-2931 (($) 132 (|has| |#1| (-349)))) (-1672 (((-110) $) 131 (|has| |#1| (-349)))) (-2376 ((|#1| $) 138) (($ $ (-862)) 135 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) 110 (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1359 (((-1095 |#1|) $) 142) (((-1095 $) $ (-862)) 136 (|has| |#1| (-349)))) (-1905 (((-862) $) 107 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) 128 (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) 127 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 126 (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) 129 (|has| |#1| (-349)))) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 111 (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 108 (|has| |#1| (-349)))) (-1655 (((-110) $) 90)) (-2624 (((-1046) $) 10)) (-1974 (($) 130 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 118 (|has| |#1| (-349)))) (-2611 (((-399 $) $) 71)) (-1415 (((-781 (-862))) 88) (((-862)) 140)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-719) $) 123 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 82 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) 96)) (-3289 (($ $) 115 (|has| |#1| (-349))) (($ $ (-719)) 113 (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) 89) (((-862) $) 139)) (-1781 (((-1095 |#1|)) 141)) (-3406 (($) 120 (|has| |#1| (-349)))) (-1698 (($) 133 (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 145) (((-637 |#1|) (-1181 $)) 144)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 117 (|has| |#1| (-349)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 99)) (-3251 (($ $) 116 (|has| |#1| (-349))) (((-3 $ "failed") $) 80 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 147) (((-1181 $) (-862)) 146)) (-3944 (((-110) $ $) 37)) (-2856 (((-110) $) 92)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3962 (($ $) 86 (|has| |#1| (-349))) (($ $ (-719)) 85 (|has| |#1| (-349)))) (-3340 (($ $) 114 (|has| |#1| (-349))) (($ $ (-719)) 112 (|has| |#1| (-349)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62) (($ $ |#1|) 95)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
(((-310 |#1|) (-133) (-344)) (T -310))
-((-3853 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *4)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-4212 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-3255 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1)) (-4 *1 (-310 *4)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1380 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-2153 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3863 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-1898 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-2142 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-2120 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))))
-(-13 (-1198 |t#1|) (-975 |t#1|) (-10 -8 (-15 -3853 ((-1181 $))) (-15 -3853 ((-1181 $) (-862))) (-15 -3351 ((-1181 |t#1|) $)) (-15 -3351 ((-637 |t#1|) (-1181 $))) (-15 -3477 ($ (-1181 |t#1|))) (-15 -3873 ((-1095 |t#1|) $)) (-15 -4212 ((-1095 |t#1|))) (-15 -3255 ((-862))) (-15 -3409 ((-862) $)) (-15 -1717 (|t#1| $)) (-15 -1380 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-330)) (-15 -3873 ((-1095 $) $ (-862))) (-15 -1717 ($ $ (-862))) (-15 -1380 ($ $ (-862))) (-15 -2153 ($)) (-15 -3863 ($)) (-15 -3840 ((-110) $)) (-15 -1898 ($)) (-15 -2142 ($ $ (-1095 |t#1|))) (-15 -2130 ((-1095 |t#1|) $)) (-15 -2120 ((-1095 |t#1|) $)) (-15 -2120 ((-3 (-1095 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1476 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1198 |#1|) . T) ((-344) . T) ((-383) -1476 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-330) |has| |#1| (-349)) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-349)) ((-1139) . T) ((-1188 |#1|) . T))
-((-2246 (((-110) $ $) NIL)) (-4154 (($ (-1098) $) 88)) (-1259 (($) 77)) (-2164 (((-1046) (-1046)) 11)) (-2517 (($) 78)) (-2219 (($) 90) (($ (-297 (-647))) 98) (($ (-297 (-649))) 94) (($ (-297 (-642))) 102) (($ (-297 (-360))) 109) (($ (-297 (-530))) 105) (($ (-297 (-159 (-360)))) 113)) (-2238 (($ (-1098) $) 89)) (-2200 (($ (-597 (-804))) 79)) (-2190 (((-1186) $) 75)) (-3749 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2228 (($ (-1046)) 51)) (-2177 (((-1031) $) 25)) (-4165 (($ (-1020 (-893 (-530))) $) 85) (($ (-1020 (-893 (-530))) (-893 (-530)) $) 86)) (-1607 (($ (-1046)) 87)) (-2071 (($ (-1098) $) 115) (($ (-1098) $ $) 116)) (-3958 (($ (-1099) (-597 (-1099))) 76)) (-1926 (($ (-1082)) 82) (($ (-597 (-1082))) 80)) (-2258 (((-804) $) 118)) (-1827 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1262 (-110)) (|:| -3387 (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -2902 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3912 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3912 $))) (|:| |commonBranch| (-2 (|:| -3901 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $) 44)) (-2773 (($ (-1082)) 187)) (-2210 (($ (-597 $)) 114)) (-1929 (($ (-1099) (-1082)) 120) (($ (-1099) (-297 (-649))) 160) (($ (-1099) (-297 (-647))) 161) (($ (-1099) (-297 (-642))) 162) (($ (-1099) (-637 (-649))) 123) (($ (-1099) (-637 (-647))) 126) (($ (-1099) (-637 (-642))) 129) (($ (-1099) (-1181 (-649))) 132) (($ (-1099) (-1181 (-647))) 135) (($ (-1099) (-1181 (-642))) 138) (($ (-1099) (-637 (-297 (-649)))) 141) (($ (-1099) (-637 (-297 (-647)))) 144) (($ (-1099) (-637 (-297 (-642)))) 147) (($ (-1099) (-1181 (-297 (-649)))) 150) (($ (-1099) (-1181 (-297 (-647)))) 153) (($ (-1099) (-1181 (-297 (-642)))) 156) (($ (-1099) (-597 (-893 (-530))) (-297 (-649))) 157) (($ (-1099) (-597 (-893 (-530))) (-297 (-647))) 158) (($ (-1099) (-597 (-893 (-530))) (-297 (-642))) 159) (($ (-1099) (-297 (-530))) 184) (($ (-1099) (-297 (-360))) 185) (($ (-1099) (-297 (-159 (-360)))) 186) (($ (-1099) (-637 (-297 (-530)))) 165) (($ (-1099) (-637 (-297 (-360)))) 168) (($ (-1099) (-637 (-297 (-159 (-360))))) 171) (($ (-1099) (-1181 (-297 (-530)))) 174) (($ (-1099) (-1181 (-297 (-360)))) 177) (($ (-1099) (-1181 (-297 (-159 (-360))))) 180) (($ (-1099) (-597 (-893 (-530))) (-297 (-530))) 181) (($ (-1099) (-597 (-893 (-530))) (-297 (-360))) 182) (($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360)))) 183)) (-2148 (((-110) $ $) NIL)))
-(((-311) (-13 (-1027) (-10 -8 (-15 -2258 ((-804) $)) (-15 -4165 ($ (-1020 (-893 (-530))) $)) (-15 -4165 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -4154 ($ (-1098) $)) (-15 -2238 ($ (-1098) $)) (-15 -2228 ($ (-1046))) (-15 -1607 ($ (-1046))) (-15 -1926 ($ (-1082))) (-15 -1926 ($ (-597 (-1082)))) (-15 -2773 ($ (-1082))) (-15 -2219 ($)) (-15 -2219 ($ (-297 (-647)))) (-15 -2219 ($ (-297 (-649)))) (-15 -2219 ($ (-297 (-642)))) (-15 -2219 ($ (-297 (-360)))) (-15 -2219 ($ (-297 (-530)))) (-15 -2219 ($ (-297 (-159 (-360))))) (-15 -2071 ($ (-1098) $)) (-15 -2071 ($ (-1098) $ $)) (-15 -1929 ($ (-1099) (-1082))) (-15 -1929 ($ (-1099) (-297 (-649)))) (-15 -1929 ($ (-1099) (-297 (-647)))) (-15 -1929 ($ (-1099) (-297 (-642)))) (-15 -1929 ($ (-1099) (-637 (-649)))) (-15 -1929 ($ (-1099) (-637 (-647)))) (-15 -1929 ($ (-1099) (-637 (-642)))) (-15 -1929 ($ (-1099) (-1181 (-649)))) (-15 -1929 ($ (-1099) (-1181 (-647)))) (-15 -1929 ($ (-1099) (-1181 (-642)))) (-15 -1929 ($ (-1099) (-637 (-297 (-649))))) (-15 -1929 ($ (-1099) (-637 (-297 (-647))))) (-15 -1929 ($ (-1099) (-637 (-297 (-642))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-649))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-647))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-642))))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -1929 ($ (-1099) (-297 (-530)))) (-15 -1929 ($ (-1099) (-297 (-360)))) (-15 -1929 ($ (-1099) (-297 (-159 (-360))))) (-15 -1929 ($ (-1099) (-637 (-297 (-530))))) (-15 -1929 ($ (-1099) (-637 (-297 (-360))))) (-15 -1929 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-530))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-360))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2210 ($ (-597 $))) (-15 -1259 ($)) (-15 -2517 ($)) (-15 -2200 ($ (-597 (-804)))) (-15 -3958 ($ (-1099) (-597 (-1099)))) (-15 -3749 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1827 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1262 (-110)) (|:| -3387 (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -2902 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3912 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3912 $))) (|:| |commonBranch| (-2 (|:| -3901 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -2190 ((-1186) $)) (-15 -2177 ((-1031) $)) (-15 -2164 ((-1046) (-1046)))))) (T -311))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-311)))) (-4165 (*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))) (-4165 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530))) (-5 *1 (-311)))) (-4154 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2238 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-2219 (*1 *1) (-5 *1 (-311))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2071 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2071 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-649))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-647))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-642))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-530))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-360))) (-5 *1 (-311)))) (-1929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2210 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))) (-1259 (*1 *1) (-5 *1 (-311))) (-2517 (*1 *1) (-5 *1 (-311))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))) (-3958 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-311)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -1262 (-110)) (|:| -3387 (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |blockBranch| (-597 (-311))) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -2902 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3912 (-311)))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3912 (-311)))) (|:| |commonBranch| (-2 (|:| -3901 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804))))) (-5 *1 (-311)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ((-804) $)) (-15 -4165 ($ (-1020 (-893 (-530))) $)) (-15 -4165 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -4154 ($ (-1098) $)) (-15 -2238 ($ (-1098) $)) (-15 -2228 ($ (-1046))) (-15 -1607 ($ (-1046))) (-15 -1926 ($ (-1082))) (-15 -1926 ($ (-597 (-1082)))) (-15 -2773 ($ (-1082))) (-15 -2219 ($)) (-15 -2219 ($ (-297 (-647)))) (-15 -2219 ($ (-297 (-649)))) (-15 -2219 ($ (-297 (-642)))) (-15 -2219 ($ (-297 (-360)))) (-15 -2219 ($ (-297 (-530)))) (-15 -2219 ($ (-297 (-159 (-360))))) (-15 -2071 ($ (-1098) $)) (-15 -2071 ($ (-1098) $ $)) (-15 -1929 ($ (-1099) (-1082))) (-15 -1929 ($ (-1099) (-297 (-649)))) (-15 -1929 ($ (-1099) (-297 (-647)))) (-15 -1929 ($ (-1099) (-297 (-642)))) (-15 -1929 ($ (-1099) (-637 (-649)))) (-15 -1929 ($ (-1099) (-637 (-647)))) (-15 -1929 ($ (-1099) (-637 (-642)))) (-15 -1929 ($ (-1099) (-1181 (-649)))) (-15 -1929 ($ (-1099) (-1181 (-647)))) (-15 -1929 ($ (-1099) (-1181 (-642)))) (-15 -1929 ($ (-1099) (-637 (-297 (-649))))) (-15 -1929 ($ (-1099) (-637 (-297 (-647))))) (-15 -1929 ($ (-1099) (-637 (-297 (-642))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-649))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-647))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-642))))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -1929 ($ (-1099) (-297 (-530)))) (-15 -1929 ($ (-1099) (-297 (-360)))) (-15 -1929 ($ (-1099) (-297 (-159 (-360))))) (-15 -1929 ($ (-1099) (-637 (-297 (-530))))) (-15 -1929 ($ (-1099) (-637 (-297 (-360))))) (-15 -1929 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-530))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-360))))) (-15 -1929 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -1929 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2210 ($ (-597 $))) (-15 -1259 ($)) (-15 -2517 ($)) (-15 -2200 ($ (-597 (-804)))) (-15 -3958 ($ (-1099) (-597 (-1099)))) (-15 -3749 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1827 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1262 (-110)) (|:| -3387 (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -2902 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3912 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3912 $))) (|:| |commonBranch| (-2 (|:| -3901 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -2190 ((-1186) $)) (-15 -2177 ((-1031) $)) (-15 -2164 ((-1046) (-1046)))))
-((-2246 (((-110) $ $) NIL)) (-4175 (((-110) $) 11)) (-2121 (($ |#1|) 8)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2133 (($ |#1|) 9)) (-2258 (((-804) $) 17)) (-2027 ((|#1| $) 12)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 19)))
-(((-312 |#1|) (-13 (-795) (-10 -8 (-15 -2121 ($ |#1|)) (-15 -2133 ($ |#1|)) (-15 -4175 ((-110) $)) (-15 -2027 (|#1| $)))) (-795)) (T -312))
-((-2121 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-2133 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-4175 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))) (-2027 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))))
-(-13 (-795) (-10 -8 (-15 -2121 ($ |#1|)) (-15 -2133 ($ |#1|)) (-15 -4175 ((-110) $)) (-15 -2027 (|#1| $))))
-((-4186 (((-311) (-1099) (-893 (-530))) 23)) (-4197 (((-311) (-1099) (-893 (-530))) 27)) (-1683 (((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530)))) 26) (((-311) (-1099) (-893 (-530)) (-893 (-530))) 24)) (-4209 (((-311) (-1099) (-893 (-530))) 31)))
-(((-313) (-10 -7 (-15 -4186 ((-311) (-1099) (-893 (-530)))) (-15 -1683 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1683 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -4197 ((-311) (-1099) (-893 (-530)))) (-15 -4209 ((-311) (-1099) (-893 (-530)))))) (T -313))
-((-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))))
-(-10 -7 (-15 -4186 ((-311) (-1099) (-893 (-530)))) (-15 -1683 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1683 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -4197 ((-311) (-1099) (-893 (-530)))) (-15 -4209 ((-311) (-1099) (-893 (-530)))))
-((-3114 (((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)) 33)))
-(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3114 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -314))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-388 *10))) (-5 *2 (-317 *9 *10 *11 *12)) (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11)))))
-(-10 -7 (-15 -3114 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|))))
-((-4240 (((-110) $) 14)))
-(((-315 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4240 ((-110) |#1|))) (-316 |#2| |#3| |#4| |#5|) (-344) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -315))
-NIL
-(-10 -8 (-15 -4240 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3856 (($ $) 26)) (-4240 (((-110) $) 25)) (-3443 (((-1082) $) 9)) (-1712 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-2485 (((-1046) $) 10)) (-1898 (((-3 |#4| "failed") $) 24)) (-1212 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-530)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1482 (((-2 (|:| -3511 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
+((-3220 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *4)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-1781 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-1415 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1)) (-4 *1 (-310 *4)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1367 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1698 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-2931 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-1974 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-3396 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))))
+(-13 (-1198 |t#1|) (-975 |t#1|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -3220 ((-1181 $) (-862))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -1359 ((-1095 |t#1|) $)) (-15 -1781 ((-1095 |t#1|))) (-15 -1415 ((-862))) (-15 -1429 ((-862) $)) (-15 -2376 (|t#1| $)) (-15 -1367 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-330)) (-15 -1359 ((-1095 $) $ (-862))) (-15 -2376 ($ $ (-862))) (-15 -1367 ($ $ (-862))) (-15 -1698 ($)) (-15 -2931 ($)) (-15 -1672 ((-110) $)) (-15 -1974 ($)) (-15 -1658 ($ $ (-1095 |t#1|))) (-15 -3005 ((-1095 |t#1|) $)) (-15 -3396 ((-1095 |t#1|) $)) (-15 -3396 ((-3 (-1095 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1198 |#1|) . T) ((-344) . T) ((-383) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-330) |has| |#1| (-349)) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-349)) ((-1139) . T) ((-1188 |#1|) . T))
+((-2352 (((-110) $ $) NIL)) (-2374 (($ (-1098) $) 88)) (-1255 (($) 77)) (-2733 (((-1046) (-1046)) 11)) (-2656 (($) 78)) (-4018 (($) 90) (($ (-297 (-647))) 98) (($ (-297 (-649))) 94) (($ (-297 (-642))) 102) (($ (-297 (-360))) 109) (($ (-297 (-530))) 105) (($ (-297 (-159 (-360)))) 113)) (-2182 (($ (-1098) $) 89)) (-2601 (($ (-597 (-804))) 79)) (-3870 (((-1186) $) 75)) (-2691 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2564 (($ (-1046)) 51)) (-4161 (((-1031) $) 25)) (-4032 (($ (-1020 (-893 (-530))) $) 85) (($ (-1020 (-893 (-530))) (-893 (-530)) $) 86)) (-1610 (($ (-1046)) 87)) (-2169 (($ (-1098) $) 115) (($ (-1098) $ $) 116)) (-3970 (($ (-1099) (-597 (-1099))) 76)) (-2005 (($ (-1082)) 82) (($ (-597 (-1082))) 80)) (-2366 (((-804) $) 118)) (-1897 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $) 44)) (-2929 (($ (-1082)) 187)) (-2260 (($ (-597 $)) 114)) (-3106 (($ (-1099) (-1082)) 120) (($ (-1099) (-297 (-649))) 160) (($ (-1099) (-297 (-647))) 161) (($ (-1099) (-297 (-642))) 162) (($ (-1099) (-637 (-649))) 123) (($ (-1099) (-637 (-647))) 126) (($ (-1099) (-637 (-642))) 129) (($ (-1099) (-1181 (-649))) 132) (($ (-1099) (-1181 (-647))) 135) (($ (-1099) (-1181 (-642))) 138) (($ (-1099) (-637 (-297 (-649)))) 141) (($ (-1099) (-637 (-297 (-647)))) 144) (($ (-1099) (-637 (-297 (-642)))) 147) (($ (-1099) (-1181 (-297 (-649)))) 150) (($ (-1099) (-1181 (-297 (-647)))) 153) (($ (-1099) (-1181 (-297 (-642)))) 156) (($ (-1099) (-597 (-893 (-530))) (-297 (-649))) 157) (($ (-1099) (-597 (-893 (-530))) (-297 (-647))) 158) (($ (-1099) (-597 (-893 (-530))) (-297 (-642))) 159) (($ (-1099) (-297 (-530))) 184) (($ (-1099) (-297 (-360))) 185) (($ (-1099) (-297 (-159 (-360)))) 186) (($ (-1099) (-637 (-297 (-530)))) 165) (($ (-1099) (-637 (-297 (-360)))) 168) (($ (-1099) (-637 (-297 (-159 (-360))))) 171) (($ (-1099) (-1181 (-297 (-530)))) 174) (($ (-1099) (-1181 (-297 (-360)))) 177) (($ (-1099) (-1181 (-297 (-159 (-360))))) 180) (($ (-1099) (-597 (-893 (-530))) (-297 (-530))) 181) (($ (-1099) (-597 (-893 (-530))) (-297 (-360))) 182) (($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360)))) 183)) (-2248 (((-110) $ $) NIL)))
+(((-311) (-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -4032 ($ (-1020 (-893 (-530))) $)) (-15 -4032 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -2374 ($ (-1098) $)) (-15 -2182 ($ (-1098) $)) (-15 -2564 ($ (-1046))) (-15 -1610 ($ (-1046))) (-15 -2005 ($ (-1082))) (-15 -2005 ($ (-597 (-1082)))) (-15 -2929 ($ (-1082))) (-15 -4018 ($)) (-15 -4018 ($ (-297 (-647)))) (-15 -4018 ($ (-297 (-649)))) (-15 -4018 ($ (-297 (-642)))) (-15 -4018 ($ (-297 (-360)))) (-15 -4018 ($ (-297 (-530)))) (-15 -4018 ($ (-297 (-159 (-360))))) (-15 -2169 ($ (-1098) $)) (-15 -2169 ($ (-1098) $ $)) (-15 -3106 ($ (-1099) (-1082))) (-15 -3106 ($ (-1099) (-297 (-649)))) (-15 -3106 ($ (-1099) (-297 (-647)))) (-15 -3106 ($ (-1099) (-297 (-642)))) (-15 -3106 ($ (-1099) (-637 (-649)))) (-15 -3106 ($ (-1099) (-637 (-647)))) (-15 -3106 ($ (-1099) (-637 (-642)))) (-15 -3106 ($ (-1099) (-1181 (-649)))) (-15 -3106 ($ (-1099) (-1181 (-647)))) (-15 -3106 ($ (-1099) (-1181 (-642)))) (-15 -3106 ($ (-1099) (-637 (-297 (-649))))) (-15 -3106 ($ (-1099) (-637 (-297 (-647))))) (-15 -3106 ($ (-1099) (-637 (-297 (-642))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-649))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-647))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-642))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -3106 ($ (-1099) (-297 (-530)))) (-15 -3106 ($ (-1099) (-297 (-360)))) (-15 -3106 ($ (-1099) (-297 (-159 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-530))))) (-15 -3106 ($ (-1099) (-637 (-297 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-530))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-360))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2260 ($ (-597 $))) (-15 -1255 ($)) (-15 -2656 ($)) (-15 -2601 ($ (-597 (-804)))) (-15 -3970 ($ (-1099) (-597 (-1099)))) (-15 -2691 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1897 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -3870 ((-1186) $)) (-15 -4161 ((-1031) $)) (-15 -2733 ((-1046) (-1046)))))) (T -311))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-311)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))) (-4032 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530))) (-5 *1 (-311)))) (-2374 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2182 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-4018 (*1 *1) (-5 *1 (-311))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2169 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2169 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-530))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-360))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))) (-1255 (*1 *1) (-5 *1 (-311))) (-2656 (*1 *1) (-5 *1 (-311))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-311)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 (-311))) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 (-311)))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 (-311)))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804))))) (-5 *1 (-311)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -4032 ($ (-1020 (-893 (-530))) $)) (-15 -4032 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -2374 ($ (-1098) $)) (-15 -2182 ($ (-1098) $)) (-15 -2564 ($ (-1046))) (-15 -1610 ($ (-1046))) (-15 -2005 ($ (-1082))) (-15 -2005 ($ (-597 (-1082)))) (-15 -2929 ($ (-1082))) (-15 -4018 ($)) (-15 -4018 ($ (-297 (-647)))) (-15 -4018 ($ (-297 (-649)))) (-15 -4018 ($ (-297 (-642)))) (-15 -4018 ($ (-297 (-360)))) (-15 -4018 ($ (-297 (-530)))) (-15 -4018 ($ (-297 (-159 (-360))))) (-15 -2169 ($ (-1098) $)) (-15 -2169 ($ (-1098) $ $)) (-15 -3106 ($ (-1099) (-1082))) (-15 -3106 ($ (-1099) (-297 (-649)))) (-15 -3106 ($ (-1099) (-297 (-647)))) (-15 -3106 ($ (-1099) (-297 (-642)))) (-15 -3106 ($ (-1099) (-637 (-649)))) (-15 -3106 ($ (-1099) (-637 (-647)))) (-15 -3106 ($ (-1099) (-637 (-642)))) (-15 -3106 ($ (-1099) (-1181 (-649)))) (-15 -3106 ($ (-1099) (-1181 (-647)))) (-15 -3106 ($ (-1099) (-1181 (-642)))) (-15 -3106 ($ (-1099) (-637 (-297 (-649))))) (-15 -3106 ($ (-1099) (-637 (-297 (-647))))) (-15 -3106 ($ (-1099) (-637 (-297 (-642))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-649))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-647))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-642))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -3106 ($ (-1099) (-297 (-530)))) (-15 -3106 ($ (-1099) (-297 (-360)))) (-15 -3106 ($ (-1099) (-297 (-159 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-530))))) (-15 -3106 ($ (-1099) (-637 (-297 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-530))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-360))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2260 ($ (-597 $))) (-15 -1255 ($)) (-15 -2656 ($)) (-15 -2601 ($ (-597 (-804)))) (-15 -3970 ($ (-1099) (-597 (-1099)))) (-15 -2691 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1897 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -3870 ((-1186) $)) (-15 -4161 ((-1031) $)) (-15 -2733 ((-1046) (-1046)))))
+((-2352 (((-110) $ $) NIL)) (-2591 (((-110) $) 11)) (-2219 (($ |#1|) 8)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2231 (($ |#1|) 9)) (-2366 (((-804) $) 17)) (-3117 ((|#1| $) 12)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 19)))
+(((-312 |#1|) (-13 (-795) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2591 ((-110) $)) (-15 -3117 (|#1| $)))) (-795)) (T -312))
+((-2219 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-2231 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))) (-3117 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))))
+(-13 (-795) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2591 ((-110) $)) (-15 -3117 (|#1| $))))
+((-2213 (((-311) (-1099) (-893 (-530))) 23)) (-1467 (((-311) (-1099) (-893 (-530))) 27)) (-1883 (((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530)))) 26) (((-311) (-1099) (-893 (-530)) (-893 (-530))) 24)) (-2711 (((-311) (-1099) (-893 (-530))) 31)))
+(((-313) (-10 -7 (-15 -2213 ((-311) (-1099) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -1467 ((-311) (-1099) (-893 (-530)))) (-15 -2711 ((-311) (-1099) (-893 (-530)))))) (T -313))
+((-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1883 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1883 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(-10 -7 (-15 -2213 ((-311) (-1099) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -1467 ((-311) (-1099) (-893 (-530)))) (-15 -2711 ((-311) (-1099) (-893 (-530)))))
+((-3217 (((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)) 33)))
+(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -314))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-388 *10))) (-5 *2 (-317 *9 *10 *11 *12)) (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11)))))
+(-10 -7 (-15 -3217 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|))))
+((-1809 (((-110) $) 14)))
+(((-315 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1809 ((-110) |#1|))) (-316 |#2| |#3| |#4| |#5|) (-344) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -315))
+NIL
+(-10 -8 (-15 -1809 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2134 (($ $) 26)) (-1809 (((-110) $) 25)) (-1424 (((-1082) $) 9)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-2624 (((-1046) $) 10)) (-1974 (((-3 |#4| "failed") $) 24)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-530)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
(((-316 |#1| |#2| |#3| |#4|) (-133) (-344) (-1157 |t#1|) (-1157 (-388 |t#2|)) (-323 |t#1| |t#2| |t#3|)) (T -316))
-((-1712 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-1212 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-316 *3 *4 *5 *6)))) (-1212 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-1212 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-1212 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -3511 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-1898 (*1 *2 *1) (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-1212 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1712 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -1212 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -1212 ($ |t#4|)) (-15 -1212 ($ |t#1| |t#1|)) (-15 -1212 ($ |t#1| |t#1| (-530))) (-15 -1482 ((-2 (|:| -3511 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3856 ($ $)) (-15 -4240 ((-110) $)) (-15 -1898 ((-3 |t#4| "failed") $)) (-15 -1212 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-3046 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-3041 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-316 *3 *4 *5 *6)))) (-3041 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-3041 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-3041 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -3509 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-2134 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-1974 (*1 *2 *1) (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-3041 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3046 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -3041 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -3041 ($ |t#4|)) (-15 -3041 ($ |t#1| |t#1|)) (-15 -3041 ($ |t#1| |t#1| (-530))) (-15 -3850 ((-2 (|:| -3509 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2134 ($ $)) (-15 -1809 ((-110) $)) (-15 -1974 ((-3 |t#4| "failed") $)) (-15 -3041 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3856 (($ $) 33)) (-4240 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-4220 (((-1181 |#4|) $) 125)) (-1712 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-2485 (((-1046) $) NIL)) (-1898 (((-3 |#4| "failed") $) 36)) (-4229 (((-1181 |#4|) $) 118)) (-1212 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-530)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1482 (((-2 (|:| -3511 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2258 (((-804) $) 17)) (-2943 (($) 14 T CONST)) (-2148 (((-110) $ $) 20)) (-2245 (($ $) 27) (($ $ $) NIL)) (-2234 (($ $ $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 23)))
-(((-317 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4229 ((-1181 |#4|) $)) (-15 -4220 ((-1181 |#4|) $)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -317))
-((-4229 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-4220 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
-(-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4229 ((-1181 |#4|) $)) (-15 -4220 ((-1181 |#4|) $))))
-((-4084 (($ $ (-1099) |#2|) NIL) (($ $ (-597 (-1099)) (-597 |#2|)) 20) (($ $ (-597 (-276 |#2|))) 15) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-1832 (($ $ |#2|) 11)))
-(((-318 |#1| |#2|) (-10 -8 (-15 -1832 (|#1| |#1| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4084 (|#1| |#1| (-1099) |#2|))) (-319 |#2|) (-1027)) (T -318))
-NIL
-(-10 -8 (-15 -1832 (|#1| |#1| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4084 (|#1| |#1| (-1099) |#2|)))
-((-3114 (($ (-1 |#1| |#1|) $) 6)) (-4084 (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 16 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-276 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-597 |#1|) (-597 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-1832 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ $) 33)) (-1809 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-1319 (((-1181 |#4|) $) 125)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-2624 (((-1046) $) NIL)) (-1974 (((-3 |#4| "failed") $) 36)) (-4053 (((-1181 |#4|) $) 118)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-530)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2366 (((-804) $) 17)) (-3080 (($) 14 T CONST)) (-2248 (((-110) $ $) 20)) (-2351 (($ $) 27) (($ $ $) NIL)) (-2339 (($ $ $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 23)))
+(((-317 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-1181 |#4|) $)) (-15 -1319 ((-1181 |#4|) $)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -317))
+((-4053 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-1319 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
+(-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-1181 |#4|) $)) (-15 -1319 ((-1181 |#4|) $))))
+((-4098 (($ $ (-1099) |#2|) NIL) (($ $ (-597 (-1099)) (-597 |#2|)) 20) (($ $ (-597 (-276 |#2|))) 15) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-1902 (($ $ |#2|) 11)))
+(((-318 |#1| |#2|) (-10 -8 (-15 -1902 (|#1| |#1| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1099) |#2|))) (-319 |#2|) (-1027)) (T -318))
+NIL
+(-10 -8 (-15 -1902 (|#1| |#1| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1099) |#2|)))
+((-3217 (($ (-1 |#1| |#1|) $) 6)) (-4098 (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 16 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-276 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-597 |#1|) (-597 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-1902 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|)))))
(((-319 |#1|) (-133) (-1027)) (T -319))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027)))))
-(-13 (-10 -8 (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491 (-1099) |t#1|)) (-6 (-491 (-1099) |t#1|)) |%noBranch|)))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027)))))
+(-13 (-10 -8 (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491 (-1099) |t#1|)) (-6 (-491 (-1099) |t#1|)) |%noBranch|)))
(((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1099)) $) NIL)) (-1221 (((-110)) 91) (((-110) (-110)) 92)) (-2350 (((-597 (-570 $)) $) NIL)) (-2276 (($ $) NIL)) (-2144 (($ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3155 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-2487 (($ $) NIL)) (-2253 (($ $) NIL)) (-2121 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-570 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-297 |#3|)) 71) (((-3 $ "failed") (-1099)) 97) (((-3 $ "failed") (-297 (-530))) 59 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-388 (-893 (-530)))) 65 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-893 (-530))) 60 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-297 (-360))) 89 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-388 (-893 (-360)))) 83 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-893 (-360))) 78 (|has| |#3| (-975 (-360))))) (-2446 (((-570 $) $) NIL) ((|#3| $) NIL) (($ (-297 |#3|)) 72) (($ (-1099)) 98) (($ (-297 (-530))) 61 (|has| |#3| (-975 (-530)))) (($ (-388 (-893 (-530)))) 66 (|has| |#3| (-975 (-530)))) (($ (-893 (-530))) 62 (|has| |#3| (-975 (-530)))) (($ (-297 (-360))) 90 (|has| |#3| (-975 (-360)))) (($ (-388 (-893 (-360)))) 84 (|has| |#3| (-975 (-360)))) (($ (-893 (-360))) 80 (|has| |#3| (-975 (-360))))) (-1673 (((-3 $ "failed") $) NIL)) (-1877 (($) 10)) (-2986 (($ $) NIL) (($ (-597 $)) NIL)) (-2676 (((-597 (-112)) $) NIL)) (-2221 (((-112) (-112)) NIL)) (-3150 (((-110) $) NIL)) (-1555 (((-110) $) NIL (|has| $ (-975 (-530))))) (-2657 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 $ $) (-570 $)) NIL)) (-2685 (((-3 (-570 $) "failed") $) NIL)) (-1873 (($ $) 94)) (-2070 (($ $) NIL)) (-3443 (((-1082) $) NIL)) (-2422 (((-597 (-570 $)) $) NIL)) (-1912 (($ (-112) $) 93) (($ (-112) (-597 $)) NIL)) (-2300 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-4150 (((-719) $) NIL)) (-2485 (((-1046) $) NIL)) (-2667 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2693 (($ $) NIL)) (-1565 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1832 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-2695 (($ $) NIL) (($ $ $) NIL)) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-4212 (($ $) NIL (|has| $ (-984)))) (-2263 (($ $) NIL)) (-2133 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-570 $)) NIL) (($ |#3|) NIL) (($ (-530)) NIL) (((-297 |#3|) $) 96)) (-1667 (((-719)) NIL)) (-3998 (($ $) NIL) (($ (-597 $)) NIL)) (-2212 (((-110) (-112)) NIL)) (-2211 (($ $) NIL)) (-2192 (($ $) NIL)) (-2202 (($ $) NIL)) (-2218 (($ $) NIL)) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) 95 T CONST)) (-2955 (($) 24 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-320 |#1| |#2| |#3|) (-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2446 ($ (-297 |#3|))) (-15 -3012 ((-3 $ "failed") (-297 |#3|))) (-15 -2446 ($ (-1099))) (-15 -3012 ((-3 $ "failed") (-1099))) (-15 -2258 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2446 ($ (-297 (-530)))) (-15 -3012 ((-3 $ "failed") (-297 (-530)))) (-15 -2446 ($ (-388 (-893 (-530))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2446 ($ (-893 (-530)))) (-15 -3012 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2446 ($ (-297 (-360)))) (-15 -3012 ((-3 $ "failed") (-297 (-360)))) (-15 -2446 ($ (-388 (-893 (-360))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2446 ($ (-893 (-360)))) (-15 -3012 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -2218 ($ $)) (-15 -2487 ($ $)) (-15 -2693 ($ $)) (-15 -2070 ($ $)) (-15 -1873 ($ $)) (-15 -2121 ($ $)) (-15 -2133 ($ $)) (-15 -2144 ($ $)) (-15 -2192 ($ $)) (-15 -2202 ($ $)) (-15 -2211 ($ $)) (-15 -2253 ($ $)) (-15 -2263 ($ $)) (-15 -2276 ($ $)) (-15 -1877 ($)) (-15 -2596 ((-597 (-1099)) $)) (-15 -1221 ((-110))) (-15 -1221 ((-110) (-110))))) (-597 (-1099)) (-597 (-1099)) (-368)) (T -320))
-((-2446 (*1 *1 *2) (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2218 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2487 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2693 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2121 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2133 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2202 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2253 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1877 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-1221 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-1221 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
-(-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2446 ($ (-297 |#3|))) (-15 -3012 ((-3 $ "failed") (-297 |#3|))) (-15 -2446 ($ (-1099))) (-15 -3012 ((-3 $ "failed") (-1099))) (-15 -2258 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2446 ($ (-297 (-530)))) (-15 -3012 ((-3 $ "failed") (-297 (-530)))) (-15 -2446 ($ (-388 (-893 (-530))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2446 ($ (-893 (-530)))) (-15 -3012 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2446 ($ (-297 (-360)))) (-15 -3012 ((-3 $ "failed") (-297 (-360)))) (-15 -2446 ($ (-388 (-893 (-360))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2446 ($ (-893 (-360)))) (-15 -3012 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -2218 ($ $)) (-15 -2487 ($ $)) (-15 -2693 ($ $)) (-15 -2070 ($ $)) (-15 -1873 ($ $)) (-15 -2121 ($ $)) (-15 -2133 ($ $)) (-15 -2144 ($ $)) (-15 -2192 ($ $)) (-15 -2202 ($ $)) (-15 -2211 ($ $)) (-15 -2253 ($ $)) (-15 -2263 ($ $)) (-15 -2276 ($ $)) (-15 -1877 ($)) (-15 -2596 ((-597 (-1099)) $)) (-15 -1221 ((-110))) (-15 -1221 ((-110) (-110)))))
-((-3114 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-321 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3114 (|#8| (-1 |#5| |#1|) |#4|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1139) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -321))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1139)) (-4 *8 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1157 (-388 *9))))))
-(-10 -7 (-15 -3114 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1319 (((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) $) 38)) (-3477 (($ (-1181 (-388 |#3|)) (-1181 $)) NIL) (($ (-1181 (-388 |#3|))) NIL) (($ (-1181 |#3|) |#3|) 161)) (-1375 (((-1181 $) (-1181 $)) 145)) (-1231 (((-597 (-597 |#2|))) 119)) (-1509 (((-110) |#2| |#2|) 73)) (-3703 (($ $) 139)) (-2176 (((-719)) 31)) (-1388 (((-1181 $) (-1181 $)) 198)) (-1242 (((-597 (-893 |#2|)) (-1099)) 110)) (-1420 (((-110) $) 158)) (-1409 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-1264 (((-3 |#3| "failed")) 50)) (-1530 (((-719)) 170)) (-1832 ((|#2| $ |#2| |#2|) 132)) (-1275 (((-3 |#3| "failed")) 68)) (-3211 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-719)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1398 (((-1181 $) (-1181 $)) 151)) (-1253 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1519 (((-110)) 33)))
-(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1231 ((-597 (-597 |#2|)))) (-15 -1242 ((-597 (-893 |#2|)) (-1099))) (-15 -1253 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1264 ((-3 |#3| "failed"))) (-15 -1275 ((-3 |#3| "failed"))) (-15 -1832 (|#2| |#1| |#2| |#2|)) (-15 -3703 (|#1| |#1|)) (-15 -3477 (|#1| (-1181 |#3|) |#3|)) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1409 ((-110) |#1| |#3|)) (-15 -1409 ((-110) |#1| |#2|)) (-15 -1319 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1375 ((-1181 |#1|) (-1181 |#1|))) (-15 -1388 ((-1181 |#1|) (-1181 |#1|))) (-15 -1398 ((-1181 |#1|) (-1181 |#1|))) (-15 -1409 ((-110) |#1|)) (-15 -1420 ((-110) |#1|)) (-15 -1509 ((-110) |#2| |#2|)) (-15 -1519 ((-110))) (-15 -1530 ((-719))) (-15 -2176 ((-719))) (-15 -3211 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3211 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -3477 (|#1| (-1181 (-388 |#3|)))) (-15 -3477 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|)))) (-323 |#2| |#3| |#4|) (-1139) (-1157 |#2|) (-1157 (-388 |#3|))) (T -322))
-((-2176 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1530 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1519 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1509 (*1 *2 *3 *3) (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-1275 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-1264 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-1231 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))))
-(-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1231 ((-597 (-597 |#2|)))) (-15 -1242 ((-597 (-893 |#2|)) (-1099))) (-15 -1253 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1264 ((-3 |#3| "failed"))) (-15 -1275 ((-3 |#3| "failed"))) (-15 -1832 (|#2| |#1| |#2| |#2|)) (-15 -3703 (|#1| |#1|)) (-15 -3477 (|#1| (-1181 |#3|) |#3|)) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1409 ((-110) |#1| |#3|)) (-15 -1409 ((-110) |#1| |#2|)) (-15 -1319 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1375 ((-1181 |#1|) (-1181 |#1|))) (-15 -1388 ((-1181 |#1|) (-1181 |#1|))) (-15 -1398 ((-1181 |#1|) (-1181 |#1|))) (-15 -1409 ((-110) |#1|)) (-15 -1420 ((-110) |#1|)) (-15 -1509 ((-110) |#2| |#2|)) (-15 -1519 ((-110))) (-15 -1530 ((-719))) (-15 -2176 ((-719))) (-15 -3211 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3211 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -3477 (|#1| (-1181 (-388 |#3|)))) (-15 -3477 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1319 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 196)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 93 (|has| (-388 |#2|) (-344)))) (-3031 (($ $) 94 (|has| (-388 |#2|) (-344)))) (-3006 (((-110) $) 96 (|has| (-388 |#2|) (-344)))) (-3359 (((-637 (-388 |#2|)) (-1181 $)) 46) (((-637 (-388 |#2|))) 61)) (-1380 (((-388 |#2|) $) 52)) (-1621 (((-1109 (-862) (-719)) (-530)) 147 (|has| (-388 |#2|) (-330)))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 113 (|has| (-388 |#2|) (-344)))) (-3550 (((-399 $) $) 114 (|has| (-388 |#2|) (-344)))) (-1945 (((-110) $ $) 104 (|has| (-388 |#2|) (-344)))) (-2879 (((-719)) 87 (|has| (-388 |#2|) (-349)))) (-1473 (((-110)) 213)) (-1462 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 169 (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 167 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) 166)) (-2446 (((-530) $) 170 (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) 168 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) 165)) (-3477 (($ (-1181 (-388 |#2|)) (-1181 $)) 48) (($ (-1181 (-388 |#2|))) 64) (($ (-1181 |#2|) |#2|) 189)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-388 |#2|) (-330)))) (-3607 (($ $ $) 108 (|has| (-388 |#2|) (-344)))) (-3348 (((-637 (-388 |#2|)) $ (-1181 $)) 53) (((-637 (-388 |#2|)) $) 59)) (-1298 (((-637 (-530)) (-637 $)) 164 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 163 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) 162) (((-637 (-388 |#2|)) (-637 $)) 161)) (-1375 (((-1181 $) (-1181 $)) 201)) (-3856 (($ |#3|) 158) (((-3 $ "failed") (-388 |#3|)) 155 (|has| (-388 |#2|) (-344)))) (-1673 (((-3 $ "failed") $) 34)) (-1231 (((-597 (-597 |#1|))) 182 (|has| |#1| (-349)))) (-1509 (((-110) |#1| |#1|) 217)) (-4113 (((-862)) 54)) (-1376 (($) 90 (|has| (-388 |#2|) (-349)))) (-1451 (((-110)) 210)) (-1441 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-3588 (($ $ $) 107 (|has| (-388 |#2|) (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 102 (|has| (-388 |#2|) (-344)))) (-3703 (($ $) 188)) (-2563 (($) 149 (|has| (-388 |#2|) (-330)))) (-1674 (((-110) $) 150 (|has| (-388 |#2|) (-330)))) (-3175 (($ $ (-719)) 141 (|has| (-388 |#2|) (-330))) (($ $) 140 (|has| (-388 |#2|) (-330)))) (-2049 (((-110) $) 115 (|has| (-388 |#2|) (-344)))) (-1334 (((-862) $) 152 (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) 138 (|has| (-388 |#2|) (-330)))) (-3150 (((-110) $) 31)) (-2176 (((-719)) 220)) (-1388 (((-1181 $) (-1181 $)) 202)) (-1717 (((-388 |#2|) $) 51)) (-1242 (((-597 (-893 |#1|)) (-1099)) 183 (|has| |#1| (-344)))) (-1560 (((-3 $ "failed") $) 142 (|has| (-388 |#2|) (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 111 (|has| (-388 |#2|) (-344)))) (-3873 ((|#3| $) 44 (|has| (-388 |#2|) (-344)))) (-3830 (((-862) $) 89 (|has| (-388 |#2|) (-349)))) (-3844 ((|#3| $) 156)) (-2072 (($ (-597 $)) 100 (|has| (-388 |#2|) (-344))) (($ $ $) 99 (|has| (-388 |#2|) (-344)))) (-3443 (((-1082) $) 9)) (-1330 (((-637 (-388 |#2|))) 197)) (-1354 (((-637 (-388 |#2|))) 199)) (-2359 (($ $) 116 (|has| (-388 |#2|) (-344)))) (-1297 (($ (-1181 |#2|) |#2|) 194)) (-1340 (((-637 (-388 |#2|))) 198)) (-1365 (((-637 (-388 |#2|))) 200)) (-1285 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1308 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 195)) (-1430 (((-1181 $)) 206)) (-3142 (((-1181 $)) 207)) (-1420 (((-110) $) 205)) (-1409 (((-110) $) 204) (((-110) $ |#1|) 192) (((-110) $ |#2|) 191)) (-3677 (($) 143 (|has| (-388 |#2|) (-330)) CONST)) (-1910 (($ (-862)) 88 (|has| (-388 |#2|) (-349)))) (-1264 (((-3 |#2| "failed")) 185)) (-2485 (((-1046) $) 10)) (-1530 (((-719)) 219)) (-1898 (($) 160)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 101 (|has| (-388 |#2|) (-344)))) (-2108 (($ (-597 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 146 (|has| (-388 |#2|) (-330)))) (-2473 (((-399 $) $) 112 (|has| (-388 |#2|) (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 109 (|has| (-388 |#2|) (-344)))) (-3562 (((-3 $ "failed") $ $) 92 (|has| (-388 |#2|) (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 103 (|has| (-388 |#2|) (-344)))) (-1934 (((-719) $) 105 (|has| (-388 |#2|) (-344)))) (-1832 ((|#1| $ |#1| |#1|) 187)) (-1275 (((-3 |#2| "failed")) 186)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 106 (|has| (-388 |#2|) (-344)))) (-2341 (((-388 |#2|) (-1181 $)) 47) (((-388 |#2|)) 60)) (-3187 (((-719) $) 151 (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) 139 (|has| (-388 |#2|) (-330)))) (-3211 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 123 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-597 (-1099)) (-597 (-719))) 130 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 131 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 132 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 133 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 135 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3340 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 137 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3340 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3139 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) 154 (|has| (-388 |#2|) (-344)))) (-4212 ((|#3|) 159)) (-1612 (($) 148 (|has| (-388 |#2|) (-330)))) (-3351 (((-1181 (-388 |#2|)) $ (-1181 $)) 50) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) 49) (((-1181 (-388 |#2|)) $) 66) (((-637 (-388 |#2|)) (-1181 $)) 65)) (-3173 (((-1181 (-388 |#2|)) $) 63) (($ (-1181 (-388 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 145 (|has| (-388 |#2|) (-330)))) (-1398 (((-1181 $) (-1181 $)) 203)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 |#2|)) 37) (($ (-388 (-530))) 86 (-1476 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-530)))))) (($ $) 91 (|has| (-388 |#2|) (-344)))) (-1795 (($ $) 144 (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) 43 (|has| (-388 |#2|) (-138)))) (-1640 ((|#3| $) 45)) (-1667 (((-719)) 29)) (-1497 (((-110)) 216)) (-1484 (((-110) |#1|) 215) (((-110) |#2|) 214)) (-3853 (((-1181 $)) 67)) (-3020 (((-110) $ $) 95 (|has| (-388 |#2|) (-344)))) (-1253 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1519 (((-110)) 218)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 117 (|has| (-388 |#2|) (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 125 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 124 (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) 126 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 127 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 128 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 129 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3340 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 134 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3340 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 136 (-1476 (-3340 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3340 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 121 (|has| (-388 |#2|) (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 118 (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 39) (($ (-388 |#2|) $) 38) (($ (-388 (-530)) $) 120 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) 119 (|has| (-388 |#2|) (-344)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) NIL)) (-3305 (((-110)) 91) (((-110) (-110)) 92)) (-2473 (((-597 (-570 $)) $) NIL)) (-2386 (($ $) NIL)) (-2244 (($ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-2625 (($ $) NIL)) (-2360 (($ $) NIL)) (-2219 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-297 |#3|)) 71) (((-3 $ "failed") (-1099)) 97) (((-3 $ "failed") (-297 (-530))) 59 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-388 (-893 (-530)))) 65 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-893 (-530))) 60 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-297 (-360))) 89 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-388 (-893 (-360)))) 83 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-893 (-360))) 78 (|has| |#3| (-975 (-360))))) (-2585 (((-570 $) $) NIL) ((|#3| $) NIL) (($ (-297 |#3|)) 72) (($ (-1099)) 98) (($ (-297 (-530))) 61 (|has| |#3| (-975 (-530)))) (($ (-388 (-893 (-530)))) 66 (|has| |#3| (-975 (-530)))) (($ (-893 (-530))) 62 (|has| |#3| (-975 (-530)))) (($ (-297 (-360))) 90 (|has| |#3| (-975 (-360)))) (($ (-388 (-893 (-360)))) 84 (|has| |#3| (-975 (-360)))) (($ (-893 (-360))) 80 (|has| |#3| (-975 (-360))))) (-2707 (((-3 $ "failed") $) NIL)) (-1948 (($) 10)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-3210 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-1945 (($ $) 94)) (-2168 (($ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) 93) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2853 (($ $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-1781 (($ $) NIL (|has| $ (-984)))) (-2373 (($ $) NIL)) (-2231 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ |#3|) NIL) (($ (-530)) NIL) (((-297 |#3|) $) 96)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) NIL)) (-2314 (($ $) NIL)) (-2293 (($ $) NIL)) (-2304 (($ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) 95 T CONST)) (-3093 (($) 24 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
+(((-320 |#1| |#2| |#3|) (-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2585 ($ (-297 |#3|))) (-15 -3139 ((-3 $ "failed") (-297 |#3|))) (-15 -2585 ($ (-1099))) (-15 -3139 ((-3 $ "failed") (-1099))) (-15 -2366 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -3934 ($ $)) (-15 -2625 ($ $)) (-15 -2853 ($ $)) (-15 -2168 ($ $)) (-15 -1945 ($ $)) (-15 -2219 ($ $)) (-15 -2231 ($ $)) (-15 -2244 ($ $)) (-15 -2293 ($ $)) (-15 -2304 ($ $)) (-15 -2314 ($ $)) (-15 -2360 ($ $)) (-15 -2373 ($ $)) (-15 -2386 ($ $)) (-15 -1948 ($)) (-15 -2746 ((-597 (-1099)) $)) (-15 -3305 ((-110))) (-15 -3305 ((-110) (-110))))) (-597 (-1099)) (-597 (-1099)) (-368)) (T -320))
+((-2585 (*1 *1 *2) (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2625 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2853 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1945 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2231 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2244 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2293 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1948 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-3305 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
+(-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2585 ($ (-297 |#3|))) (-15 -3139 ((-3 $ "failed") (-297 |#3|))) (-15 -2585 ($ (-1099))) (-15 -3139 ((-3 $ "failed") (-1099))) (-15 -2366 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -3934 ($ $)) (-15 -2625 ($ $)) (-15 -2853 ($ $)) (-15 -2168 ($ $)) (-15 -1945 ($ $)) (-15 -2219 ($ $)) (-15 -2231 ($ $)) (-15 -2244 ($ $)) (-15 -2293 ($ $)) (-15 -2304 ($ $)) (-15 -2314 ($ $)) (-15 -2360 ($ $)) (-15 -2373 ($ $)) (-15 -2386 ($ $)) (-15 -1948 ($)) (-15 -2746 ((-597 (-1099)) $)) (-15 -3305 ((-110))) (-15 -3305 ((-110) (-110)))))
+((-3217 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-321 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1139) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -321))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1139)) (-4 *8 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1157 (-388 *9))))))
+(-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3508 (((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) $) 38)) (-1574 (($ (-1181 (-388 |#3|)) (-1181 $)) NIL) (($ (-1181 (-388 |#3|))) NIL) (($ (-1181 |#3|) |#3|) 161)) (-1728 (((-1181 $) (-1181 $)) 145)) (-1789 (((-597 (-597 |#2|))) 119)) (-3725 (((-110) |#2| |#2|) 73)) (-1239 (($ $) 139)) (-2255 (((-719)) 31)) (-1256 (((-1181 $) (-1181 $)) 198)) (-4116 (((-597 (-893 |#2|)) (-1099)) 110)) (-1747 (((-110) $) 158)) (-3001 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-3429 (((-3 |#3| "failed")) 50)) (-2835 (((-719)) 170)) (-1902 ((|#2| $ |#2| |#2|) 132)) (-2174 (((-3 |#3| "failed")) 68)) (-3289 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-719)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-4123 (((-1181 $) (-1181 $)) 151)) (-1831 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1684 (((-110)) 33)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1789 ((-597 (-597 |#2|)))) (-15 -4116 ((-597 (-893 |#2|)) (-1099))) (-15 -1831 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3429 ((-3 |#3| "failed"))) (-15 -2174 ((-3 |#3| "failed"))) (-15 -1902 (|#2| |#1| |#2| |#2|)) (-15 -1239 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3001 ((-110) |#1| |#3|)) (-15 -3001 ((-110) |#1| |#2|)) (-15 -1574 (|#1| (-1181 |#3|) |#3|)) (-15 -3508 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1181 |#1|) (-1181 |#1|))) (-15 -1256 ((-1181 |#1|) (-1181 |#1|))) (-15 -4123 ((-1181 |#1|) (-1181 |#1|))) (-15 -3001 ((-110) |#1|)) (-15 -1747 ((-110) |#1|)) (-15 -3725 ((-110) |#2| |#2|)) (-15 -1684 ((-110))) (-15 -2835 ((-719))) (-15 -2255 ((-719))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1574 (|#1| (-1181 (-388 |#3|)))) (-15 -1574 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|)))) (-323 |#2| |#3| |#4|) (-1139) (-1157 |#2|) (-1157 (-388 |#3|))) (T -322))
+((-2255 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-2835 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1684 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-3725 (*1 *2 *3 *3) (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-2174 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-3429 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-1789 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))))
+(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1789 ((-597 (-597 |#2|)))) (-15 -4116 ((-597 (-893 |#2|)) (-1099))) (-15 -1831 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3429 ((-3 |#3| "failed"))) (-15 -2174 ((-3 |#3| "failed"))) (-15 -1902 (|#2| |#1| |#2| |#2|)) (-15 -1239 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3001 ((-110) |#1| |#3|)) (-15 -3001 ((-110) |#1| |#2|)) (-15 -1574 (|#1| (-1181 |#3|) |#3|)) (-15 -3508 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1181 |#1|) (-1181 |#1|))) (-15 -1256 ((-1181 |#1|) (-1181 |#1|))) (-15 -4123 ((-1181 |#1|) (-1181 |#1|))) (-15 -3001 ((-110) |#1|)) (-15 -1747 ((-110) |#1|)) (-15 -3725 ((-110) |#2| |#2|)) (-15 -1684 ((-110))) (-15 -2835 ((-719))) (-15 -2255 ((-719))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1574 (|#1| (-1181 (-388 |#3|)))) (-15 -1574 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 193)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (|has| (-388 |#2|) (-344)))) (-3446 (($ $) 92 (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) 94 (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) 44) (((-637 (-388 |#2|))) 59)) (-1367 (((-388 |#2|) $) 50)) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 111 (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) 112 (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) 102 (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) 85 (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) 210)) (-2757 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) 163)) (-2585 (((-530) $) 167 (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) 165 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) 162)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) 46) (($ (-1181 (-388 |#2|))) 62) (($ (-1181 |#2|) |#2|) 192)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) 106 (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) 51) (((-637 (-388 |#2|)) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) 159) (((-637 (-388 |#2|)) (-637 $)) 158)) (-1728 (((-1181 $) (-1181 $)) 198)) (-2134 (($ |#3|) 155) (((-3 $ "failed") (-388 |#3|)) 152 (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-1789 (((-597 (-597 |#1|))) 179 (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) 214)) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) 207)) (-1358 (((-110) |#1|) 206) (((-110) |#2|) 205)) (-3571 (($ $ $) 105 (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| (-388 |#2|) (-344)))) (-1239 (($ $) 185)) (-1677 (($) 146 (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) 147 (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) 138 (|has| (-388 |#2|) (-330))) (($ $) 137 (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) 113 (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) 149 (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) 135 (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) 30)) (-2255 (((-719)) 217)) (-1256 (((-1181 $) (-1181 $)) 199)) (-2376 (((-388 |#2|) $) 49)) (-4116 (((-597 (-893 |#1|)) (-1099)) 180 (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) 139 (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) 42 (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) 87 (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) 153)) (-2170 (($ (-597 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) 9)) (-2696 (((-637 (-388 |#2|))) 194)) (-3198 (((-637 (-388 |#2|))) 196)) (-2483 (($ $) 114 (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 190)) (-1412 (((-637 (-388 |#2|))) 195)) (-3075 (((-637 (-388 |#2|))) 197)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 191)) (-3361 (((-1181 $)) 203)) (-3696 (((-1181 $)) 204)) (-1747 (((-110) $) 202)) (-3001 (((-110) $) 201) (((-110) $ |#1|) 188) (((-110) $ |#2|) 187)) (-3657 (($) 140 (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) 182)) (-2624 (((-1046) $) 10)) (-2835 (((-719)) 216)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) 96 (|has| (-388 |#2|) (-344))) (($ $ $) 95 (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) 110 (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) 90 (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) 103 (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) 184)) (-2174 (((-3 |#2| "failed")) 183)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) 45) (((-388 |#2|)) 58)) (-1823 (((-719) $) 148 (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) 136 (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 120 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 119 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-597 (-1099)) (-597 (-719))) 127 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 128 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 129 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 130 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 132 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 134 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) 151 (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 156)) (-3406 (($) 145 (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) 48) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) 47) (((-1181 (-388 |#2|)) $) 64) (((-637 (-388 |#2|)) (-1181 $)) 63)) (-3260 (((-1181 (-388 |#2|)) $) 61) (($ (-1181 (-388 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) 200)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 |#2|)) 35) (($ (-388 (-530))) 84 (-1461 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-530)))))) (($ $) 89 (|has| (-388 |#2|) (-344)))) (-3251 (($ $) 141 (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) 41 (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) 43)) (-3300 (((-719)) 28)) (-2190 (((-110)) 213)) (-4054 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3220 (((-1181 $)) 65)) (-3944 (((-110) $ $) 93 (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1684 (((-110)) 215)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 121 (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) 123 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 124 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 125 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 126 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 131 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 133 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 118 (|has| (-388 |#2|) (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 115 (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 37) (($ (-388 |#2|) $) 36) (($ (-388 (-530)) $) 117 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) 116 (|has| (-388 |#2|) (-344)))))
(((-323 |#1| |#2| |#3|) (-133) (-1139) (-1157 |t#1|) (-1157 (-388 |t#2|))) (T -323))
-((-2176 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-1530 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-1519 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1509 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1497 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1484 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1484 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-1473 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1462 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1462 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-1451 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1441 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1441 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3142 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1430 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1365 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1354 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1340 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1330 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1297 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))) (-1409 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1409 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-1832 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-1275 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-1264 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-1253 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-597 (-893 *4))))) (-1231 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
-(-13 (-673 (-388 |t#2|) |t#3|) (-10 -8 (-15 -2176 ((-719))) (-15 -1530 ((-719))) (-15 -1519 ((-110))) (-15 -1509 ((-110) |t#1| |t#1|)) (-15 -1497 ((-110))) (-15 -1484 ((-110) |t#1|)) (-15 -1484 ((-110) |t#2|)) (-15 -1473 ((-110))) (-15 -1462 ((-110) |t#1|)) (-15 -1462 ((-110) |t#2|)) (-15 -1451 ((-110))) (-15 -1441 ((-110) |t#1|)) (-15 -1441 ((-110) |t#2|)) (-15 -3142 ((-1181 $))) (-15 -1430 ((-1181 $))) (-15 -1420 ((-110) $)) (-15 -1409 ((-110) $)) (-15 -1398 ((-1181 $) (-1181 $))) (-15 -1388 ((-1181 $) (-1181 $))) (-15 -1375 ((-1181 $) (-1181 $))) (-15 -1365 ((-637 (-388 |t#2|)))) (-15 -1354 ((-637 (-388 |t#2|)))) (-15 -1340 ((-637 (-388 |t#2|)))) (-15 -1330 ((-637 (-388 |t#2|)))) (-15 -1319 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3477 ($ (-1181 |t#2|) |t#2|)) (-15 -1308 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1297 ($ (-1181 |t#2|) |t#2|)) (-15 -1285 ((-2 (|:| |num| (-637 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1409 ((-110) $ |t#1|)) (-15 -1409 ((-110) $ |t#2|)) (-15 -3211 ($ $ (-1 |t#2| |t#2|))) (-15 -3477 ($ (-1181 |t#2|) |t#2|)) (-15 -3703 ($ $)) (-15 -1832 (|t#1| $ |t#1| |t#1|)) (-15 -1275 ((-3 |t#2| "failed"))) (-15 -1264 ((-3 |t#2| "failed"))) (-15 -1253 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -1242 ((-597 (-893 |t#1|)) (-1099))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -1231 ((-597 (-597 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-37 #1=(-388 |#2|)) . T) ((-37 $) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #0# #0#) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#3|) . T) ((-214 #1#) |has| (-388 |#2|) (-344)) ((-216) -1476 (|has| (-388 |#2|) (-330)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-272) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-289) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-344) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-330)) ((-349) -1476 (|has| (-388 |#2|) (-349)) (|has| (-388 |#2|) (-330))) ((-330) |has| (-388 |#2|) (-330)) ((-351 #1# |#3|) . T) ((-390 #1# |#3|) . T) ((-358 #1#) . T) ((-392 #1#) . T) ((-432) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-522) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #0#) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #1#) . T) ((-599 $) . T) ((-593 #1#) . T) ((-593 (-530)) |has| (-388 |#2|) (-593 (-530))) ((-666 #0#) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-666 #1#) . T) ((-666 $) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-673 #1# |#3|) . T) ((-675) . T) ((-841 (-1099)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) ((-861) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-975 (-388 (-530))) |has| (-388 |#2|) (-975 (-388 (-530)))) ((-975 #1#) . T) ((-975 (-530)) |has| (-388 |#2|) (-975 (-530))) ((-990 #0#) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-990 #1#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| (-388 |#2|) (-330)) ((-1139) -1476 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-851 |#1|) "failed") $) NIL)) (-2446 (((-851 |#1|) $) NIL)) (-3477 (($ (-1181 (-851 |#1|))) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-851 |#1|) (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| (-851 |#1|) (-349)))) (-1674 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| (-851 |#1|) (-349)))) (-3840 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-1717 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3830 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-2130 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-2120 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-2142 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1540 (((-899 (-1046))) NIL)) (-1898 (($) NIL (|has| (-851 |#1|) (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 (-851 |#1|))) NIL)) (-1612 (($) NIL (|has| (-851 |#1|) (-349)))) (-2153 (($) NIL (|has| (-851 |#1|) (-349)))) (-3351 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-1795 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3286 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
-(((-324 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1540 ((-899 (-1046)))))) (-862) (-862)) (T -324))
-((-1540 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
-(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1540 ((-899 (-1046))))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 46)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) 43 (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 115)) (-2446 ((|#1| $) 86)) (-3477 (($ (-1181 |#1|)) 104)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) 98 (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) 130 (|has| |#1| (-349)))) (-1674 (((-110) $) 49 (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) 47 (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) 132 (|has| |#1| (-349)))) (-3840 (((-110) $) NIL (|has| |#1| (-349)))) (-1717 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) 90) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) 140 (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 147)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) 71 (|has| |#1| (-349)))) (-3268 (((-110) $) 118)) (-2485 (((-1046) $) NIL)) (-1540 (((-899 (-1046))) 44)) (-1898 (($) 128 (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 93 (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) 67) (((-862)) 68)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) 131 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 125 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 |#1|)) 96)) (-1612 (($) 129 (|has| |#1| (-349)))) (-2153 (($) 137 (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) 59) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) 143) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 75)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) 139)) (-3853 (((-1181 $)) 117) (((-1181 $) (-862)) 73)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 32 T CONST)) (-2955 (($) 19 T CONST)) (-3231 (($ $) 81 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 48)) (-2257 (($ $ $) 145) (($ $ |#1|) 146)) (-2245 (($ $) 127) (($ $ $) NIL)) (-2234 (($ $ $) 61)) (** (($ $ (-862)) 149) (($ $ (-719)) 150) (($ $ (-530)) 148)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 77) (($ $ $) 76) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
-(((-325 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1540 ((-899 (-1046)))))) (-330) (-1095 |#1|)) (T -325))
-((-1540 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) (-14 *4 (-1095 *3)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1540 ((-899 (-1046))))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-3477 (($ (-1181 |#1|)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| |#1| (-349)))) (-1674 (((-110) $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| |#1| (-349)))) (-3840 (((-110) $) NIL (|has| |#1| (-349)))) (-1717 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1540 (((-899 (-1046))) NIL)) (-1898 (($) NIL (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 |#1|)) NIL)) (-1612 (($) NIL (|has| |#1| (-349)))) (-2153 (($) NIL (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1540 ((-899 (-1046)))))) (-330) (-862)) (T -326))
-((-1540 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1540 ((-899 (-1046))))))
-((-1643 (((-719) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) 42)) (-1551 (((-899 (-1046)) (-1095 |#1|)) 85)) (-1561 (((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) (-1095 |#1|)) 78)) (-1572 (((-637 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) 86)) (-1581 (((-3 (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) "failed") (-862)) 13)) (-1591 (((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) (-862)) 18)))
-(((-327 |#1|) (-10 -7 (-15 -1551 ((-899 (-1046)) (-1095 |#1|))) (-15 -1561 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) (-1095 |#1|))) (-15 -1572 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1643 ((-719) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1581 ((-3 (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) "failed") (-862))) (-15 -1591 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) (-862)))) (-330)) (T -327))
-((-1591 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-3 (-1095 *4) (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-1581 (*1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-5 *2 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))) (-5 *1 (-327 *4)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046))) (-5 *1 (-327 *4)))))
-(-10 -7 (-15 -1551 ((-899 (-1046)) (-1095 |#1|))) (-15 -1561 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) (-1095 |#1|))) (-15 -1572 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1643 ((-719) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1581 ((-3 (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) "failed") (-862))) (-15 -1591 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) (-862))))
-((-2258 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2258 (|#3| |#1|)) (-15 -2258 (|#1| |#3|))) (-310 |#2|) (-330) (-310 |#2|)) (T -328))
-((-2258 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) (-4 *3 (-310 *4)))) (-2258 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) (-4 *3 (-310 *4)))))
-(-10 -7 (-15 -2258 (|#3| |#1|)) (-15 -2258 (|#1| |#3|)))
-((-1674 (((-110) $) 52)) (-1334 (((-781 (-862)) $) 21) (((-862) $) 53)) (-1560 (((-3 $ "failed") $) 16)) (-3677 (($) 9)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 95)) (-3187 (((-3 (-719) "failed") $ $) 73) (((-719) $) 61)) (-3211 (($ $ (-719)) NIL) (($ $) 8)) (-1612 (($) 46)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 34)) (-1795 (((-3 $ "failed") $) 40) (($ $) 39)))
-(((-329 |#1|) (-10 -8 (-15 -1334 ((-862) |#1|)) (-15 -3187 ((-719) |#1|)) (-15 -1674 ((-110) |#1|)) (-15 -1612 (|#1|)) (-15 -1801 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1795 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -3187 ((-3 (-719) "failed") |#1| |#1|)) (-15 -1334 ((-781 (-862)) |#1|)) (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-330)) (T -329))
-NIL
-(-10 -8 (-15 -1334 ((-862) |#1|)) (-15 -3187 ((-719) |#1|)) (-15 -1674 ((-110) |#1|)) (-15 -1612 (|#1|)) (-15 -1801 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1795 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -3187 ((-3 (-719) "failed") |#1| |#1|)) (-15 -1334 ((-781 (-862)) |#1|)) (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-1621 (((-1109 (-862) (-719)) (-530)) 93)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1945 (((-110) $ $) 59)) (-2879 (((-719)) 103)) (-3956 (($) 17 T CONST)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-1376 (($) 106)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2563 (($) 91)) (-1674 (((-110) $) 90)) (-3175 (($ $) 79) (($ $ (-719)) 78)) (-2049 (((-110) $) 71)) (-1334 (((-781 (-862)) $) 81) (((-862) $) 88)) (-3150 (((-110) $) 31)) (-1560 (((-3 $ "failed") $) 102)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-3830 (((-862) $) 105)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-3677 (($) 101 T CONST)) (-1910 (($ (-862)) 104)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 94)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3187 (((-3 (-719) "failed") $ $) 80) (((-719) $) 89)) (-3211 (($ $ (-719)) 99) (($ $) 97)) (-1612 (($) 92)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 95)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65)) (-1795 (((-3 $ "failed") $) 82) (($ $) 96)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-719)) 100) (($ $) 98)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+((-2255 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-2835 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-1684 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3725 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2190 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4054 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4054 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-1240 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2757 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2757 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-4088 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1358 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1358 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3696 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-3361 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1256 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-3075 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-3198 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1412 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-2696 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-2171 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))) (-3001 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3001 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-1902 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-2174 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-3429 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-1831 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-597 (-893 *4))))) (-1789 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
+(-13 (-673 (-388 |t#2|) |t#3|) (-10 -8 (-15 -2255 ((-719))) (-15 -2835 ((-719))) (-15 -1684 ((-110))) (-15 -3725 ((-110) |t#1| |t#1|)) (-15 -2190 ((-110))) (-15 -4054 ((-110) |t#1|)) (-15 -4054 ((-110) |t#2|)) (-15 -1240 ((-110))) (-15 -2757 ((-110) |t#1|)) (-15 -2757 ((-110) |t#2|)) (-15 -4088 ((-110))) (-15 -1358 ((-110) |t#1|)) (-15 -1358 ((-110) |t#2|)) (-15 -3696 ((-1181 $))) (-15 -3361 ((-1181 $))) (-15 -1747 ((-110) $)) (-15 -3001 ((-110) $)) (-15 -4123 ((-1181 $) (-1181 $))) (-15 -1256 ((-1181 $) (-1181 $))) (-15 -1728 ((-1181 $) (-1181 $))) (-15 -3075 ((-637 (-388 |t#2|)))) (-15 -3198 ((-637 (-388 |t#2|)))) (-15 -1412 ((-637 (-388 |t#2|)))) (-15 -2696 ((-637 (-388 |t#2|)))) (-15 -3508 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1574 ($ (-1181 |t#2|) |t#2|)) (-15 -2614 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2171 ($ (-1181 |t#2|) |t#2|)) (-15 -3839 ((-2 (|:| |num| (-637 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3001 ((-110) $ |t#1|)) (-15 -3001 ((-110) $ |t#2|)) (-15 -3289 ($ $ (-1 |t#2| |t#2|))) (-15 -1239 ($ $)) (-15 -1902 (|t#1| $ |t#1| |t#1|)) (-15 -2174 ((-3 |t#2| "failed"))) (-15 -3429 ((-3 |t#2| "failed"))) (-15 -1831 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -4116 ((-597 (-893 |t#1|)) (-1099))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -1789 ((-597 (-597 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-37 #1=(-388 |#2|)) . T) ((-37 $) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #0# #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#3|) . T) ((-214 #1#) |has| (-388 |#2|) (-344)) ((-216) -1461 (|has| (-388 |#2|) (-330)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-272) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-289) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-344) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-330)) ((-349) -1461 (|has| (-388 |#2|) (-349)) (|has| (-388 |#2|) (-330))) ((-330) |has| (-388 |#2|) (-330)) ((-351 #1# |#3|) . T) ((-390 #1# |#3|) . T) ((-358 #1#) . T) ((-392 #1#) . T) ((-432) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-522) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #1#) . T) ((-599 $) . T) ((-593 #1#) . T) ((-593 (-530)) |has| (-388 |#2|) (-593 (-530))) ((-666 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-666 #1#) . T) ((-666 $) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-673 #1# |#3|) . T) ((-675) . T) ((-841 (-1099)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) ((-861) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-975 (-388 (-530))) |has| (-388 |#2|) (-975 (-388 (-530)))) ((-975 #1#) . T) ((-975 (-530)) |has| (-388 |#2|) (-975 (-530))) ((-990 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-990 #1#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| (-388 |#2|) (-330)) ((-1139) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
+(((-324 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-862) (-862)) (T -324))
+((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
+(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1342 ((-899 (-1046))))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 46)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 43 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 115)) (-2585 ((|#1| $) 86)) (-1574 (($ (-1181 |#1|)) 104)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 98 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 130 (|has| |#1| (-349)))) (-2798 (((-110) $) 49 (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) 47 (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 132 (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 90) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 140 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 147)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 71 (|has| |#1| (-349)))) (-1655 (((-110) $) 118)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) 44)) (-1974 (($) 128 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 93 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) 67) (((-862)) 68)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) 131 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 125 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) 96)) (-3406 (($) 129 (|has| |#1| (-349)))) (-1698 (($) 137 (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 59) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 143) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 75)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 139)) (-3220 (((-1181 $)) 117) (((-1181 $) (-862)) 73)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 32 T CONST)) (-3093 (($) 19 T CONST)) (-3962 (($ $) 81 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 48)) (-2364 (($ $ $) 145) (($ $ |#1|) 146)) (-2351 (($ $) 127) (($ $ $) NIL)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) 149) (($ $ (-719)) 150) (($ $ (-530)) 148)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 77) (($ $ $) 76) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
+(((-325 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-330) (-1095 |#1|)) (T -325))
+((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) (-14 *4 (-1095 *3)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046))))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-330) (-862)) (T -326))
+((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046))))))
+((-3867 (((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 42)) (-3101 (((-899 (-1046)) (-1095 |#1|)) 85)) (-2416 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|)) 78)) (-3727 (((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 86)) (-3445 (((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862)) 13)) (-2082 (((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862)) 18)))
+(((-327 |#1|) (-10 -7 (-15 -3101 ((-899 (-1046)) (-1095 |#1|))) (-15 -2416 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|))) (-15 -3727 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3867 ((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3445 ((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862))) (-15 -2082 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862)))) (-330)) (T -327))
+((-2082 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-3 (-1095 *4) (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-3445 (*1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-5 *1 (-327 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046))) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -3101 ((-899 (-1046)) (-1095 |#1|))) (-15 -2416 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|))) (-15 -3727 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3867 ((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3445 ((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862))) (-15 -2082 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862))))
+((-2366 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2366 (|#3| |#1|)) (-15 -2366 (|#1| |#3|))) (-310 |#2|) (-330) (-310 |#2|)) (T -328))
+((-2366 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) (-4 *3 (-310 *4)))) (-2366 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) (-4 *3 (-310 *4)))))
+(-10 -7 (-15 -2366 (|#3| |#1|)) (-15 -2366 (|#1| |#3|)))
+((-2798 (((-110) $) 52)) (-2031 (((-781 (-862)) $) 21) (((-862) $) 53)) (-2972 (((-3 $ "failed") $) 16)) (-3657 (($) 9)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 95)) (-1823 (((-3 (-719) "failed") $ $) 73) (((-719) $) 61)) (-3289 (($ $ (-719)) NIL) (($ $) 8)) (-3406 (($) 46)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 34)) (-3251 (((-3 $ "failed") $) 40) (($ $) 39)))
+(((-329 |#1|) (-10 -8 (-15 -2031 ((-862) |#1|)) (-15 -1823 ((-719) |#1|)) (-15 -2798 ((-110) |#1|)) (-15 -3406 (|#1|)) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3251 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 (-719) "failed") |#1| |#1|)) (-15 -2031 ((-781 (-862)) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-330)) (T -329))
+NIL
+(-10 -8 (-15 -2031 ((-862) |#1|)) (-15 -1823 ((-719) |#1|)) (-15 -2798 ((-110) |#1|)) (-15 -3406 (|#1|)) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3251 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 (-719) "failed") |#1| |#1|)) (-15 -2031 ((-781 (-862)) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-3143 (((-1109 (-862) (-719)) (-530)) 90)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-3023 (((-719)) 100)) (-2350 (($) 17 T CONST)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 103)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-1677 (($) 88)) (-2798 (((-110) $) 87)) (-3948 (($ $) 76) (($ $ (-719)) 75)) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 78) (((-862) $) 85)) (-2731 (((-110) $) 30)) (-2972 (((-3 $ "failed") $) 99)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1905 (((-862) $) 102)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 98 T CONST)) (-1986 (($ (-862)) 101)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 91)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 77) (((-719) $) 86)) (-3289 (($ $ (-719)) 96) (($ $) 94)) (-3406 (($) 89)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 92)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3251 (((-3 $ "failed") $) 79) (($ $) 93)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-719)) 97) (($ $) 95)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-330) (-133)) (T -330))
-((-1795 (*1 *1 *1) (-4 *1 (-330))) (-1801 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1)))) (-1633 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))))) (-1621 (*1 *2 *3) (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))) (-1612 (*1 *1) (-4 *1 (-330))) (-2563 (*1 *1) (-4 *1 (-330))) (-1674 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862)))) (-1601 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-383) (-349) (-1075) (-216) (-10 -8 (-15 -1795 ($ $)) (-15 -1801 ((-3 (-1181 $) "failed") (-637 $))) (-15 -1633 ((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530)))))) (-15 -1621 ((-1109 (-862) (-719)) (-530))) (-15 -1612 ($)) (-15 -2563 ($)) (-15 -1674 ((-110) $)) (-15 -3187 ((-719) $)) (-15 -1334 ((-862) $)) (-15 -1601 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+((-3251 (*1 *1 *1) (-4 *1 (-330))) (-2665 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1)))) (-2480 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))))) (-3143 (*1 *2 *3) (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))) (-3406 (*1 *1) (-4 *1 (-330))) (-1677 (*1 *1) (-4 *1 (-330))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862)))) (-1853 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-383) (-349) (-1075) (-216) (-10 -8 (-15 -3251 ($ $)) (-15 -2665 ((-3 (-1181 $) "failed") (-637 $))) (-15 -2480 ((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530)))))) (-15 -3143 ((-1109 (-862) (-719)) (-530))) (-15 -3406 ($)) (-15 -1677 ($)) (-15 -2798 ((-110) $)) (-15 -1823 ((-719) $)) (-15 -2031 ((-862) $)) (-15 -1853 ((-3 "prime" "polynomial" "normal" "cyclic")))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-804)) . T) ((-162) . T) ((-216) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) . T) ((-349) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) . T) ((-1139) . T))
-((-3154 (((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|) 53)) (-3142 (((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 51)))
-(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -331))
-((-3154 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3142 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1643 (((-719)) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-851 |#1|) "failed") $) NIL)) (-2446 (((-851 |#1|) $) NIL)) (-3477 (($ (-1181 (-851 |#1|))) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-851 |#1|) (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| (-851 |#1|) (-349)))) (-1674 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| (-851 |#1|) (-349)))) (-3840 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-1717 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3830 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-2130 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-2120 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-2142 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1665 (((-1181 (-597 (-2 (|:| -3387 (-851 |#1|)) (|:| -1910 (-1046)))))) NIL)) (-1653 (((-637 (-851 |#1|))) NIL)) (-1898 (($) NIL (|has| (-851 |#1|) (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 (-851 |#1|))) NIL)) (-1612 (($) NIL (|has| (-851 |#1|) (-349)))) (-2153 (($) NIL (|has| (-851 |#1|) (-349)))) (-3351 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-1795 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3286 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
-(((-332 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 (-851 |#1|)) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 (-851 |#1|)))) (-15 -1643 ((-719))))) (-862) (-862)) (T -332))
-((-1665 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3387 (-851 *3)) (|:| -1910 (-1046)))))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1653 (*1 *2) (-12 (-5 *2 (-637 (-851 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1643 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
-(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 (-851 |#1|)) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 (-851 |#1|)))) (-15 -1643 ((-719)))))
-((-2246 (((-110) $ $) 62)) (-3015 (((-110) $) 75)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) 93) (($ $ (-862)) 91 (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) 149 (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1643 (((-719)) 90)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) 163 (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 113)) (-2446 ((|#1| $) 92)) (-3477 (($ (-1181 |#1|)) 59)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) 159 (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) 150 (|has| |#1| (-349)))) (-1674 (((-110) $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) 99 (|has| |#1| (-349)))) (-3840 (((-110) $) 176 (|has| |#1| (-349)))) (-1717 ((|#1| $) 95) (($ $ (-862)) 94 (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) 190) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) 135 (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) 74 (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) 70 (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 193)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) 138 (|has| |#1| (-349)))) (-3268 (((-110) $) 109)) (-2485 (((-1046) $) NIL)) (-1665 (((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) 84)) (-1653 (((-637 |#1|)) 88)) (-1898 (($) 97 (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 151 (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) 152)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) 63)) (-4212 (((-1095 |#1|)) 153)) (-1612 (($) 134 (|has| |#1| (-349)))) (-2153 (($) NIL (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) 107) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) 125) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 58)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) 157)) (-3853 (((-1181 $)) 173) (((-1181 $) (-862)) 102)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 30 T CONST)) (-2955 (($) 22 T CONST)) (-3231 (($ $) 108 (|has| |#1| (-349))) (($ $ (-719)) 100 (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 184)) (-2257 (($ $ $) 105) (($ $ |#1|) 106)) (-2245 (($ $) 178) (($ $ $) 182)) (-2234 (($ $ $) 180)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 139)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 187) (($ $ $) 143) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
-(((-333 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 |#1|))) (-15 -1643 ((-719))))) (-330) (-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (T -333))
-((-1665 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2)))) (-1653 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046))))))))) (-1643 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046))))))))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 |#1|))) (-15 -1643 ((-719)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1643 (((-719)) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-3477 (($ (-1181 |#1|)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| |#1| (-349)))) (-1674 (((-110) $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| |#1| (-349)))) (-3840 (((-110) $) NIL (|has| |#1| (-349)))) (-1717 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1665 (((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046)))))) NIL)) (-1653 (((-637 |#1|)) NIL)) (-1898 (($) NIL (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 |#1|)) NIL)) (-1612 (($) NIL (|has| |#1| (-349)))) (-2153 (($) NIL (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 |#1|))) (-15 -1643 ((-719))))) (-330) (-862)) (T -334))
-((-1665 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-1653 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-1643 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1665 ((-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))))) (-15 -1653 ((-637 |#1|))) (-15 -1643 ((-719)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-851 |#1|) "failed") $) NIL)) (-2446 (((-851 |#1|) $) NIL)) (-3477 (($ (-1181 (-851 |#1|))) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-851 |#1|) (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| (-851 |#1|) (-349)))) (-1674 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| (-851 |#1|) (-349)))) (-3840 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-1717 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3830 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-2130 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-2120 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-2142 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL (|has| (-851 |#1|) (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 (-851 |#1|))) NIL)) (-1612 (($) NIL (|has| (-851 |#1|) (-349)))) (-2153 (($) NIL (|has| (-851 |#1|) (-349)))) (-3351 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-1795 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3286 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
+((-2596 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|) 53)) (-3696 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 51)))
+(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -331))
+((-2596 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3696 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046)))))) NIL)) (-1584 (((-637 (-851 |#1|))) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
+(((-332 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 (-851 |#1|)))) (-15 -3867 ((-719))))) (-862) (-862)) (T -332))
+((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 (-851 *3)) (|:| -1986 (-1046)))))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 (-851 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
+(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 (-851 |#1|)))) (-15 -3867 ((-719)))))
+((-2352 (((-110) $ $) 62)) (-1813 (((-110) $) 75)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) 93) (($ $ (-862)) 91 (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 149 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) 90)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) 163 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 113)) (-2585 ((|#1| $) 92)) (-1574 (($ (-1181 |#1|)) 59)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 159 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 150 (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 99 (|has| |#1| (-349)))) (-1672 (((-110) $) 176 (|has| |#1| (-349)))) (-2376 ((|#1| $) 95) (($ $ (-862)) 94 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 190) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 135 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) 74 (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) 70 (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 193)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 138 (|has| |#1| (-349)))) (-1655 (((-110) $) 109)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 84)) (-1584 (((-637 |#1|)) 88)) (-1974 (($) 97 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 151 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) 152)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) 63)) (-1781 (((-1095 |#1|)) 153)) (-3406 (($) 134 (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 107) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 125) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 58)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 157)) (-3220 (((-1181 $)) 173) (((-1181 $) (-862)) 102)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 30 T CONST)) (-3093 (($) 22 T CONST)) (-3962 (($ $) 108 (|has| |#1| (-349))) (($ $ (-719)) 100 (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 184)) (-2364 (($ $ $) 105) (($ $ |#1|) 106)) (-2351 (($ $) 178) (($ $ $) 182)) (-2339 (($ $ $) 180)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 139)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 187) (($ $ $) 143) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
+(((-333 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719))))) (-330) (-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (T -333))
+((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))))))
+(-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) NIL)) (-1584 (((-637 |#1|)) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719))))) (-330) (-862)) (T -334))
+((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
(((-335 |#1| |#2|) (-310 (-851 |#1|)) (-862) (-862)) (T -335))
NIL
(-310 (-851 |#1|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) 120 (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) 140 (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 93)) (-2446 ((|#1| $) 90)) (-3477 (($ (-1181 |#1|)) 85)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) 82 (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) 42 (|has| |#1| (-349)))) (-1674 (((-110) $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) 121 (|has| |#1| (-349)))) (-3840 (((-110) $) 74 (|has| |#1| (-349)))) (-1717 ((|#1| $) 39) (($ $ (-862)) 43 (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) 65) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) 97 (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) 95 (|has| |#1| (-349)))) (-3268 (((-110) $) 142)) (-2485 (((-1046) $) NIL)) (-1898 (($) 36 (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 115 (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) 139)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) 59)) (-4212 (((-1095 |#1|)) 88)) (-1612 (($) 126 (|has| |#1| (-349)))) (-2153 (($) NIL (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) 53) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) 138) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 87)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) 144)) (-3853 (((-1181 $)) 109) (((-1181 $) (-862)) 49)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 111 T CONST)) (-2955 (($) 32 T CONST)) (-3231 (($ $) 68 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 107)) (-2257 (($ $ $) 99) (($ $ |#1|) 100)) (-2245 (($ $) 80) (($ $ $) 105)) (-2234 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) 44) (($ $ (-530)) 130)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 78) (($ $ $) 56) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 120 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) 140 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 93)) (-2585 ((|#1| $) 90)) (-1574 (($ (-1181 |#1|)) 85)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 82 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 42 (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 121 (|has| |#1| (-349)))) (-1672 (((-110) $) 74 (|has| |#1| (-349)))) (-2376 ((|#1| $) 39) (($ $ (-862)) 43 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 65) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 97 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 95 (|has| |#1| (-349)))) (-1655 (((-110) $) 142)) (-2624 (((-1046) $) NIL)) (-1974 (($) 36 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 115 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) 139)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) 59)) (-1781 (((-1095 |#1|)) 88)) (-3406 (($) 126 (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 53) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 138) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 87)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 144)) (-3220 (((-1181 $)) 109) (((-1181 $) (-862)) 49)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 111 T CONST)) (-3093 (($) 32 T CONST)) (-3962 (($ $) 68 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 107)) (-2364 (($ $ $) 99) (($ $ |#1|) 100)) (-2351 (($ $) 80) (($ $ $) 105)) (-2339 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) 44) (($ $ (-530)) 130)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 78) (($ $ $) 56) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
(((-336 |#1| |#2|) (-310 |#1|) (-330) (-1095 |#1|)) (T -336))
NIL
(-310 |#1|)
-((-3688 ((|#1| (-1095 |#2|)) 52)))
-(((-337 |#1| |#2|) (-10 -7 (-15 -3688 (|#1| (-1095 |#2|)))) (-13 (-383) (-10 -7 (-15 -2258 (|#1| |#2|)) (-15 -3830 ((-862) |#1|)) (-15 -3853 ((-1181 |#1|) (-862))) (-15 -3231 (|#1| |#1|)))) (-330)) (T -337))
-((-3688 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-4 *2 (-13 (-383) (-10 -7 (-15 -2258 (*2 *4)) (-15 -3830 ((-862) *2)) (-15 -3853 ((-1181 *2) (-862))) (-15 -3231 (*2 *2))))) (-5 *1 (-337 *2 *4)))))
-(-10 -7 (-15 -3688 (|#1| (-1095 |#2|))))
-((-3680 (((-899 (-1095 |#1|)) (-1095 |#1|)) 36)) (-1376 (((-1095 |#1|) (-862) (-862)) 113) (((-1095 |#1|) (-862)) 112)) (-1674 (((-110) (-1095 |#1|)) 84)) (-1691 (((-862) (-862)) 71)) (-1700 (((-862) (-862)) 74)) (-1682 (((-862) (-862)) 69)) (-3840 (((-110) (-1095 |#1|)) 88)) (-3637 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 101)) (-3664 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 104)) (-3654 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 103)) (-3645 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 102)) (-3628 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 98)) (-3671 (((-1095 |#1|) (-1095 |#1|)) 62)) (-3593 (((-1095 |#1|) (-862)) 107)) (-3619 (((-1095 |#1|) (-862)) 110)) (-3610 (((-1095 |#1|) (-862)) 109)) (-3602 (((-1095 |#1|) (-862)) 108)) (-3581 (((-1095 |#1|) (-862)) 105)))
-(((-338 |#1|) (-10 -7 (-15 -1674 ((-110) (-1095 |#1|))) (-15 -3840 ((-110) (-1095 |#1|))) (-15 -1682 ((-862) (-862))) (-15 -1691 ((-862) (-862))) (-15 -1700 ((-862) (-862))) (-15 -3581 ((-1095 |#1|) (-862))) (-15 -3593 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3610 ((-1095 |#1|) (-862))) (-15 -3619 ((-1095 |#1|) (-862))) (-15 -3628 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3637 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3645 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3654 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3664 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1376 ((-1095 |#1|) (-862))) (-15 -1376 ((-1095 |#1|) (-862) (-862))) (-15 -3671 ((-1095 |#1|) (-1095 |#1|))) (-15 -3680 ((-899 (-1095 |#1|)) (-1095 |#1|)))) (-330)) (T -338))
-((-3680 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4)) (-5 *3 (-1095 *4)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1376 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3664 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3654 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3645 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3637 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3628 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1691 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))))
-(-10 -7 (-15 -1674 ((-110) (-1095 |#1|))) (-15 -3840 ((-110) (-1095 |#1|))) (-15 -1682 ((-862) (-862))) (-15 -1691 ((-862) (-862))) (-15 -1700 ((-862) (-862))) (-15 -3581 ((-1095 |#1|) (-862))) (-15 -3593 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3610 ((-1095 |#1|) (-862))) (-15 -3619 ((-1095 |#1|) (-862))) (-15 -3628 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3637 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3645 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3654 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3664 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1376 ((-1095 |#1|) (-862))) (-15 -1376 ((-1095 |#1|) (-862) (-862))) (-15 -3671 ((-1095 |#1|) (-1095 |#1|))) (-15 -3680 ((-899 (-1095 |#1|)) (-1095 |#1|))))
-((-1810 (((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|) 34)))
-(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -1810 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -339))
-((-1810 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3)))))
-(-10 -7 (-15 -1810 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-3477 (($ (-1181 |#1|)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| |#1| (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| |#1| (-349)))) (-1674 (((-110) $) NIL (|has| |#1| (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| |#1| (-349)))) (-3840 (((-110) $) NIL (|has| |#1| (-349)))) (-1717 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-2130 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-2120 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-2142 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| |#1| (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL (|has| |#1| (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| |#1| (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 |#1|)) NIL)) (-1612 (($) NIL (|has| |#1| (-349)))) (-2153 (($) NIL (|has| |#1| (-349)))) (-3351 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-1795 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3286 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1717 ((|#1| (-1095 |#2|)) 52)))
+(((-337 |#1| |#2|) (-10 -7 (-15 -1717 (|#1| (-1095 |#2|)))) (-13 (-383) (-10 -7 (-15 -2366 (|#1| |#2|)) (-15 -1905 ((-862) |#1|)) (-15 -3220 ((-1181 |#1|) (-862))) (-15 -3962 (|#1| |#1|)))) (-330)) (T -337))
+((-1717 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-4 *2 (-13 (-383) (-10 -7 (-15 -2366 (*2 *4)) (-15 -1905 ((-862) *2)) (-15 -3220 ((-1181 *2) (-862))) (-15 -3962 (*2 *2))))) (-5 *1 (-337 *2 *4)))))
+(-10 -7 (-15 -1717 (|#1| (-1095 |#2|))))
+((-2165 (((-899 (-1095 |#1|)) (-1095 |#1|)) 36)) (-1364 (((-1095 |#1|) (-862) (-862)) 113) (((-1095 |#1|) (-862)) 112)) (-2798 (((-110) (-1095 |#1|)) 84)) (-1382 (((-862) (-862)) 71)) (-4059 (((-862) (-862)) 74)) (-2236 (((-862) (-862)) 69)) (-1672 (((-110) (-1095 |#1|)) 88)) (-3616 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 101)) (-3221 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 104)) (-1690 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 103)) (-2039 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 102)) (-3885 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 98)) (-2638 (((-1095 |#1|) (-1095 |#1|)) 62)) (-1952 (((-1095 |#1|) (-862)) 107)) (-1998 (((-1095 |#1|) (-862)) 110)) (-3299 (((-1095 |#1|) (-862)) 109)) (-3602 (((-1095 |#1|) (-862)) 108)) (-1675 (((-1095 |#1|) (-862)) 105)))
+(((-338 |#1|) (-10 -7 (-15 -2798 ((-110) (-1095 |#1|))) (-15 -1672 ((-110) (-1095 |#1|))) (-15 -2236 ((-862) (-862))) (-15 -1382 ((-862) (-862))) (-15 -4059 ((-862) (-862))) (-15 -1675 ((-1095 |#1|) (-862))) (-15 -1952 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3299 ((-1095 |#1|) (-862))) (-15 -1998 ((-1095 |#1|) (-862))) (-15 -3885 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3616 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -2039 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1690 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3221 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1364 ((-1095 |#1|) (-862))) (-15 -1364 ((-1095 |#1|) (-862) (-862))) (-15 -2638 ((-1095 |#1|) (-1095 |#1|))) (-15 -2165 ((-899 (-1095 |#1|)) (-1095 |#1|)))) (-330)) (T -338))
+((-2165 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4)) (-5 *3 (-1095 *4)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1364 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3221 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-2039 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3616 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3885 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))))
+(-10 -7 (-15 -2798 ((-110) (-1095 |#1|))) (-15 -1672 ((-110) (-1095 |#1|))) (-15 -2236 ((-862) (-862))) (-15 -1382 ((-862) (-862))) (-15 -4059 ((-862) (-862))) (-15 -1675 ((-1095 |#1|) (-862))) (-15 -1952 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3299 ((-1095 |#1|) (-862))) (-15 -1998 ((-1095 |#1|) (-862))) (-15 -3885 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3616 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -2039 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1690 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3221 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1364 ((-1095 |#1|) (-862))) (-15 -1364 ((-1095 |#1|) (-862) (-862))) (-15 -2638 ((-1095 |#1|) (-1095 |#1|))) (-15 -2165 ((-899 (-1095 |#1|)) (-1095 |#1|))))
+((-1708 (((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|) 34)))
+(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -1708 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -339))
+((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3)))))
+(-10 -7 (-15 -1708 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-340 |#1| |#2|) (-310 |#1|) (-330) (-862)) (T -340))
NIL
(-310 |#1|)
-((-2154 (((-110) (-597 (-893 |#1|))) 34)) (-2178 (((-597 (-893 |#1|)) (-597 (-893 |#1|))) 46)) (-2165 (((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|))) 41)))
-(((-341 |#1| |#2|) (-10 -7 (-15 -2154 ((-110) (-597 (-893 |#1|)))) (-15 -2165 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -2178 ((-597 (-893 |#1|)) (-597 (-893 |#1|))))) (-432) (-597 (-1099))) (T -341))
-((-2178 (*1 *2 *2) (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-2165 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099))))))
-(-10 -7 (-15 -2154 ((-110) (-597 (-893 |#1|)))) (-15 -2165 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -2178 ((-597 (-893 |#1|)) (-597 (-893 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-2879 (((-719) $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) 15)) (-4173 ((|#1| $ (-530)) NIL)) (-4183 (((-530) $ (-530)) NIL)) (-1320 (($ (-1 |#1| |#1|) $) 32)) (-1331 (($ (-1 (-530) (-530)) $) 24)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 26)) (-2485 (((-1046) $) NIL)) (-4162 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-530)))) $) 28)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) 38) (($ |#1|) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ |#1| (-530)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-342 |#1|) (-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -2879 ((-719) $)) (-15 -4183 ((-530) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -1331 ($ (-1 (-530) (-530)) $)) (-15 -1320 ($ (-1 |#1| |#1|) $)) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-530)))) $)))) (-1027)) (T -342))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-4183 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-1320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-530))))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))))
-(-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -2879 ((-719) $)) (-15 -4183 ((-530) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -1331 ($ (-1 (-530) (-530)) $)) (-15 -1320 ($ (-1 |#1| |#1|) $)) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-530)))) $))))
-((-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 13)) (-3031 (($ $) 14)) (-3550 (((-399 $) $) 30)) (-2049 (((-110) $) 26)) (-2359 (($ $) 19)) (-2108 (($ $ $) 23) (($ (-597 $)) NIL)) (-2473 (((-399 $) $) 31)) (-3562 (((-3 $ "failed") $ $) 22)) (-1934 (((-719) $) 25)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 35)) (-3020 (((-110) $ $) 16)) (-2257 (($ $ $) 33)))
-(((-343 |#1|) (-10 -8 (-15 -2257 (|#1| |#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2049 ((-110) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -1934 ((-719) |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3020 ((-110) |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343))
-NIL
-(-10 -8 (-15 -2257 (|#1| |#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -2049 ((-110) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -1934 ((-719) |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3020 ((-110) |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-3150 (((-110) $) 31)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+((-3669 (((-110) (-597 (-893 |#1|))) 34)) (-1241 (((-597 (-893 |#1|)) (-597 (-893 |#1|))) 46)) (-2845 (((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|))) 41)))
+(((-341 |#1| |#2|) (-10 -7 (-15 -3669 ((-110) (-597 (-893 |#1|)))) (-15 -2845 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -1241 ((-597 (-893 |#1|)) (-597 (-893 |#1|))))) (-432) (-597 (-1099))) (T -341))
+((-1241 (*1 *2 *2) (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-2845 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099))))))
+(-10 -7 (-15 -3669 ((-110) (-597 (-893 |#1|)))) (-15 -2845 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -1241 ((-597 (-893 |#1|)) (-597 (-893 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) 15)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-530) $ (-530)) NIL)) (-2580 (($ (-1 |#1| |#1|) $) 32)) (-3999 (($ (-1 (-530) (-530)) $) 24)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 26)) (-2624 (((-1046) $) NIL)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $) 28)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 38) (($ |#1|) NIL)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ |#1| (-530)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-342 |#1|) (-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -3023 ((-719) $)) (-15 -2033 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-530) (-530)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $)))) (-1027)) (T -342))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2033 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-530))))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))))
+(-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -3023 ((-719) $)) (-15 -2033 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-530) (-530)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $))))
+((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 13)) (-3446 (($ $) 14)) (-3272 (((-399 $) $) 30)) (-3295 (((-110) $) 26)) (-2483 (($ $) 19)) (-2204 (($ $ $) 23) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) 31)) (-3551 (((-3 $ "failed") $ $) 22)) (-2356 (((-719) $) 25)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 35)) (-3944 (((-110) $ $) 16)) (-2364 (($ $ $) 33)))
+(((-343 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343))
+NIL
+(-10 -8 (-15 -2364 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-344) (-133)) (T -344))
-((-2257 (*1 *1 *1 *1) (-4 *1 (-344))))
-(-13 (-289) (-1139) (-226) (-10 -8 (-15 -2257 ($ $ $)) (-6 -4268) (-6 -4262)))
+((-2364 (*1 *1 *1 *1) (-4 *1 (-344))))
+(-13 (-289) (-1139) (-226) (-10 -8 (-15 -2364 ($ $ $)) (-6 -4267) (-6 -4261)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2246 (((-110) $ $) 7)) (-3697 ((|#2| $ |#2|) 13)) (-3734 (($ $ (-1082)) 18)) (-3704 ((|#2| $) 14)) (-2415 (($ |#1|) 20) (($ |#1| (-1082)) 19)) (-3901 ((|#1| $) 16)) (-3443 (((-1082) $) 9)) (-3713 (((-1082) $) 15)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-3725 (($ $) 17)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-3753 ((|#2| $ |#2|) 13)) (-3102 (($ $ (-1082)) 18)) (-1214 ((|#2| $) 14)) (-2551 (($ |#1|) 20) (($ |#1| (-1082)) 19)) (-3907 ((|#1| $) 16)) (-1424 (((-1082) $) 9)) (-3816 (((-1082) $) 15)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3422 (($ $) 17)) (-2248 (((-110) $ $) 6)))
(((-345 |#1| |#2|) (-133) (-1027) (-1027)) (T -345))
-((-2415 (*1 *1 *2) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2415 (*1 *1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1027)) (-4 *4 (-1027)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-1082)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3697 (*1 *2 *1 *2) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2415 ($ |t#1|)) (-15 -2415 ($ |t#1| (-1082))) (-15 -3734 ($ $ (-1082))) (-15 -3725 ($ $)) (-15 -3901 (|t#1| $)) (-15 -3713 ((-1082) $)) (-15 -3704 (|t#2| $)) (-15 -3697 (|t#2| $ |t#2|))))
+((-2551 (*1 *1 *2) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2551 (*1 *1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1027)) (-4 *4 (-1027)))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3422 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-1082)))) (-1214 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3753 (*1 *2 *1 *2) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2551 ($ |t#1|)) (-15 -2551 ($ |t#1| (-1082))) (-15 -3102 ($ $ (-1082))) (-15 -3422 ($ $)) (-15 -3907 (|t#1| $)) (-15 -3816 ((-1082) $)) (-15 -1214 (|t#2| $)) (-15 -3753 (|t#2| $ |t#2|))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3697 ((|#1| $ |#1|) 30)) (-3734 (($ $ (-1082)) 22)) (-3542 (((-3 |#1| "failed") $) 29)) (-3704 ((|#1| $) 27)) (-2415 (($ (-369)) 21) (($ (-369) (-1082)) 20)) (-3901 (((-369) $) 24)) (-3443 (((-1082) $) NIL)) (-3713 (((-1082) $) 25)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 19)) (-3725 (($ $) 23)) (-2148 (((-110) $ $) 18)))
-(((-346 |#1|) (-13 (-345 (-369) |#1|) (-10 -8 (-15 -3542 ((-3 |#1| "failed") $)))) (-1027)) (T -346))
-((-3542 (*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027)))))
-(-13 (-345 (-369) |#1|) (-10 -8 (-15 -3542 ((-3 |#1| "failed") $))))
-((-3337 (((-1181 (-637 |#2|)) (-1181 $)) 61)) (-3428 (((-637 |#2|) (-1181 $)) 120)) (-3987 ((|#2| $) 32)) (-3405 (((-637 |#2|) $ (-1181 $)) 123)) (-3093 (((-3 $ "failed") $) 75)) (-3969 ((|#2| $) 35)) (-3764 (((-1095 |#2|) $) 83)) (-3453 ((|#2| (-1181 $)) 106)) (-3947 (((-1095 |#2|) $) 28)) (-3886 (((-110)) 100)) (-3477 (($ (-1181 |#2|) (-1181 $)) 113)) (-1673 (((-3 $ "failed") $) 79)) (-3813 (((-110)) 95)) (-3794 (((-110)) 90)) (-3834 (((-110)) 53)) (-3441 (((-637 |#2|) (-1181 $)) 118)) (-3997 ((|#2| $) 31)) (-3416 (((-637 |#2|) $ (-1181 $)) 122)) (-3105 (((-3 $ "failed") $) 73)) (-3978 ((|#2| $) 34)) (-3773 (((-1095 |#2|) $) 82)) (-3464 ((|#2| (-1181 $)) 104)) (-3959 (((-1095 |#2|) $) 26)) (-3896 (((-110)) 99)) (-3803 (((-110)) 92)) (-3824 (((-110)) 51)) (-3843 (((-110)) 87)) (-3876 (((-110)) 101)) (-3351 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 111)) (-3938 (((-110)) 97)) (-3785 (((-597 (-1181 |#2|))) 86)) (-3918 (((-110)) 98)) (-3928 (((-110)) 96)) (-3907 (((-110)) 46)) (-3867 (((-110)) 102)))
-(((-347 |#1| |#2|) (-10 -8 (-15 -3764 ((-1095 |#2|) |#1|)) (-15 -3773 ((-1095 |#2|) |#1|)) (-15 -3785 ((-597 (-1181 |#2|)))) (-15 -3093 ((-3 |#1| "failed") |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -3794 ((-110))) (-15 -3803 ((-110))) (-15 -3813 ((-110))) (-15 -3824 ((-110))) (-15 -3834 ((-110))) (-15 -3843 ((-110))) (-15 -3867 ((-110))) (-15 -3876 ((-110))) (-15 -3886 ((-110))) (-15 -3896 ((-110))) (-15 -3907 ((-110))) (-15 -3918 ((-110))) (-15 -3928 ((-110))) (-15 -3938 ((-110))) (-15 -3947 ((-1095 |#2|) |#1|)) (-15 -3959 ((-1095 |#2|) |#1|)) (-15 -3428 ((-637 |#2|) (-1181 |#1|))) (-15 -3441 ((-637 |#2|) (-1181 |#1|))) (-15 -3453 (|#2| (-1181 |#1|))) (-15 -3464 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3969 (|#2| |#1|)) (-15 -3978 (|#2| |#1|)) (-15 -3987 (|#2| |#1|)) (-15 -3997 (|#2| |#1|)) (-15 -3405 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3416 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3337 ((-1181 (-637 |#2|)) (-1181 |#1|)))) (-348 |#2|) (-162)) (T -347))
-((-3938 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3918 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3907 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3896 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3886 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3876 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3867 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3843 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3834 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3824 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3813 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3803 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3794 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3785 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))))
-(-10 -8 (-15 -3764 ((-1095 |#2|) |#1|)) (-15 -3773 ((-1095 |#2|) |#1|)) (-15 -3785 ((-597 (-1181 |#2|)))) (-15 -3093 ((-3 |#1| "failed") |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -3794 ((-110))) (-15 -3803 ((-110))) (-15 -3813 ((-110))) (-15 -3824 ((-110))) (-15 -3834 ((-110))) (-15 -3843 ((-110))) (-15 -3867 ((-110))) (-15 -3876 ((-110))) (-15 -3886 ((-110))) (-15 -3896 ((-110))) (-15 -3907 ((-110))) (-15 -3918 ((-110))) (-15 -3928 ((-110))) (-15 -3938 ((-110))) (-15 -3947 ((-1095 |#2|) |#1|)) (-15 -3959 ((-1095 |#2|) |#1|)) (-15 -3428 ((-637 |#2|) (-1181 |#1|))) (-15 -3441 ((-637 |#2|) (-1181 |#1|))) (-15 -3453 (|#2| (-1181 |#1|))) (-15 -3464 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3969 (|#2| |#1|)) (-15 -3978 (|#2| |#1|)) (-15 -3987 (|#2| |#1|)) (-15 -3997 (|#2| |#1|)) (-15 -3405 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3416 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3337 ((-1181 (-637 |#2|)) (-1181 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3251 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3337 (((-1181 (-637 |#1|)) (-1181 $)) 78)) (-4007 (((-1181 $)) 81)) (-3956 (($) 17 T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-3743 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-3428 (((-637 |#1|) (-1181 $)) 65)) (-3987 ((|#1| $) 74)) (-3405 (((-637 |#1|) $ (-1181 $)) 76)) (-3093 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-3128 (($ $ (-862)) 28)) (-3969 ((|#1| $) 72)) (-3764 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3453 ((|#1| (-1181 $)) 67)) (-3947 (((-1095 |#1|) $) 63)) (-3886 (((-110)) 57)) (-3477 (($ (-1181 |#1|) (-1181 $)) 69)) (-1673 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-4113 (((-862)) 80)) (-3857 (((-110)) 54)) (-3395 (($ $ (-862)) 33)) (-3813 (((-110)) 50)) (-3794 (((-110)) 48)) (-3834 (((-110)) 52)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3753 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-3441 (((-637 |#1|) (-1181 $)) 66)) (-3997 ((|#1| $) 75)) (-3416 (((-637 |#1|) $ (-1181 $)) 77)) (-3105 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-3117 (($ $ (-862)) 29)) (-3978 ((|#1| $) 73)) (-3773 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-3464 ((|#1| (-1181 $)) 68)) (-3959 (((-1095 |#1|) $) 64)) (-3896 (((-110)) 58)) (-3443 (((-1082) $) 9)) (-3803 (((-110)) 49)) (-3824 (((-110)) 51)) (-3843 (((-110)) 53)) (-2485 (((-1046) $) 10)) (-3876 (((-110)) 56)) (-3351 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70)) (-2059 (((-597 (-893 |#1|)) (-1181 $)) 79)) (-1527 (($ $ $) 25)) (-3938 (((-110)) 62)) (-2258 (((-804) $) 11)) (-3785 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-1538 (($ $ $ $) 26)) (-3918 (((-110)) 60)) (-1516 (($ $ $) 24)) (-3928 (((-110)) 61)) (-3907 (((-110)) 59)) (-3867 (((-110)) 55)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2352 (((-110) $ $) NIL)) (-3753 ((|#1| $ |#1|) 30)) (-3102 (($ $ (-1082)) 22)) (-3806 (((-3 |#1| "failed") $) 29)) (-1214 ((|#1| $) 27)) (-2551 (($ (-369)) 21) (($ (-369) (-1082)) 20)) (-3907 (((-369) $) 24)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) 25)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 19)) (-3422 (($ $) 23)) (-2248 (((-110) $ $) 18)))
+(((-346 |#1|) (-13 (-345 (-369) |#1|) (-10 -8 (-15 -3806 ((-3 |#1| "failed") $)))) (-1027)) (T -346))
+((-3806 (*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027)))))
+(-13 (-345 (-369) |#1|) (-10 -8 (-15 -3806 ((-3 |#1| "failed") $))))
+((-3365 (((-1181 (-637 |#2|)) (-1181 $)) 61)) (-2603 (((-637 |#2|) (-1181 $)) 120)) (-2228 ((|#2| $) 32)) (-4209 (((-637 |#2|) $ (-1181 $)) 123)) (-2635 (((-3 $ "failed") $) 75)) (-4005 ((|#2| $) 35)) (-3581 (((-1095 |#2|) $) 83)) (-3988 ((|#2| (-1181 $)) 106)) (-2670 (((-1095 |#2|) $) 28)) (-2662 (((-110)) 100)) (-1574 (($ (-1181 |#2|) (-1181 $)) 113)) (-2707 (((-3 $ "failed") $) 79)) (-3943 (((-110)) 95)) (-3470 (((-110)) 90)) (-2305 (((-110)) 53)) (-1257 (((-637 |#2|) (-1181 $)) 118)) (-2465 ((|#2| $) 31)) (-3846 (((-637 |#2|) $ (-1181 $)) 122)) (-1232 (((-3 $ "failed") $) 73)) (-2602 ((|#2| $) 34)) (-2209 (((-1095 |#2|) $) 82)) (-2837 ((|#2| (-1181 $)) 104)) (-2461 (((-1095 |#2|) $) 26)) (-1921 (((-110)) 99)) (-3123 (((-110)) 92)) (-2561 (((-110)) 51)) (-3766 (((-110)) 87)) (-3719 (((-110)) 101)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 111)) (-3675 (((-110)) 97)) (-3758 (((-597 (-1181 |#2|))) 86)) (-3439 (((-110)) 98)) (-2164 (((-110)) 96)) (-3566 (((-110)) 46)) (-1957 (((-110)) 102)))
+(((-347 |#1| |#2|) (-10 -8 (-15 -3581 ((-1095 |#2|) |#1|)) (-15 -2209 ((-1095 |#2|) |#1|)) (-15 -3758 ((-597 (-1181 |#2|)))) (-15 -2635 ((-3 |#1| "failed") |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-110))) (-15 -3123 ((-110))) (-15 -3943 ((-110))) (-15 -2561 ((-110))) (-15 -2305 ((-110))) (-15 -3766 ((-110))) (-15 -1957 ((-110))) (-15 -3719 ((-110))) (-15 -2662 ((-110))) (-15 -1921 ((-110))) (-15 -3566 ((-110))) (-15 -3439 ((-110))) (-15 -2164 ((-110))) (-15 -3675 ((-110))) (-15 -2670 ((-1095 |#2|) |#1|)) (-15 -2461 ((-1095 |#2|) |#1|)) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4005 (|#2| |#1|)) (-15 -2602 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -2465 (|#2| |#1|)) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|)))) (-348 |#2|) (-162)) (T -347))
+((-3675 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2164 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3439 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3566 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2662 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3719 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1957 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3766 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2305 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2561 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3943 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3123 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3470 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3758 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))))
+(-10 -8 (-15 -3581 ((-1095 |#2|) |#1|)) (-15 -2209 ((-1095 |#2|) |#1|)) (-15 -3758 ((-597 (-1181 |#2|)))) (-15 -2635 ((-3 |#1| "failed") |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-110))) (-15 -3123 ((-110))) (-15 -3943 ((-110))) (-15 -2561 ((-110))) (-15 -2305 ((-110))) (-15 -3766 ((-110))) (-15 -1957 ((-110))) (-15 -3719 ((-110))) (-15 -2662 ((-110))) (-15 -1921 ((-110))) (-15 -3566 ((-110))) (-15 -3439 ((-110))) (-15 -2164 ((-110))) (-15 -3675 ((-110))) (-15 -2670 ((-1095 |#2|) |#1|)) (-15 -2461 ((-1095 |#2|) |#1|)) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4005 (|#2| |#1|)) (-15 -2602 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -2465 (|#2| |#1|)) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2291 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) 78)) (-3990 (((-1181 $)) 81)) (-2350 (($) 17 T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) 65)) (-2228 ((|#1| $) 74)) (-4209 (((-637 |#1|) $ (-1181 $)) 76)) (-2635 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-2862 (($ $ (-862)) 28)) (-4005 ((|#1| $) 72)) (-3581 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) 67)) (-2670 (((-1095 |#1|) $) 63)) (-2662 (((-110)) 57)) (-1574 (($ (-1181 |#1|) (-1181 $)) 69)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-2426 (((-862)) 80)) (-3485 (((-110)) 54)) (-1667 (($ $ (-862)) 33)) (-3943 (((-110)) 50)) (-3470 (((-110)) 48)) (-2305 (((-110)) 52)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) 66)) (-2465 ((|#1| $) 75)) (-3846 (((-637 |#1|) $ (-1181 $)) 77)) (-1232 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-4138 (($ $ (-862)) 29)) (-2602 ((|#1| $) 73)) (-2209 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) 68)) (-2461 (((-1095 |#1|) $) 64)) (-1921 (((-110)) 58)) (-1424 (((-1082) $) 9)) (-3123 (((-110)) 49)) (-2561 (((-110)) 51)) (-3766 (((-110)) 53)) (-2624 (((-1046) $) 10)) (-3719 (((-110)) 56)) (-2328 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) 79)) (-2607 (($ $ $) 25)) (-3675 (((-110)) 62)) (-2366 (((-804) $) 11)) (-3758 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-2346 (($ $ $ $) 26)) (-3439 (((-110)) 60)) (-3980 (($ $ $) 24)) (-2164 (((-110)) 61)) (-3566 (((-110)) 59)) (-1957 (((-110)) 55)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-348 |#1|) (-133) (-162)) (T -348))
-((-4007 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))) (-4113 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-3405 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3351 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 *4)))) (-3351 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-3938 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3928 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3918 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3907 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3896 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3886 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3876 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3867 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3857 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3843 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3834 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3824 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3813 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3803 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3794 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1673 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3105 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3093 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3785 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-597 (-1181 *3))))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-2225 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3853 (-597 *1)))) (-4 *1 (-348 *3)))) (-2216 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3853 (-597 *1)))) (-4 *1 (-348 *3)))) (-3753 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-3743 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-3251 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
-(-13 (-693 |t#1|) (-10 -8 (-15 -4007 ((-1181 $))) (-15 -4113 ((-862))) (-15 -2059 ((-597 (-893 |t#1|)) (-1181 $))) (-15 -3337 ((-1181 (-637 |t#1|)) (-1181 $))) (-15 -3416 ((-637 |t#1|) $ (-1181 $))) (-15 -3405 ((-637 |t#1|) $ (-1181 $))) (-15 -3997 (|t#1| $)) (-15 -3987 (|t#1| $)) (-15 -3978 (|t#1| $)) (-15 -3969 (|t#1| $)) (-15 -3351 ((-1181 |t#1|) $ (-1181 $))) (-15 -3351 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -3477 ($ (-1181 |t#1|) (-1181 $))) (-15 -3464 (|t#1| (-1181 $))) (-15 -3453 (|t#1| (-1181 $))) (-15 -3441 ((-637 |t#1|) (-1181 $))) (-15 -3428 ((-637 |t#1|) (-1181 $))) (-15 -3959 ((-1095 |t#1|) $)) (-15 -3947 ((-1095 |t#1|) $)) (-15 -3938 ((-110))) (-15 -3928 ((-110))) (-15 -3918 ((-110))) (-15 -3907 ((-110))) (-15 -3896 ((-110))) (-15 -3886 ((-110))) (-15 -3876 ((-110))) (-15 -3867 ((-110))) (-15 -3857 ((-110))) (-15 -3843 ((-110))) (-15 -3834 ((-110))) (-15 -3824 ((-110))) (-15 -3813 ((-110))) (-15 -3803 ((-110))) (-15 -3794 ((-110))) (IF (|has| |t#1| (-522)) (PROGN (-15 -1673 ((-3 $ "failed") $)) (-15 -3105 ((-3 $ "failed") $)) (-15 -3093 ((-3 $ "failed") $)) (-15 -3785 ((-597 (-1181 |t#1|)))) (-15 -3773 ((-1095 |t#1|) $)) (-15 -3764 ((-1095 |t#1|) $)) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -2216 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -3753 ((-3 $ "failed"))) (-15 -3743 ((-3 $ "failed"))) (-15 -3251 ((-3 $ "failed"))) (-6 -4267)) |%noBranch|)))
+((-3990 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))) (-2426 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 *4)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-3675 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2164 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3439 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3566 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1921 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2662 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3719 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1957 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3485 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3766 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2305 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2561 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3943 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3123 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3470 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2707 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-1232 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-2635 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3758 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-597 (-1181 *3))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-3357 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1)))) (-4 *1 (-348 *3)))) (-3751 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1)))) (-4 *1 (-348 *3)))) (-3832 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-1383 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-2291 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
+(-13 (-693 |t#1|) (-10 -8 (-15 -3990 ((-1181 $))) (-15 -2426 ((-862))) (-15 -3028 ((-597 (-893 |t#1|)) (-1181 $))) (-15 -3365 ((-1181 (-637 |t#1|)) (-1181 $))) (-15 -3846 ((-637 |t#1|) $ (-1181 $))) (-15 -4209 ((-637 |t#1|) $ (-1181 $))) (-15 -2465 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2602 (|t#1| $)) (-15 -4005 (|t#1| $)) (-15 -2328 ((-1181 |t#1|) $ (-1181 $))) (-15 -2328 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|) (-1181 $))) (-15 -2837 (|t#1| (-1181 $))) (-15 -3988 (|t#1| (-1181 $))) (-15 -1257 ((-637 |t#1|) (-1181 $))) (-15 -2603 ((-637 |t#1|) (-1181 $))) (-15 -2461 ((-1095 |t#1|) $)) (-15 -2670 ((-1095 |t#1|) $)) (-15 -3675 ((-110))) (-15 -2164 ((-110))) (-15 -3439 ((-110))) (-15 -3566 ((-110))) (-15 -1921 ((-110))) (-15 -2662 ((-110))) (-15 -3719 ((-110))) (-15 -1957 ((-110))) (-15 -3485 ((-110))) (-15 -3766 ((-110))) (-15 -2305 ((-110))) (-15 -2561 ((-110))) (-15 -3943 ((-110))) (-15 -3123 ((-110))) (-15 -3470 ((-110))) (IF (|has| |t#1| (-522)) (PROGN (-15 -2707 ((-3 $ "failed") $)) (-15 -1232 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)) (-15 -3758 ((-597 (-1181 |t#1|)))) (-15 -2209 ((-1095 |t#1|) $)) (-15 -3581 ((-1095 |t#1|) $)) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3832 ((-3 $ "failed"))) (-15 -1383 ((-3 $ "failed"))) (-15 -2291 ((-3 $ "failed"))) (-6 -4266)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-2879 (((-719)) 16)) (-1376 (($) 13)) (-3830 (((-862) $) 14)) (-3443 (((-1082) $) 9)) (-1910 (($ (-862)) 15)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-3023 (((-719)) 16)) (-1364 (($) 13)) (-1905 (((-862) $) 14)) (-1424 (((-1082) $) 9)) (-1986 (($ (-862)) 15)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-349) (-133)) (T -349))
-((-2879 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719)))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-349)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862)))) (-1376 (*1 *1) (-4 *1 (-349))))
-(-13 (-1027) (-10 -8 (-15 -2879 ((-719))) (-15 -1910 ($ (-862))) (-15 -3830 ((-862) $)) (-15 -1376 ($))))
+((-3023 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-349)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862)))) (-1364 (*1 *1) (-4 *1 (-349))))
+(-13 (-1027) (-10 -8 (-15 -3023 ((-719))) (-15 -1986 ($ (-862))) (-15 -1905 ((-862) $)) (-15 -1364 ($))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3359 (((-637 |#2|) (-1181 $)) 40)) (-3477 (($ (-1181 |#2|) (-1181 $)) 34)) (-3348 (((-637 |#2|) $ (-1181 $)) 42)) (-2341 ((|#2| (-1181 $)) 13)) (-3351 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 25)))
-(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -3359 ((-637 |#2|) (-1181 |#1|))) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3348 ((-637 |#2|) |#1| (-1181 |#1|)))) (-351 |#2| |#3|) (-162) (-1157 |#2|)) (T -350))
+((-1863 (((-637 |#2|) (-1181 $)) 40)) (-1574 (($ (-1181 |#2|) (-1181 $)) 34)) (-1984 (((-637 |#2|) $ (-1181 $)) 42)) (-3060 ((|#2| (-1181 $)) 13)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 25)))
+(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|)))) (-351 |#2| |#3|) (-162) (-1157 |#2|)) (T -350))
NIL
-(-10 -8 (-15 -3359 ((-637 |#2|) (-1181 |#1|))) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3348 ((-637 |#2|) |#1| (-1181 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3359 (((-637 |#1|) (-1181 $)) 46)) (-1380 ((|#1| $) 52)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3477 (($ (-1181 |#1|) (-1181 $)) 48)) (-3348 (((-637 |#1|) $ (-1181 $)) 53)) (-1673 (((-3 $ "failed") $) 34)) (-4113 (((-862)) 54)) (-3150 (((-110) $) 31)) (-1717 ((|#1| $) 51)) (-3873 ((|#2| $) 44 (|has| |#1| (-344)))) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2341 ((|#1| (-1181 $)) 47)) (-3351 (((-1181 |#1|) $ (-1181 $)) 50) (((-637 |#1|) (-1181 $) (-1181 $)) 49)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37)) (-1795 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-1640 ((|#2| $) 45)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(-10 -8 (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1863 (((-637 |#1|) (-1181 $)) 44)) (-1367 ((|#1| $) 50)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46)) (-1984 (((-637 |#1|) $ (-1181 $)) 51)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3060 ((|#1| (-1181 $)) 45)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3251 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-351 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -351))
-((-4113 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-862)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-3351 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) (-3351 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-162)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1157 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -4113 ((-862))) (-15 -3348 ((-637 |t#1|) $ (-1181 $))) (-15 -1380 (|t#1| $)) (-15 -1717 (|t#1| $)) (-15 -3351 ((-1181 |t#1|) $ (-1181 $))) (-15 -3351 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -3477 ($ (-1181 |t#1|) (-1181 $))) (-15 -2341 (|t#1| (-1181 $))) (-15 -3359 ((-637 |t#1|) (-1181 $))) (-15 -1640 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -3873 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
+((-2426 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-862)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-162)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1157 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -2426 ((-862))) (-15 -1984 ((-637 |t#1|) $ (-1181 $))) (-15 -1367 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -2328 ((-1181 |t#1|) $ (-1181 $))) (-15 -2328 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|) (-1181 $))) (-15 -3060 (|t#1| (-1181 $))) (-15 -1863 ((-637 |t#1|) (-1181 $))) (-15 -1814 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -1359 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1802 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3856 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3114 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1802 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1135) (-354 |#1|) (-1135) (-354 |#3|)) (T -352))
-((-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1802 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4038 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-4017 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1317 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-4093 (($ $) 25)) (-1944 (((-530) (-1 (-110) |#2|) $) NIL) (((-530) |#2| $) 11) (((-530) |#2| $ (-530)) NIL)) (-3842 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-353 |#1| |#2|) (-10 -8 (-15 -4017 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4038 ((-110) |#1|)) (-15 -1317 (|#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1317 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-354 |#2|) (-1135)) (T -353))
-NIL
-(-10 -8 (-15 -4017 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4038 ((-110) |#1|)) (-15 -1317 (|#1| |#1|)) (-15 -3842 (|#1| |#1| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1317 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-1944 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 70)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2753 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2134 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3217 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1135) (-354 |#1|) (-1135) (-354 |#3|)) (T -352))
+((-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2741 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-1627 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1307 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-4106 (($ $) 25)) (-2027 (((-530) (-1 (-110) |#2|) $) NIL) (((-530) |#2| $) 11) (((-530) |#2| $ (-530)) NIL)) (-3683 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-353 |#1| |#2|) (-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -1307 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1307 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-354 |#2|) (-1135)) (T -353))
+NIL
+(-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -1307 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1307 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-354 |#1|) (-133) (-1135)) (T -354))
-((-3842 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-4093 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-1317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-4038 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-530)))) (-1944 (*1 *2 *3 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-530)))) (-1944 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-1317 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110)))) (-4027 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4271)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-1389 (*1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-4017 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4271)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-4017 (*1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
-(-13 (-602 |t#1|) (-10 -8 (-6 -4270) (-15 -3842 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -4093 ($ $)) (-15 -1317 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -4038 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -1944 ((-530) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -1944 ((-530) |t#1| $)) (-15 -1944 ((-530) |t#1| $ (-530)))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-6 (-795)) (-15 -3842 ($ $ $)) (-15 -1317 ($ $)) (-15 -4038 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4271)) (PROGN (-15 -4027 ($ $ $ (-530))) (-15 -1389 ($ $)) (-15 -4017 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-795)) (-15 -4017 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3717 (((-597 |#1|) $) 32)) (-3398 (($ $ (-719)) 33)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3339 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 36)) (-3315 (($ $) 34)) (-3352 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 37)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-4084 (($ $ |#1| $) 31) (($ $ (-597 |#1|) (-597 $)) 30)) (-3409 (((-719) $) 38)) (-2268 (($ $ $) 29)) (-2258 (((-804) $) 11) (($ |#1|) 41) (((-1194 |#1| |#2|) $) 40) (((-1203 |#1| |#2|) $) 39)) (-1981 ((|#2| (-1203 |#1| |#2|) $) 42)) (-2943 (($) 18 T CONST)) (-4048 (($ (-622 |#1|)) 35)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3683 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-1307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-2741 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-2027 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-1307 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110)))) (-3121 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-1337 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-1627 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
+(-13 (-602 |t#1|) (-10 -8 (-6 -4269) (-15 -3683 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -4106 ($ $)) (-15 -1307 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -2741 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -2027 ((-530) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2027 ((-530) |t#1| $)) (-15 -2027 ((-530) |t#1| $ (-530)))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-6 (-795)) (-15 -3683 ($ $ $)) (-15 -1307 ($ $)) (-15 -2741 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -3121 ($ $ $ (-530))) (-15 -1337 ($ $)) (-15 -1627 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-795)) (-15 -1627 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 32)) (-1911 (($ $ (-719)) 33)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3575 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 36)) (-2627 (($ $) 34)) (-2448 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 37)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-4098 (($ $ |#1| $) 31) (($ $ (-597 |#1|) (-597 $)) 30)) (-1429 (((-719) $) 38)) (-2377 (($ $ $) 29)) (-2366 (((-804) $) 11) (($ |#1|) 41) (((-1194 |#1| |#2|) $) 40) (((-1203 |#1| |#2|) $) 39)) (-2065 ((|#2| (-1203 |#1| |#2|) $) 42)) (-3080 (($) 18 T CONST)) (-2288 (($ (-622 |#1|)) 35)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-355 |#1| |#2|) (-133) (-795) (-162)) (T -355))
-((-1981 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795)) (-4 *2 (-162)))) (-2258 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1194 *3 *4)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1203 *3 *4)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-719)))) (-3352 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3339 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-4048 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-597 *3)))) (-4084 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-795)) (-4 *5 (-162)))))
-(-13 (-588 |t#2|) (-10 -8 (-15 -1981 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -2258 ($ |t#1|)) (-15 -2258 ((-1194 |t#1| |t#2|) $)) (-15 -2258 ((-1203 |t#1| |t#2|) $)) (-15 -3409 ((-719) $)) (-15 -3352 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3339 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -4048 ($ (-622 |t#1|))) (-15 -3315 ($ $)) (-15 -3398 ($ $ (-719))) (-15 -3717 ((-597 |t#1|) $)) (-15 -4084 ($ $ |t#1| $)) (-15 -4084 ($ $ (-597 |t#1|) (-597 $)))))
+((-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795)) (-4 *2 (-162)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1194 *3 *4)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1203 *3 *4)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-719)))) (-2448 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3575 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-2627 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-597 *3)))) (-4098 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-795)) (-4 *5 (-162)))))
+(-13 (-588 |t#2|) (-10 -8 (-15 -2065 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -2366 ($ |t#1|)) (-15 -2366 ((-1194 |t#1| |t#2|) $)) (-15 -2366 ((-1203 |t#1| |t#2|) $)) (-15 -1429 ((-719) $)) (-15 -2448 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3575 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -2288 ($ (-622 |t#1|))) (-15 -2627 ($ $)) (-15 -1911 ($ $ (-719))) (-15 -3702 ((-597 |t#1|) $)) (-15 -4098 ($ $ |t#1| $)) (-15 -4098 ($ $ (-597 |t#1|) (-597 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-588 |#2|) . T) ((-666 |#2|) . T) ((-990 |#2|) . T) ((-1027) . T))
-((-4078 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-4060 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-4069 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
-(((-356 |#1| |#2|) (-10 -7 (-15 -4060 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -4069 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -4078 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1135) (-13 (-354 |#1|) (-10 -7 (-6 -4271)))) (T -356))
-((-4078 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))) (-4069 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))) (-4060 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))))
-(-10 -7 (-15 -4060 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -4069 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -4078 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
-((-1298 (((-637 |#2|) (-637 $)) NIL) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 22) (((-637 (-530)) (-637 $)) 14)))
-(((-357 |#1| |#2|) (-10 -8 (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 |#2|) (-637 |#1|)))) (-358 |#2|) (-984)) (T -357))
-NIL
-(-10 -8 (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 |#2|) (-637 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1298 (((-637 |#1|) (-637 $)) 36) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 35) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 43 (|has| |#1| (-593 (-530)))) (((-637 (-530)) (-637 $)) 42 (|has| |#1| (-593 (-530))))) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2980 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-1798 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-3206 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -1798 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -3206 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2980 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1135) (-13 (-354 |#1|) (-10 -7 (-6 -4270)))) (T -356))
+((-2980 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))) (-3206 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))) (-1798 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
+(-10 -7 (-15 -1798 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -3206 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2980 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
+((-2329 (((-637 |#2|) (-637 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 22) (((-637 (-530)) (-637 $)) 14)))
+(((-357 |#1| |#2|) (-10 -8 (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 |#2|) (-637 |#1|)))) (-358 |#2|) (-984)) (T -357))
+NIL
+(-10 -8 (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2329 (((-637 |#1|) (-637 $)) 34) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 33) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 41 (|has| |#1| (-593 (-530)))) (((-637 (-530)) (-637 $)) 40 (|has| |#1| (-593 (-530))))) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-358 |#1|) (-133) (-984)) (T -358))
NIL
(-13 (-593 |t#1|) (-10 -7 (IF (|has| |t#1| (-593 (-530))) (-6 (-593 (-530))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2952 (((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|) 51) (((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|) 50) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|) 47) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|) 41)) (-2965 (((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|) 30) (((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|) 18)))
-(((-359 |#1|) (-10 -7 (-15 -2952 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -2952 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -2952 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -2952 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -2965 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -2965 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|))) (-13 (-344) (-793))) (T -359))
-((-2965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5)))) (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530))))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -2952 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -2952 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -2952 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -2952 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -2965 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -2965 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 33)) (-1694 (((-530) $) 55)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-1323 (($ $) 110)) (-2276 (($ $) 82)) (-2144 (($ $) 71)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) 44)) (-1945 (((-110) $ $) NIL)) (-2253 (($ $) 80)) (-2121 (($ $) 69)) (-3592 (((-530) $) 64)) (-4206 (($ $ (-530)) 62)) (-2297 (($ $) NIL)) (-2169 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-1676 (($ $) 112)) (-3012 (((-3 (-530) "failed") $) 189) (((-3 (-388 (-530)) "failed") $) 185)) (-2446 (((-530) $) 187) (((-388 (-530)) $) 183)) (-3607 (($ $ $) NIL)) (-2941 (((-530) $ $) 102)) (-1673 (((-3 $ "failed") $) 114)) (-2931 (((-388 (-530)) $ (-719)) 190) (((-388 (-530)) $ (-719) (-719)) 182)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-1214 (((-862)) 73) (((-862) (-862)) 98 (|has| $ (-6 -4261)))) (-2991 (((-110) $) 106)) (-1877 (($) 40)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-4092 (((-1186) (-719)) 152)) (-4103 (((-1186)) 157) (((-1186) (-719)) 158)) (-4128 (((-1186)) 159) (((-1186) (-719)) 160)) (-4116 (((-1186)) 155) (((-1186) (-719)) 156)) (-1334 (((-530) $) 58)) (-3150 (((-110) $) 104)) (-1817 (($ $ (-530)) NIL)) (-1579 (($ $) 48)) (-1717 (($ $) NIL)) (-3002 (((-110) $) 35)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL) (($) NIL (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-1757 (($ $ $) NIL) (($) 99 (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-3102 (((-530) $) 17)) (-2919 (($) 87) (($ $) 92)) (-1873 (($) 91) (($ $) 93)) (-2070 (($ $) 83)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 116)) (-3214 (((-862) (-530)) 43 (|has| $ (-6 -4261)))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) 53)) (-1702 (($ $) 109)) (-2873 (($ (-530) (-530)) 107) (($ (-530) (-530) (-862)) 108)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3059 (((-530) $) 19)) (-2908 (($) 94)) (-2693 (($ $) 79)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2124 (((-862)) 100) (((-862) (-862)) 101 (|has| $ (-6 -4261)))) (-3211 (($ $ (-719)) NIL) (($ $) 115)) (-3200 (((-862) (-530)) 47 (|has| $ (-6 -4261)))) (-2308 (($ $) NIL)) (-2181 (($ $) NIL)) (-2287 (($ $) NIL)) (-2155 (($ $) NIL)) (-2263 (($ $) 81)) (-2133 (($ $) 70)) (-3173 (((-360) $) 175) (((-208) $) 177) (((-833 (-360)) $) NIL) (((-1082) $) 162) (((-506) $) 173) (($ (-208)) 181)) (-2258 (((-804) $) 164) (($ (-530)) 186) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 186) (($ (-388 (-530))) NIL) (((-208) $) 178)) (-1667 (((-719)) NIL)) (-1709 (($ $) 111)) (-3227 (((-862)) 54) (((-862) (-862)) 66 (|has| $ (-6 -4261)))) (-3256 (((-862)) 103)) (-2339 (($ $) 86)) (-2211 (($ $) 46) (($ $ $) 52)) (-3020 (((-110) $ $) NIL)) (-2318 (($ $) 84)) (-2192 (($ $) 37)) (-2361 (($ $) NIL)) (-2230 (($ $) NIL)) (-2910 (($ $) NIL)) (-2241 (($ $) NIL)) (-2349 (($ $) NIL)) (-2220 (($ $) NIL)) (-2328 (($ $) 85)) (-2202 (($ $) 49)) (-2218 (($ $) 51)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 34 T CONST)) (-2955 (($) 38 T CONST)) (-2437 (((-1082) $) 27) (((-1082) $ (-110)) 29) (((-1186) (-770) $) 30) (((-1186) (-770) $ (-110)) 31)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 39)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 42)) (-2257 (($ $ $) 45) (($ $ (-530)) 41)) (-2245 (($ $) 36) (($ $ $) 50)) (-2234 (($ $ $) 61)) (** (($ $ (-862)) 67) (($ $ (-719)) NIL) (($ $ (-530)) 88) (($ $ (-388 (-530))) 125) (($ $ $) 117)) (* (($ (-862) $) 65) (($ (-719) $) NIL) (($ (-530) $) 68) (($ $ $) 60) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-360) (-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2257 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1579 ($ $)) (-15 -2941 ((-530) $ $)) (-15 -4206 ($ $ (-530))) (-15 -2931 ((-388 (-530)) $ (-719))) (-15 -2931 ((-388 (-530)) $ (-719) (-719))) (-15 -2919 ($)) (-15 -1873 ($)) (-15 -2908 ($)) (-15 -2211 ($ $ $)) (-15 -2919 ($ $)) (-15 -1873 ($ $)) (-15 -3173 ($ (-208))) (-15 -4128 ((-1186))) (-15 -4128 ((-1186) (-719))) (-15 -4116 ((-1186))) (-15 -4116 ((-1186) (-719))) (-15 -4103 ((-1186))) (-15 -4103 ((-1186) (-719))) (-15 -4092 ((-1186) (-719))) (-6 -4261) (-6 -4253)))) (T -360))
-((** (*1 *1 *1 *1) (-5 *1 (-360))) (-2257 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-1579 (*1 *1 *1) (-5 *1 (-360))) (-2941 (*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-2931 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-2931 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-2919 (*1 *1) (-5 *1 (-360))) (-1873 (*1 *1) (-5 *1 (-360))) (-2908 (*1 *1) (-5 *1 (-360))) (-2211 (*1 *1 *1 *1) (-5 *1 (-360))) (-2919 (*1 *1 *1) (-5 *1 (-360))) (-1873 (*1 *1 *1) (-5 *1 (-360))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) (-4128 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-4116 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-4103 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-4103 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
-(-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2257 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1579 ($ $)) (-15 -2941 ((-530) $ $)) (-15 -4206 ($ $ (-530))) (-15 -2931 ((-388 (-530)) $ (-719))) (-15 -2931 ((-388 (-530)) $ (-719) (-719))) (-15 -2919 ($)) (-15 -1873 ($)) (-15 -2908 ($)) (-15 -2211 ($ $ $)) (-15 -2919 ($ $)) (-15 -1873 ($ $)) (-15 -3173 ($ (-208))) (-15 -4128 ((-1186))) (-15 -4128 ((-1186) (-719))) (-15 -4116 ((-1186))) (-15 -4116 ((-1186) (-719))) (-15 -4103 ((-1186))) (-15 -4103 ((-1186) (-719))) (-15 -4092 ((-1186) (-719))) (-6 -4261) (-6 -4253)))
-((-3066 (((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|) 46) (((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|) 45) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|) 42) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|) 36)) (-2978 (((-597 |#1|) (-388 (-893 (-530))) |#1|) 20) (((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|) 30)))
-(((-361 |#1|) (-10 -7 (-15 -3066 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -3066 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -3066 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -3066 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -2978 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -2978 ((-597 |#1|) (-388 (-893 (-530))) |#1|))) (-13 (-793) (-344))) (T -361))
-((-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2978 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-793) (-344))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-530))))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))))
-(-10 -7 (-15 -3066 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -3066 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -3066 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -3066 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -2978 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -2978 ((-597 |#1|) (-388 (-893 (-530))) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) 26)) (-2446 ((|#2| $) 28)) (-2425 (($ $) NIL)) (-3239 (((-719) $) 10)) (-3683 (((-597 $) $) 20)) (-3327 (((-110) $) NIL)) (-3931 (($ |#2| |#1|) 18)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2989 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2388 ((|#2| $) 15)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 45) (($ |#2|) 27)) (-1669 (((-597 |#1|) $) 17)) (-2782 ((|#1| $ |#2|) 47)) (-2943 (($) 29 T CONST)) (-1477 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+((-1757 (((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|) 51) (((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|) 50) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|) 47) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|) 41)) (-1258 (((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|) 30) (((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|) 18)))
+(((-359 |#1|) (-10 -7 (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1258 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1258 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|))) (-13 (-344) (-793))) (T -359))
+((-1258 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5)))) (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))) (-1258 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530))))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1258 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1258 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-1612 (((-530) $) 55)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) 110)) (-2386 (($ $) 82)) (-2244 (($ $) 71)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) 44)) (-1426 (((-110) $ $) NIL)) (-2360 (($ $) 80)) (-2219 (($ $) 69)) (-1867 (((-530) $) 64)) (-4207 (($ $ (-530)) 62)) (-2409 (($ $) NIL)) (-2269 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-2963 (($ $) 112)) (-3139 (((-3 (-530) "failed") $) 189) (((-3 (-388 (-530)) "failed") $) 185)) (-2585 (((-530) $) 187) (((-388 (-530)) $) 183)) (-3590 (($ $ $) NIL)) (-1361 (((-530) $ $) 102)) (-2707 (((-3 $ "failed") $) 114)) (-3171 (((-388 (-530)) $ (-719)) 190) (((-388 (-530)) $ (-719) (-719)) 182)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 73) (((-862) (-862)) 98 (|has| $ (-6 -4260)))) (-2514 (((-110) $) 106)) (-1948 (($) 40)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-1596 (((-1186) (-719)) 152)) (-3263 (((-1186)) 157) (((-1186) (-719)) 158)) (-1394 (((-1186)) 159) (((-1186) (-719)) 160)) (-3007 (((-1186)) 155) (((-1186) (-719)) 156)) (-2031 (((-530) $) 58)) (-2731 (((-110) $) 104)) (-3741 (($ $ (-530)) NIL)) (-3258 (($ $) 48)) (-2376 (($ $) NIL)) (-2166 (((-110) $) 35)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-1817 (($ $ $) NIL) (($) 99 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 17)) (-3433 (($) 87) (($ $) 92)) (-1945 (($) 91) (($ $) 93)) (-2168 (($ $) 83)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 116)) (-2887 (((-862) (-530)) 43 (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) 53)) (-3175 (($ $) 109)) (-3018 (($ (-530) (-530)) 107) (($ (-530) (-530) (-862)) 108)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 19)) (-1878 (($) 94)) (-2853 (($ $) 79)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-862)) 100) (((-862) (-862)) 101 (|has| $ (-6 -4260)))) (-3289 (($ $ (-719)) NIL) (($ $) 115)) (-1764 (((-862) (-530)) 47 (|has| $ (-6 -4260)))) (-2421 (($ $) NIL)) (-2281 (($ $) NIL)) (-2398 (($ $) NIL)) (-2254 (($ $) NIL)) (-2373 (($ $) 81)) (-2231 (($ $) 70)) (-3260 (((-360) $) 175) (((-208) $) 177) (((-833 (-360)) $) NIL) (((-1082) $) 162) (((-506) $) 173) (($ (-208)) 181)) (-2366 (((-804) $) 164) (($ (-530)) 186) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 186) (($ (-388 (-530))) NIL) (((-208) $) 178)) (-3300 (((-719)) NIL)) (-2748 (($ $) 111)) (-1711 (((-862)) 54) (((-862) (-862)) 66 (|has| $ (-6 -4260)))) (-1510 (((-862)) 103)) (-2459 (($ $) 86)) (-2314 (($ $) 46) (($ $ $) 52)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 84)) (-2293 (($ $) 37)) (-2485 (($ $) NIL)) (-2334 (($ $) NIL)) (-3632 (($ $) NIL)) (-2347 (($ $) NIL)) (-2472 (($ $) NIL)) (-2324 (($ $) NIL)) (-2446 (($ $) 85)) (-2304 (($ $) 49)) (-3934 (($ $) 51)) (-3080 (($) 34 T CONST)) (-3093 (($) 38 T CONST)) (-3987 (((-1082) $) 27) (((-1082) $ (-110)) 29) (((-1186) (-770) $) 30) (((-1186) (-770) $ (-110)) 31)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 39)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 42)) (-2364 (($ $ $) 45) (($ $ (-530)) 41)) (-2351 (($ $) 36) (($ $ $) 50)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) 67) (($ $ (-719)) NIL) (($ $ (-530)) 88) (($ $ (-388 (-530))) 125) (($ $ $) 117)) (* (($ (-862) $) 65) (($ (-719) $) NIL) (($ (-530) $) 68) (($ $ $) 60) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-360) (-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -3258 ($ $)) (-15 -1361 ((-530) $ $)) (-15 -4207 ($ $ (-530))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719))) (-15 -3433 ($)) (-15 -1945 ($)) (-15 -1878 ($)) (-15 -2314 ($ $ $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -3260 ($ (-208))) (-15 -1394 ((-1186))) (-15 -1394 ((-1186) (-719))) (-15 -3007 ((-1186))) (-15 -3007 ((-1186) (-719))) (-15 -3263 ((-1186))) (-15 -3263 ((-1186) (-719))) (-15 -1596 ((-1186) (-719))) (-6 -4260) (-6 -4252)))) (T -360))
+((** (*1 *1 *1 *1) (-5 *1 (-360))) (-2364 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-3258 (*1 *1 *1) (-5 *1 (-360))) (-1361 (*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-3433 (*1 *1) (-5 *1 (-360))) (-1945 (*1 *1) (-5 *1 (-360))) (-1878 (*1 *1) (-5 *1 (-360))) (-2314 (*1 *1 *1 *1) (-5 *1 (-360))) (-3433 (*1 *1 *1) (-5 *1 (-360))) (-1945 (*1 *1 *1) (-5 *1 (-360))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) (-1394 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-3007 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-3263 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
+(-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -3258 ($ $)) (-15 -1361 ((-530) $ $)) (-15 -4207 ($ $ (-530))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719))) (-15 -3433 ($)) (-15 -1945 ($)) (-15 -1878 ($)) (-15 -2314 ($ $ $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -3260 ($ (-208))) (-15 -1394 ((-1186))) (-15 -1394 ((-1186) (-719))) (-15 -3007 ((-1186))) (-15 -3007 ((-1186) (-719))) (-15 -3263 ((-1186))) (-15 -3263 ((-1186) (-719))) (-15 -1596 ((-1186) (-719))) (-6 -4260) (-6 -4252)))
+((-2688 (((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|) 46) (((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|) 45) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|) 42) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|) 36)) (-3881 (((-597 |#1|) (-388 (-893 (-530))) |#1|) 20) (((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|) 30)))
+(((-361 |#1|) (-10 -7 (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -3881 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -3881 ((-597 |#1|) (-388 (-893 (-530))) |#1|))) (-13 (-793) (-344))) (T -361))
+((-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-530))))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))))
+(-10 -7 (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -3881 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -3881 ((-597 |#1|) (-388 (-893 (-530))) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 26)) (-2585 ((|#2| $) 28)) (-2562 (($ $) NIL)) (-3579 (((-719) $) 10)) (-2469 (((-597 $) $) 20)) (-3668 (((-110) $) NIL)) (-3940 (($ |#2| |#1|) 18)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2521 ((|#2| $) 15)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 45) (($ |#2|) 27)) (-3441 (((-597 |#1|) $) 17)) (-4085 ((|#1| $ |#2|) 47)) (-3080 (($) 29 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
(((-362 |#1| |#2|) (-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-984) (-795)) (T -362))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)))))
(-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#2| "failed") $) 44)) (-2446 ((|#2| $) 43)) (-2425 (($ $) 30)) (-3239 (((-719) $) 34)) (-3683 (((-597 $) $) 35)) (-3327 (((-110) $) 38)) (-3931 (($ |#2| |#1|) 39)) (-3114 (($ (-1 |#1| |#1|) $) 40)) (-2989 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2388 ((|#2| $) 33)) (-2402 ((|#1| $) 32)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ |#2|) 45)) (-1669 (((-597 |#1|) $) 36)) (-2782 ((|#1| $ |#2|) 41)) (-2943 (($) 18 T CONST)) (-1477 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 44)) (-2585 ((|#2| $) 43)) (-2562 (($ $) 30)) (-3579 (((-719) $) 34)) (-2469 (((-597 $) $) 35)) (-3668 (((-110) $) 38)) (-3940 (($ |#2| |#1|) 39)) (-3217 (($ (-1 |#1| |#1|) $) 40)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2521 ((|#2| $) 33)) (-2533 ((|#1| $) 32)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ |#2|) 45)) (-3441 (((-597 |#1|) $) 36)) (-4085 ((|#1| $ |#2|) 41)) (-3080 (($) 18 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
(((-363 |#1| |#2|) (-133) (-984) (-1027)) (T -363))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))) (-2782 (*1 *2 *1 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)))) (-3931 (*1 *1 *2 *3) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-3683 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-363 *3 *4)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-719)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))))
-(-13 (-109 |t#1| |t#1|) (-975 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2782 (|t#1| $ |t#2|)) (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (-15 -3931 ($ |t#2| |t#1|)) (-15 -3327 ((-110) $)) (-15 -1477 ((-597 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1669 ((-597 |t#1|) $)) (-15 -3683 ((-597 $) $)) (-15 -3239 ((-719) $)) (-15 -2388 (|t#2| $)) (-15 -2402 (|t#1| $)) (-15 -2989 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2425 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-666 |t#1|)) |%noBranch|)))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)))) (-3940 (*1 *1 *2 *3) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-2469 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-363 *3 *4)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-719)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))))
+(-13 (-109 |t#1| |t#1|) (-975 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4085 (|t#1| $ |t#2|)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ($ |t#2| |t#1|)) (-15 -3668 ((-110) $)) (-15 -1537 ((-597 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3441 ((-597 |t#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (-15 -2521 (|t#2| $)) (-15 -2533 (|t#1| $)) (-15 -3477 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2562 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-666 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) |has| |#1| (-162)) ((-975 |#2|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8) (($ (-637 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 11)))
+((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-637 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 11)))
(((-364) (-133)) (T -364))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-364)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-4 *1 (-364)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-637 (-647)))) (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-311))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-364)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-637 (-647)))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))))))
(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-3012 (((-3 $ "failed") (-637 (-297 (-360)))) 21) (((-3 $ "failed") (-637 (-297 (-530)))) 19) (((-3 $ "failed") (-637 (-893 (-360)))) 17) (((-3 $ "failed") (-637 (-893 (-530)))) 15) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 11)) (-2446 (($ (-637 (-297 (-360)))) 22) (($ (-637 (-297 (-530)))) 20) (($ (-637 (-893 (-360)))) 18) (($ (-637 (-893 (-530)))) 16) (($ (-637 (-388 (-893 (-360))))) 14) (($ (-637 (-388 (-893 (-530))))) 12)) (-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 23)))
+((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 21) (((-3 $ "failed") (-637 (-297 (-530)))) 19) (((-3 $ "failed") (-637 (-893 (-360)))) 17) (((-3 $ "failed") (-637 (-893 (-530)))) 15) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 11)) (-2585 (($ (-637 (-297 (-360)))) 22) (($ (-637 (-297 (-530)))) 20) (($ (-637 (-893 (-360)))) 18) (($ (-637 (-893 (-530)))) 16) (($ (-637 (-388 (-893 (-360))))) 14) (($ (-637 (-388 (-893 (-530))))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
(((-365) (-133)) (T -365))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-365)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-311))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))) (-15 -2446 ($ (-637 (-297 (-360))))) (-15 -3012 ((-3 $ "failed") (-637 (-297 (-360))))) (-15 -2446 ($ (-637 (-297 (-530))))) (-15 -3012 ((-3 $ "failed") (-637 (-297 (-530))))) (-15 -2446 ($ (-637 (-893 (-360))))) (-15 -3012 ((-3 $ "failed") (-637 (-893 (-360))))) (-15 -2446 ($ (-637 (-893 (-530))))) (-15 -3012 ((-3 $ "failed") (-637 (-893 (-530))))) (-15 -2446 ($ (-637 (-388 (-893 (-360)))))) (-15 -3012 ((-3 $ "failed") (-637 (-388 (-893 (-360)))))) (-15 -2446 ($ (-637 (-388 (-893 (-530)))))) (-15 -3012 ((-3 $ "failed") (-637 (-388 (-893 (-530))))))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-365)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-637 (-297 (-360))))) (-15 -3139 ((-3 $ "failed") (-637 (-297 (-360))))) (-15 -2585 ($ (-637 (-297 (-530))))) (-15 -3139 ((-3 $ "failed") (-637 (-297 (-530))))) (-15 -2585 ($ (-637 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-637 (-893 (-360))))) (-15 -2585 ($ (-637 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-637 (-893 (-530))))) (-15 -2585 ($ (-637 (-388 (-893 (-360)))))) (-15 -3139 ((-3 $ "failed") (-637 (-388 (-893 (-360)))))) (-15 -2585 ($ (-637 (-388 (-893 (-530)))))) (-15 -3139 ((-3 $ "failed") (-637 (-388 (-893 (-530))))))))
(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-2575 (($ |#1| |#2|) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3701 ((|#2| $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 28)) (-2943 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 28)) (-3080 (($) 12 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
(((-366 |#1| |#2|) (-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|))) (-984) (-795)) (T -366))
NIL
(-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-2879 (((-719) $) 59)) (-3956 (($) NIL T CONST)) (-3339 (((-3 $ "failed") $ $) 61)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-4195 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3150 (((-110) $) 15)) (-4173 ((|#1| $ (-530)) NIL)) (-4183 (((-719) $ (-530)) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-1320 (($ (-1 |#1| |#1|) $) 38)) (-1331 (($ (-1 (-719) (-719)) $) 35)) (-3352 (((-3 $ "failed") $ $) 50)) (-3443 (((-1082) $) NIL)) (-4207 (($ $ $) 26)) (-4217 (($ $ $) 24)) (-2485 (((-1046) $) NIL)) (-4162 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $) 32)) (-3017 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2258 (((-804) $) 22) (($ |#1|) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2955 (($) 9 T CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) 63 (|has| |#1| (-795)))) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-367 |#1|) (-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -4217 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -3352 ((-3 $ "failed") $ $)) (-15 -3339 ((-3 $ "failed") $ $)) (-15 -3017 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4195 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2879 ((-719) $)) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $)) (-15 -4183 ((-719) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -1331 ($ (-1 (-719) (-719)) $)) (-15 -1320 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -367))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-4217 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-4207 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3352 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3339 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3017 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-4195 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-719))))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-1320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3)))))
-(-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -4217 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -3352 ((-3 $ "failed") $ $)) (-15 -3339 ((-3 $ "failed") $ $)) (-15 -3017 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4195 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2879 ((-719) $)) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $)) (-15 -4183 ((-719) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -1331 ($ (-1 (-719) (-719)) $)) (-15 -1320 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 47)) (-2446 (((-530) $) 46)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-4194 (($ $ $) 54)) (-1757 (($ $ $) 53)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ $) 42)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-530)) 48)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 51)) (-2182 (((-110) $ $) 50)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 52)) (-2172 (((-110) $ $) 49)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) 59)) (-2350 (($) NIL T CONST)) (-3575 (((-3 $ "failed") $ $) 61)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3686 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2731 (((-110) $) 15)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-719) $ (-530)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-2580 (($ (-1 |#1| |#1|) $) 38)) (-3999 (($ (-1 (-719) (-719)) $) 35)) (-2448 (((-3 $ "failed") $ $) 50)) (-1424 (((-1082) $) NIL)) (-2458 (($ $ $) 26)) (-2325 (($ $ $) 24)) (-2624 (((-1046) $) NIL)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) 32)) (-3763 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2366 (((-804) $) 22) (($ |#1|) NIL)) (-3093 (($) 9 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 41)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 63 (|has| |#1| (-795)))) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-367 |#1|) (-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -3763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-719) (-719)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -367))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2325 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3763 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3686 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719))))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3)))))
+(-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -3763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-719) (-719)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 45)) (-2585 (((-530) $) 44)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2508 (($ $ $) 52)) (-1817 (($ $ $) 51)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 46)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 49)) (-2284 (((-110) $ $) 48)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 50)) (-2272 (((-110) $ $) 47)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-368) (-133)) (T -368))
NIL
(-13 (-522) (-795) (-975 (-530)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3000 (((-110) $) 20)) (-3013 (((-110) $) 19)) (-3547 (($ (-1082) (-1082) (-1082)) 21)) (-3901 (((-1082) $) 16)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2964 (($ (-1082) (-1082) (-1082)) 14)) (-3035 (((-1082) $) 17)) (-3022 (((-110) $) 18)) (-4079 (((-1082) $) 15)) (-2258 (((-804) $) 12) (($ (-1082)) 13) (((-1082) $) 9)) (-2148 (((-110) $ $) 7)))
+((-2352 (((-110) $ $) NIL)) (-1988 (((-110) $) 20)) (-1624 (((-110) $) 19)) (-3538 (($ (-1082) (-1082) (-1082)) 21)) (-3907 (((-1082) $) 16)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3100 (($ (-1082) (-1082) (-1082)) 14)) (-2724 (((-1082) $) 17)) (-3976 (((-110) $) 18)) (-4094 (((-1082) $) 15)) (-2366 (((-804) $) 12) (($ (-1082)) 13) (((-1082) $) 9)) (-2248 (((-110) $ $) 7)))
(((-369) (-370)) (T -369))
NIL
(-370)
-((-2246 (((-110) $ $) 7)) (-3000 (((-110) $) 14)) (-3013 (((-110) $) 15)) (-3547 (($ (-1082) (-1082) (-1082)) 13)) (-3901 (((-1082) $) 18)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2964 (($ (-1082) (-1082) (-1082)) 20)) (-3035 (((-1082) $) 17)) (-3022 (((-110) $) 16)) (-4079 (((-1082) $) 19)) (-2258 (((-804) $) 11) (($ (-1082)) 22) (((-1082) $) 21)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-1988 (((-110) $) 14)) (-1624 (((-110) $) 15)) (-3538 (($ (-1082) (-1082) (-1082)) 13)) (-3907 (((-1082) $) 18)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3100 (($ (-1082) (-1082) (-1082)) 20)) (-2724 (((-1082) $) 17)) (-3976 (((-110) $) 16)) (-4094 (((-1082) $) 19)) (-2366 (((-804) $) 11) (($ (-1082)) 22) (((-1082) $) 21)) (-2248 (((-110) $ $) 6)))
(((-370) (-133)) (T -370))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-2964 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3547 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-1082))) (-15 -2258 ((-1082) $)) (-15 -2964 ($ (-1082) (-1082) (-1082))) (-15 -4079 ((-1082) $)) (-15 -3901 ((-1082) $)) (-15 -3035 ((-1082) $)) (-15 -3022 ((-110) $)) (-15 -3013 ((-110) $)) (-15 -3000 ((-110) $)) (-15 -3547 ($ (-1082) (-1082) (-1082)))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3100 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3538 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -3100 ($ (-1082) (-1082) (-1082))) (-15 -4094 ((-1082) $)) (-15 -3907 ((-1082) $)) (-15 -2724 ((-1082) $)) (-15 -3976 ((-110) $)) (-15 -1624 ((-110) $)) (-15 -1988 ((-110) $)) (-15 -3538 ($ (-1082) (-1082) (-1082)))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3047 (((-804) $) 50)) (-3956 (($) NIL T CONST)) (-3128 (($ $ (-862)) NIL)) (-3395 (($ $ (-862)) NIL)) (-3117 (($ $ (-862)) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($ (-719)) 26)) (-1248 (((-719)) 17)) (-3058 (((-804) $) 52)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) NIL)) (-1538 (($ $ $ $) NIL)) (-1516 (($ $ $) NIL)) (-2943 (($) 20 T CONST)) (-2148 (((-110) $ $) 28)) (-2245 (($ $) 34) (($ $ $) 36)) (-2234 (($ $ $) 37)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-371 |#1| |#2| |#3|) (-13 (-693 |#3|) (-10 -8 (-15 -1248 ((-719))) (-15 -3058 ((-804) $)) (-15 -3047 ((-804) $)) (-15 -1898 ($ (-719))))) (-719) (-719) (-162)) (T -371))
-((-1248 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
-(-13 (-693 |#3|) (-10 -8 (-15 -1248 ((-719))) (-15 -3058 ((-804) $)) (-15 -3047 ((-804) $)) (-15 -1898 ($ (-719)))))
-((-3092 (((-1082)) 10)) (-3080 (((-1071 (-1082))) 28)) (-3029 (((-1186) (-1082)) 25) (((-1186) (-369)) 24)) (-3041 (((-1186)) 26)) (-3068 (((-1071 (-1082))) 27)))
-(((-372) (-10 -7 (-15 -3068 ((-1071 (-1082)))) (-15 -3080 ((-1071 (-1082)))) (-15 -3041 ((-1186))) (-15 -3029 ((-1186) (-369))) (-15 -3029 ((-1186) (-1082))) (-15 -3092 ((-1082))))) (T -372))
-((-3092 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3041 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-372)))) (-3080 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))) (-3068 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
-(-10 -7 (-15 -3068 ((-1071 (-1082)))) (-15 -3080 ((-1071 (-1082)))) (-15 -3041 ((-1186))) (-15 -3029 ((-1186) (-369))) (-15 -3029 ((-1186) (-1082))) (-15 -3092 ((-1082))))
-((-1334 (((-719) (-317 |#1| |#2| |#3| |#4|)) 16)))
-(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1334 ((-719) (-317 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373))
-((-1334 (*1 *2 *3) (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1334 ((-719) (-317 |#1| |#2| |#3| |#4|))))
-((-2258 (((-375) |#1|) 11)))
-(((-374 |#1|) (-10 -7 (-15 -2258 ((-375) |#1|))) (-1027)) (T -374))
-((-2258 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -2258 ((-375) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3475 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-3104 (((-597 (-1082)) $ (-597 (-1082))) 39)) (-3499 (((-597 (-1082)) $ (-597 (-1082))) 40)) (-3509 (((-597 (-1082)) $) 35)) (-3547 (($) 23)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3488 (((-597 (-1082)) $) 36)) (-3520 (((-597 (-1082)) $) 37)) (-2278 (((-1186) $ (-530)) 33) (((-1186) $) 34)) (-3173 (($ (-804) (-530)) 30)) (-2258 (((-804) $) 42) (($ (-804)) 25)) (-2148 (((-110) $ $) NIL)))
-(((-375) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-804))) (-15 -3173 ($ (-804) (-530))) (-15 -2278 ((-1186) $ (-530))) (-15 -2278 ((-1186) $)) (-15 -3520 ((-597 (-1082)) $)) (-15 -3488 ((-597 (-1082)) $)) (-15 -3547 ($)) (-15 -3509 ((-597 (-1082)) $)) (-15 -3499 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3104 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3475 ((-597 (-1082)) $ (-597 (-1082))))))) (T -375))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-375)))) (-3173 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-375)))) (-2278 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-375)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-375)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3547 (*1 *1) (-5 *1 (-375))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3499 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3104 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3475 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-804))) (-15 -3173 ($ (-804) (-530))) (-15 -2278 ((-1186) $ (-530))) (-15 -2278 ((-1186) $)) (-15 -3520 ((-597 (-1082)) $)) (-15 -3488 ((-597 (-1082)) $)) (-15 -3547 ($)) (-15 -3509 ((-597 (-1082)) $)) (-15 -3499 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3104 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3475 ((-597 (-1082)) $ (-597 (-1082))))))
-((-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1322 (((-804) $) 50)) (-2350 (($) NIL T CONST)) (-2862 (($ $ (-862)) NIL)) (-1667 (($ $ (-862)) NIL)) (-4138 (($ $ (-862)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) 26)) (-2488 (((-719)) 17)) (-4213 (((-804) $) 52)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) NIL)) (-2346 (($ $ $ $) NIL)) (-3980 (($ $ $) NIL)) (-3080 (($) 20 T CONST)) (-2248 (((-110) $ $) 28)) (-2351 (($ $) 34) (($ $ $) 36)) (-2339 (($ $ $) 37)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-371 |#1| |#2| |#3|) (-13 (-693 |#3|) (-10 -8 (-15 -2488 ((-719))) (-15 -4213 ((-804) $)) (-15 -1322 ((-804) $)) (-15 -1974 ($ (-719))))) (-719) (-719) (-162)) (T -371))
+((-2488 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
+(-13 (-693 |#3|) (-10 -8 (-15 -2488 ((-719))) (-15 -4213 ((-804) $)) (-15 -1322 ((-804) $)) (-15 -1974 ($ (-719)))))
+((-2501 (((-1082)) 10)) (-2531 (((-1071 (-1082))) 28)) (-3156 (((-1186) (-1082)) 25) (((-1186) (-369)) 24)) (-3164 (((-1186)) 26)) (-2854 (((-1071 (-1082))) 27)))
+(((-372) (-10 -7 (-15 -2854 ((-1071 (-1082)))) (-15 -2531 ((-1071 (-1082)))) (-15 -3164 ((-1186))) (-15 -3156 ((-1186) (-369))) (-15 -3156 ((-1186) (-1082))) (-15 -2501 ((-1082))))) (T -372))
+((-2501 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3164 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-372)))) (-2531 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))) (-2854 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
+(-10 -7 (-15 -2854 ((-1071 (-1082)))) (-15 -2531 ((-1071 (-1082)))) (-15 -3164 ((-1186))) (-15 -3156 ((-1186) (-369))) (-15 -3156 ((-1186) (-1082))) (-15 -2501 ((-1082))))
+((-2031 (((-719) (-317 |#1| |#2| |#3| |#4|)) 16)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373))
+((-2031 (*1 *2 *3) (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|))))
+((-2366 (((-375) |#1|) 11)))
+(((-374 |#1|) (-10 -7 (-15 -2366 ((-375) |#1|))) (-1027)) (T -374))
+((-2366 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2366 ((-375) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1464 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-2387 (((-597 (-1082)) $ (-597 (-1082))) 39)) (-2998 (((-597 (-1082)) $ (-597 (-1082))) 40)) (-3897 (((-597 (-1082)) $) 35)) (-3538 (($) 23)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1752 (((-597 (-1082)) $) 36)) (-2484 (((-597 (-1082)) $) 37)) (-2388 (((-1186) $ (-530)) 33) (((-1186) $) 34)) (-3260 (($ (-804) (-530)) 30)) (-2366 (((-804) $) 42) (($ (-804)) 25)) (-2248 (((-110) $ $) NIL)))
+(((-375) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -1752 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -2387 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))) (T -375))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-375)))) (-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-375)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-375)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-375)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3538 (*1 *1) (-5 *1 (-375))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-2998 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-2387 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -1752 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -2387 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))
+((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8)))
(((-376) (-133)) (T -376))
-((-3057 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1186)))))
-(-13 (-1135) (-571 (-804)) (-10 -8 (-15 -3057 ((-1186) $))))
+((-3176 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1186)))))
+(-13 (-1135) (-571 (-804)) (-10 -8 (-15 -3176 ((-1186) $))))
(((-571 (-804)) . T) ((-1135) . T))
-((-3012 (((-3 $ "failed") (-297 (-360))) 21) (((-3 $ "failed") (-297 (-530))) 19) (((-3 $ "failed") (-893 (-360))) 17) (((-3 $ "failed") (-893 (-530))) 15) (((-3 $ "failed") (-388 (-893 (-360)))) 13) (((-3 $ "failed") (-388 (-893 (-530)))) 11)) (-2446 (($ (-297 (-360))) 22) (($ (-297 (-530))) 20) (($ (-893 (-360))) 18) (($ (-893 (-530))) 16) (($ (-388 (-893 (-360)))) 14) (($ (-388 (-893 (-530)))) 12)) (-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 23)))
+((-3139 (((-3 $ "failed") (-297 (-360))) 21) (((-3 $ "failed") (-297 (-530))) 19) (((-3 $ "failed") (-893 (-360))) 17) (((-3 $ "failed") (-893 (-530))) 15) (((-3 $ "failed") (-388 (-893 (-360)))) 13) (((-3 $ "failed") (-388 (-893 (-530)))) 11)) (-2585 (($ (-297 (-360))) 22) (($ (-297 (-530))) 20) (($ (-893 (-360))) 18) (($ (-893 (-530))) 16) (($ (-388 (-893 (-360)))) 14) (($ (-388 (-893 (-530)))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
(((-377) (-133)) (T -377))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-377)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-311))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))) (-15 -2446 ($ (-297 (-360)))) (-15 -3012 ((-3 $ "failed") (-297 (-360)))) (-15 -2446 ($ (-297 (-530)))) (-15 -3012 ((-3 $ "failed") (-297 (-530)))) (-15 -2446 ($ (-893 (-360)))) (-15 -3012 ((-3 $ "failed") (-893 (-360)))) (-15 -2446 ($ (-893 (-530)))) (-15 -3012 ((-3 $ "failed") (-893 (-530)))) (-15 -2446 ($ (-388 (-893 (-360))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2446 ($ (-388 (-893 (-530))))) (-15 -3012 ((-3 $ "failed") (-388 (-893 (-530)))))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-377)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530)))))))
(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-3127 (((-597 (-1082)) (-597 (-1082))) 9)) (-3057 (((-1186) (-369)) 27)) (-3116 (((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099))) 60) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099)) 35) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099))) 34)))
-(((-378) (-10 -7 (-15 -3116 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -3116 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -3116 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3057 ((-1186) (-369))) (-15 -3127 ((-597 (-1082)) (-597 (-1082)))))) (T -378))
-((-3127 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-378)))) (-3116 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-3116 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-3116 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))))
-(-10 -7 (-15 -3116 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -3116 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -3116 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3057 ((-1186) (-369))) (-15 -3127 ((-597 (-1082)) (-597 (-1082)))))
-((-3057 (((-1186) $) 38)) (-2258 (((-804) $) 98) (($ (-311)) 100) (($ (-597 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 97) (($ (-297 (-649))) 54) (($ (-297 (-647))) 73) (($ (-297 (-642))) 86) (($ (-276 (-297 (-649)))) 68) (($ (-276 (-297 (-647)))) 81) (($ (-276 (-297 (-642)))) 94) (($ (-297 (-530))) 104) (($ (-297 (-360))) 117) (($ (-297 (-159 (-360)))) 130) (($ (-276 (-297 (-530)))) 112) (($ (-276 (-297 (-360)))) 125) (($ (-276 (-297 (-159 (-360))))) 138)))
-(((-379 |#1| |#2| |#3| |#4|) (-13 (-376) (-10 -8 (-15 -2258 ($ (-311))) (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))) (-15 -2258 ($ (-297 (-649)))) (-15 -2258 ($ (-297 (-647)))) (-15 -2258 ($ (-297 (-642)))) (-15 -2258 ($ (-276 (-297 (-649))))) (-15 -2258 ($ (-276 (-297 (-647))))) (-15 -2258 ($ (-276 (-297 (-642))))) (-15 -2258 ($ (-297 (-530)))) (-15 -2258 ($ (-297 (-360)))) (-15 -2258 ($ (-297 (-159 (-360))))) (-15 -2258 ($ (-276 (-297 (-530))))) (-15 -2258 ($ (-276 (-297 (-360))))) (-15 -2258 ($ (-276 (-297 (-159 (-360)))))))) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-1099)) (-1103)) (T -379))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-647)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-642)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-530)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-311))) (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))) (-15 -2258 ($ (-297 (-649)))) (-15 -2258 ($ (-297 (-647)))) (-15 -2258 ($ (-297 (-642)))) (-15 -2258 ($ (-276 (-297 (-649))))) (-15 -2258 ($ (-276 (-297 (-647))))) (-15 -2258 ($ (-276 (-297 (-642))))) (-15 -2258 ($ (-297 (-530)))) (-15 -2258 ($ (-297 (-360)))) (-15 -2258 ($ (-297 (-159 (-360))))) (-15 -2258 ($ (-276 (-297 (-530))))) (-15 -2258 ($ (-276 (-297 (-360))))) (-15 -2258 ($ (-276 (-297 (-159 (-360))))))))
-((-2246 (((-110) $ $) NIL)) (-3149 ((|#2| $) 36)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3162 (($ (-388 |#2|)) 85)) (-3138 (((-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|))) $) 37)) (-3211 (($ $) 32) (($ $ (-719)) 34)) (-3173 (((-388 |#2|) $) 46)) (-2268 (($ (-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|)))) 31)) (-2258 (((-804) $) 120)) (-3286 (($ $) 33) (($ $ (-719)) 35)) (-2148 (((-110) $ $) NIL)) (-2234 (($ |#2| $) 39)))
-(((-380 |#1| |#2|) (-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2234 ($ |#2| $)) (-15 -3162 ($ (-388 |#2|))) (-15 -3149 (|#2| $)) (-15 -3138 ((-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|))) $)) (-15 -2268 ($ (-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|))))) (-15 -3211 ($ $)) (-15 -3286 ($ $)) (-15 -3211 ($ $ (-719))) (-15 -3286 ($ $ (-719))))) (-13 (-344) (-140)) (-1157 |#1|)) (T -380))
-((-2234 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1157 *3)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3149 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-3138 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-597 (-2 (|:| -3059 (-719)) (|:| -3721 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3059 (-719)) (|:| -3721 *4) (|:| |num| *4)))) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3211 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3286 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
-(-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2234 ($ |#2| $)) (-15 -3162 ($ (-388 |#2|))) (-15 -3149 (|#2| $)) (-15 -3138 ((-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|))) $)) (-15 -2268 ($ (-597 (-2 (|:| -3059 (-719)) (|:| -3721 |#2|) (|:| |num| |#2|))))) (-15 -3211 ($ $)) (-15 -3286 ($ $)) (-15 -3211 ($ $ (-719))) (-15 -3286 ($ $ (-719)))))
-((-2246 (((-110) $ $) 9 (-1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 15 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 14 (|has| |#1| (-827 (-530))))) (-3443 (((-1082) $) 13 (-1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2485 (((-1046) $) 12 (-1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2258 (((-804) $) 11 (-1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2148 (((-110) $ $) 10 (-1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))))
+((-2784 (((-597 (-1082)) (-597 (-1082))) 9)) (-3176 (((-1186) (-369)) 27)) (-4044 (((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099))) 60) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099)) 35) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099))) 34)))
+(((-378) (-10 -7 (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -4044 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3176 ((-1186) (-369))) (-15 -2784 ((-597 (-1082)) (-597 (-1082)))))) (T -378))
+((-2784 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))))
+(-10 -7 (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -4044 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3176 ((-1186) (-369))) (-15 -2784 ((-597 (-1082)) (-597 (-1082)))))
+((-3176 (((-1186) $) 38)) (-2366 (((-804) $) 98) (($ (-311)) 100) (($ (-597 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 97) (($ (-297 (-649))) 54) (($ (-297 (-647))) 73) (($ (-297 (-642))) 86) (($ (-276 (-297 (-649)))) 68) (($ (-276 (-297 (-647)))) 81) (($ (-276 (-297 (-642)))) 94) (($ (-297 (-530))) 104) (($ (-297 (-360))) 117) (($ (-297 (-159 (-360)))) 130) (($ (-276 (-297 (-530)))) 112) (($ (-276 (-297 (-360)))) 125) (($ (-276 (-297 (-159 (-360))))) 138)))
+(((-379 |#1| |#2| |#3| |#4|) (-13 (-376) (-10 -8 (-15 -2366 ($ (-311))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2366 ($ (-297 (-649)))) (-15 -2366 ($ (-297 (-647)))) (-15 -2366 ($ (-297 (-642)))) (-15 -2366 ($ (-276 (-297 (-649))))) (-15 -2366 ($ (-276 (-297 (-647))))) (-15 -2366 ($ (-276 (-297 (-642))))) (-15 -2366 ($ (-297 (-530)))) (-15 -2366 ($ (-297 (-360)))) (-15 -2366 ($ (-297 (-159 (-360))))) (-15 -2366 ($ (-276 (-297 (-530))))) (-15 -2366 ($ (-276 (-297 (-360))))) (-15 -2366 ($ (-276 (-297 (-159 (-360)))))))) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-1103)) (T -379))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-647)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-642)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-530)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-311))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2366 ($ (-297 (-649)))) (-15 -2366 ($ (-297 (-647)))) (-15 -2366 ($ (-297 (-642)))) (-15 -2366 ($ (-276 (-297 (-649))))) (-15 -2366 ($ (-276 (-297 (-647))))) (-15 -2366 ($ (-276 (-297 (-642))))) (-15 -2366 ($ (-297 (-530)))) (-15 -2366 ($ (-297 (-360)))) (-15 -2366 ($ (-297 (-159 (-360))))) (-15 -2366 ($ (-276 (-297 (-530))))) (-15 -2366 ($ (-276 (-297 (-360))))) (-15 -2366 ($ (-276 (-297 (-159 (-360))))))))
+((-2352 (((-110) $ $) NIL)) (-2605 ((|#2| $) 36)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2098 (($ (-388 |#2|)) 85)) (-1423 (((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $) 37)) (-3289 (($ $) 32) (($ $ (-719)) 34)) (-3260 (((-388 |#2|) $) 46)) (-2377 (($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|)))) 31)) (-2366 (((-804) $) 120)) (-3340 (($ $) 33) (($ $ (-719)) 35)) (-2248 (((-110) $ $) NIL)) (-2339 (($ |#2| $) 39)))
+(((-380 |#1| |#2|) (-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2339 ($ |#2| $)) (-15 -2098 ($ (-388 |#2|))) (-15 -2605 (|#2| $)) (-15 -1423 ((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))))) (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719))))) (-13 (-344) (-140)) (-1157 |#1|)) (T -380))
+((-2339 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1157 *3)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-2605 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-1423 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4)))) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3289 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3340 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
+(-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2339 ($ |#2| $)) (-15 -2098 ($ (-388 |#2|))) (-15 -2605 (|#2| $)) (-15 -1423 ((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))))) (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719)))))
+((-2352 (((-110) $ $) 9 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 15 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 14 (|has| |#1| (-827 (-530))))) (-1424 (((-1082) $) 13 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2624 (((-1046) $) 12 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2366 (((-804) $) 11 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2248 (((-110) $ $) 10 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))))
(((-381 |#1|) (-133) (-1135)) (T -381))
NIL
(-13 (-1135) (-10 -7 (IF (|has| |t#1| (-827 (-530))) (-6 (-827 (-530))) |%noBranch|) (IF (|has| |t#1| (-827 (-360))) (-6 (-827 (-360))) |%noBranch|)))
-(((-99) -1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-571 (-804)) -1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-1027) -1476 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-1135) . T))
-((-3175 (($ $) 10) (($ $ (-719)) 11)))
-(((-382 |#1|) (-10 -8 (-15 -3175 (|#1| |#1| (-719))) (-15 -3175 (|#1| |#1|))) (-383)) (T -382))
+(((-99) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-571 (-804)) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-1027) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-1135) . T))
+((-3948 (($ $) 10) (($ $ (-719)) 11)))
+(((-382 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-719))) (-15 -3948 (|#1| |#1|))) (-383)) (T -382))
NIL
-(-10 -8 (-15 -3175 (|#1| |#1| (-719))) (-15 -3175 (|#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-3175 (($ $) 79) (($ $ (-719)) 78)) (-2049 (((-110) $) 71)) (-1334 (((-781 (-862)) $) 81)) (-3150 (((-110) $) 31)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3187 (((-3 (-719) "failed") $ $) 80)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65)) (-1795 (((-3 $ "failed") $) 82)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+(-10 -8 (-15 -3948 (|#1| |#1| (-719))) (-15 -3948 (|#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3948 (($ $) 76) (($ $ (-719)) 75)) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 78)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 77)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3251 (((-3 $ "failed") $) 79)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-383) (-133)) (T -383))
-((-1334 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862))))) (-3187 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))) (-3175 (*1 *1 *1) (-4 *1 (-383))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719)))))
-(-13 (-344) (-138) (-10 -8 (-15 -1334 ((-781 (-862)) $)) (-15 -3187 ((-3 (-719) "failed") $ $)) (-15 -3175 ($ $)) (-15 -3175 ($ $ (-719)))))
+((-2031 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862))))) (-1823 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))) (-3948 (*1 *1 *1) (-4 *1 (-383))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719)))))
+(-13 (-344) (-138) (-10 -8 (-15 -2031 ((-781 (-862)) $)) (-15 -1823 ((-3 (-719) "failed") $ $)) (-15 -3948 ($ $)) (-15 -3948 ($ $ (-719)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2873 (($ (-530) (-530)) 11) (($ (-530) (-530) (-862)) NIL)) (-2124 (((-862)) 16) (((-862) (-862)) NIL)))
-(((-384 |#1|) (-10 -8 (-15 -2124 ((-862) (-862))) (-15 -2124 ((-862))) (-15 -2873 (|#1| (-530) (-530) (-862))) (-15 -2873 (|#1| (-530) (-530)))) (-385)) (T -384))
-((-2124 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))))
-(-10 -8 (-15 -2124 ((-862) (-862))) (-15 -2124 ((-862))) (-15 -2873 (|#1| (-530) (-530) (-862))) (-15 -2873 (|#1| (-530) (-530))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1694 (((-530) $) 89)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-1323 (($ $) 87)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-2487 (($ $) 97)) (-1945 (((-110) $ $) 59)) (-3592 (((-530) $) 114)) (-3956 (($) 17 T CONST)) (-1676 (($ $) 86)) (-3012 (((-3 (-530) "failed") $) 102) (((-3 (-388 (-530)) "failed") $) 99)) (-2446 (((-530) $) 101) (((-388 (-530)) $) 98)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-1214 (((-862)) 130) (((-862) (-862)) 127 (|has| $ (-6 -4261)))) (-2991 (((-110) $) 112)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 93)) (-1334 (((-530) $) 136)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 96)) (-1717 (($ $) 92)) (-3002 (((-110) $) 113)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-4194 (($ $ $) 111) (($) 124 (-12 (-3694 (|has| $ (-6 -4261))) (-3694 (|has| $ (-6 -4253)))))) (-1757 (($ $ $) 110) (($) 123 (-12 (-3694 (|has| $ (-6 -4261))) (-3694 (|has| $ (-6 -4253)))))) (-3102 (((-530) $) 133)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-3214 (((-862) (-530)) 126 (|has| $ (-6 -4261)))) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1684 (($ $) 88)) (-1702 (($ $) 90)) (-2873 (($ (-530) (-530)) 138) (($ (-530) (-530) (-862)) 137)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-3059 (((-530) $) 134)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2124 (((-862)) 131) (((-862) (-862)) 128 (|has| $ (-6 -4261)))) (-3200 (((-862) (-530)) 125 (|has| $ (-6 -4261)))) (-3173 (((-360) $) 105) (((-208) $) 104) (((-833 (-360)) $) 94)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ (-530)) 103) (($ (-388 (-530))) 100)) (-1667 (((-719)) 29)) (-1709 (($ $) 91)) (-3227 (((-862)) 132) (((-862) (-862)) 129 (|has| $ (-6 -4261)))) (-3256 (((-862)) 135)) (-3020 (((-110) $ $) 39)) (-2218 (($ $) 115)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 108)) (-2182 (((-110) $ $) 107)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 109)) (-2172 (((-110) $ $) 106)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68) (($ $ (-388 (-530))) 95)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+((-3018 (($ (-530) (-530)) 11) (($ (-530) (-530) (-862)) NIL)) (-2513 (((-862)) 16) (((-862) (-862)) NIL)))
+(((-384 |#1|) (-10 -8 (-15 -2513 ((-862) (-862))) (-15 -2513 ((-862))) (-15 -3018 (|#1| (-530) (-530) (-862))) (-15 -3018 (|#1| (-530) (-530)))) (-385)) (T -384))
+((-2513 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))))
+(-10 -8 (-15 -2513 ((-862) (-862))) (-15 -2513 ((-862))) (-15 -3018 (|#1| (-530) (-530) (-862))) (-15 -3018 (|#1| (-530) (-530))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 (((-530) $) 86)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1951 (($ $) 84)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 94)) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 111)) (-2350 (($) 17 T CONST)) (-2963 (($ $) 83)) (-3139 (((-3 (-530) "failed") $) 99) (((-3 (-388 (-530)) "failed") $) 96)) (-2585 (((-530) $) 98) (((-388 (-530)) $) 95)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2582 (((-862)) 127) (((-862) (-862)) 124 (|has| $ (-6 -4260)))) (-2514 (((-110) $) 109)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 90)) (-2031 (((-530) $) 133)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 93)) (-2376 (($ $) 89)) (-2166 (((-110) $) 110)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 108) (($) 121 (-12 (-3676 (|has| $ (-6 -4260))) (-3676 (|has| $ (-6 -4252)))))) (-1817 (($ $ $) 107) (($) 120 (-12 (-3676 (|has| $ (-6 -4260))) (-3676 (|has| $ (-6 -4252)))))) (-3208 (((-530) $) 130)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2887 (((-862) (-530)) 123 (|has| $ (-6 -4260)))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 85)) (-3175 (($ $) 87)) (-3018 (($ (-530) (-530)) 135) (($ (-530) (-530) (-862)) 134)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-3194 (((-530) $) 131)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2513 (((-862)) 128) (((-862) (-862)) 125 (|has| $ (-6 -4260)))) (-1764 (((-862) (-530)) 122 (|has| $ (-6 -4260)))) (-3260 (((-360) $) 102) (((-208) $) 101) (((-833 (-360)) $) 91)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-530)) 100) (($ (-388 (-530))) 97)) (-3300 (((-719)) 28)) (-2748 (($ $) 88)) (-1711 (((-862)) 129) (((-862) (-862)) 126 (|has| $ (-6 -4260)))) (-1510 (((-862)) 132)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 112)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 105)) (-2284 (((-110) $ $) 104)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 106)) (-2272 (((-110) $ $) 103)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 92)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-385) (-133)) (T -385))
-((-2873 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-385)))) (-2873 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-4 *1 (-385)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-3256 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-3227 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-2124 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-1214 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385)))) (-1214 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4261)) (-4 *1 (-385)) (-5 *2 (-862)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4261)) (-4 *1 (-385)) (-5 *2 (-862)))) (-4194 (*1 *1) (-12 (-4 *1 (-385)) (-3694 (|has| *1 (-6 -4261))) (-3694 (|has| *1 (-6 -4253))))) (-1757 (*1 *1) (-12 (-4 *1 (-385)) (-3694 (|has| *1 (-6 -4261))) (-3694 (|has| *1 (-6 -4253))))))
-(-13 (-993) (-10 -8 (-6 -4125) (-15 -2873 ($ (-530) (-530))) (-15 -2873 ($ (-530) (-530) (-862))) (-15 -1334 ((-530) $)) (-15 -3256 ((-862))) (-15 -3059 ((-530) $)) (-15 -3102 ((-530) $)) (-15 -3227 ((-862))) (-15 -2124 ((-862))) (-15 -1214 ((-862))) (IF (|has| $ (-6 -4261)) (PROGN (-15 -3227 ((-862) (-862))) (-15 -2124 ((-862) (-862))) (-15 -1214 ((-862) (-862))) (-15 -3214 ((-862) (-530))) (-15 -3200 ((-862) (-530)))) |%noBranch|) (IF (|has| $ (-6 -4253)) |%noBranch| (IF (|has| $ (-6 -4261)) |%noBranch| (PROGN (-15 -4194 ($)) (-15 -1757 ($)))))))
+((-3018 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-385)))) (-3018 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-4 *1 (-385)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-1510 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-1711 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-2513 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-2582 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-862)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-862)))) (-2508 (*1 *1) (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260))) (-3676 (|has| *1 (-6 -4252))))) (-1817 (*1 *1) (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260))) (-3676 (|has| *1 (-6 -4252))))))
+(-13 (-993) (-10 -8 (-6 -4136) (-15 -3018 ($ (-530) (-530))) (-15 -3018 ($ (-530) (-530) (-862))) (-15 -2031 ((-530) $)) (-15 -1510 ((-862))) (-15 -3194 ((-530) $)) (-15 -3208 ((-530) $)) (-15 -1711 ((-862))) (-15 -2513 ((-862))) (-15 -2582 ((-862))) (IF (|has| $ (-6 -4260)) (PROGN (-15 -1711 ((-862) (-862))) (-15 -2513 ((-862) (-862))) (-15 -2582 ((-862) (-862))) (-15 -2887 ((-862) (-530))) (-15 -1764 ((-862) (-530)))) |%noBranch|) (IF (|has| $ (-6 -4252)) |%noBranch| (IF (|has| $ (-6 -4260)) |%noBranch| (PROGN (-15 -2508 ($)) (-15 -1817 ($)))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-833 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-827 (-360)) . T) ((-861) . T) ((-941) . T) ((-960) . T) ((-993) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-3114 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 20)))
-(((-386 |#1| |#2|) (-10 -7 (-15 -3114 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-522) (-522)) (T -386))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6)))))
-(-10 -7 (-15 -3114 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|))))
-((-3114 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13)))
-(((-387 |#1| |#2|) (-10 -7 (-15 -3114 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-522) (-522)) (T -387))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6)))))
-(-10 -7 (-15 -3114 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 13)) (-1694 ((|#1| $) 21 (|has| |#1| (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| |#1| (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 17) (((-3 (-1099) "failed") $) NIL (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530))))) (-2446 ((|#1| $) 15) (((-1099) $) NIL (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 67 (|has| |#1| (-975 (-530)))) (((-530) $) NIL (|has| |#1| (-975 (-530))))) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) 50)) (-1376 (($) NIL (|has| |#1| (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| |#1| (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-3150 (((-110) $) 64)) (-2854 (($ $) NIL)) (-1848 ((|#1| $) 71)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-3002 (((-110) $) NIL (|has| |#1| (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| |#1| (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 97)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| |#1| (-289)))) (-1702 ((|#1| $) 28 (|has| |#1| (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 135 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 131 (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1934 (((-719) $) NIL)) (-1832 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2842 (($ $) NIL)) (-1857 ((|#1| $) 73)) (-3173 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#1| (-572 (-506)))) (((-360) $) NIL (|has| |#1| (-960))) (((-208) $) NIL (|has| |#1| (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 10) (($ (-1099)) NIL (|has| |#1| (-975 (-1099))))) (-1795 (((-3 $ "failed") $) 99 (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 100)) (-1709 ((|#1| $) 26 (|has| |#1| (-515)))) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| |#1| (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 22 T CONST)) (-2955 (($) 8 T CONST)) (-2437 (((-1082) $) 43 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1082) $ (-110)) 44 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $) 45 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $ (-110)) 46 (-12 (|has| |#1| (-515)) (|has| |#1| (-776))))) (-3286 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 56)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) 24 (|has| |#1| (-795)))) (-2257 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2245 (($ $) 25) (($ $ $) 55)) (-2234 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 125)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 60) (($ $ $) 57) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-388 |#1|) (-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4268)) (-6 -4257) |%noBranch|) |%noBranch|) |%noBranch|))) (-522)) (T -388))
-NIL
-(-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4268)) (-6 -4257) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3359 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 18)) (-3477 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 24)) (-3348 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 38)) (-3873 ((|#3| $) 60)) (-2341 ((|#2| (-1181 $)) NIL) ((|#2|) 20)) (-3351 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 22) (((-637 |#2|) (-1181 $)) 36)) (-3173 (((-1181 |#2|) $) 11) (($ (-1181 |#2|)) 13)) (-1640 ((|#3| $) 52)))
-(((-389 |#1| |#2| |#3|) (-10 -8 (-15 -3348 ((-637 |#2|) |#1|)) (-15 -2341 (|#2|)) (-15 -3359 ((-637 |#2|))) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3873 (|#3| |#1|)) (-15 -1640 (|#3| |#1|)) (-15 -3359 ((-637 |#2|) (-1181 |#1|))) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3348 ((-637 |#2|) |#1| (-1181 |#1|)))) (-390 |#2| |#3|) (-162) (-1157 |#2|)) (T -389))
-((-3359 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)) (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) (-2341 (*1 *2) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) (-4 *3 (-390 *2 *4)))))
-(-10 -8 (-15 -3348 ((-637 |#2|) |#1|)) (-15 -2341 (|#2|)) (-15 -3359 ((-637 |#2|))) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3873 (|#3| |#1|)) (-15 -1640 (|#3| |#1|)) (-15 -3359 ((-637 |#2|) (-1181 |#1|))) (-15 -2341 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3348 ((-637 |#2|) |#1| (-1181 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3359 (((-637 |#1|) (-1181 $)) 46) (((-637 |#1|)) 61)) (-1380 ((|#1| $) 52)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3477 (($ (-1181 |#1|) (-1181 $)) 48) (($ (-1181 |#1|)) 64)) (-3348 (((-637 |#1|) $ (-1181 $)) 53) (((-637 |#1|) $) 59)) (-1673 (((-3 $ "failed") $) 34)) (-4113 (((-862)) 54)) (-3150 (((-110) $) 31)) (-1717 ((|#1| $) 51)) (-3873 ((|#2| $) 44 (|has| |#1| (-344)))) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2341 ((|#1| (-1181 $)) 47) ((|#1|) 60)) (-3351 (((-1181 |#1|) $ (-1181 $)) 50) (((-637 |#1|) (-1181 $) (-1181 $)) 49) (((-1181 |#1|) $) 66) (((-637 |#1|) (-1181 $)) 65)) (-3173 (((-1181 |#1|) $) 63) (($ (-1181 |#1|)) 62)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37)) (-1795 (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-1640 ((|#2| $) 45)) (-1667 (((-719)) 29)) (-3853 (((-1181 $)) 67)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-3217 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 20)))
+(((-386 |#1| |#2|) (-10 -7 (-15 -3217 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-522) (-522)) (T -386))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6)))))
+(-10 -7 (-15 -3217 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|))))
+((-3217 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13)))
+(((-387 |#1| |#2|) (-10 -7 (-15 -3217 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-522) (-522)) (T -387))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6)))))
+(-10 -7 (-15 -3217 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 13)) (-1612 ((|#1| $) 21 (|has| |#1| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#1| (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 17) (((-3 (-1099) "failed") $) NIL (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 15) (((-1099) $) NIL (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 67 (|has| |#1| (-975 (-530)))) (((-530) $) NIL (|has| |#1| (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 50)) (-1364 (($) NIL (|has| |#1| (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| |#1| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-2731 (((-110) $) 64)) (-4127 (($ $) NIL)) (-1918 ((|#1| $) 71)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2166 (((-110) $) NIL (|has| |#1| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 97)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| |#1| (-289)))) (-3175 ((|#1| $) 28 (|has| |#1| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 135 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 131 (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) NIL)) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1269 (($ $) NIL)) (-1928 ((|#1| $) 73)) (-3260 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#1| (-572 (-506)))) (((-360) $) NIL (|has| |#1| (-960))) (((-208) $) NIL (|has| |#1| (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 10) (($ (-1099)) NIL (|has| |#1| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) 99 (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 100)) (-2748 ((|#1| $) 26 (|has| |#1| (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| |#1| (-768)))) (-3080 (($) 22 T CONST)) (-3093 (($) 8 T CONST)) (-3987 (((-1082) $) 43 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1082) $ (-110)) 44 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $) 45 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $ (-110)) 46 (-12 (|has| |#1| (-515)) (|has| |#1| (-776))))) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 56)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 24 (|has| |#1| (-795)))) (-2364 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2351 (($ $) 25) (($ $ $) 55)) (-2339 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 125)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 60) (($ $ $) 57) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-388 |#1|) (-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|))) (-522)) (T -388))
+NIL
+(-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1863 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 18)) (-1574 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 24)) (-1984 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 38)) (-1359 ((|#3| $) 60)) (-3060 ((|#2| (-1181 $)) NIL) ((|#2|) 20)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 22) (((-637 |#2|) (-1181 $)) 36)) (-3260 (((-1181 |#2|) $) 11) (($ (-1181 |#2|)) 13)) (-1814 ((|#3| $) 52)))
+(((-389 |#1| |#2| |#3|) (-10 -8 (-15 -1984 ((-637 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -1863 ((-637 |#2|))) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 (|#3| |#1|)) (-15 -1814 (|#3| |#1|)) (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|)))) (-390 |#2| |#3|) (-162) (-1157 |#2|)) (T -389))
+((-1863 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)) (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) (-3060 (*1 *2) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) (-4 *3 (-390 *2 *4)))))
+(-10 -8 (-15 -1984 ((-637 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -1863 ((-637 |#2|))) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 (|#3| |#1|)) (-15 -1814 (|#3| |#1|)) (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3251 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-390 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -390))
-((-3853 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-390 *3 *4)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-3359 (*1 *2) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))) (-2341 (*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))))
-(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -3853 ((-1181 $))) (-15 -3351 ((-1181 |t#1|) $)) (-15 -3351 ((-637 |t#1|) (-1181 $))) (-15 -3477 ($ (-1181 |t#1|))) (-15 -3173 ((-1181 |t#1|) $)) (-15 -3173 ($ (-1181 |t#1|))) (-15 -3359 ((-637 |t#1|))) (-15 -2341 (|t#1|)) (-15 -3348 ((-637 |t#1|) $))))
+((-3220 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-390 *3 *4)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-1863 (*1 *2) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))) (-3060 (*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))))
+(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -3260 ((-1181 |t#1|) $)) (-15 -3260 ($ (-1181 |t#1|))) (-15 -1863 ((-637 |t#1|))) (-15 -3060 (|t#1|)) (-15 -1984 ((-637 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-351 |#1| |#2|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) 27) (((-3 (-530) "failed") $) 19)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) 24) (((-530) $) 14)) (-2258 (($ |#2|) NIL) (($ (-388 (-530))) 22) (($ (-530)) 11)))
-(((-391 |#1| |#2|) (-10 -8 (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2258 (|#1| (-530))) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|))) (-392 |#2|) (-1135)) (T -391))
+((-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) 27) (((-3 (-530) "failed") $) 19)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) 24) (((-530) $) 14)) (-2366 (($ |#2|) NIL) (($ (-388 (-530))) 22) (($ (-530)) 11)))
+(((-391 |#1| |#2|) (-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|))) (-392 |#2|) (-1135)) (T -391))
NIL
-(-10 -8 (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2258 (|#1| (-530))) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)))
-((-3012 (((-3 |#1| "failed") $) 7) (((-3 (-388 (-530)) "failed") $) 16 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 13 (|has| |#1| (-975 (-530))))) (-2446 ((|#1| $) 8) (((-388 (-530)) $) 15 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 12 (|has| |#1| (-975 (-530))))) (-2258 (($ |#1|) 6) (($ (-388 (-530))) 17 (|has| |#1| (-975 (-388 (-530))))) (($ (-530)) 14 (|has| |#1| (-975 (-530))))))
+(-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)))
+((-3139 (((-3 |#1| "failed") $) 7) (((-3 (-388 (-530)) "failed") $) 16 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 13 (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 8) (((-388 (-530)) $) 15 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 12 (|has| |#1| (-975 (-530))))) (-2366 (($ |#1|) 6) (($ (-388 (-530))) 17 (|has| |#1| (-975 (-388 (-530))))) (($ (-530)) 14 (|has| |#1| (-975 (-530))))))
(((-392 |#1|) (-133) (-1135)) (T -392))
NIL
(-13 (-975 |t#1|) (-10 -7 (IF (|has| |t#1| (-975 (-530))) (-6 (-975 (-530))) |%noBranch|) (IF (|has| |t#1| (-975 (-388 (-530)))) (-6 (-975 (-388 (-530)))) |%noBranch|)))
(((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T))
-((-3114 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33)))
-(((-393 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3114 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|)) (-289) (-932 |#5|) (-1157 |#6|) (-13 (-390 |#6| |#7|) (-975 |#6|))) (T -393))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-390 *6 *7) (-975 *6))) (-4 *9 (-289)) (-4 *10 (-932 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-390 *10 *11) (-975 *10))))))
-(-10 -7 (-15 -3114 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|))))
-((-2246 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3370 ((|#4| (-719) (-1181 |#4|)) 56)) (-3150 (((-110) $) NIL)) (-1848 (((-1181 |#4|) $) 17)) (-1717 ((|#2| $) 54)) (-3381 (($ $) 139)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 100)) (-1712 (($ (-1181 |#4|)) 99)) (-2485 (((-1046) $) NIL)) (-1857 ((|#1| $) 18)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) 134)) (-3853 (((-1181 |#4|) $) 129)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 11 T CONST)) (-2148 (((-110) $ $) 40)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 122)) (* (($ $ $) 121)))
-(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -1712 ($ (-1181 |#4|))) (-15 -3853 ((-1181 |#4|) $)) (-15 -1717 (|#2| $)) (-15 -1848 ((-1181 |#4|) $)) (-15 -1857 (|#1| $)) (-15 -3381 ($ $)) (-15 -3370 (|#4| (-719) (-1181 |#4|))))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|))) (T -394))
-((-1712 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-3853 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-1717 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2))))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-1857 (*1 *2 *1) (-12 (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-3381 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
-(-13 (-453) (-10 -8 (-15 -1712 ($ (-1181 |#4|))) (-15 -3853 ((-1181 |#4|) $)) (-15 -1717 (|#2| $)) (-15 -1848 ((-1181 |#4|) $)) (-15 -1857 (|#1| $)) (-15 -3381 ($ $)) (-15 -3370 (|#4| (-719) (-1181 |#4|)))))
-((-2246 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-1717 ((|#2| $) 61)) (-3394 (($ (-1181 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-975 |#2|)))) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 34)) (-3853 (((-1181 |#4|) $) 26)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2955 (($) 23 T CONST)) (-2148 (((-110) $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ $ $) 72)))
-(((-395 |#1| |#2| |#3| |#4| |#5|) (-13 (-675) (-10 -8 (-15 -3853 ((-1181 |#4|) $)) (-15 -1717 (|#2| $)) (-15 -3394 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -3394 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-932 |#1|) (-1157 |#2|) (-390 |#2| |#3|) (-1181 |#4|)) (T -395))
-((-3853 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-4 *6 (-390 *4 *5)) (-14 *7 *2))) (-1717 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) (-14 *6 (-1181 *5)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5)) (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)))))
-(-13 (-675) (-10 -8 (-15 -3853 ((-1181 |#4|) $)) (-15 -1717 (|#2| $)) (-15 -3394 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -3394 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3114 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|))) (-398 |#2|) (-162) (-398 |#4|) (-162)) (T -396))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5)))))
-(-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3251 (((-3 $ "failed")) 86)) (-3337 (((-1181 (-637 |#2|)) (-1181 $)) NIL) (((-1181 (-637 |#2|))) 91)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 85)) (-3743 (((-3 $ "failed")) 84)) (-3428 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 102)) (-3405 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 110)) (-2150 (((-1095 (-893 |#2|))) 55)) (-3453 ((|#2| (-1181 $)) NIL) ((|#2|) 106)) (-3477 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 112)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 83)) (-3753 (((-3 $ "failed")) 75)) (-3441 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 100)) (-3416 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 108)) (-2197 (((-1095 (-893 |#2|))) 54)) (-3464 ((|#2| (-1181 $)) NIL) ((|#2|) 104)) (-3351 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 111) (((-637 |#2|) (-1181 $)) 118)) (-3173 (((-1181 |#2|) $) 96) (($ (-1181 |#2|)) 98)) (-2059 (((-597 (-893 |#2|)) (-1181 $)) NIL) (((-597 (-893 |#2|))) 94)) (-2857 (($ (-637 |#2|) $) 90)))
-(((-397 |#1| |#2|) (-10 -8 (-15 -2857 (|#1| (-637 |#2|) |#1|)) (-15 -2150 ((-1095 (-893 |#2|)))) (-15 -2197 ((-1095 (-893 |#2|)))) (-15 -3405 ((-637 |#2|) |#1|)) (-15 -3416 ((-637 |#2|) |#1|)) (-15 -3428 ((-637 |#2|))) (-15 -3441 ((-637 |#2|))) (-15 -3453 (|#2|)) (-15 -3464 (|#2|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -2059 ((-597 (-893 |#2|)))) (-15 -3337 ((-1181 (-637 |#2|)))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3251 ((-3 |#1| "failed"))) (-15 -3743 ((-3 |#1| "failed"))) (-15 -3753 ((-3 |#1| "failed"))) (-15 -2216 ((-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed"))) (-15 -3428 ((-637 |#2|) (-1181 |#1|))) (-15 -3441 ((-637 |#2|) (-1181 |#1|))) (-15 -3453 (|#2| (-1181 |#1|))) (-15 -3464 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3405 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3416 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3337 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -2059 ((-597 (-893 |#2|)) (-1181 |#1|)))) (-398 |#2|) (-162)) (T -397))
-((-3337 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2059 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3464 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3453 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3441 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3428 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2197 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2150 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))))
-(-10 -8 (-15 -2857 (|#1| (-637 |#2|) |#1|)) (-15 -2150 ((-1095 (-893 |#2|)))) (-15 -2197 ((-1095 (-893 |#2|)))) (-15 -3405 ((-637 |#2|) |#1|)) (-15 -3416 ((-637 |#2|) |#1|)) (-15 -3428 ((-637 |#2|))) (-15 -3441 ((-637 |#2|))) (-15 -3453 (|#2|)) (-15 -3464 (|#2|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3477 (|#1| (-1181 |#2|))) (-15 -2059 ((-597 (-893 |#2|)))) (-15 -3337 ((-1181 (-637 |#2|)))) (-15 -3351 ((-637 |#2|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1|)) (-15 -3251 ((-3 |#1| "failed"))) (-15 -3743 ((-3 |#1| "failed"))) (-15 -3753 ((-3 |#1| "failed"))) (-15 -2216 ((-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed"))) (-15 -3428 ((-637 |#2|) (-1181 |#1|))) (-15 -3441 ((-637 |#2|) (-1181 |#1|))) (-15 -3453 (|#2| (-1181 |#1|))) (-15 -3464 (|#2| (-1181 |#1|))) (-15 -3477 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -3351 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -3351 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -3405 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3416 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3337 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -2059 ((-597 (-893 |#2|)) (-1181 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3251 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3337 (((-1181 (-637 |#1|)) (-1181 $)) 78) (((-1181 (-637 |#1|))) 100)) (-4007 (((-1181 $)) 81)) (-3956 (($) 17 T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-3743 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-3428 (((-637 |#1|) (-1181 $)) 65) (((-637 |#1|)) 92)) (-3987 ((|#1| $) 74)) (-3405 (((-637 |#1|) $ (-1181 $)) 76) (((-637 |#1|) $) 90)) (-3093 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-2150 (((-1095 (-893 |#1|))) 88 (|has| |#1| (-344)))) (-3128 (($ $ (-862)) 28)) (-3969 ((|#1| $) 72)) (-3764 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3453 ((|#1| (-1181 $)) 67) ((|#1|) 94)) (-3947 (((-1095 |#1|) $) 63)) (-3886 (((-110)) 57)) (-3477 (($ (-1181 |#1|) (-1181 $)) 69) (($ (-1181 |#1|)) 98)) (-1673 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-4113 (((-862)) 80)) (-3857 (((-110)) 54)) (-3395 (($ $ (-862)) 33)) (-3813 (((-110)) 50)) (-3794 (((-110)) 48)) (-3834 (((-110)) 52)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3753 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-3441 (((-637 |#1|) (-1181 $)) 66) (((-637 |#1|)) 93)) (-3997 ((|#1| $) 75)) (-3416 (((-637 |#1|) $ (-1181 $)) 77) (((-637 |#1|) $) 91)) (-3105 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-2197 (((-1095 (-893 |#1|))) 89 (|has| |#1| (-344)))) (-3117 (($ $ (-862)) 29)) (-3978 ((|#1| $) 73)) (-3773 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-3464 ((|#1| (-1181 $)) 68) ((|#1|) 95)) (-3959 (((-1095 |#1|) $) 64)) (-3896 (((-110)) 58)) (-3443 (((-1082) $) 9)) (-3803 (((-110)) 49)) (-3824 (((-110)) 51)) (-3843 (((-110)) 53)) (-2485 (((-1046) $) 10)) (-3876 (((-110)) 56)) (-1832 ((|#1| $ (-530)) 101)) (-3351 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70) (((-1181 |#1|) $) 103) (((-637 |#1|) (-1181 $)) 102)) (-3173 (((-1181 |#1|) $) 97) (($ (-1181 |#1|)) 96)) (-2059 (((-597 (-893 |#1|)) (-1181 $)) 79) (((-597 (-893 |#1|))) 99)) (-1527 (($ $ $) 25)) (-3938 (((-110)) 62)) (-2258 (((-804) $) 11)) (-3853 (((-1181 $)) 104)) (-3785 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-1538 (($ $ $ $) 26)) (-3918 (((-110)) 60)) (-2857 (($ (-637 |#1|) $) 87)) (-1516 (($ $ $) 24)) (-3928 (((-110)) 61)) (-3907 (((-110)) 59)) (-3867 (((-110)) 55)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3217 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33)))
+(((-393 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|)) (-289) (-932 |#5|) (-1157 |#6|) (-13 (-390 |#6| |#7|) (-975 |#6|))) (T -393))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-390 *6 *7) (-975 *6))) (-4 *9 (-289)) (-4 *10 (-932 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-390 *10 *11) (-975 *10))))))
+(-10 -7 (-15 -3217 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|))))
+((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-3495 ((|#4| (-719) (-1181 |#4|)) 56)) (-2731 (((-110) $) NIL)) (-1918 (((-1181 |#4|) $) 17)) (-2376 ((|#2| $) 54)) (-2202 (($ $) 139)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 100)) (-3046 (($ (-1181 |#4|)) 99)) (-2624 (((-1046) $) NIL)) (-1928 ((|#1| $) 18)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 134)) (-3220 (((-1181 |#4|) $) 129)) (-3093 (($) 11 T CONST)) (-2248 (((-110) $ $) 40)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 122)) (* (($ $ $) 121)))
+(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -3046 ($ (-1181 |#4|))) (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1918 ((-1181 |#4|) $)) (-15 -1928 (|#1| $)) (-15 -2202 ($ $)) (-15 -3495 (|#4| (-719) (-1181 |#4|))))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|))) (T -394))
+((-3046 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-3220 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-2376 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2))))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-1928 (*1 *2 *1) (-12 (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-2202 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-3495 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
+(-13 (-453) (-10 -8 (-15 -3046 ($ (-1181 |#4|))) (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1918 ((-1181 |#4|) $)) (-15 -1928 (|#1| $)) (-15 -2202 ($ $)) (-15 -3495 (|#4| (-719) (-1181 |#4|)))))
+((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2376 ((|#2| $) 61)) (-1569 (($ (-1181 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-975 |#2|)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 34)) (-3220 (((-1181 |#4|) $) 26)) (-3093 (($) 23 T CONST)) (-2248 (((-110) $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ $ $) 72)))
+(((-395 |#1| |#2| |#3| |#4| |#5|) (-13 (-675) (-10 -8 (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1569 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1569 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-932 |#1|) (-1157 |#2|) (-390 |#2| |#3|) (-1181 |#4|)) (T -395))
+((-3220 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-4 *6 (-390 *4 *5)) (-14 *7 *2))) (-2376 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) (-14 *6 (-1181 *5)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5)) (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)))))
+(-13 (-675) (-10 -8 (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1569 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1569 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-398 |#2|) (-162) (-398 |#4|) (-162)) (T -396))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5)))))
+(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2291 (((-3 $ "failed")) 86)) (-3365 (((-1181 (-637 |#2|)) (-1181 $)) NIL) (((-1181 (-637 |#2|))) 91)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 85)) (-1383 (((-3 $ "failed")) 84)) (-2603 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 102)) (-4209 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 110)) (-3991 (((-1095 (-893 |#2|))) 55)) (-3988 ((|#2| (-1181 $)) NIL) ((|#2|) 106)) (-1574 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 112)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 83)) (-3832 (((-3 $ "failed")) 75)) (-1257 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 100)) (-3846 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 108)) (-3342 (((-1095 (-893 |#2|))) 54)) (-2837 ((|#2| (-1181 $)) NIL) ((|#2|) 104)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 111) (((-637 |#2|) (-1181 $)) 118)) (-3260 (((-1181 |#2|) $) 96) (($ (-1181 |#2|)) 98)) (-3028 (((-597 (-893 |#2|)) (-1181 $)) NIL) (((-597 (-893 |#2|))) 94)) (-3003 (($ (-637 |#2|) $) 90)))
+(((-397 |#1| |#2|) (-10 -8 (-15 -3003 (|#1| (-637 |#2|) |#1|)) (-15 -3991 ((-1095 (-893 |#2|)))) (-15 -3342 ((-1095 (-893 |#2|)))) (-15 -4209 ((-637 |#2|) |#1|)) (-15 -3846 ((-637 |#2|) |#1|)) (-15 -2603 ((-637 |#2|))) (-15 -1257 ((-637 |#2|))) (-15 -3988 (|#2|)) (-15 -2837 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -3028 ((-597 (-893 |#2|)))) (-15 -3365 ((-1181 (-637 |#2|)))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed"))) (-15 -1383 ((-3 |#1| "failed"))) (-15 -3832 ((-3 |#1| "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -3357 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -3028 ((-597 (-893 |#2|)) (-1181 |#1|)))) (-398 |#2|) (-162)) (T -397))
+((-3365 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3028 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2837 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3988 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-1257 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2603 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3342 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3991 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))))
+(-10 -8 (-15 -3003 (|#1| (-637 |#2|) |#1|)) (-15 -3991 ((-1095 (-893 |#2|)))) (-15 -3342 ((-1095 (-893 |#2|)))) (-15 -4209 ((-637 |#2|) |#1|)) (-15 -3846 ((-637 |#2|) |#1|)) (-15 -2603 ((-637 |#2|))) (-15 -1257 ((-637 |#2|))) (-15 -3988 (|#2|)) (-15 -2837 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -3028 ((-597 (-893 |#2|)))) (-15 -3365 ((-1181 (-637 |#2|)))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed"))) (-15 -1383 ((-3 |#1| "failed"))) (-15 -3832 ((-3 |#1| "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -3357 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -3028 ((-597 (-893 |#2|)) (-1181 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2291 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) 78) (((-1181 (-637 |#1|))) 100)) (-3990 (((-1181 $)) 81)) (-2350 (($) 17 T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) 65) (((-637 |#1|)) 92)) (-2228 ((|#1| $) 74)) (-4209 (((-637 |#1|) $ (-1181 $)) 76) (((-637 |#1|) $) 90)) (-2635 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-3991 (((-1095 (-893 |#1|))) 88 (|has| |#1| (-344)))) (-2862 (($ $ (-862)) 28)) (-4005 ((|#1| $) 72)) (-3581 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) 67) ((|#1|) 94)) (-2670 (((-1095 |#1|) $) 63)) (-2662 (((-110)) 57)) (-1574 (($ (-1181 |#1|) (-1181 $)) 69) (($ (-1181 |#1|)) 98)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-2426 (((-862)) 80)) (-3485 (((-110)) 54)) (-1667 (($ $ (-862)) 33)) (-3943 (((-110)) 50)) (-3470 (((-110)) 48)) (-2305 (((-110)) 52)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) 66) (((-637 |#1|)) 93)) (-2465 ((|#1| $) 75)) (-3846 (((-637 |#1|) $ (-1181 $)) 77) (((-637 |#1|) $) 91)) (-1232 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-3342 (((-1095 (-893 |#1|))) 89 (|has| |#1| (-344)))) (-4138 (($ $ (-862)) 29)) (-2602 ((|#1| $) 73)) (-2209 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) 68) ((|#1|) 95)) (-2461 (((-1095 |#1|) $) 64)) (-1921 (((-110)) 58)) (-1424 (((-1082) $) 9)) (-3123 (((-110)) 49)) (-2561 (((-110)) 51)) (-3766 (((-110)) 53)) (-2624 (((-1046) $) 10)) (-3719 (((-110)) 56)) (-1902 ((|#1| $ (-530)) 101)) (-2328 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70) (((-1181 |#1|) $) 103) (((-637 |#1|) (-1181 $)) 102)) (-3260 (((-1181 |#1|) $) 97) (($ (-1181 |#1|)) 96)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) 79) (((-597 (-893 |#1|))) 99)) (-2607 (($ $ $) 25)) (-3675 (((-110)) 62)) (-2366 (((-804) $) 11)) (-3220 (((-1181 $)) 104)) (-3758 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-2346 (($ $ $ $) 26)) (-3439 (((-110)) 60)) (-3003 (($ (-637 |#1|) $) 87)) (-3980 (($ $ $) 24)) (-2164 (((-110)) 61)) (-3566 (((-110)) 59)) (-1957 (((-110)) 55)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-398 |#1|) (-133) (-162)) (T -398))
-((-3853 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3337 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 (-637 *3))))) (-2059 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3))))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3464 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3453 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3441 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3428 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-2197 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-2150 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-2857 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162)))))
-(-13 (-348 |t#1|) (-10 -8 (-15 -3853 ((-1181 $))) (-15 -3351 ((-1181 |t#1|) $)) (-15 -3351 ((-637 |t#1|) (-1181 $))) (-15 -1832 (|t#1| $ (-530))) (-15 -3337 ((-1181 (-637 |t#1|)))) (-15 -2059 ((-597 (-893 |t#1|)))) (-15 -3477 ($ (-1181 |t#1|))) (-15 -3173 ((-1181 |t#1|) $)) (-15 -3173 ($ (-1181 |t#1|))) (-15 -3464 (|t#1|)) (-15 -3453 (|t#1|)) (-15 -3441 ((-637 |t#1|))) (-15 -3428 ((-637 |t#1|))) (-15 -3416 ((-637 |t#1|) $)) (-15 -3405 ((-637 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -2197 ((-1095 (-893 |t#1|)))) (-15 -2150 ((-1095 (-893 |t#1|))))) |%noBranch|) (-15 -2857 ($ (-637 |t#1|) $))))
+((-3220 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3365 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 (-637 *3))))) (-3028 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3))))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-2837 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3988 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-1257 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-2603 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3342 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-3991 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-3003 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162)))))
+(-13 (-348 |t#1|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1902 (|t#1| $ (-530))) (-15 -3365 ((-1181 (-637 |t#1|)))) (-15 -3028 ((-597 (-893 |t#1|)))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -3260 ((-1181 |t#1|) $)) (-15 -3260 ($ (-1181 |t#1|))) (-15 -2837 (|t#1|)) (-15 -3988 (|t#1|)) (-15 -1257 ((-637 |t#1|))) (-15 -2603 ((-637 |t#1|))) (-15 -3846 ((-637 |t#1|) $)) (-15 -4209 ((-637 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -3342 ((-1095 (-893 |t#1|)))) (-15 -3991 ((-1095 (-893 |t#1|))))) |%noBranch|) (-15 -3003 ($ (-637 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-348 |#1|) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 42)) (-3238 (($ $) 57)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 146)) (-3031 (($ $) NIL)) (-3006 (((-110) $) 36)) (-3251 ((|#1| $) 13)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-1139)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3276 (($ |#1| (-530)) 31)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 116)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 55)) (-1673 (((-3 $ "failed") $) 131)) (-1936 (((-3 (-388 (-530)) "failed") $) 63 (|has| |#1| (-515)))) (-1928 (((-110) $) 59 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 70 (|has| |#1| (-515)))) (-3288 (($ |#1| (-530)) 33)) (-2049 (((-110) $) 152 (|has| |#1| (-1139)))) (-3150 (((-110) $) 43)) (-2663 (((-719) $) 38)) (-3299 (((-3 "nil" "sqfr" "irred" "prime") $ (-530)) 137)) (-4173 ((|#1| $ (-530)) 136)) (-3311 (((-530) $ (-530)) 135)) (-3335 (($ |#1| (-530)) 30)) (-3114 (($ (-1 |#1| |#1|) $) 143)) (-2632 (($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530))))) 58)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-3323 (($ |#1| (-530)) 32)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-3264 (($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-4162 (((-597 (-2 (|:| -2473 |#1|) (|:| -3059 (-530)))) $) 54)) (-1547 (((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $) 12)) (-2473 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3562 (((-3 $ "failed") $ $) 138)) (-3059 (((-530) $) 132)) (-2147 ((|#1| $) 56)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 85 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) $) NIL (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-1099)) (-597 $)) 86 (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-276 $))) 82 (|has| |#1| (-291 $))) (($ $ (-276 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-597 $) (-597 $)) NIL (|has| |#1| (-291 $)))) (-1832 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-3211 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3173 (((-506) $) 27 (|has| |#1| (-572 (-506)))) (((-360) $) 92 (|has| |#1| (-960))) (((-208) $) 95 (|has| |#1| (-960)))) (-2258 (((-804) $) 114) (($ (-530)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530)))))) (-1667 (((-719)) 48)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 40 T CONST)) (-2955 (($) 39 T CONST)) (-3286 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2148 (((-110) $ $) 96)) (-2245 (($ $) 128) (($ $ $) NIL)) (-2234 (($ $ $) 140)) (** (($ $ (-862)) NIL) (($ $ (-719)) 102)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-399 |#1|) (-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2147 (|#1| $)) (-15 -3059 ((-530) $)) (-15 -2632 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -1547 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3335 ($ |#1| (-530))) (-15 -4162 ((-597 (-2 (|:| -2473 |#1|) (|:| -3059 (-530)))) $)) (-15 -3323 ($ |#1| (-530))) (-15 -3311 ((-530) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -3299 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -2663 ((-719) $)) (-15 -3288 ($ |#1| (-530))) (-15 -3276 ($ |#1| (-530))) (-15 -3264 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3251 (|#1| $)) (-15 -3238 ($ $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|))) (-522)) (T -399))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-522)) (-5 *1 (-399 *3)))) (-2147 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-530))))) (-4 *2 (-522)) (-5 *1 (-399 *2)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3335 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2473 *3) (|:| -3059 (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3323 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3311 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *4)) (-4 *4 (-522)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3288 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3264 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3251 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3238 (*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-1936 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))))
-(-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2147 (|#1| $)) (-15 -3059 ((-530) $)) (-15 -2632 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -1547 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3335 ($ |#1| (-530))) (-15 -4162 ((-597 (-2 (|:| -2473 |#1|) (|:| -3059 (-530)))) $)) (-15 -3323 ($ |#1| (-530))) (-15 -3311 ((-530) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -3299 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -2663 ((-719) $)) (-15 -3288 ($ |#1| (-530))) (-15 -3276 ($ |#1| (-530))) (-15 -3264 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3251 (|#1| $)) (-15 -3238 ($ $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|)))
-((-1735 (((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|)) 21)) (-3489 (((-399 |#1|) (-399 |#1|) (-399 |#1|)) 16)))
-(((-400 |#1|) (-10 -7 (-15 -1735 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3489 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) (-522)) (T -400))
-((-3489 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))) (-1735 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4)) (-5 *1 (-400 *4)))))
-(-10 -7 (-15 -1735 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3489 ((-399 |#1|) (-399 |#1|) (-399 |#1|))))
-((-3545 ((|#2| |#2|) 166)) (-3510 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110)) 57)))
-(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3510 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3545 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -401))
-((-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3))) (-14 *4 (-1099)) (-14 *5 *2))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-14 *6 (-1099)) (-14 *7 *3))))
-(-10 -7 (-15 -3510 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3545 (|#2| |#2|)))
-((-3114 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-984) (-795)) (-411 |#1|) (-13 (-984) (-795)) (-411 |#3|)) (T -402))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795))) (-4 *6 (-13 (-984) (-795))) (-4 *2 (-411 *6)) (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3545 ((|#2| |#2|) 90)) (-3521 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 48)) (-3532 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 154)))
-(((-403 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3521 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3532 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3545 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|) (-10 -8 (-15 -2258 ($ |#3|)))) (-793) (-13 (-1159 |#2| |#3|) (-344) (-1121) (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $)))) (-923 |#4|) (-1099)) (T -403))
-((-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2258 ($ *4))))) (-4 *4 (-793)) (-4 *5 (-13 (-1159 *2 *4) (-344) (-1121) (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $))))) (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2258 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))) (-3521 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2258 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))))
-(-10 -7 (-15 -3521 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3532 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3545 (|#2| |#2|)))
-((-1802 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3856 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3114 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1802 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1027) (-406 |#1|) (-1027) (-406 |#3|)) (T -404))
-((-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027)) (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1802 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3556 (($) 44)) (-4204 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3396 (($ $ $) 39)) (-3383 (((-110) $ $) 28)) (-2879 (((-719)) 47)) (-1245 (($ (-597 |#2|)) 20) (($) NIL)) (-1376 (($) 53)) (-3430 (((-110) $ $) 13)) (-4194 ((|#2| $) 61)) (-1757 ((|#2| $) 59)) (-3830 (((-862) $) 55)) (-3418 (($ $ $) 35)) (-1910 (($ (-862)) 50)) (-3407 (($ $ |#2|) NIL) (($ $ $) 38)) (-2494 (((-719) (-1 (-110) |#2|) $) NIL) (((-719) |#2| $) 26)) (-2268 (($ (-597 |#2|)) 24)) (-2302 (($ $) 46)) (-2258 (((-804) $) 33)) (-2313 (((-719) $) 21)) (-3341 (($ (-597 |#2|)) 19) (($) NIL)) (-2148 (((-110) $ $) 16)))
-(((-405 |#1| |#2|) (-10 -8 (-15 -2879 ((-719))) (-15 -1910 (|#1| (-862))) (-15 -3830 ((-862) |#1|)) (-15 -1376 (|#1|)) (-15 -4194 (|#2| |#1|)) (-15 -1757 (|#2| |#1|)) (-15 -3556 (|#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2313 ((-719) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -3430 ((-110) |#1| |#1|)) (-15 -3341 (|#1|)) (-15 -3341 (|#1| (-597 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-597 |#2|))) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#2|)) (-15 -3396 (|#1| |#1| |#1|)) (-15 -3383 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|))) (-406 |#2|) (-1027)) (T -405))
-((-2879 (*1 *2) (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))))
-(-10 -8 (-15 -2879 ((-719))) (-15 -1910 (|#1| (-862))) (-15 -3830 ((-862) |#1|)) (-15 -1376 (|#1|)) (-15 -4194 (|#2| |#1|)) (-15 -1757 (|#2| |#1|)) (-15 -3556 (|#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2313 ((-719) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -3430 ((-110) |#1| |#1|)) (-15 -3341 (|#1|)) (-15 -3341 (|#1| (-597 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-597 |#2|))) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#2|)) (-15 -3396 (|#1| |#1| |#1|)) (-15 -3383 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -2494 ((-719) |#2| |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)))
-((-2246 (((-110) $ $) 19)) (-3556 (($) 67 (|has| |#1| (-349)))) (-4204 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3396 (($ $ $) 78)) (-3383 (((-110) $ $) 79)) (-4102 (((-110) $ (-719)) 8)) (-2879 (((-719)) 61 (|has| |#1| (-349)))) (-1245 (($ (-597 |#1|)) 74) (($) 73)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-1376 (($) 64 (|has| |#1| (-349)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) 70)) (-2014 (((-110) $ (-719)) 9)) (-4194 ((|#1| $) 65 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1757 ((|#1| $) 66 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-3830 (((-862) $) 63 (|has| |#1| (-349)))) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22)) (-3418 (($ $ $) 75)) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-1910 (($ (-862)) 62 (|has| |#1| (-349)))) (-2485 (((-1046) $) 21)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3407 (($ $ |#1|) 77) (($ $ $) 76)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2302 (($ $) 68 (|has| |#1| (-349)))) (-2258 (((-804) $) 18)) (-2313 (((-719) $) 69)) (-3341 (($ (-597 |#1|)) 72) (($) 71)) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20)) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 42)) (-3487 (($ $) 57)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 146)) (-3446 (($ $) NIL)) (-1276 (((-110) $) 36)) (-2291 ((|#1| $) 13)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-1139)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3687 (($ |#1| (-530)) 31)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 116)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 55)) (-2707 (((-3 $ "failed") $) 131)) (-2180 (((-3 (-388 (-530)) "failed") $) 63 (|has| |#1| (-515)))) (-3016 (((-110) $) 59 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 70 (|has| |#1| (-515)))) (-2372 (($ |#1| (-530)) 33)) (-3295 (((-110) $) 152 (|has| |#1| (-1139)))) (-2731 (((-110) $) 43)) (-3577 (((-719) $) 38)) (-4171 (((-3 "nil" "sqfr" "irred" "prime") $ (-530)) 137)) (-3519 ((|#1| $ (-530)) 136)) (-3209 (((-530) $ (-530)) 135)) (-3181 (($ |#1| (-530)) 30)) (-3217 (($ (-1 |#1| |#1|) $) 143)) (-3764 (($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530))))) 58)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2274 (($ |#1| (-530)) 32)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-1715 (($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3721 (((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $) 54)) (-3859 (((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $) 12)) (-2611 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3551 (((-3 $ "failed") $ $) 138)) (-3194 (((-530) $) 132)) (-2246 ((|#1| $) 56)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 85 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) $) NIL (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-1099)) (-597 $)) 86 (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-276 $))) 82 (|has| |#1| (-291 $))) (($ $ (-276 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-597 $) (-597 $)) NIL (|has| |#1| (-291 $)))) (-1902 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3260 (((-506) $) 27 (|has| |#1| (-572 (-506)))) (((-360) $) 92 (|has| |#1| (-960))) (((-208) $) 95 (|has| |#1| (-960)))) (-2366 (((-804) $) 114) (($ (-530)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530)))))) (-3300 (((-719)) 48)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 40 T CONST)) (-3093 (($) 39 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2248 (((-110) $ $) 96)) (-2351 (($ $) 128) (($ $ $) NIL)) (-2339 (($ $ $) 140)) (** (($ $ (-862)) NIL) (($ $ (-719)) 102)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-399 |#1|) (-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2246 (|#1| $)) (-15 -3194 ((-530) $)) (-15 -3764 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -3859 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3181 ($ |#1| (-530))) (-15 -3721 ((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $)) (-15 -2274 ($ |#1| (-530))) (-15 -3209 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4171 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -3577 ((-719) $)) (-15 -2372 ($ |#1| (-530))) (-15 -3687 ($ |#1| (-530))) (-15 -1715 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2291 (|#1| $)) (-15 -3487 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|))) (-522)) (T -399))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-522)) (-5 *1 (-399 *3)))) (-2246 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-530))))) (-4 *2 (-522)) (-5 *1 (-399 *2)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -3194 (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3209 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *4)) (-4 *4 (-522)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-2372 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-1715 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-2291 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3487 (*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))))
+(-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2246 (|#1| $)) (-15 -3194 ((-530) $)) (-15 -3764 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -3859 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3181 ($ |#1| (-530))) (-15 -3721 ((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $)) (-15 -2274 ($ |#1| (-530))) (-15 -3209 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4171 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -3577 ((-719) $)) (-15 -2372 ($ |#1| (-530))) (-15 -3687 ($ |#1| (-530))) (-15 -1715 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2291 (|#1| $)) (-15 -3487 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|)))
+((-3399 (((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|)) 21)) (-3326 (((-399 |#1|) (-399 |#1|) (-399 |#1|)) 16)))
+(((-400 |#1|) (-10 -7 (-15 -3399 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3326 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) (-522)) (T -400))
+((-3326 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))) (-3399 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4)) (-5 *1 (-400 *4)))))
+(-10 -7 (-15 -3399 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3326 ((-399 |#1|) (-399 |#1|) (-399 |#1|))))
+((-3993 ((|#2| |#2|) 166)) (-3977 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110)) 57)))
+(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3993 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -401))
+((-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3))) (-14 *4 (-1099)) (-14 *5 *2))) (-3977 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-14 *6 (-1099)) (-14 *7 *3))))
+(-10 -7 (-15 -3977 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3993 (|#2| |#2|)))
+((-3217 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-984) (-795)) (-411 |#1|) (-13 (-984) (-795)) (-411 |#3|)) (T -402))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795))) (-4 *6 (-13 (-984) (-795))) (-4 *2 (-411 *6)) (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3993 ((|#2| |#2|) 90)) (-2587 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 48)) (-2345 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 154)))
+(((-403 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2587 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -2345 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3993 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|) (-10 -8 (-15 -2366 ($ |#3|)))) (-793) (-13 (-1159 |#2| |#3|) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))) (-923 |#4|) (-1099)) (T -403))
+((-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2366 ($ *4))))) (-4 *4 (-793)) (-4 *5 (-13 (-1159 *2 *4) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))) (-2587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))))
+(-10 -7 (-15 -2587 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -2345 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3993 (|#2| |#2|)))
+((-2753 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2134 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3217 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1027) (-406 |#1|) (-1027) (-406 |#3|)) (T -404))
+((-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027)) (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2673 (($) 44)) (-4204 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1746 (($ $ $) 39)) (-2431 (((-110) $ $) 28)) (-3023 (((-719)) 47)) (-1243 (($ (-597 |#2|)) 20) (($) NIL)) (-1364 (($) 53)) (-2822 (((-110) $ $) 13)) (-2508 ((|#2| $) 61)) (-1817 ((|#2| $) 59)) (-1905 (((-862) $) 55)) (-4033 (($ $ $) 35)) (-1986 (($ (-862)) 50)) (-1252 (($ $ |#2|) NIL) (($ $ $) 38)) (-2632 (((-719) (-1 (-110) |#2|) $) NIL) (((-719) |#2| $) 26)) (-2377 (($ (-597 |#2|)) 24)) (-3801 (($ $) 46)) (-2366 (((-804) $) 33)) (-1418 (((-719) $) 21)) (-3381 (($ (-597 |#2|)) 19) (($) NIL)) (-2248 (((-110) $ $) 16)))
+(((-405 |#1| |#2|) (-10 -8 (-15 -3023 ((-719))) (-15 -1986 (|#1| (-862))) (-15 -1905 ((-862) |#1|)) (-15 -1364 (|#1|)) (-15 -2508 (|#2| |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -2673 (|#1|)) (-15 -3801 (|#1| |#1|)) (-15 -1418 ((-719) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2822 ((-110) |#1| |#1|)) (-15 -3381 (|#1|)) (-15 -3381 (|#1| (-597 |#2|))) (-15 -1243 (|#1|)) (-15 -1243 (|#1| (-597 |#2|))) (-15 -4033 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -2431 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|))) (-406 |#2|) (-1027)) (T -405))
+((-3023 (*1 *2) (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))))
+(-10 -8 (-15 -3023 ((-719))) (-15 -1986 (|#1| (-862))) (-15 -1905 ((-862) |#1|)) (-15 -1364 (|#1|)) (-15 -2508 (|#2| |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -2673 (|#1|)) (-15 -3801 (|#1| |#1|)) (-15 -1418 ((-719) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2822 ((-110) |#1| |#1|)) (-15 -3381 (|#1|)) (-15 -3381 (|#1| (-597 |#2|))) (-15 -1243 (|#1|)) (-15 -1243 (|#1| (-597 |#2|))) (-15 -4033 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -2431 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)))
+((-2352 (((-110) $ $) 19)) (-2673 (($) 67 (|has| |#1| (-349)))) (-4204 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1746 (($ $ $) 78)) (-2431 (((-110) $ $) 79)) (-3186 (((-110) $ (-719)) 8)) (-3023 (((-719)) 61 (|has| |#1| (-349)))) (-1243 (($ (-597 |#1|)) 74) (($) 73)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-1364 (($) 64 (|has| |#1| (-349)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 70)) (-4027 (((-110) $ (-719)) 9)) (-2508 ((|#1| $) 65 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 66 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-1905 (((-862) $) 63 (|has| |#1| (-349)))) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 75)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-1986 (($ (-862)) 62 (|has| |#1| (-349)))) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1252 (($ $ |#1|) 77) (($ $ $) 76)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-3801 (($ $) 68 (|has| |#1| (-349)))) (-2366 (((-804) $) 18)) (-1418 (((-719) $) 69)) (-3381 (($ (-597 |#1|)) 72) (($) 71)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-406 |#1|) (-133) (-1027)) (T -406))
-((-2313 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))) (-3556 (*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))))
-(-13 (-212 |t#1|) (-1025 |t#1|) (-10 -8 (-6 -4270) (-15 -2313 ((-719) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -2302 ($ $)) (-15 -3556 ($))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1757 (|t#1| $)) (-15 -4194 (|t#1| $))) |%noBranch|)))
+((-1418 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))) (-2673 (*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))))
+(-13 (-212 |t#1|) (-1025 |t#1|) (-10 -8 (-6 -4269) (-15 -1418 ((-719) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -3801 ($ $)) (-15 -2673 ($))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1817 (|t#1| $)) (-15 -2508 (|t#1| $))) |%noBranch|)))
(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-212 |#1|) . T) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-349) |has| |#1| (-349)) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-2323 (((-547 |#2|) |#2| (-1099)) 36)) (-3506 (((-547 |#2|) |#2| (-1099)) 20)) (-2658 ((|#2| |#2| (-1099)) 25)))
-(((-407 |#1| |#2|) (-10 -7 (-15 -3506 ((-547 |#2|) |#2| (-1099))) (-15 -2323 ((-547 |#2|) |#2| (-1099))) (-15 -2658 (|#2| |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -407))
-((-2658 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4))))) (-2323 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))) (-3506 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))))
-(-10 -7 (-15 -3506 ((-547 |#2|) |#2| (-1099))) (-15 -2323 ((-547 |#2|) |#2| (-1099))) (-15 -2658 (|#2| |#2| (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-2342 (($ |#2| |#1|) 35)) (-2331 (($ |#2| |#1|) 33)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 10 T CONST)) (-2955 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-408 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4257)) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|) |%noBranch|) (-15 -2258 ($ |#1|)) (-15 -2258 ($ (-312 |#2|))) (-15 -2342 ($ |#2| |#1|)) (-15 -2331 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-530)))) (-13 (-795) (-21))) (T -408))
-((-2258 (*1 *1 *2) (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-530))))) (-4 *3 (-13 (-795) (-21))))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21))) (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))))) (-2342 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))) (-2331 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4257)) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|) |%noBranch|) (-15 -2258 ($ |#1|)) (-15 -2258 ($ (-312 |#2|))) (-15 -2342 ($ |#2| |#1|)) (-15 -2331 ($ |#2| |#1|))))
-((-1637 (((-3 |#2| (-597 |#2|)) |#2| (-1099)) 109)))
-(((-409 |#1| |#2|) (-10 -7 (-15 -1637 ((-3 |#2| (-597 |#2|)) |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -409))
-((-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 *3 (-597 *3))) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1121) (-900) (-29 *5))))))
-(-10 -7 (-15 -1637 ((-3 |#2| (-597 |#2|)) |#2| (-1099))))
-((-2596 (((-597 (-1099)) $) 72)) (-2439 (((-388 (-1095 $)) $ (-570 $)) 273)) (-3155 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) 237)) (-3012 (((-3 (-570 $) "failed") $) NIL) (((-3 (-1099) "failed") $) 75) (((-3 (-530) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-388 (-893 |#2|)) "failed") $) 324) (((-3 (-893 |#2|) "failed") $) 235) (((-3 (-388 (-530)) "failed") $) NIL)) (-2446 (((-570 $) $) NIL) (((-1099) $) 30) (((-530) $) NIL) ((|#2| $) 231) (((-388 (-893 |#2|)) $) 305) (((-893 |#2|) $) 232) (((-388 (-530)) $) NIL)) (-2221 (((-112) (-112)) 47)) (-2854 (($ $) 87)) (-2685 (((-3 (-570 $) "failed") $) 228)) (-2422 (((-597 (-570 $)) $) 229)) (-2457 (((-3 (-597 $) "failed") $) 247)) (-2479 (((-3 (-2 (|:| |val| $) (|:| -3059 (-530))) "failed") $) 254)) (-3691 (((-3 (-597 $) "failed") $) 245)) (-3500 (((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 $))) "failed") $) 264)) (-2467 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $) 251) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-1099)) 219)) (-2366 (((-110) $) 19)) (-2375 ((|#2| $) 21)) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 236) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 96) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) 57) (($ $ (-597 (-1099))) 240) (($ $) 241) (($ $ (-112) $ (-1099)) 60) (($ $ (-597 (-112)) (-597 $) (-1099)) 67) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 107) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 242) (($ $ (-1099) (-719) (-1 $ (-597 $))) 94) (($ $ (-1099) (-719) (-1 $ $)) 93)) (-1832 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) 106)) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 238)) (-2842 (($ $) 284)) (-3173 (((-833 (-530)) $) 257) (((-833 (-360)) $) 261) (($ (-399 $)) 320) (((-506) $) NIL)) (-2258 (((-804) $) 239) (($ (-570 $)) 84) (($ (-1099)) 26) (($ |#2|) NIL) (($ (-1051 |#2| (-570 $))) NIL) (($ (-388 |#2|)) 289) (($ (-893 (-388 |#2|))) 329) (($ (-388 (-893 (-388 |#2|)))) 301) (($ (-388 (-893 |#2|))) 295) (($ $) NIL) (($ (-893 |#2|)) 185) (($ (-388 (-530))) 334) (($ (-530)) NIL)) (-1667 (((-719)) 79)) (-2212 (((-110) (-112)) 41)) (-2386 (($ (-1099) $) 33) (($ (-1099) $ $) 34) (($ (-1099) $ $ $) 35) (($ (-1099) $ $ $ $) 36) (($ (-1099) (-597 $)) 39)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-410 |#1| |#2|) (-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1667 ((-719))) (-15 -2258 (|#1| (-530))) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-893 |#2|) |#1|)) (-15 -3012 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2258 (|#1| (-893 |#2|))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2446 ((-388 (-893 |#2|)) |#1|)) (-15 -3012 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-893 |#2|)))) (-15 -2439 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2258 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2258 (|#1| (-893 (-388 |#2|)))) (-15 -2258 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3173 (|#1| (-399 |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -2479 ((-3 (-2 (|:| |val| |#1|) (|:| -3059 (-530))) "failed") |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1| (-1099))) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1| (-112))) (-15 -2854 (|#1| |#1|)) (-15 -2258 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3500 ((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -3691 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1|)) (-15 -2457 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4084 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4084 (|#1| |#1|)) (-15 -4084 (|#1| |#1| (-597 (-1099)))) (-15 -4084 (|#1| |#1| (-1099))) (-15 -2386 (|#1| (-1099) (-597 |#1|))) (-15 -2386 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1|)) (-15 -2596 ((-597 (-1099)) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2366 ((-110) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2258 (|#1| (-1099))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2422 ((-597 (-570 |#1|)) |#1|)) (-15 -2685 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -3155 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -3155 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3155 (|#1| |#1| (-276 |#1|))) (-15 -1832 (|#1| (-112) (-597 |#1|))) (-15 -1832 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2446 ((-570 |#1|) |#1|)) (-15 -3012 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2258 (|#1| (-570 |#1|))) (-15 -2258 ((-804) |#1|))) (-411 |#2|) (-795)) (T -410))
-((-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) (-1667 (*1 *2) (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))))
-(-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1667 ((-719))) (-15 -2258 (|#1| (-530))) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-893 |#2|) |#1|)) (-15 -3012 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2258 (|#1| (-893 |#2|))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2446 ((-388 (-893 |#2|)) |#1|)) (-15 -3012 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2258 (|#1| (-388 (-893 |#2|)))) (-15 -2439 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2258 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2258 (|#1| (-893 (-388 |#2|)))) (-15 -2258 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3173 (|#1| (-399 |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -2479 ((-3 (-2 (|:| |val| |#1|) (|:| -3059 (-530))) "failed") |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1| (-1099))) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1| (-112))) (-15 -2854 (|#1| |#1|)) (-15 -2258 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3500 ((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -3691 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3059 (-530))) "failed") |#1|)) (-15 -2457 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4084 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4084 (|#1| |#1|)) (-15 -4084 (|#1| |#1| (-597 (-1099)))) (-15 -4084 (|#1| |#1| (-1099))) (-15 -2386 (|#1| (-1099) (-597 |#1|))) (-15 -2386 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1| |#1|)) (-15 -2386 (|#1| (-1099) |#1|)) (-15 -2596 ((-597 (-1099)) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2366 ((-110) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2258 (|#1| (-1099))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4084 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4084 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2422 ((-597 (-570 |#1|)) |#1|)) (-15 -2685 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -3155 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -3155 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3155 (|#1| |#1| (-276 |#1|))) (-15 -1832 (|#1| (-112) (-597 |#1|))) (-15 -1832 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1| |#1|)) (-15 -1832 (|#1| (-112) |#1|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4084 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2446 ((-570 |#1|) |#1|)) (-15 -3012 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2258 (|#1| (-570 |#1|))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 116 (|has| |#1| (-25)))) (-2596 (((-597 (-1099)) $) 203)) (-2439 (((-388 (-1095 $)) $ (-570 $)) 171 (|has| |#1| (-522)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 143 (|has| |#1| (-522)))) (-3031 (($ $) 144 (|has| |#1| (-522)))) (-3006 (((-110) $) 146 (|has| |#1| (-522)))) (-2350 (((-597 (-570 $)) $) 44)) (-3618 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3155 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-1359 (($ $) 163 (|has| |#1| (-522)))) (-3550 (((-399 $) $) 164 (|has| |#1| (-522)))) (-1945 (((-110) $ $) 154 (|has| |#1| (-522)))) (-3956 (($) 102 (-1476 (|has| |#1| (-1039)) (|has| |#1| (-25))) CONST)) (-3012 (((-3 (-570 $) "failed") $) 69) (((-3 (-1099) "failed") $) 216) (((-3 (-530) "failed") $) 209 (|has| |#1| (-975 (-530)))) (((-3 |#1| "failed") $) 207) (((-3 (-388 (-893 |#1|)) "failed") $) 169 (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) 123 (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 95 (-1476 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2446 (((-570 $) $) 68) (((-1099) $) 215) (((-530) $) 210 (|has| |#1| (-975 (-530)))) ((|#1| $) 206) (((-388 (-893 |#1|)) $) 168 (|has| |#1| (-522))) (((-893 |#1|) $) 122 (|has| |#1| (-984))) (((-388 (-530)) $) 94 (-1476 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3607 (($ $ $) 158 (|has| |#1| (-522)))) (-1298 (((-637 (-530)) (-637 $)) 137 (-3340 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 136 (-3340 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 135 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 134 (|has| |#1| (-984)))) (-1673 (((-3 $ "failed") $) 105 (|has| |#1| (-1039)))) (-3588 (($ $ $) 157 (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 152 (|has| |#1| (-522)))) (-2049 (((-110) $) 165 (|has| |#1| (-522)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 212 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 211 (|has| |#1| (-827 (-360))))) (-2986 (($ $) 51) (($ (-597 $)) 50)) (-2676 (((-597 (-112)) $) 43)) (-2221 (((-112) (-112)) 42)) (-3150 (((-110) $) 103 (|has| |#1| (-1039)))) (-1555 (((-110) $) 22 (|has| $ (-975 (-530))))) (-2854 (($ $) 186 (|has| |#1| (-984)))) (-1848 (((-1051 |#1| (-570 $)) $) 187 (|has| |#1| (-984)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 161 (|has| |#1| (-522)))) (-2657 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3114 (($ (-1 $ $) (-570 $)) 36)) (-2685 (((-3 (-570 $) "failed") $) 46)) (-2072 (($ (-597 $)) 150 (|has| |#1| (-522))) (($ $ $) 149 (|has| |#1| (-522)))) (-3443 (((-1082) $) 9)) (-2422 (((-597 (-570 $)) $) 45)) (-1912 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-2457 (((-3 (-597 $) "failed") $) 192 (|has| |#1| (-1039)))) (-2479 (((-3 (-2 (|:| |val| $) (|:| -3059 (-530))) "failed") $) 183 (|has| |#1| (-984)))) (-3691 (((-3 (-597 $) "failed") $) 190 (|has| |#1| (-25)))) (-3500 (((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2467 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $) 191 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-112)) 185 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-1099)) 184 (|has| |#1| (-984)))) (-2300 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-2359 (($ $) 107 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-4150 (((-719) $) 47)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 205)) (-2375 ((|#1| $) 204)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 151 (|has| |#1| (-522)))) (-2108 (($ (-597 $)) 148 (|has| |#1| (-522))) (($ $ $) 147 (|has| |#1| (-522)))) (-2667 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-2473 (((-399 $) $) 162 (|has| |#1| (-522)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 159 (|has| |#1| (-522)))) (-3562 (((-3 $ "failed") $ $) 142 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 153 (|has| |#1| (-522)))) (-1565 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1099)) 197 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 196 (|has| |#1| (-572 (-506)))) (($ $) 195 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 194 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 193 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 182 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 181 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 180 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) 179 (|has| |#1| (-984)))) (-1934 (((-719) $) 155 (|has| |#1| (-522)))) (-1832 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 156 (|has| |#1| (-522)))) (-2695 (($ $) 49) (($ $ $) 48)) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 128 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 127 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 126 (|has| |#1| (-984))) (($ $ (-1099)) 125 (|has| |#1| (-984)))) (-2842 (($ $) 176 (|has| |#1| (-522)))) (-1857 (((-1051 |#1| (-570 $)) $) 177 (|has| |#1| (-522)))) (-4212 (($ $) 24 (|has| $ (-984)))) (-3173 (((-833 (-530)) $) 214 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 213 (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) 178 (|has| |#1| (-522))) (((-506) $) 97 (|has| |#1| (-572 (-506))))) (-1800 (($ $ $) 111 (|has| |#1| (-453)))) (-1527 (($ $ $) 112 (|has| |#1| (-453)))) (-2258 (((-804) $) 11) (($ (-570 $)) 70) (($ (-1099)) 217) (($ |#1|) 208) (($ (-1051 |#1| (-570 $))) 188 (|has| |#1| (-984))) (($ (-388 |#1|)) 174 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 173 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 172 (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) 170 (|has| |#1| (-522))) (($ $) 141 (|has| |#1| (-522))) (($ (-893 |#1|)) 124 (|has| |#1| (-984))) (($ (-388 (-530))) 96 (-1476 (|has| |#1| (-522)) (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 93 (-1476 (|has| |#1| (-984)) (|has| |#1| (-975 (-530)))))) (-1795 (((-3 $ "failed") $) 138 (|has| |#1| (-138)))) (-1667 (((-719)) 133 (|has| |#1| (-984)))) (-3998 (($ $) 53) (($ (-597 $)) 52)) (-2212 (((-110) (-112)) 41)) (-3020 (((-110) $ $) 145 (|has| |#1| (-522)))) (-2386 (($ (-1099) $) 202) (($ (-1099) $ $) 201) (($ (-1099) $ $ $) 200) (($ (-1099) $ $ $ $) 199) (($ (-1099) (-597 $)) 198)) (-2723 (($ $ (-530)) 110 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 104 (|has| |#1| (-1039))) (($ $ (-862)) 100 (|has| |#1| (-1039)))) (-2943 (($) 115 (|has| |#1| (-25)) CONST)) (-2955 (($) 101 (|has| |#1| (-1039)) CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 132 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 131 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 130 (|has| |#1| (-984))) (($ $ (-1099)) 129 (|has| |#1| (-984)))) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2257 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 175 (|has| |#1| (-522))) (($ $ $) 108 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2245 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-2234 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-530)) 109 (-1476 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 106 (|has| |#1| (-1039))) (($ $ (-862)) 99 (|has| |#1| (-1039)))) (* (($ (-388 (-530)) $) 167 (|has| |#1| (-522))) (($ $ (-388 (-530))) 166 (|has| |#1| (-522))) (($ |#1| $) 140 (|has| |#1| (-162))) (($ $ |#1|) 139 (|has| |#1| (-162))) (($ (-530) $) 121 (|has| |#1| (-21))) (($ (-719) $) 117 (|has| |#1| (-25))) (($ (-862) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1039)))))
+((-4021 (((-547 |#2|) |#2| (-1099)) 36)) (-3631 (((-547 |#2|) |#2| (-1099)) 20)) (-3280 ((|#2| |#2| (-1099)) 25)))
+(((-407 |#1| |#2|) (-10 -7 (-15 -3631 ((-547 |#2|) |#2| (-1099))) (-15 -4021 ((-547 |#2|) |#2| (-1099))) (-15 -3280 (|#2| |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -407))
+((-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4))))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))))
+(-10 -7 (-15 -3631 ((-547 |#2|) |#2| (-1099))) (-15 -4021 ((-547 |#2|) |#2| (-1099))) (-15 -3280 (|#2| |#2| (-1099))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1899 (($ |#2| |#1|) 35)) (-3448 (($ |#2| |#1|) 33)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-3300 (((-719)) NIL)) (-3080 (($) 10 T CONST)) (-3093 (($) 16 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-408 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-312 |#2|))) (-15 -1899 ($ |#2| |#1|)) (-15 -3448 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-530)))) (-13 (-795) (-21))) (T -408))
+((-2366 (*1 *1 *2) (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-530))))) (-4 *3 (-13 (-795) (-21))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21))) (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))))) (-1899 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))) (-3448 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-312 |#2|))) (-15 -1899 ($ |#2| |#1|)) (-15 -3448 ($ |#2| |#1|))))
+((-1545 (((-3 |#2| (-597 |#2|)) |#2| (-1099)) 109)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -1545 ((-3 |#2| (-597 |#2|)) |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -409))
+((-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 *3 (-597 *3))) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1121) (-900) (-29 *5))))))
+(-10 -7 (-15 -1545 ((-3 |#2| (-597 |#2|)) |#2| (-1099))))
+((-2746 (((-597 (-1099)) $) 72)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 273)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) 237)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-1099) "failed") $) 75) (((-3 (-530) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-388 (-893 |#2|)) "failed") $) 324) (((-3 (-893 |#2|) "failed") $) 235) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-1099) $) 30) (((-530) $) NIL) ((|#2| $) 231) (((-388 (-893 |#2|)) $) 305) (((-893 |#2|) $) 232) (((-388 (-530)) $) NIL)) (-4124 (((-112) (-112)) 47)) (-4127 (($ $) 87)) (-3707 (((-3 (-570 $) "failed") $) 228)) (-2560 (((-597 (-570 $)) $) 229)) (-1862 (((-3 (-597 $) "failed") $) 247)) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 254)) (-1534 (((-3 (-597 $) "failed") $) 245)) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 264)) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 251) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 219)) (-2494 (((-110) $) 19)) (-2505 ((|#2| $) 21)) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 236) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 96) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) 57) (($ $ (-597 (-1099))) 240) (($ $) 241) (($ $ (-112) $ (-1099)) 60) (($ $ (-597 (-112)) (-597 $) (-1099)) 67) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 107) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 242) (($ $ (-1099) (-719) (-1 $ (-597 $))) 94) (($ $ (-1099) (-719) (-1 $ $)) 93)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) 106)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 238)) (-1269 (($ $) 284)) (-3260 (((-833 (-530)) $) 257) (((-833 (-360)) $) 261) (($ (-399 $)) 320) (((-506) $) NIL)) (-2366 (((-804) $) 239) (($ (-570 $)) 84) (($ (-1099)) 26) (($ |#2|) NIL) (($ (-1051 |#2| (-570 $))) NIL) (($ (-388 |#2|)) 289) (($ (-893 (-388 |#2|))) 329) (($ (-388 (-893 (-388 |#2|)))) 301) (($ (-388 (-893 |#2|))) 295) (($ $) NIL) (($ (-893 |#2|)) 185) (($ (-388 (-530))) 334) (($ (-530)) NIL)) (-3300 (((-719)) 79)) (-4195 (((-110) (-112)) 41)) (-2520 (($ (-1099) $) 33) (($ (-1099) $ $) 34) (($ (-1099) $ $ $) 35) (($ (-1099) $ $ $ $) 36) (($ (-1099) (-597 $)) 39)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
+(((-410 |#1| |#2|) (-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3300 ((-719))) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-893 |#2|) |#1|)) (-15 -3139 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2366 (|#1| (-893 |#2|))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2585 ((-388 (-893 |#2|)) |#1|)) (-15 -3139 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-893 |#2|)))) (-15 -2577 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2366 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2366 (|#1| (-893 (-388 |#2|)))) (-15 -2366 (|#1| (-388 |#2|))) (-15 -1269 (|#1| |#1|)) (-15 -3260 (|#1| (-399 |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -3193 ((-3 (-2 (|:| |val| |#1|) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-1099))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-112))) (-15 -4127 (|#1| |#1|)) (-15 -2366 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4098 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4098 (|#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1099)))) (-15 -4098 (|#1| |#1| (-1099))) (-15 -2520 (|#1| (-1099) (-597 |#1|))) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1|)) (-15 -2746 ((-597 (-1099)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2560 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2366 (|#1| (-570 |#1|))) (-15 -2366 ((-804) |#1|))) (-411 |#2|) (-795)) (T -410))
+((-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) (-3300 (*1 *2) (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))))
+(-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3300 ((-719))) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-893 |#2|) |#1|)) (-15 -3139 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2366 (|#1| (-893 |#2|))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2585 ((-388 (-893 |#2|)) |#1|)) (-15 -3139 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-893 |#2|)))) (-15 -2577 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2366 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2366 (|#1| (-893 (-388 |#2|)))) (-15 -2366 (|#1| (-388 |#2|))) (-15 -1269 (|#1| |#1|)) (-15 -3260 (|#1| (-399 |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -3193 ((-3 (-2 (|:| |val| |#1|) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-1099))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-112))) (-15 -4127 (|#1| |#1|)) (-15 -2366 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4098 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4098 (|#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1099)))) (-15 -4098 (|#1| |#1| (-1099))) (-15 -2520 (|#1| (-1099) (-597 |#1|))) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1|)) (-15 -2746 ((-597 (-1099)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2560 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2366 (|#1| (-570 |#1|))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 113 (|has| |#1| (-25)))) (-2746 (((-597 (-1099)) $) 200)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 168 (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 140 (|has| |#1| (-522)))) (-3446 (($ $) 141 (|has| |#1| (-522)))) (-1276 (((-110) $) 143 (|has| |#1| (-522)))) (-2473 (((-597 (-570 $)) $) 44)) (-1889 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1416 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-3544 (($ $) 160 (|has| |#1| (-522)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-522)))) (-1426 (((-110) $ $) 151 (|has| |#1| (-522)))) (-2350 (($) 101 (-1461 (|has| |#1| (-1039)) (|has| |#1| (-25))) CONST)) (-3139 (((-3 (-570 $) "failed") $) 69) (((-3 (-1099) "failed") $) 213) (((-3 (-530) "failed") $) 206 (|has| |#1| (-975 (-530)))) (((-3 |#1| "failed") $) 204) (((-3 (-388 (-893 |#1|)) "failed") $) 166 (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) 120 (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 95 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-570 $) $) 68) (((-1099) $) 212) (((-530) $) 207 (|has| |#1| (-975 (-530)))) ((|#1| $) 203) (((-388 (-893 |#1|)) $) 165 (|has| |#1| (-522))) (((-893 |#1|) $) 119 (|has| |#1| (-984))) (((-388 (-530)) $) 94 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) 155 (|has| |#1| (-522)))) (-2329 (((-637 (-530)) (-637 $)) 134 (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 131 (|has| |#1| (-984)))) (-2707 (((-3 $ "failed") $) 103 (|has| |#1| (-1039)))) (-3571 (($ $ $) 154 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-522)))) (-3295 (((-110) $) 162 (|has| |#1| (-522)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 209 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 208 (|has| |#1| (-827 (-360))))) (-3324 (($ $) 51) (($ (-597 $)) 50)) (-2381 (((-597 (-112)) $) 43)) (-4124 (((-112) (-112)) 42)) (-2731 (((-110) $) 102 (|has| |#1| (-1039)))) (-3457 (((-110) $) 22 (|has| $ (-975 (-530))))) (-4127 (($ $) 183 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 184 (|has| |#1| (-984)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-522)))) (-3210 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3217 (($ (-1 $ $) (-570 $)) 36)) (-3707 (((-3 (-570 $) "failed") $) 46)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-522))) (($ $ $) 146 (|has| |#1| (-522)))) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 45)) (-1990 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-1862 (((-3 (-597 $) "failed") $) 189 (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 180 (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 187 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 186 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 188 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 182 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 181 (|has| |#1| (-984)))) (-1826 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-2483 (($ $) 105 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-4156 (((-719) $) 47)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 202)) (-2505 ((|#1| $) 201)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-522)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-522))) (($ $ $) 144 (|has| |#1| (-522)))) (-2861 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-2611 (((-399 $) $) 159 (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ $) 139 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-522)))) (-1403 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1099)) 194 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 193 (|has| |#1| (-572 (-506)))) (($ $) 192 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 191 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 190 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 179 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 178 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 177 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) 176 (|has| |#1| (-984)))) (-2356 (((-719) $) 152 (|has| |#1| (-522)))) (-1902 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-522)))) (-3313 (($ $) 49) (($ $ $) 48)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 125 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 124 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 123 (|has| |#1| (-984))) (($ $ (-1099)) 122 (|has| |#1| (-984)))) (-1269 (($ $) 173 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 174 (|has| |#1| (-522)))) (-1781 (($ $) 24 (|has| $ (-984)))) (-3260 (((-833 (-530)) $) 211 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 210 (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) 175 (|has| |#1| (-522))) (((-506) $) 97 (|has| |#1| (-572 (-506))))) (-2555 (($ $ $) 108 (|has| |#1| (-453)))) (-2607 (($ $ $) 109 (|has| |#1| (-453)))) (-2366 (((-804) $) 11) (($ (-570 $)) 70) (($ (-1099)) 214) (($ |#1|) 205) (($ (-1051 |#1| (-570 $))) 185 (|has| |#1| (-984))) (($ (-388 |#1|)) 171 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 170 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 169 (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) 167 (|has| |#1| (-522))) (($ $) 138 (|has| |#1| (-522))) (($ (-893 |#1|)) 121 (|has| |#1| (-984))) (($ (-388 (-530))) 96 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 93 (-1461 (|has| |#1| (-984)) (|has| |#1| (-975 (-530)))))) (-3251 (((-3 $ "failed") $) 135 (|has| |#1| (-138)))) (-3300 (((-719)) 130 (|has| |#1| (-984)))) (-1678 (($ $) 53) (($ (-597 $)) 52)) (-4195 (((-110) (-112)) 41)) (-3944 (((-110) $ $) 142 (|has| |#1| (-522)))) (-2520 (($ (-1099) $) 199) (($ (-1099) $ $) 198) (($ (-1099) $ $ $) 197) (($ (-1099) $ $ $ $) 196) (($ (-1099) (-597 $)) 195)) (-3080 (($) 112 (|has| |#1| (-25)) CONST)) (-3093 (($) 100 (|has| |#1| (-1039)) CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 129 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 128 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 127 (|has| |#1| (-984))) (($ $ (-1099)) 126 (|has| |#1| (-984)))) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2364 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 172 (|has| |#1| (-522))) (($ $ $) 106 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2351 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2339 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-530)) 107 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 104 (|has| |#1| (-1039))) (($ $ (-862)) 99 (|has| |#1| (-1039)))) (* (($ (-388 (-530)) $) 164 (|has| |#1| (-522))) (($ $ (-388 (-530))) 163 (|has| |#1| (-522))) (($ |#1| $) 137 (|has| |#1| (-162))) (($ $ |#1|) 136 (|has| |#1| (-162))) (($ (-530) $) 118 (|has| |#1| (-21))) (($ (-719) $) 114 (|has| |#1| (-25))) (($ (-862) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1039)))))
(((-411 |#1|) (-133) (-795)) (T -411))
-((-2366 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-110)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-597 (-1099))))) (-2386 (*1 *1 *2 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2386 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2386 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2386 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4084 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-506))))) (-4084 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1099)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-572 (-506))))) (-4084 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 *1)) (-5 *4 (-1099)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-506))))) (-2457 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-2467 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530)))) (-4 *1 (-411 *3)))) (-3691 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-3500 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -1981 (-530)) (|:| |var| (-570 *1)))) (-4 *1 (-411 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-984)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-2854 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984)))) (-2467 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530)))) (-4 *1 (-411 *4)))) (-2467 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530)))) (-4 *1 (-411 *4)))) (-2479 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |val| *1) (|:| -3059 (-530)))) (-4 *1 (-411 *3)))) (-4084 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4084 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4084 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-597 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4084 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1857 (*1 *2 *1) (-12 (-4 *3 (-522)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522)))) (-2257 (*1 *1 *2 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 *3))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-388 *3)))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2439 (*1 *2 *1 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-522)) (-5 *2 (-388 (-1095 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-1039)))))
-(-13 (-284) (-975 (-1099)) (-825 |t#1|) (-381 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2366 ((-110) $)) (-15 -2375 (|t#1| $)) (-15 -2596 ((-597 (-1099)) $)) (-15 -2386 ($ (-1099) $)) (-15 -2386 ($ (-1099) $ $)) (-15 -2386 ($ (-1099) $ $ $)) (-15 -2386 ($ (-1099) $ $ $ $)) (-15 -2386 ($ (-1099) (-597 $))) (IF (|has| |t#1| (-572 (-506))) (PROGN (-6 (-572 (-506))) (-15 -4084 ($ $ (-1099))) (-15 -4084 ($ $ (-597 (-1099)))) (-15 -4084 ($ $)) (-15 -4084 ($ $ (-112) $ (-1099))) (-15 -4084 ($ $ (-597 (-112)) (-597 $) (-1099)))) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-675)) (-15 ** ($ $ (-719))) (-15 -2457 ((-3 (-597 $) "failed") $)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3691 ((-3 (-597 $) "failed") $)) (-15 -3500 ((-3 (-2 (|:| -1981 (-530)) (|:| |var| (-570 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-6 (-984)) (-6 (-975 (-893 |t#1|))) (-6 (-841 (-1099))) (-6 (-358 |t#1|)) (-15 -2258 ($ (-1051 |t#1| (-570 $)))) (-15 -1848 ((-1051 |t#1| (-570 $)) $)) (-15 -2854 ($ $)) (-15 -2467 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-112))) (-15 -2467 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3059 (-530))) "failed") $ (-1099))) (-15 -2479 ((-3 (-2 (|:| |val| $) (|:| -3059 (-530))) "failed") $)) (-15 -4084 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $)))) (-15 -4084 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $))))) (-15 -4084 ($ $ (-1099) (-719) (-1 $ (-597 $)))) (-15 -4084 ($ $ (-1099) (-719) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-344)) (-6 (-975 (-388 (-893 |t#1|)))) (-15 -3173 ($ (-399 $))) (-15 -1857 ((-1051 |t#1| (-570 $)) $)) (-15 -2842 ($ $)) (-15 -2257 ($ (-1051 |t#1| (-570 $)) (-1051 |t#1| (-570 $)))) (-15 -2258 ($ (-388 |t#1|))) (-15 -2258 ($ (-893 (-388 |t#1|)))) (-15 -2258 ($ (-388 (-893 (-388 |t#1|))))) (-15 -2439 ((-388 (-1095 $)) $ (-570 $))) (IF (|has| |t#1| (-975 (-530))) (-6 (-975 (-388 (-530)))) |%noBranch|)) |%noBranch|)))
-(((-21) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-388 (-530))) |has| |#1| (-522)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-522)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-522)) ((-128) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) |has| |#1| (-522)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) |has| |#1| (-522)) ((-272) |has| |#1| (-522)) ((-289) |has| |#1| (-522)) ((-291 $) . T) ((-284) . T) ((-344) |has| |#1| (-522)) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) |has| |#1| (-522)) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-522)) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) |has| |#1| (-522)) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) -1476 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) |has| |#1| (-522)) ((-975 (-388 (-530))) -1476 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-522)) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) |has| |#1| (-522)) ((-984) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-991) -1476 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1039) -1476 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1027) . T) ((-1135) . T) ((-1139) |has| |#1| (-522)))
-((-2249 ((|#2| |#2| |#2|) 33)) (-2221 (((-112) (-112)) 44)) (-2364 ((|#2| |#2|) 66)) (-2353 ((|#2| |#2|) 69)) (-2237 ((|#2| |#2|) 32)) (-2283 ((|#2| |#2| |#2|) 35)) (-2304 ((|#2| |#2| |#2|) 37)) (-2271 ((|#2| |#2| |#2|) 34)) (-2293 ((|#2| |#2| |#2|) 36)) (-2212 (((-110) (-112)) 42)) (-2326 ((|#2| |#2|) 39)) (-2315 ((|#2| |#2|) 38)) (-2218 ((|#2| |#2|) 27)) (-2261 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2227 ((|#2| |#2| |#2|) 31)))
-(((-412 |#1| |#2|) (-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2218 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2261 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2249 (|#2| |#2| |#2|)) (-15 -2271 (|#2| |#2| |#2|)) (-15 -2283 (|#2| |#2| |#2|)) (-15 -2293 (|#2| |#2| |#2|)) (-15 -2304 (|#2| |#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2326 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2364 (|#2| |#2|))) (-13 (-795) (-522)) (-411 |#1|)) (T -412))
-((-2364 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2326 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2304 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2293 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2283 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2271 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2249 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2227 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2261 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4)) (-4 *4 (-411 *3)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4)))))
-(-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2218 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2261 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2249 (|#2| |#2| |#2|)) (-15 -2271 (|#2| |#2| |#2|)) (-15 -2283 (|#2| |#2| |#2|)) (-15 -2293 (|#2| |#2| |#2|)) (-15 -2304 (|#2| |#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2326 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)))
-((-2563 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|)) 61)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -2563 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -2563 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-522) (-795) (-140)) (-411 |#1|)) (T -413))
-((-2563 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3)) (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-413 *4 *5)))))
-(-10 -7 (-15 -2563 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -2563 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|))
-((-2381 (((-1186)) 19)) (-2371 (((-1095 (-388 (-530))) |#2| (-570 |#2|)) 41) (((-388 (-530)) |#2|) 25)))
-(((-414 |#1| |#2|) (-10 -7 (-15 -2371 ((-388 (-530)) |#2|)) (-15 -2371 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -2381 ((-1186)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|)) (T -414))
-((-2381 (*1 *2) (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186)) (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4)))))
-(-10 -7 (-15 -2371 ((-388 (-530)) |#2|)) (-15 -2371 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -2381 ((-1186))))
-((-2451 (((-110) $) 28)) (-2395 (((-110) $) 30)) (-3535 (((-110) $) 31)) (-2418 (((-110) $) 34)) (-2442 (((-110) $) 29)) (-2431 (((-110) $) 33)) (-2258 (((-804) $) 18) (($ (-1082)) 27) (($ (-1099)) 23) (((-1099) $) 22) (((-1031) $) 21)) (-2405 (((-110) $) 32)) (-2148 (((-110) $ $) 15)))
-(((-415) (-13 (-571 (-804)) (-10 -8 (-15 -2258 ($ (-1082))) (-15 -2258 ($ (-1099))) (-15 -2258 ((-1099) $)) (-15 -2258 ((-1031) $)) (-15 -2451 ((-110) $)) (-15 -2442 ((-110) $)) (-15 -3535 ((-110) $)) (-15 -2431 ((-110) $)) (-15 -2418 ((-110) $)) (-15 -2405 ((-110) $)) (-15 -2395 ((-110) $)) (-15 -2148 ((-110) $ $))))) (T -415))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-415)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-415)))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2258 ($ (-1082))) (-15 -2258 ($ (-1099))) (-15 -2258 ((-1099) $)) (-15 -2258 ((-1031) $)) (-15 -2451 ((-110) $)) (-15 -2442 ((-110) $)) (-15 -3535 ((-110) $)) (-15 -2431 ((-110) $)) (-15 -2418 ((-110) $)) (-15 -2405 ((-110) $)) (-15 -2395 ((-110) $)) (-15 -2148 ((-110) $ $))))
-((-2464 (((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|) 70)) (-2453 (((-399 |#3|) |#3|) 34)) (-2489 (((-3 (-399 (-1095 (-47))) "failed") |#3|) 46 (|has| |#2| (-975 (-47))))) (-2476 (((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4018 (-110))) |#3|) 37)))
-(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -2453 ((-399 |#3|) |#3|)) (-15 -2464 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -2476 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4018 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2489 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|) (-1157 |#2|)) (T -416))
-((-2489 (*1 *2 *3) (|partial| -12 (-4 *5 (-975 (-47))) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4018 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2453 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2453 ((-399 |#3|) |#3|)) (-15 -2464 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -2476 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4018 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2489 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3697 (((-1082) $ (-1082)) NIL)) (-3734 (($ $ (-1082)) NIL)) (-3704 (((-1082) $) NIL)) (-2621 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-2415 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3901 (((-369) $) NIL)) (-3443 (((-1082) $) NIL)) (-3713 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2610 (((-1186) (-1082)) 9)) (-2600 (((-1186) (-1082)) 10)) (-2590 (((-1186)) 11)) (-2258 (((-804) $) NIL)) (-3725 (($ $) 35)) (-2148 (((-110) $ $) NIL)))
-(((-417) (-13 (-345 (-369) (-1082)) (-10 -7 (-15 -2621 ((-369) (-369) (-369))) (-15 -2621 ((-369) (-369))) (-15 -2610 ((-1186) (-1082))) (-15 -2600 ((-1186) (-1082))) (-15 -2590 ((-1186)))))) (T -417))
-((-2621 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-2590 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
-(-13 (-345 (-369) (-1082)) (-10 -7 (-15 -2621 ((-369) (-369) (-369))) (-15 -2621 ((-369) (-369))) (-15 -2610 ((-1186) (-1082))) (-15 -2600 ((-1186) (-1082))) (-15 -2590 ((-1186)))))
-((-2246 (((-110) $ $) NIL)) (-2579 (((-3 (|:| |fst| (-415)) (|:| -2875 "void")) $) 11)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2559 (($) 32)) (-2531 (($) 38)) (-2541 (($) 34)) (-2511 (($) 36)) (-2550 (($) 33)) (-2522 (($) 35)) (-2500 (($) 37)) (-2569 (((-110) $) 8)) (-1494 (((-597 (-893 (-530))) $) 19)) (-2268 (($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-1099)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-893 (-530))) (-110)) 28)) (-2258 (((-804) $) 23) (($ (-415)) 29)) (-2148 (((-110) $ $) NIL)))
-(((-418) (-13 (-1027) (-10 -8 (-15 -2258 ((-804) $)) (-15 -2258 ($ (-415))) (-15 -2579 ((-3 (|:| |fst| (-415)) (|:| -2875 "void")) $)) (-15 -1494 ((-597 (-893 (-530))) $)) (-15 -2569 ((-110) $)) (-15 -2268 ($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-1099)) (-110))) (-15 -2268 ($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-893 (-530))) (-110))) (-15 -2559 ($)) (-15 -2550 ($)) (-15 -2541 ($)) (-15 -2531 ($)) (-15 -2522 ($)) (-15 -2511 ($)) (-15 -2500 ($))))) (T -418))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-418)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *1 (-418)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))) (-2268 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *3 (-597 (-1099))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2268 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2559 (*1 *1) (-5 *1 (-418))) (-2550 (*1 *1) (-5 *1 (-418))) (-2541 (*1 *1) (-5 *1 (-418))) (-2531 (*1 *1) (-5 *1 (-418))) (-2522 (*1 *1) (-5 *1 (-418))) (-2511 (*1 *1) (-5 *1 (-418))) (-2500 (*1 *1) (-5 *1 (-418))))
-(-13 (-1027) (-10 -8 (-15 -2258 ((-804) $)) (-15 -2258 ($ (-415))) (-15 -2579 ((-3 (|:| |fst| (-415)) (|:| -2875 "void")) $)) (-15 -1494 ((-597 (-893 (-530))) $)) (-15 -2569 ((-110) $)) (-15 -2268 ($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-1099)) (-110))) (-15 -2268 ($ (-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-597 (-893 (-530))) (-110))) (-15 -2559 ($)) (-15 -2550 ($)) (-15 -2541 ($)) (-15 -2531 ($)) (-15 -2522 ($)) (-15 -2511 ($)) (-15 -2500 ($))))
-((-2246 (((-110) $ $) NIL)) (-3901 (((-1099) $) 8)) (-3443 (((-1082) $) 16)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 13)))
-(((-419 |#1|) (-13 (-1027) (-10 -8 (-15 -3901 ((-1099) $)))) (-1099)) (T -419))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-419 *3)) (-14 *3 *2))))
-(-13 (-1027) (-10 -8 (-15 -3901 ((-1099) $))))
-((-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8) (($ (-1181 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 11)))
+((-2494 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-110)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-597 (-1099))))) (-2520 (*1 *1 *2 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4098 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-506))))) (-4098 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1099)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-572 (-506))))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 *1)) (-5 *4 (-1099)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-506))))) (-1862 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-1487 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *3)))) (-1534 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-3062 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 (-530)) (|:| |var| (-570 *1)))) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-984)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984)))) (-1487 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *4)))) (-1487 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *4)))) (-3193 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |val| *1) (|:| -3194 (-530)))) (-4 *1 (-411 *3)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-597 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1928 (*1 *2 *1) (-12 (-4 *3 (-522)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-1269 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522)))) (-2364 (*1 *1 *2 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 *3))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-388 *3)))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2577 (*1 *2 *1 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-522)) (-5 *2 (-388 (-1095 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-1039)))))
+(-13 (-284) (-975 (-1099)) (-825 |t#1|) (-381 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2494 ((-110) $)) (-15 -2505 (|t#1| $)) (-15 -2746 ((-597 (-1099)) $)) (-15 -2520 ($ (-1099) $)) (-15 -2520 ($ (-1099) $ $)) (-15 -2520 ($ (-1099) $ $ $)) (-15 -2520 ($ (-1099) $ $ $ $)) (-15 -2520 ($ (-1099) (-597 $))) (IF (|has| |t#1| (-572 (-506))) (PROGN (-6 (-572 (-506))) (-15 -4098 ($ $ (-1099))) (-15 -4098 ($ $ (-597 (-1099)))) (-15 -4098 ($ $)) (-15 -4098 ($ $ (-112) $ (-1099))) (-15 -4098 ($ $ (-597 (-112)) (-597 $) (-1099)))) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-675)) (-15 ** ($ $ (-719))) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-6 (-984)) (-6 (-975 (-893 |t#1|))) (-6 (-841 (-1099))) (-6 (-358 |t#1|)) (-15 -2366 ($ (-1051 |t#1| (-570 $)))) (-15 -1918 ((-1051 |t#1| (-570 $)) $)) (-15 -4127 ($ $)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099))) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $)) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-1099) (-719) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-1099) (-719) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-344)) (-6 (-975 (-388 (-893 |t#1|)))) (-15 -3260 ($ (-399 $))) (-15 -1928 ((-1051 |t#1| (-570 $)) $)) (-15 -1269 ($ $)) (-15 -2364 ($ (-1051 |t#1| (-570 $)) (-1051 |t#1| (-570 $)))) (-15 -2366 ($ (-388 |t#1|))) (-15 -2366 ($ (-893 (-388 |t#1|)))) (-15 -2366 ($ (-388 (-893 (-388 |t#1|))))) (-15 -2577 ((-388 (-1095 $)) $ (-570 $))) (IF (|has| |t#1| (-975 (-530))) (-6 (-975 (-388 (-530)))) |%noBranch|)) |%noBranch|)))
+(((-21) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-388 (-530))) |has| |#1| (-522)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-522)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-522)) ((-128) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) |has| |#1| (-522)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) |has| |#1| (-522)) ((-272) |has| |#1| (-522)) ((-289) |has| |#1| (-522)) ((-291 $) . T) ((-284) . T) ((-344) |has| |#1| (-522)) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) |has| |#1| (-522)) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-522)) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) |has| |#1| (-522)) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) -1461 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) |has| |#1| (-522)) ((-975 (-388 (-530))) -1461 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-522)) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) |has| |#1| (-522)) ((-984) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-991) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1039) -1461 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1027) . T) ((-1135) . T) ((-1139) |has| |#1| (-522)))
+((-1751 ((|#2| |#2| |#2|) 33)) (-4124 (((-112) (-112)) 44)) (-3866 ((|#2| |#2|) 66)) (-1413 ((|#2| |#2|) 69)) (-2101 ((|#2| |#2|) 32)) (-2323 ((|#2| |#2| |#2|) 35)) (-3981 ((|#2| |#2| |#2|) 37)) (-2790 ((|#2| |#2| |#2|) 34)) (-1374 ((|#2| |#2| |#2|) 36)) (-4195 (((-110) (-112)) 42)) (-3179 ((|#2| |#2|) 39)) (-1607 ((|#2| |#2|) 38)) (-3934 ((|#2| |#2|) 27)) (-3187 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3564 ((|#2| |#2| |#2|) 31)))
+(((-412 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -3934 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3187 (|#2| |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -1751 (|#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1374 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3866 (|#2| |#2|))) (-13 (-795) (-522)) (-411 |#1|)) (T -412))
+((-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3981 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1374 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2323 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2790 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1751 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2101 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3187 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4)) (-4 *4 (-411 *3)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4)))))
+(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -3934 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3187 (|#2| |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -1751 (|#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1374 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)))
+((-1677 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|)) 61)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-522) (-795) (-140)) (-411 |#1|)) (T -413))
+((-1677 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3)) (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-413 *4 *5)))))
+(-10 -7 (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3055 (((-1186)) 19)) (-3356 (((-1095 (-388 (-530))) |#2| (-570 |#2|)) 41) (((-388 (-530)) |#2|) 25)))
+(((-414 |#1| |#2|) (-10 -7 (-15 -3356 ((-388 (-530)) |#2|)) (-15 -3356 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -3055 ((-1186)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|)) (T -414))
+((-3055 (*1 *2) (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186)) (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4)))))
+(-10 -7 (-15 -3356 ((-388 (-530)) |#2|)) (-15 -3356 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -3055 ((-1186))))
+((-2597 (((-110) $) 28)) (-1587 (((-110) $) 30)) (-1298 (((-110) $) 31)) (-2666 (((-110) $) 34)) (-3108 (((-110) $) 29)) (-2138 (((-110) $) 33)) (-2366 (((-804) $) 18) (($ (-1082)) 27) (($ (-1099)) 23) (((-1099) $) 22) (((-1031) $) 21)) (-4086 (((-110) $) 32)) (-2248 (((-110) $ $) 15)))
+(((-415) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2366 ((-1031) $)) (-15 -2597 ((-110) $)) (-15 -3108 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2666 ((-110) $)) (-15 -4086 ((-110) $)) (-15 -1587 ((-110) $)) (-15 -2248 ((-110) $ $))))) (T -415))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-415)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-415)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2366 ((-1031) $)) (-15 -2597 ((-110) $)) (-15 -3108 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2666 ((-110) $)) (-15 -4086 ((-110) $)) (-15 -1587 ((-110) $)) (-15 -2248 ((-110) $ $))))
+((-4240 (((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|) 70)) (-2815 (((-399 |#3|) |#3|) 34)) (-2683 (((-3 (-399 (-1095 (-47))) "failed") |#3|) 46 (|has| |#2| (-975 (-47))))) (-4012 (((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|) 37)))
+(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -2815 ((-399 |#3|) |#3|)) (-15 -4240 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -4012 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2683 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|) (-1157 |#2|)) (T -416))
+((-2683 (*1 *2 *3) (|partial| -12 (-4 *5 (-975 (-47))) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-4240 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(-10 -7 (-15 -2815 ((-399 |#3|) |#3|)) (-15 -4240 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -4012 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2683 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-3753 (((-1082) $ (-1082)) NIL)) (-3102 (($ $ (-1082)) NIL)) (-1214 (((-1082) $) NIL)) (-1495 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3036 (((-1186) (-1082)) 9)) (-3229 (((-1186) (-1082)) 10)) (-1562 (((-1186)) 11)) (-2366 (((-804) $) NIL)) (-3422 (($ $) 35)) (-2248 (((-110) $ $) NIL)))
+(((-417) (-13 (-345 (-369) (-1082)) (-10 -7 (-15 -1495 ((-369) (-369) (-369))) (-15 -1495 ((-369) (-369))) (-15 -3036 ((-1186) (-1082))) (-15 -3229 ((-1186) (-1082))) (-15 -1562 ((-1186)))))) (T -417))
+((-1495 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-1562 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
+(-13 (-345 (-369) (-1082)) (-10 -7 (-15 -1495 ((-369) (-369) (-369))) (-15 -1495 ((-369) (-369))) (-15 -3036 ((-1186) (-1082))) (-15 -3229 ((-1186) (-1082))) (-15 -1562 ((-1186)))))
+((-2352 (((-110) $ $) NIL)) (-3076 (((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $) 11)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1314 (($) 32)) (-2303 (($) 38)) (-3926 (($) 34)) (-2463 (($) 36)) (-2797 (($) 33)) (-2573 (($) 35)) (-2341 (($) 37)) (-3240 (((-110) $) 8)) (-3537 (((-597 (-893 (-530))) $) 19)) (-2377 (($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110)) 28)) (-2366 (((-804) $) 23) (($ (-415)) 29)) (-2248 (((-110) $ $) NIL)))
+(((-418) (-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -2366 ($ (-415))) (-15 -3076 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -3537 ((-597 (-893 (-530))) $)) (-15 -3240 ((-110) $)) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110))) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110))) (-15 -1314 ($)) (-15 -2797 ($)) (-15 -3926 ($)) (-15 -2303 ($)) (-15 -2573 ($)) (-15 -2463 ($)) (-15 -2341 ($))))) (T -418))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-418)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-418)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *3 (-597 (-1099))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-110)) (-5 *1 (-418)))) (-1314 (*1 *1) (-5 *1 (-418))) (-2797 (*1 *1) (-5 *1 (-418))) (-3926 (*1 *1) (-5 *1 (-418))) (-2303 (*1 *1) (-5 *1 (-418))) (-2573 (*1 *1) (-5 *1 (-418))) (-2463 (*1 *1) (-5 *1 (-418))) (-2341 (*1 *1) (-5 *1 (-418))))
+(-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -2366 ($ (-415))) (-15 -3076 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -3537 ((-597 (-893 (-530))) $)) (-15 -3240 ((-110) $)) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110))) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110))) (-15 -1314 ($)) (-15 -2797 ($)) (-15 -3926 ($)) (-15 -2303 ($)) (-15 -2573 ($)) (-15 -2463 ($)) (-15 -2341 ($))))
+((-2352 (((-110) $ $) NIL)) (-3907 (((-1099) $) 8)) (-1424 (((-1082) $) 16)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 13)))
+(((-419 |#1|) (-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $)))) (-1099)) (T -419))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-419 *3)) (-14 *3 *2))))
+(-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $))))
+((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-1181 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 11)))
(((-420) (-133)) (T -420))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-647))) (-4 *1 (-420)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-420)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-4 *1 (-420)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-1181 (-647)))) (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-311))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-647))) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-420)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-1181 (-647)))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))))))
(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-3012 (((-3 $ "failed") (-1181 (-297 (-360)))) 21) (((-3 $ "failed") (-1181 (-297 (-530)))) 19) (((-3 $ "failed") (-1181 (-893 (-360)))) 17) (((-3 $ "failed") (-1181 (-893 (-530)))) 15) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 11)) (-2446 (($ (-1181 (-297 (-360)))) 22) (($ (-1181 (-297 (-530)))) 20) (($ (-1181 (-893 (-360)))) 18) (($ (-1181 (-893 (-530)))) 16) (($ (-1181 (-388 (-893 (-360))))) 14) (($ (-1181 (-388 (-893 (-530))))) 12)) (-3057 (((-1186) $) 7)) (-2258 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) 23)))
+((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 21) (((-3 $ "failed") (-1181 (-297 (-530)))) 19) (((-3 $ "failed") (-1181 (-893 (-360)))) 17) (((-3 $ "failed") (-1181 (-893 (-530)))) 15) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 11)) (-2585 (($ (-1181 (-297 (-360)))) 22) (($ (-1181 (-297 (-530)))) 20) (($ (-1181 (-893 (-360)))) 18) (($ (-1181 (-893 (-530)))) 16) (($ (-1181 (-388 (-893 (-360))))) 14) (($ (-1181 (-388 (-893 (-530))))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
(((-421) (-133)) (T -421))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-421)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311))))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))))
-(-13 (-376) (-10 -8 (-15 -2258 ($ (-597 (-311)))) (-15 -2258 ($ (-311))) (-15 -2258 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))) (-15 -2446 ($ (-1181 (-297 (-360))))) (-15 -3012 ((-3 $ "failed") (-1181 (-297 (-360))))) (-15 -2446 ($ (-1181 (-297 (-530))))) (-15 -3012 ((-3 $ "failed") (-1181 (-297 (-530))))) (-15 -2446 ($ (-1181 (-893 (-360))))) (-15 -3012 ((-3 $ "failed") (-1181 (-893 (-360))))) (-15 -2446 ($ (-1181 (-893 (-530))))) (-15 -3012 ((-3 $ "failed") (-1181 (-893 (-530))))) (-15 -2446 ($ (-1181 (-388 (-893 (-360)))))) (-15 -3012 ((-3 $ "failed") (-1181 (-388 (-893 (-360)))))) (-15 -2446 ($ (-1181 (-388 (-893 (-530)))))) (-15 -3012 ((-3 $ "failed") (-1181 (-388 (-893 (-530))))))))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-421)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))))
+(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-1181 (-297 (-360))))) (-15 -3139 ((-3 $ "failed") (-1181 (-297 (-360))))) (-15 -2585 ($ (-1181 (-297 (-530))))) (-15 -3139 ((-3 $ "failed") (-1181 (-297 (-530))))) (-15 -2585 ($ (-1181 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-1181 (-893 (-360))))) (-15 -2585 ($ (-1181 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-1181 (-893 (-530))))) (-15 -2585 ($ (-1181 (-388 (-893 (-360)))))) (-15 -3139 ((-3 $ "failed") (-1181 (-388 (-893 (-360)))))) (-15 -2585 ($ (-1181 (-388 (-893 (-530)))))) (-15 -3139 ((-3 $ "failed") (-1181 (-388 (-893 (-530))))))))
(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-2681 (((-110)) 17)) (-2690 (((-110) (-110)) 18)) (-2701 (((-110)) 13)) (-2712 (((-110) (-110)) 14)) (-2733 (((-110)) 15)) (-2743 (((-110) (-110)) 16)) (-2652 (((-862) (-862)) 21) (((-862)) 20)) (-2663 (((-719) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530))))) 42)) (-2642 (((-862) (-862)) 23) (((-862)) 22)) (-2672 (((-2 (|:| -1853 (-530)) (|:| -4162 (-597 |#1|))) |#1|) 62)) (-2632 (((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530))))))) 126)) (-2114 (((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110)) 152)) (-2101 (((-399 |#1|) |#1| (-719) (-719)) 165) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 162) (((-399 |#1|) |#1| (-597 (-719))) 164) (((-399 |#1|) |#1| (-719)) 163) (((-399 |#1|) |#1|) 161)) (-2867 (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110)) 167) (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719)) 168) (((-3 |#1| "failed") (-862) |#1| (-597 (-719))) 170) (((-3 |#1| "failed") (-862) |#1| (-719)) 169) (((-3 |#1| "failed") (-862) |#1|) 171)) (-2473 (((-399 |#1|) |#1| (-719) (-719)) 160) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 156) (((-399 |#1|) |#1| (-597 (-719))) 158) (((-399 |#1|) |#1| (-719)) 157) (((-399 |#1|) |#1|) 155)) (-2722 (((-110) |#1|) 37)) (-2859 (((-686 (-719)) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530))))) 67)) (-2753 (((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)) 154)))
-(((-422 |#1|) (-10 -7 (-15 -2632 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))))) (-15 -2859 ((-686 (-719)) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))))) (-15 -2642 ((-862))) (-15 -2642 ((-862) (-862))) (-15 -2652 ((-862))) (-15 -2652 ((-862) (-862))) (-15 -2663 ((-719) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))))) (-15 -2672 ((-2 (|:| -1853 (-530)) (|:| -4162 (-597 |#1|))) |#1|)) (-15 -2681 ((-110))) (-15 -2690 ((-110) (-110))) (-15 -2701 ((-110))) (-15 -2712 ((-110) (-110))) (-15 -2722 ((-110) |#1|)) (-15 -2733 ((-110))) (-15 -2743 ((-110) (-110))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2473 ((-399 |#1|) |#1| (-719))) (-15 -2473 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2473 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2473 ((-399 |#1|) |#1| (-719) (-719))) (-15 -2101 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1| (-719))) (-15 -2101 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2101 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2101 ((-399 |#1|) |#1| (-719) (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1|)) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -2114 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110))) (-15 -2753 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)))) (-1157 (-530))) (T -422))
-((-2753 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2114 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2867 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-2867 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-2867 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-2867 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-2867 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-2101 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2101 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2101 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2733 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2722 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2701 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2681 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2672 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1853 (-530)) (|:| -4162 (-597 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2473 *4) (|:| -3409 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2652 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2642 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2473 *4) (|:| -3409 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| *4) (|:| -3001 (-530))))))) (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
-(-10 -7 (-15 -2632 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))))) (-15 -2859 ((-686 (-719)) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))))) (-15 -2642 ((-862))) (-15 -2642 ((-862) (-862))) (-15 -2652 ((-862))) (-15 -2652 ((-862) (-862))) (-15 -2663 ((-719) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))))) (-15 -2672 ((-2 (|:| -1853 (-530)) (|:| -4162 (-597 |#1|))) |#1|)) (-15 -2681 ((-110))) (-15 -2690 ((-110) (-110))) (-15 -2701 ((-110))) (-15 -2712 ((-110) (-110))) (-15 -2722 ((-110) |#1|)) (-15 -2733 ((-110))) (-15 -2743 ((-110) (-110))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2473 ((-399 |#1|) |#1| (-719))) (-15 -2473 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2473 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2473 ((-399 |#1|) |#1| (-719) (-719))) (-15 -2101 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1| (-719))) (-15 -2101 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2101 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2101 ((-399 |#1|) |#1| (-719) (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1|)) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -2867 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -2114 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110))) (-15 -2753 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110) (-1029 (-719)) (-719))))
-((-2798 (((-530) |#2|) 48) (((-530) |#2| (-719)) 47)) (-2784 (((-530) |#2|) 55)) (-2810 ((|#3| |#2|) 25)) (-1717 ((|#3| |#2| (-862)) 14)) (-2171 ((|#3| |#2|) 15)) (-2822 ((|#3| |#2|) 9)) (-4150 ((|#3| |#2|) 10)) (-2774 ((|#3| |#2| (-862)) 62) ((|#3| |#2|) 30)) (-2763 (((-530) |#2|) 57)))
-(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -2763 ((-530) |#2|)) (-15 -2774 (|#3| |#2|)) (-15 -2774 (|#3| |#2| (-862))) (-15 -2784 ((-530) |#2|)) (-15 -2798 ((-530) |#2| (-719))) (-15 -2798 ((-530) |#2|)) (-15 -1717 (|#3| |#2| (-862))) (-15 -2810 (|#3| |#2|)) (-15 -2822 (|#3| |#2|)) (-15 -4150 (|#3| |#2|)) (-15 -2171 (|#3| |#2|))) (-984) (-1157 |#1|) (-13 (-385) (-975 |#1|) (-344) (-1121) (-266))) (T -423))
-((-2171 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2822 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2810 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1717 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-2798 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-2798 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5)) (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266))))) (-2784 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-2774 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2763 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(-10 -7 (-15 -2763 ((-530) |#2|)) (-15 -2774 (|#3| |#2|)) (-15 -2774 (|#3| |#2| (-862))) (-15 -2784 ((-530) |#2|)) (-15 -2798 ((-530) |#2| (-719))) (-15 -2798 ((-530) |#2|)) (-15 -1717 (|#3| |#2| (-862))) (-15 -2810 (|#3| |#2|)) (-15 -2822 (|#3| |#2|)) (-15 -4150 (|#3| |#2|)) (-15 -2171 (|#3| |#2|)))
-((-1961 ((|#2| (-1181 |#1|)) 36)) (-2846 ((|#2| |#2| |#1|) 49)) (-2835 ((|#2| |#2| |#1|) 41)) (-4093 ((|#2| |#2|) 38)) (-4095 (((-110) |#2|) 30)) (-2880 (((-597 |#2|) (-862) (-399 |#2|)) 17)) (-2867 ((|#2| (-862) (-399 |#2|)) 21)) (-2859 (((-686 (-719)) (-399 |#2|)) 25)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -4095 ((-110) |#2|)) (-15 -1961 (|#2| (-1181 |#1|))) (-15 -4093 (|#2| |#2|)) (-15 -2835 (|#2| |#2| |#1|)) (-15 -2846 (|#2| |#2| |#1|)) (-15 -2859 ((-686 (-719)) (-399 |#2|))) (-15 -2867 (|#2| (-862) (-399 |#2|))) (-15 -2880 ((-597 |#2|) (-862) (-399 |#2|)))) (-984) (-1157 |#1|)) (T -424))
-((-2880 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))) (-2846 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-2835 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4)) (-5 *1 (-424 *4 *2)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -4095 ((-110) |#2|)) (-15 -1961 (|#2| (-1181 |#1|))) (-15 -4093 (|#2| |#2|)) (-15 -2835 (|#2| |#2| |#1|)) (-15 -2846 (|#2| |#2| |#1|)) (-15 -2859 ((-686 (-719)) (-399 |#2|))) (-15 -2867 (|#2| (-862) (-399 |#2|))) (-15 -2880 ((-597 |#2|) (-862) (-399 |#2|))))
-((-1753 (((-719)) 41)) (-1789 (((-719)) 23 (|has| |#1| (-385))) (((-719) (-719)) 22 (|has| |#1| (-385)))) (-1779 (((-530) |#1|) 18 (|has| |#1| (-385)))) (-1769 (((-530) |#1|) 20 (|has| |#1| (-385)))) (-1745 (((-719)) 40) (((-719) (-719)) 39)) (-2889 ((|#1| (-719) (-530)) 29)) (-1763 (((-1186)) 43)))
-(((-425 |#1|) (-10 -7 (-15 -2889 (|#1| (-719) (-530))) (-15 -1745 ((-719) (-719))) (-15 -1745 ((-719))) (-15 -1753 ((-719))) (-15 -1763 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -1769 ((-530) |#1|)) (-15 -1779 ((-530) |#1|)) (-15 -1789 ((-719) (-719))) (-15 -1789 ((-719)))) |%noBranch|)) (-984)) (T -425))
-((-1789 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1779 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1769 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-1763 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1753 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1745 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
-(-10 -7 (-15 -2889 (|#1| (-719) (-530))) (-15 -1745 ((-719) (-719))) (-15 -1745 ((-719))) (-15 -1753 ((-719))) (-15 -1763 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -1769 ((-530) |#1|)) (-15 -1779 ((-530) |#1|)) (-15 -1789 ((-719) (-719))) (-15 -1789 ((-719)))) |%noBranch|))
-((-1797 (((-597 (-530)) (-530)) 61)) (-2049 (((-110) (-159 (-530))) 65)) (-2473 (((-399 (-159 (-530))) (-159 (-530))) 60)))
-(((-426) (-10 -7 (-15 -2473 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -1797 ((-597 (-530)) (-530))) (-15 -2049 ((-110) (-159 (-530)))))) (T -426))
-((-2049 (*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 (-159 (-530)))) (-5 *1 (-426)) (-5 *3 (-159 (-530))))))
-(-10 -7 (-15 -2473 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -1797 ((-597 (-530)) (-530))) (-15 -2049 ((-110) (-159 (-530)))))
-((-1803 ((|#4| |#4| (-597 |#4|)) 61)) (-1812 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 17) (((-597 |#4|) (-597 |#4|) (-1082)) 16) (((-597 |#4|) (-597 |#4|)) 11)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1803 (|#4| |#4| (-597 |#4|))) (-15 -1812 ((-597 |#4|) (-597 |#4|))) (-15 -1812 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1812 ((-597 |#4|) (-597 |#4|) (-1082) (-1082)))) (-289) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -427))
-((-1812 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1803 (|#4| |#4| (-597 |#4|))) (-15 -1812 ((-597 |#4|) (-597 |#4|))) (-15 -1812 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1812 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))))
-((-1829 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 73) (((-597 (-597 |#4|)) (-597 |#4|)) 72) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110)) 66) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|)) 67)) (-1820 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 42) (((-597 (-597 |#4|)) (-597 |#4|)) 63)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1820 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-110)))) (-13 (-289) (-140)) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -428))
-((-1829 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1829 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-1829 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(-10 -7 (-15 -1820 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1820 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1829 ((-597 (-597 |#4|)) (-597 |#4|) (-110))))
-((-2050 (((-719) |#4|) 12)) (-1940 (((-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|)))) 31)) (-1959 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1950 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1846 ((|#4| |#4| (-597 |#4|)) 40)) (-1921 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|)) 70)) (-1988 (((-1186) |#4|) 42)) (-2015 (((-1186) (-597 |#4|)) 51)) (-1998 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530)) 48)) (-2023 (((-1186) (-530)) 79)) (-1969 (((-597 |#4|) (-597 |#4|)) 77)) (-2041 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|)) |#4| (-719)) 25)) (-1978 (((-530) |#4|) 78)) (-1931 ((|#4| |#4|) 29)) (-1855 (((-597 |#4|) (-597 |#4|) (-530) (-530)) 56)) (-2006 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530)) 89)) (-2031 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1864 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1911 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1902 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1874 (((-110) |#2| |#2|) 57)) (-1893 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1884 (((-110) |#2| |#2| |#2| |#2|) 60)) (-1838 ((|#4| |#4| (-597 |#4|)) 71)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1838 (|#4| |#4| (-597 |#4|))) (-15 -1846 (|#4| |#4| (-597 |#4|))) (-15 -1855 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -1864 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1874 ((-110) |#2| |#2|)) (-15 -1884 ((-110) |#2| |#2| |#2| |#2|)) (-15 -1893 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1902 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1911 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1921 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -1931 (|#4| |#4|)) (-15 -1940 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|))))) (-15 -1950 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1959 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1969 ((-597 |#4|) (-597 |#4|))) (-15 -1978 ((-530) |#4|)) (-15 -1988 ((-1186) |#4|)) (-15 -1998 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -2006 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -2015 ((-1186) (-597 |#4|))) (-15 -2023 ((-1186) (-530))) (-15 -2031 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2041 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|)) |#4| (-719))) (-15 -2050 ((-719) |#4|))) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -429))
-((-2050 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3770 *4))) (-5 *5 (-719)) (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-429 *6 *7 *8 *4)))) (-2031 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2006 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-1998 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-795)))) (-1940 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 *3)))) (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))) (-1931 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-429 *5 *6 *7 *3)))) (-1911 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *4 *3 *5 *6)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-1893 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *3)))) (-1884 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1855 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1846 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))) (-1838 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1838 (|#4| |#4| (-597 |#4|))) (-15 -1846 (|#4| |#4| (-597 |#4|))) (-15 -1855 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -1864 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1874 ((-110) |#2| |#2|)) (-15 -1884 ((-110) |#2| |#2| |#2| |#2|)) (-15 -1893 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1902 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1911 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1921 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -1931 (|#4| |#4|)) (-15 -1940 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|))))) (-15 -1950 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1959 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1969 ((-597 |#4|) (-597 |#4|))) (-15 -1978 ((-530) |#4|)) (-15 -1988 ((-1186) |#4|)) (-15 -1998 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -2006 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -2015 ((-1186) (-597 |#4|))) (-15 -2023 ((-1186) (-530))) (-15 -2031 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2041 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3770 |#4|)) |#4| (-719))) (-15 -2050 ((-719) |#4|)))
-((-3599 ((|#4| |#4| (-597 |#4|)) 22 (|has| |#1| (-344)))) (-2178 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 41) (((-597 |#4|) (-597 |#4|) (-1082)) 40) (((-597 |#4|) (-597 |#4|)) 35)))
-(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2178 ((-597 |#4|) (-597 |#4|))) (-15 -2178 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -2178 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -3599 (|#4| |#4| (-597 |#4|))) |%noBranch|)) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -430))
-((-3599 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))) (-2178 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-2178 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2178 ((-597 |#4|) (-597 |#4|))) (-15 -2178 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -2178 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -3599 (|#4| |#4| (-597 |#4|))) |%noBranch|))
-((-2072 (($ $ $) 14) (($ (-597 $)) 21)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 41)) (-2108 (($ $ $) NIL) (($ (-597 $)) 22)))
-(((-431 |#1|) (-10 -8 (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2072 (|#1| (-597 |#1|))) (-15 -2072 (|#1| |#1| |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|))) (-432)) (T -431))
-NIL
-(-10 -8 (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2072 (|#1| (-597 |#1|))) (-15 -2072 (|#1| |#1| |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2108 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-3562 (((-3 $ "failed") $ $) 42)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1567 (((-110)) 17)) (-4039 (((-110) (-110)) 18)) (-2816 (((-110)) 13)) (-1409 (((-110) (-110)) 14)) (-2807 (((-110)) 15)) (-2357 (((-110) (-110)) 16)) (-3994 (((-862) (-862)) 21) (((-862)) 20)) (-3577 (((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530))))) 42)) (-1363 (((-862) (-862)) 23) (((-862)) 22)) (-2024 (((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|) 62)) (-3764 (((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530))))))) 126)) (-4163 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)) 152)) (-1550 (((-399 |#1|) |#1| (-719) (-719)) 165) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 162) (((-399 |#1|) |#1| (-597 (-719))) 164) (((-399 |#1|) |#1| (-719)) 163) (((-399 |#1|) |#1|) 161)) (-1958 (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110)) 167) (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719)) 168) (((-3 |#1| "failed") (-862) |#1| (-597 (-719))) 170) (((-3 |#1| "failed") (-862) |#1| (-719)) 169) (((-3 |#1| "failed") (-862) |#1|) 171)) (-2611 (((-399 |#1|) |#1| (-719) (-719)) 160) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 156) (((-399 |#1|) |#1| (-597 (-719))) 158) (((-399 |#1|) |#1| (-719)) 157) (((-399 |#1|) |#1|) 155)) (-4142 (((-110) |#1|) 37)) (-3332 (((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530))))) 67)) (-3328 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)) 154)))
+(((-422 |#1|) (-10 -7 (-15 -3764 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))))) (-15 -3332 ((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -1363 ((-862))) (-15 -1363 ((-862) (-862))) (-15 -3994 ((-862))) (-15 -3994 ((-862) (-862))) (-15 -3577 ((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -2024 ((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|)) (-15 -1567 ((-110))) (-15 -4039 ((-110) (-110))) (-15 -2816 ((-110))) (-15 -1409 ((-110) (-110))) (-15 -4142 ((-110) |#1|)) (-15 -2807 ((-110))) (-15 -2357 ((-110) (-110))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1| (-719))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2611 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1| (-719))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -1550 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))) (-15 -3328 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)))) (-1157 (-530))) (T -422))
+((-3328 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2807 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2816 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1567 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2024 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4020 (-530)) (|:| -3721 (-597 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3994 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1363 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *4) (|:| -2075 (-530))))))) (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
+(-10 -7 (-15 -3764 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))))) (-15 -3332 ((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -1363 ((-862))) (-15 -1363 ((-862) (-862))) (-15 -3994 ((-862))) (-15 -3994 ((-862) (-862))) (-15 -3577 ((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -2024 ((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|)) (-15 -1567 ((-110))) (-15 -4039 ((-110) (-110))) (-15 -2816 ((-110))) (-15 -1409 ((-110) (-110))) (-15 -4142 ((-110) |#1|)) (-15 -2807 ((-110))) (-15 -2357 ((-110) (-110))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1| (-719))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2611 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1| (-719))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -1550 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))) (-15 -3328 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719))))
+((-2921 (((-530) |#2|) 48) (((-530) |#2| (-719)) 47)) (-4172 (((-530) |#2|) 55)) (-1590 ((|#3| |#2|) 25)) (-2376 ((|#3| |#2| (-862)) 14)) (-4109 ((|#3| |#2|) 15)) (-2542 ((|#3| |#2|) 9)) (-4156 ((|#3| |#2|) 10)) (-1450 ((|#3| |#2| (-862)) 62) ((|#3| |#2|) 30)) (-3065 (((-530) |#2|) 57)))
+(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3065 ((-530) |#2|)) (-15 -1450 (|#3| |#2|)) (-15 -1450 (|#3| |#2| (-862))) (-15 -4172 ((-530) |#2|)) (-15 -2921 ((-530) |#2| (-719))) (-15 -2921 ((-530) |#2|)) (-15 -2376 (|#3| |#2| (-862))) (-15 -1590 (|#3| |#2|)) (-15 -2542 (|#3| |#2|)) (-15 -4156 (|#3| |#2|)) (-15 -4109 (|#3| |#2|))) (-984) (-1157 |#1|) (-13 (-385) (-975 |#1|) (-344) (-1121) (-266))) (T -423))
+((-4109 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5)) (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266))))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
+(-10 -7 (-15 -3065 ((-530) |#2|)) (-15 -1450 (|#3| |#2|)) (-15 -1450 (|#3| |#2| (-862))) (-15 -4172 ((-530) |#2|)) (-15 -2921 ((-530) |#2| (-719))) (-15 -2921 ((-530) |#2|)) (-15 -2376 (|#3| |#2| (-862))) (-15 -1590 (|#3| |#2|)) (-15 -2542 (|#3| |#2|)) (-15 -4156 (|#3| |#2|)) (-15 -4109 (|#3| |#2|)))
+((-1377 ((|#2| (-1181 |#1|)) 36)) (-1617 ((|#2| |#2| |#1|) 49)) (-1828 ((|#2| |#2| |#1|) 41)) (-4106 ((|#2| |#2|) 38)) (-1841 (((-110) |#2|) 30)) (-1730 (((-597 |#2|) (-862) (-399 |#2|)) 17)) (-1958 ((|#2| (-862) (-399 |#2|)) 21)) (-3332 (((-686 (-719)) (-399 |#2|)) 25)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -1841 ((-110) |#2|)) (-15 -1377 (|#2| (-1181 |#1|))) (-15 -4106 (|#2| |#2|)) (-15 -1828 (|#2| |#2| |#1|)) (-15 -1617 (|#2| |#2| |#1|)) (-15 -3332 ((-686 (-719)) (-399 |#2|))) (-15 -1958 (|#2| (-862) (-399 |#2|))) (-15 -1730 ((-597 |#2|) (-862) (-399 |#2|)))) (-984) (-1157 |#1|)) (T -424))
+((-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))) (-1617 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-1828 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4)) (-5 *1 (-424 *4 *2)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -1841 ((-110) |#2|)) (-15 -1377 (|#2| (-1181 |#1|))) (-15 -4106 (|#2| |#2|)) (-15 -1828 (|#2| |#2| |#1|)) (-15 -1617 (|#2| |#2| |#1|)) (-15 -3332 ((-686 (-719)) (-399 |#2|))) (-15 -1958 (|#2| (-862) (-399 |#2|))) (-15 -1730 ((-597 |#2|) (-862) (-399 |#2|))))
+((-3875 (((-719)) 41)) (-3793 (((-719)) 23 (|has| |#1| (-385))) (((-719) (-719)) 22 (|has| |#1| (-385)))) (-4230 (((-530) |#1|) 18 (|has| |#1| (-385)))) (-2895 (((-530) |#1|) 20 (|has| |#1| (-385)))) (-1302 (((-719)) 40) (((-719) (-719)) 39)) (-3543 ((|#1| (-719) (-530)) 29)) (-3427 (((-1186)) 43)))
+(((-425 |#1|) (-10 -7 (-15 -3543 (|#1| (-719) (-530))) (-15 -1302 ((-719) (-719))) (-15 -1302 ((-719))) (-15 -3875 ((-719))) (-15 -3427 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -2895 ((-530) |#1|)) (-15 -4230 ((-530) |#1|)) (-15 -3793 ((-719) (-719))) (-15 -3793 ((-719)))) |%noBranch|)) (-984)) (T -425))
+((-3793 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-4230 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-2895 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-3427 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-3875 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1302 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1302 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
+(-10 -7 (-15 -3543 (|#1| (-719) (-530))) (-15 -1302 ((-719) (-719))) (-15 -1302 ((-719))) (-15 -3875 ((-719))) (-15 -3427 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -2895 ((-530) |#1|)) (-15 -4230 ((-530) |#1|)) (-15 -3793 ((-719) (-719))) (-15 -3793 ((-719)))) |%noBranch|))
+((-3413 (((-597 (-530)) (-530)) 61)) (-3295 (((-110) (-159 (-530))) 65)) (-2611 (((-399 (-159 (-530))) (-159 (-530))) 60)))
+(((-426) (-10 -7 (-15 -2611 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -3413 ((-597 (-530)) (-530))) (-15 -3295 ((-110) (-159 (-530)))))) (T -426))
+((-3295 (*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 (-159 (-530)))) (-5 *1 (-426)) (-5 *3 (-159 (-530))))))
+(-10 -7 (-15 -2611 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -3413 ((-597 (-530)) (-530))) (-15 -3295 ((-110) (-159 (-530)))))
+((-2850 ((|#4| |#4| (-597 |#4|)) 61)) (-1799 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 17) (((-597 |#4|) (-597 |#4|) (-1082)) 16) (((-597 |#4|) (-597 |#4|)) 11)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2850 (|#4| |#4| (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082) (-1082)))) (-289) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -427))
+((-1799 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6)))) (-2850 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2850 (|#4| |#4| (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))))
+((-2685 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 73) (((-597 (-597 |#4|)) (-597 |#4|)) 72) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110)) 66) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|)) 67)) (-1844 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 42) (((-597 (-597 |#4|)) (-597 |#4|)) 63)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-110)))) (-13 (-289) (-140)) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -428))
+((-2685 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-2685 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(-10 -7 (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-110))))
+((-3369 (((-719) |#4|) 12)) (-2443 (((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)))) 31)) (-4242 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1866 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1525 ((|#4| |#4| (-597 |#4|)) 40)) (-3629 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|)) 70)) (-2852 (((-1186) |#4|) 42)) (-4134 (((-1186) (-597 |#4|)) 51)) (-2310 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530)) 48)) (-2692 (((-1186) (-530)) 79)) (-3711 (((-597 |#4|) (-597 |#4|)) 77)) (-3743 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719)) 25)) (-3271 (((-530) |#4|) 78)) (-2066 ((|#4| |#4|) 29)) (-3158 (((-597 |#4|) (-597 |#4|) (-530) (-530)) 56)) (-1443 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530)) 89)) (-2327 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3024 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-4035 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1323 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1824 (((-110) |#2| |#2|) 57)) (-2958 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3224 (((-110) |#2| |#2| |#2| |#2|) 60)) (-1850 ((|#4| |#4| (-597 |#4|)) 71)))
+(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1850 (|#4| |#4| (-597 |#4|))) (-15 -1525 (|#4| |#4| (-597 |#4|))) (-15 -3158 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -3024 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1824 ((-110) |#2| |#2|)) (-15 -3224 ((-110) |#2| |#2| |#2| |#2|)) (-15 -2958 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4035 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -2066 (|#4| |#4|)) (-15 -2443 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))))) (-15 -1866 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4242 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3711 ((-597 |#4|) (-597 |#4|))) (-15 -3271 ((-530) |#4|)) (-15 -2852 ((-1186) |#4|)) (-15 -2310 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -1443 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -4134 ((-1186) (-597 |#4|))) (-15 -2692 ((-1186) (-530))) (-15 -2327 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3743 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719))) (-15 -3369 ((-719) |#4|))) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -429))
+((-3369 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3109 *4))) (-5 *5 (-719)) (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-429 *6 *7 *8 *4)))) (-2327 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1443 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-2310 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-2852 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-4242 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-795)))) (-2443 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 *3)))) (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))) (-2066 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-429 *5 *6 *7 *3)))) (-4035 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *4 *3 *5 *6)))) (-1323 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-2958 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *3)))) (-3224 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-1824 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-3158 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1850 (|#4| |#4| (-597 |#4|))) (-15 -1525 (|#4| |#4| (-597 |#4|))) (-15 -3158 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -3024 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1824 ((-110) |#2| |#2|)) (-15 -3224 ((-110) |#2| |#2| |#2| |#2|)) (-15 -2958 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4035 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -2066 (|#4| |#4|)) (-15 -2443 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))))) (-15 -1866 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4242 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3711 ((-597 |#4|) (-597 |#4|))) (-15 -3271 ((-530) |#4|)) (-15 -2852 ((-1186) |#4|)) (-15 -2310 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -1443 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -4134 ((-1186) (-597 |#4|))) (-15 -2692 ((-1186) (-530))) (-15 -2327 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3743 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719))) (-15 -3369 ((-719) |#4|)))
+((-1427 ((|#4| |#4| (-597 |#4|)) 22 (|has| |#1| (-344)))) (-1241 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 41) (((-597 |#4|) (-597 |#4|) (-1082)) 40) (((-597 |#4|) (-597 |#4|)) 35)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1241 ((-597 |#4|) (-597 |#4|))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -1427 (|#4| |#4| (-597 |#4|))) |%noBranch|)) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -430))
+((-1427 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))) (-1241 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1241 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1241 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1241 ((-597 |#4|) (-597 |#4|))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -1427 (|#4| |#4| (-597 |#4|))) |%noBranch|))
+((-2170 (($ $ $) 14) (($ (-597 $)) 21)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 41)) (-2204 (($ $ $) NIL) (($ (-597 $)) 22)))
+(((-431 |#1|) (-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2170 (|#1| (-597 |#1|))) (-15 -2170 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|))) (-432)) (T -431))
+NIL
+(-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2170 (|#1| (-597 |#1|))) (-15 -2170 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-432) (-133)) (T -432))
-((-2108 (*1 *1 *1 *1) (-4 *1 (-432))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-2072 (*1 *1 *1 *1) (-4 *1 (-432))) (-2072 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432)))))
-(-13 (-522) (-10 -8 (-15 -2108 ($ $ $)) (-15 -2108 ($ (-597 $))) (-15 -2072 ($ $ $)) (-15 -2072 ($ (-597 $))) (-15 -3728 ((-1095 $) (-1095 $) (-1095 $)))))
+((-2204 (*1 *1 *1 *1) (-4 *1 (-432))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-2170 (*1 *1 *1 *1) (-4 *1 (-432))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432)))))
+(-13 (-522) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2204 ($ (-597 $))) (-15 -2170 ($ $ $)) (-15 -2170 ($ (-597 $))) (-15 -2569 ((-1095 $) (-1095 $) (-1095 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3251 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3337 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-1181 (-637 (-388 (-893 |#1|))))) NIL)) (-4007 (((-1181 $)) NIL)) (-3956 (($) NIL T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL)) (-3743 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3428 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-3987 (((-388 (-893 |#1|)) $) NIL)) (-3405 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-3093 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2150 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 84 (|has| |#1| (-522)))) (-3128 (($ $ (-862)) NIL)) (-3969 (((-388 (-893 |#1|)) $) NIL)) (-3764 (((-1095 (-388 (-893 |#1|))) $) 82 (|has| (-388 (-893 |#1|)) (-522)))) (-3453 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-3947 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-3886 (((-110)) NIL)) (-3477 (($ (-1181 (-388 (-893 |#1|))) (-1181 $)) 103) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-1673 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-4113 (((-862)) NIL)) (-3857 (((-110)) NIL)) (-3395 (($ $ (-862)) NIL)) (-3813 (((-110)) NIL)) (-3794 (((-110)) NIL)) (-3834 (((-110)) NIL)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL)) (-3753 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3441 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-3997 (((-388 (-893 |#1|)) $) NIL)) (-3416 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2197 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 83 (|has| |#1| (-522)))) (-3117 (($ $ (-862)) NIL)) (-3978 (((-388 (-893 |#1|)) $) NIL)) (-3773 (((-1095 (-388 (-893 |#1|))) $) 77 (|has| (-388 (-893 |#1|)) (-522)))) (-3464 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-3959 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-3896 (((-110)) NIL)) (-3443 (((-1082) $) NIL)) (-3803 (((-110)) NIL)) (-3824 (((-110)) NIL)) (-3843 (((-110)) NIL)) (-2485 (((-1046) $) NIL)) (-2080 (((-388 (-893 |#1|)) $ $) 71 (|has| |#1| (-522)))) (-2127 (((-388 (-893 |#1|)) $) 93 (|has| |#1| (-522)))) (-2116 (((-388 (-893 |#1|)) $) 95 (|has| |#1| (-522)))) (-2139 (((-1095 (-388 (-893 |#1|))) $) 88 (|has| |#1| (-522)))) (-2067 (((-388 (-893 |#1|))) 72 (|has| |#1| (-522)))) (-2103 (((-388 (-893 |#1|)) $ $) 64 (|has| |#1| (-522)))) (-2174 (((-388 (-893 |#1|)) $) 92 (|has| |#1| (-522)))) (-2160 (((-388 (-893 |#1|)) $) 94 (|has| |#1| (-522)))) (-2187 (((-1095 (-388 (-893 |#1|))) $) 87 (|has| |#1| (-522)))) (-2091 (((-388 (-893 |#1|))) 68 (|has| |#1| (-522)))) (-2207 (($) 101) (($ (-1099)) 107) (($ (-1181 (-1099))) 106) (($ (-1181 $)) 96) (($ (-1099) (-1181 $)) 105) (($ (-1181 (-1099)) (-1181 $)) 104)) (-3876 (((-110)) NIL)) (-1832 (((-388 (-893 |#1|)) $ (-530)) NIL)) (-3351 (((-1181 (-388 (-893 |#1|))) $ (-1181 $)) 98) (((-637 (-388 (-893 |#1|))) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 (-893 |#1|))) $) 40) (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL)) (-3173 (((-1181 (-388 (-893 |#1|))) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) 37)) (-2059 (((-597 (-893 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-597 (-893 (-388 (-893 |#1|))))) NIL) (((-597 (-893 |#1|)) (-1181 $)) 99 (|has| |#1| (-522))) (((-597 (-893 |#1|))) 100 (|has| |#1| (-522)))) (-1527 (($ $ $) NIL)) (-3938 (((-110)) NIL)) (-2258 (((-804) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-3853 (((-1181 $)) 60)) (-3785 (((-597 (-1181 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-1538 (($ $ $ $) NIL)) (-3918 (((-110)) NIL)) (-2857 (($ (-637 (-388 (-893 |#1|))) $) NIL)) (-1516 (($ $ $) NIL)) (-3928 (((-110)) NIL)) (-3907 (((-110)) NIL)) (-3867 (((-110)) NIL)) (-2943 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) 97)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 56) (($ $ (-388 (-893 |#1|))) NIL) (($ (-388 (-893 |#1|)) $) NIL) (($ (-1066 |#2| (-388 (-893 |#1|))) $) NIL)))
-(((-433 |#1| |#2| |#3| |#4|) (-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2258 ($ (-1181 (-388 (-893 |#1|))))) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -2216 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -2207 ($)) (-15 -2207 ($ (-1099))) (-15 -2207 ($ (-1181 (-1099)))) (-15 -2207 ($ (-1181 $))) (-15 -2207 ($ (-1099) (-1181 $))) (-15 -2207 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -2197 ((-1095 (-388 (-893 |#1|))))) (-15 -2187 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2174 ((-388 (-893 |#1|)) $)) (-15 -2160 ((-388 (-893 |#1|)) $)) (-15 -2150 ((-1095 (-388 (-893 |#1|))))) (-15 -2139 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2127 ((-388 (-893 |#1|)) $)) (-15 -2116 ((-388 (-893 |#1|)) $)) (-15 -2103 ((-388 (-893 |#1|)) $ $)) (-15 -2091 ((-388 (-893 |#1|)))) (-15 -2080 ((-388 (-893 |#1|)) $ $)) (-15 -2067 ((-388 (-893 |#1|)))) (-15 -2059 ((-597 (-893 |#1|)) (-1181 $))) (-15 -2059 ((-597 (-893 |#1|))))) |%noBranch|))) (-162) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -433))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 *3)))) (-4 *3 (-162)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))) (-2225 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3853 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2216 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3853 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2207 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862)) (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3))))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4))))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-2197 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2150 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2103 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2091 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2080 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2067 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-2059 (*1 *2) (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2258 ($ (-1181 (-388 (-893 |#1|))))) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -2216 ((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed"))) (-15 -2207 ($)) (-15 -2207 ($ (-1099))) (-15 -2207 ($ (-1181 (-1099)))) (-15 -2207 ($ (-1181 $))) (-15 -2207 ($ (-1099) (-1181 $))) (-15 -2207 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -2197 ((-1095 (-388 (-893 |#1|))))) (-15 -2187 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2174 ((-388 (-893 |#1|)) $)) (-15 -2160 ((-388 (-893 |#1|)) $)) (-15 -2150 ((-1095 (-388 (-893 |#1|))))) (-15 -2139 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2127 ((-388 (-893 |#1|)) $)) (-15 -2116 ((-388 (-893 |#1|)) $)) (-15 -2103 ((-388 (-893 |#1|)) $ $)) (-15 -2091 ((-388 (-893 |#1|)))) (-15 -2080 ((-388 (-893 |#1|)) $ $)) (-15 -2067 ((-388 (-893 |#1|)))) (-15 -2059 ((-597 (-893 |#1|)) (-1181 $))) (-15 -2059 ((-597 (-893 |#1|))))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 13)) (-2596 (((-597 (-806 |#1|)) $) 75)) (-2439 (((-1095 $) $ (-806 |#1|)) 46) (((-1095 |#2|) $) 118)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3031 (($ $) NIL (|has| |#2| (-522)))) (-3006 (((-110) $) NIL (|has| |#2| (-522)))) (-3667 (((-719) $) 21) (((-719) $ (-597 (-806 |#1|))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL (|has| |#2| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) 44) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2446 ((|#2| $) 42) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-2330 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1416 (($ $ (-597 (-530))) 80)) (-2425 (($ $) 68)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#2| (-850)))) (-2097 (($ $ |#2| |#3| $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) 58)) (-2586 (($ (-1095 |#2|) (-806 |#1|)) 123) (($ (-1095 $) (-806 |#1|)) 52)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) 59)) (-2575 (($ |#2| |#3|) 28) (($ $ (-806 |#1|) (-719)) 30) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-806 |#1|)) NIL)) (-3674 ((|#3| $) NIL) (((-719) $ (-806 |#1|)) 50) (((-597 (-719)) $ (-597 (-806 |#1|))) 57)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-2107 (($ (-1 |#3| |#3|) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-1367 (((-3 (-806 |#1|) "failed") $) 39)) (-2388 (($ $) NIL)) (-2402 ((|#2| $) 41)) (-2072 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3059 (-719))) "failed") $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) 40)) (-2375 ((|#2| $) 116)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) 87) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) 90) (($ $ (-806 |#1|) $) 85) (($ $ (-597 (-806 |#1|)) (-597 $)) 106)) (-2341 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3211 (($ $ (-806 |#1|)) 53) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3409 ((|#3| $) 67) (((-719) $ (-806 |#1|)) 37) (((-597 (-719)) $ (-597 (-806 |#1|))) 56)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2258 (((-804) $) 145) (($ (-530)) NIL) (($ |#2|) 86) (($ (-806 |#1|)) 31) (($ (-388 (-530))) NIL (-1476 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ |#3|) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#2| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 17 T CONST)) (-2955 (($) 25 T CONST)) (-3286 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 111)) (** (($ $ (-862)) NIL) (($ $ (-719)) 109)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 29) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-434 |#1| |#2| |#3|) (-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984) (-221 (-2167 |#1|) (-719))) (T -434))
-((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984)) (-4 *5 (-221 (-2167 *3) (-719))))))
-(-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530))))))
-((-2269 (((-110) |#1| (-597 |#2|)) 69)) (-2247 (((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|)) 78)) (-2259 (((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|))) 80)) (-4004 ((|#2| |#2| |#1|) 28)) (-2235 (((-719) |#2| (-597 |#2|)) 20)))
-(((-435 |#1| |#2|) (-10 -7 (-15 -4004 (|#2| |#2| |#1|)) (-15 -2235 ((-719) |#2| (-597 |#2|))) (-15 -2247 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -2259 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -2269 ((-110) |#1| (-597 |#2|)))) (-289) (-1157 |#1|)) (T -435))
-((-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-2259 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289)) (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))) (-2247 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4)) (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289)) (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))) (-4004 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -4004 (|#2| |#2| |#1|)) (-15 -2235 ((-719) |#2| (-597 |#2|))) (-15 -2247 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -2259 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -2269 ((-110) |#1| (-597 |#2|))))
-((-2473 (((-399 |#5|) |#5|) 24)))
-(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2473 ((-399 |#5|) |#5|))) (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099))))) (-741) (-522) (-522) (-890 |#4| |#2| |#1|)) (T -436))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-4 *5 (-741)) (-4 *7 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-522)) (-4 *3 (-890 *7 *5 *4)))))
-(-10 -7 (-15 -2473 ((-399 |#5|) |#5|)))
-((-1776 ((|#3|) 37)) (-3728 (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 33)))
-(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -1776 (|#3|))) (-741) (-795) (-850) (-890 |#3| |#1| |#2|)) (T -437))
-((-1776 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3728 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -1776 (|#3|)))
-((-2473 (((-399 (-1095 |#1|)) (-1095 |#1|)) 43)))
-(((-438 |#1|) (-10 -7 (-15 -2473 ((-399 (-1095 |#1|)) (-1095 |#1|)))) (-289)) (T -438))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1095 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1095 *4)))))
-(-10 -7 (-15 -2473 ((-399 (-1095 |#1|)) (-1095 |#1|))))
-((-2648 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719))) 42) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719))) 41) (((-51) |#2| (-1099) (-276 |#2|)) 35) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 28)) (-4148 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 80) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 79) (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 78) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 77) (((-51) |#2| (-1099) (-276 |#2|)) 72) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 71)) (-2338 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 66) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 64)) (-2659 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 48) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 47)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -2648 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2648 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2648 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2648 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2659 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2659 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2338 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2338 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -4148 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -4148 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -4148 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -439))
-((-4148 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) (-2338 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2338 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2659 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2648 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-719))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-719))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2648 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))))
-(-10 -7 (-15 -2648 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2648 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2648 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2648 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2659 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2659 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2338 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2338 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -4148 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -4148 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -4148 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -4148 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))))
-((-4004 ((|#2| |#2| |#1|) 15)) (-4193 (((-597 |#2|) |#2| (-597 |#2|) |#1| (-862)) 69)) (-2281 (((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862)) 60)))
-(((-440 |#1| |#2|) (-10 -7 (-15 -2281 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -4193 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -4004 (|#2| |#2| |#1|))) (-289) (-1157 |#1|)) (T -440))
-((-4004 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3)))) (-4193 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-2281 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5)) (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
-(-10 -7 (-15 -2281 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -4193 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -4004 (|#2| |#2| |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 28)) (-1909 (($ |#3|) 25)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) 32)) (-4205 (($ |#2| |#4| $) 33)) (-2575 (($ |#2| (-662 |#3| |#4| |#5|)) 24)) (-2388 (((-662 |#3| |#4| |#5|) $) 15)) (-4225 ((|#3| $) 19)) (-4236 ((|#4| $) 17)) (-2402 ((|#2| $) 29)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-4216 (($ |#2| |#3| |#4|) 26)) (-2943 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 34)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2388 ((-662 |#3| |#4| |#5|) $)) (-15 -4236 (|#4| $)) (-15 -4225 (|#3| $)) (-15 -2425 ($ $)) (-15 -2575 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -1909 ($ |#3|)) (-15 -4216 ($ |#2| |#3| |#4|)) (-15 -4205 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-597 (-1099)) (-162) (-795) (-221 (-2167 |#1|) (-719)) (-1 (-110) (-2 (|:| -1910 |#3|) (|:| -3059 |#4|)) (-2 (|:| -1910 |#3|) (|:| -3059 |#4|))) (-890 |#2| |#4| (-806 |#1|))) (T -441))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6)) (-2 (|:| -1910 *5) (|:| -3059 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *2 (-890 *4 *6 (-806 *3))))) (-2402 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2167 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *4) (|:| -3059 *5)) (-2 (|:| -1910 *4) (|:| -3059 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *2 *5 (-806 *3))))) (-2388 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6)) (-2 (|:| -1910 *5) (|:| -3059 *6)))) (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-795)) (-4 *8 (-890 *4 *6 (-806 *3))))) (-4236 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *2)) (-2 (|:| -1910 *5) (|:| -3059 *2)))) (-4 *2 (-221 (-2167 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))) (-4225 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *5)) (-2 (|:| -1910 *2) (|:| -3059 *5)))) (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-2425 (*1 *1 *1) (-12 (-14 *2 (-597 (-1099))) (-4 *3 (-162)) (-4 *5 (-221 (-2167 *2) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *4) (|:| -3059 *5)) (-2 (|:| -1910 *4) (|:| -3059 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *3 *5 (-806 *2))))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795)) (-4 *6 (-221 (-2167 *4) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6)) (-2 (|:| -1910 *5) (|:| -3059 *6)))) (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-890 *2 *6 (-806 *4))))) (-1909 (*1 *1 *2) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *5)) (-2 (|:| -1910 *2) (|:| -3059 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-4216 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162)) (-4 *4 (-221 (-2167 *5) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *3) (|:| -3059 *4)) (-2 (|:| -1910 *3) (|:| -3059 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795)) (-4 *7 (-890 *2 *4 (-806 *5))))) (-4205 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-4 *3 (-221 (-2167 *4) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *3)) (-2 (|:| -1910 *5) (|:| -3059 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *2 *3 (-806 *4))))))
-(-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2388 ((-662 |#3| |#4| |#5|) $)) (-15 -4236 (|#4| $)) (-15 -4225 (|#3| $)) (-15 -2425 ($ $)) (-15 -2575 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -1909 ($ |#3|)) (-15 -4216 ($ |#2| |#3| |#4|)) (-15 -4205 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-4248 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4248 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2258 ($ |#4|)) (-15 -1848 (|#4| $)) (-15 -1857 (|#4| $))))) (T -442))
-((-4248 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741)) (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))))
-(-10 -7 (-15 -4248 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-2596 (((-597 |#3|) $) 41)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) NIL (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-3064 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 47)) (-2446 (($ (-597 |#4|)) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2272 (($ |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-2456 (((-597 |#4|) $) 18 (|has| $ (-6 -4270)))) (-4167 ((|#3| $) 45)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#4|) $) 14 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2847 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 21)) (-3222 (((-597 |#3|) $) NIL)) (-3209 (((-110) |#3| $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2485 (((-1046) $) NIL)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 39)) (-4227 (($) 17)) (-2494 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) 16)) (-3173 (((-506) $) NIL (|has| |#4| (-572 (-506)))) (($ (-597 |#4|)) 49)) (-2268 (($ (-597 |#4|)) 13)) (-3170 (($ $ |#3|) NIL)) (-3196 (($ $ |#3|) NIL)) (-3183 (($ $ |#3|) NIL)) (-2258 (((-804) $) 38) (((-597 |#4|) $) 48)) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 30)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-443 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3173 ($ (-597 |#4|))) (-6 -4270) (-6 -4271))) (-984) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -443))
-((-3173 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6)))))
-(-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3173 ($ (-597 |#4|))) (-6 -4270) (-6 -4271)))
-((-2943 (($) 11)) (-2955 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -2955 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2943 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444))
-NIL
-(-10 -8 (-15 -2955 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2943 (|#1|)))
-((-2246 (((-110) $ $) 7)) (-3012 (((-3 |#1| "failed") $) 26)) (-2446 ((|#1| $) 25)) (-3374 (($ $ $) 23)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3409 ((|#2| $) 19)) (-2258 (((-804) $) 11) (($ |#1|) 27)) (-2943 (($) 18 T CONST)) (-2955 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 15) (($ $ $) 13)) (-2234 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-1181 (-637 (-388 (-893 |#1|))))) NIL)) (-3990 (((-1181 $)) NIL)) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL)) (-1383 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2603 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-2228 (((-388 (-893 |#1|)) $) NIL)) (-4209 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3991 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 84 (|has| |#1| (-522)))) (-2862 (($ $ (-862)) NIL)) (-4005 (((-388 (-893 |#1|)) $) NIL)) (-3581 (((-1095 (-388 (-893 |#1|))) $) 82 (|has| (-388 (-893 |#1|)) (-522)))) (-3988 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-2670 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-2662 (((-110)) NIL)) (-1574 (($ (-1181 (-388 (-893 |#1|))) (-1181 $)) 103) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-2707 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2426 (((-862)) NIL)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) NIL)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL)) (-3832 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-1257 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-2465 (((-388 (-893 |#1|)) $) NIL)) (-3846 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3342 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 83 (|has| |#1| (-522)))) (-4138 (($ $ (-862)) NIL)) (-2602 (((-388 (-893 |#1|)) $) NIL)) (-2209 (((-1095 (-388 (-893 |#1|))) $) 77 (|has| (-388 (-893 |#1|)) (-522)))) (-2837 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-2461 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-1921 (((-110)) NIL)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL)) (-2561 (((-110)) NIL)) (-3766 (((-110)) NIL)) (-2624 (((-1046) $) NIL)) (-3400 (((-388 (-893 |#1|)) $ $) 71 (|has| |#1| (-522)))) (-2718 (((-388 (-893 |#1|)) $) 93 (|has| |#1| (-522)))) (-3160 (((-388 (-893 |#1|)) $) 95 (|has| |#1| (-522)))) (-2428 (((-1095 (-388 (-893 |#1|))) $) 88 (|has| |#1| (-522)))) (-3760 (((-388 (-893 |#1|))) 72 (|has| |#1| (-522)))) (-1660 (((-388 (-893 |#1|)) $ $) 64 (|has| |#1| (-522)))) (-1993 (((-388 (-893 |#1|)) $) 92 (|has| |#1| (-522)))) (-2385 (((-388 (-893 |#1|)) $) 94 (|has| |#1| (-522)))) (-1736 (((-1095 (-388 (-893 |#1|))) $) 87 (|has| |#1| (-522)))) (-1983 (((-388 (-893 |#1|))) 68 (|has| |#1| (-522)))) (-1936 (($) 101) (($ (-1099)) 107) (($ (-1181 (-1099))) 106) (($ (-1181 $)) 96) (($ (-1099) (-1181 $)) 105) (($ (-1181 (-1099)) (-1181 $)) 104)) (-3719 (((-110)) NIL)) (-1902 (((-388 (-893 |#1|)) $ (-530)) NIL)) (-2328 (((-1181 (-388 (-893 |#1|))) $ (-1181 $)) 98) (((-637 (-388 (-893 |#1|))) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 (-893 |#1|))) $) 40) (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL)) (-3260 (((-1181 (-388 (-893 |#1|))) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) 37)) (-3028 (((-597 (-893 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-597 (-893 (-388 (-893 |#1|))))) NIL) (((-597 (-893 |#1|)) (-1181 $)) 99 (|has| |#1| (-522))) (((-597 (-893 |#1|))) 100 (|has| |#1| (-522)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL)) (-2366 (((-804) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-3220 (((-1181 $)) 60)) (-3758 (((-597 (-1181 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL)) (-3003 (($ (-637 (-388 (-893 |#1|))) $) NIL)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL)) (-3566 (((-110)) NIL)) (-1957 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) 97)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 56) (($ $ (-388 (-893 |#1|))) NIL) (($ (-388 (-893 |#1|)) $) NIL) (($ (-1066 |#2| (-388 (-893 |#1|))) $) NIL)))
+(((-433 |#1| |#2| |#3| |#4|) (-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2366 ($ (-1181 (-388 (-893 |#1|))))) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -1936 ($)) (-15 -1936 ($ (-1099))) (-15 -1936 ($ (-1181 (-1099)))) (-15 -1936 ($ (-1181 $))) (-15 -1936 ($ (-1099) (-1181 $))) (-15 -1936 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -3342 ((-1095 (-388 (-893 |#1|))))) (-15 -1736 ((-1095 (-388 (-893 |#1|))) $)) (-15 -1993 ((-388 (-893 |#1|)) $)) (-15 -2385 ((-388 (-893 |#1|)) $)) (-15 -3991 ((-1095 (-388 (-893 |#1|))))) (-15 -2428 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2718 ((-388 (-893 |#1|)) $)) (-15 -3160 ((-388 (-893 |#1|)) $)) (-15 -1660 ((-388 (-893 |#1|)) $ $)) (-15 -1983 ((-388 (-893 |#1|)))) (-15 -3400 ((-388 (-893 |#1|)) $ $)) (-15 -3760 ((-388 (-893 |#1|)))) (-15 -3028 ((-597 (-893 |#1|)) (-1181 $))) (-15 -3028 ((-597 (-893 |#1|))))) |%noBranch|))) (-162) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -433))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 *3)))) (-4 *3 (-162)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))) (-3357 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3220 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3751 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3220 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862)) (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4))))) (-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-3342 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3991 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1660 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1983 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3400 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3760 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-3028 (*1 *2) (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2366 ($ (-1181 (-388 (-893 |#1|))))) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -1936 ($)) (-15 -1936 ($ (-1099))) (-15 -1936 ($ (-1181 (-1099)))) (-15 -1936 ($ (-1181 $))) (-15 -1936 ($ (-1099) (-1181 $))) (-15 -1936 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -3342 ((-1095 (-388 (-893 |#1|))))) (-15 -1736 ((-1095 (-388 (-893 |#1|))) $)) (-15 -1993 ((-388 (-893 |#1|)) $)) (-15 -2385 ((-388 (-893 |#1|)) $)) (-15 -3991 ((-1095 (-388 (-893 |#1|))))) (-15 -2428 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2718 ((-388 (-893 |#1|)) $)) (-15 -3160 ((-388 (-893 |#1|)) $)) (-15 -1660 ((-388 (-893 |#1|)) $ $)) (-15 -1983 ((-388 (-893 |#1|)))) (-15 -3400 ((-388 (-893 |#1|)) $ $)) (-15 -3760 ((-388 (-893 |#1|)))) (-15 -3028 ((-597 (-893 |#1|)) (-1181 $))) (-15 -3028 ((-597 (-893 |#1|))))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 13)) (-2746 (((-597 (-806 |#1|)) $) 75)) (-2577 (((-1095 $) $ (-806 |#1|)) 46) (((-1095 |#2|) $) 118)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) 21) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 44) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) 42) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) 80)) (-2562 (($ $) 68)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| |#3| $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 58)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) 123) (($ (-1095 $) (-806 |#1|)) 52)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) 59)) (-2725 (($ |#2| |#3|) 28) (($ $ (-806 |#1|) (-719)) 30) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 ((|#3| $) NIL) (((-719) $ (-806 |#1|)) 50) (((-597 (-719)) $ (-597 (-806 |#1|))) 57)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 |#3| |#3|) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) 39)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) 41)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 40)) (-2505 ((|#2| $) 116)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) 87) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) 90) (($ $ (-806 |#1|) $) 85) (($ $ (-597 (-806 |#1|)) (-597 $)) 106)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) 53) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 ((|#3| $) 67) (((-719) $ (-806 |#1|)) 37) (((-597 (-719)) $ (-597 (-806 |#1|))) 56)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) 145) (($ (-530)) NIL) (($ |#2|) 86) (($ (-806 |#1|)) 31) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ |#3|) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) 17 T CONST)) (-3093 (($) 25 T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 111)) (** (($ $ (-862)) NIL) (($ $ (-719)) 109)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 29) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-434 |#1| |#2| |#3|) (-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984) (-221 (-2267 |#1|) (-719))) (T -434))
+((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984)) (-4 *5 (-221 (-2267 *3) (-719))))))
+(-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
+((-3673 (((-110) |#1| (-597 |#2|)) 69)) (-1501 (((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|)) 78)) (-4087 (((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|))) 80)) (-1920 ((|#2| |#2| |#1|) 28)) (-3136 (((-719) |#2| (-597 |#2|)) 20)))
+(((-435 |#1| |#2|) (-10 -7 (-15 -1920 (|#2| |#2| |#1|)) (-15 -3136 ((-719) |#2| (-597 |#2|))) (-15 -1501 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -4087 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -3673 ((-110) |#1| (-597 |#2|)))) (-289) (-1157 |#1|)) (T -435))
+((-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289)) (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))) (-1501 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4)) (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289)) (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))) (-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -1920 (|#2| |#2| |#1|)) (-15 -3136 ((-719) |#2| (-597 |#2|))) (-15 -1501 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -4087 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -3673 ((-110) |#1| (-597 |#2|))))
+((-2611 (((-399 |#5|) |#5|) 24)))
+(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2611 ((-399 |#5|) |#5|))) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-741) (-522) (-522) (-890 |#4| |#2| |#1|)) (T -436))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *5 (-741)) (-4 *7 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-522)) (-4 *3 (-890 *7 *5 *4)))))
+(-10 -7 (-15 -2611 ((-399 |#5|) |#5|)))
+((-2220 ((|#3|) 37)) (-2569 (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 33)))
+(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2569 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2220 (|#3|))) (-741) (-795) (-850) (-890 |#3| |#1| |#2|)) (T -437))
+((-2220 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2569 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2220 (|#3|)))
+((-2611 (((-399 (-1095 |#1|)) (-1095 |#1|)) 43)))
+(((-438 |#1|) (-10 -7 (-15 -2611 ((-399 (-1095 |#1|)) (-1095 |#1|)))) (-289)) (T -438))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1095 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1095 *4)))))
+(-10 -7 (-15 -2611 ((-399 (-1095 |#1|)) (-1095 |#1|))))
+((-2805 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719))) 42) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719))) 41) (((-51) |#2| (-1099) (-276 |#2|)) 35) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 28)) (-2460 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 80) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 79) (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 78) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 77) (((-51) |#2| (-1099) (-276 |#2|)) 72) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 71)) (-2457 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 66) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 64)) (-2817 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 48) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 47)))
+(((-439 |#1| |#2|) (-10 -7 (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2817 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2817 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2457 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2457 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -439))
+((-2460 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2460 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) (-2457 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2457 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2805 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-719))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-719))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))))
+(-10 -7 (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2817 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2817 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2457 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2457 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))))
+((-1920 ((|#2| |#2| |#1|) 15)) (-1787 (((-597 |#2|) |#2| (-597 |#2|) |#1| (-862)) 69)) (-2117 (((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862)) 60)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -2117 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -1787 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -1920 (|#2| |#2| |#1|))) (-289) (-1157 |#1|)) (T -440))
+((-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3)))) (-1787 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-2117 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5)) (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
+(-10 -7 (-15 -2117 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -1787 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -1920 (|#2| |#2| |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 28)) (-3930 (($ |#3|) 25)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) 32)) (-2833 (($ |#2| |#4| $) 33)) (-2725 (($ |#2| (-662 |#3| |#4| |#5|)) 24)) (-2521 (((-662 |#3| |#4| |#5|) $) 15)) (-3720 ((|#3| $) 19)) (-2695 ((|#4| $) 17)) (-2533 ((|#2| $) 29)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2205 (($ |#2| |#3| |#4|) 26)) (-3080 (($) 36 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2533 (|#2| $)) (-15 -2521 ((-662 |#3| |#4| |#5|) $)) (-15 -2695 (|#4| $)) (-15 -3720 (|#3| $)) (-15 -2562 ($ $)) (-15 -2725 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3930 ($ |#3|)) (-15 -2205 ($ |#2| |#3| |#4|)) (-15 -2833 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-597 (-1099)) (-162) (-795) (-221 (-2267 |#1|) (-719)) (-1 (-110) (-2 (|:| -1986 |#3|) (|:| -3194 |#4|)) (-2 (|:| -1986 |#3|) (|:| -3194 |#4|))) (-890 |#2| |#4| (-806 |#1|))) (T -441))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2267 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *2 (-890 *4 *6 (-806 *3))))) (-2533 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5)) (-2 (|:| -1986 *4) (|:| -3194 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *2 *5 (-806 *3))))) (-2521 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2267 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-795)) (-4 *8 (-890 *4 *6 (-806 *3))))) (-2695 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *2)) (-2 (|:| -1986 *5) (|:| -3194 *2)))) (-4 *2 (-221 (-2267 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))) (-3720 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5)) (-2 (|:| -1986 *2) (|:| -3194 *5)))) (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-2562 (*1 *1 *1) (-12 (-14 *2 (-597 (-1099))) (-4 *3 (-162)) (-4 *5 (-221 (-2267 *2) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5)) (-2 (|:| -1986 *4) (|:| -3194 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *3 *5 (-806 *2))))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795)) (-4 *6 (-221 (-2267 *4) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-890 *2 *6 (-806 *4))))) (-3930 (*1 *1 *2) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5)) (-2 (|:| -1986 *2) (|:| -3194 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-2205 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162)) (-4 *4 (-221 (-2267 *5) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *4)) (-2 (|:| -1986 *3) (|:| -3194 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795)) (-4 *7 (-890 *2 *4 (-806 *5))))) (-2833 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-4 *3 (-221 (-2267 *4) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *3)) (-2 (|:| -1986 *5) (|:| -3194 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *2 *3 (-806 *4))))))
+(-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2533 (|#2| $)) (-15 -2521 ((-662 |#3| |#4| |#5|) $)) (-15 -2695 (|#4| $)) (-15 -3720 (|#3| $)) (-15 -2562 ($ $)) (-15 -2725 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3930 ($ |#3|)) (-15 -2205 ($ |#2| |#3| |#4|)) (-15 -2833 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1335 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1335 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2366 ($ |#4|)) (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $))))) (T -442))
+((-1335 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741)) (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))))
+(-10 -7 (-15 -1335 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-2746 (((-597 |#3|) $) 41)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 47)) (-2585 (($ (-597 |#4|)) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#4|) $) 18 (|has| $ (-6 -4269)))) (-3122 ((|#3| $) 45)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 14 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 39)) (-3958 (($) 17)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 16)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506)))) (($ (-597 |#4|)) 49)) (-2377 (($ (-597 |#4|)) 13)) (-1687 (($ $ |#3|) NIL)) (-1442 (($ $ |#3|) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 38) (((-597 |#4|) $) 48)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 30)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-443 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3260 ($ (-597 |#4|))) (-6 -4269) (-6 -4270))) (-984) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -443))
+((-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6)))))
+(-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3260 ($ (-597 |#4|))) (-6 -4269) (-6 -4270)))
+((-3080 (($) 11)) (-3093 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -3093 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3080 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444))
+NIL
+(-10 -8 (-15 -3093 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3080 (|#1|)))
+((-2352 (((-110) $ $) 7)) (-3139 (((-3 |#1| "failed") $) 26)) (-2585 ((|#1| $) 25)) (-2801 (($ $ $) 23)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 ((|#2| $) 19)) (-2366 (((-804) $) 11) (($ |#1|) 27)) (-3080 (($) 18 T CONST)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 15) (($ $ $) 13)) (-2339 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-445 |#1| |#2|) (-133) (-162) (-23)) (T -445))
-((-2955 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-3374 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-450 |t#1| |t#2|) (-975 |t#1|) (-10 -8 (-15 (-2955) ($) -2562) (-15 -3374 ($ $ $))))
+((-3093 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-450 |t#1| |t#2|) (-975 |t#1|) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2801 ($ $ $))))
(((-99) . T) ((-571 (-804)) . T) ((-450 |#1| |#2|) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-1220 (((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862)) 18)) (-1228 (((-1181 (-1181 (-530))) (-862)) 16)))
-(((-446) (-10 -7 (-15 -1220 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -1228 ((-1181 (-1181 (-530))) (-862))))) (T -446))
-((-1228 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))) (-1220 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
-(-10 -7 (-15 -1220 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -1228 ((-1181 (-1181 (-530))) (-862))))
-((-3153 (((-530) (-530)) 30) (((-530)) 22)) (-3204 (((-530) (-530)) 26) (((-530)) 18)) (-3178 (((-530) (-530)) 28) (((-530)) 20)) (-1250 (((-110) (-110)) 12) (((-110)) 10)) (-1239 (((-110) (-110)) 11) (((-110)) 9)) (-1260 (((-110) (-110)) 24) (((-110)) 15)))
-(((-447) (-10 -7 (-15 -1239 ((-110))) (-15 -1250 ((-110))) (-15 -1239 ((-110) (-110))) (-15 -1250 ((-110) (-110))) (-15 -1260 ((-110))) (-15 -3178 ((-530))) (-15 -3204 ((-530))) (-15 -3153 ((-530))) (-15 -1260 ((-110) (-110))) (-15 -3178 ((-530) (-530))) (-15 -3204 ((-530) (-530))) (-15 -3153 ((-530) (-530))))) (T -447))
-((-3153 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-3153 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3204 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3178 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-1260 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1250 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1239 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1250 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1239 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
-(-10 -7 (-15 -1239 ((-110))) (-15 -1250 ((-110))) (-15 -1239 ((-110) (-110))) (-15 -1250 ((-110) (-110))) (-15 -1260 ((-110))) (-15 -3178 ((-530))) (-15 -3204 ((-530))) (-15 -3153 ((-530))) (-15 -1260 ((-110) (-110))) (-15 -3178 ((-530) (-530))) (-15 -3204 ((-530) (-530))) (-15 -3153 ((-530) (-530))))
-((-2246 (((-110) $ $) NIL)) (-1786 (((-597 (-360)) $) 28) (((-597 (-360)) $ (-597 (-360))) 96)) (-1314 (((-597 (-1022 (-360))) $) 16) (((-597 (-1022 (-360))) $ (-597 (-1022 (-360)))) 94)) (-1281 (((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815))) 45)) (-1326 (((-597 (-597 (-884 (-208)))) $) 90)) (-4109 (((-1186) $ (-884 (-208)) (-815)) 108)) (-1336 (($ $) 89) (($ (-597 (-597 (-884 (-208))))) 99) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862))) 98) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245))) 100)) (-3443 (((-1082) $) NIL)) (-2940 (((-530) $) 71)) (-2485 (((-1046) $) NIL)) (-1347 (($) 97)) (-1271 (((-597 (-208)) (-597 (-597 (-884 (-208))))) 56)) (-1303 (((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862)) 102) (((-1186) $ (-884 (-208))) 104) (((-1186) $ (-884 (-208)) (-815) (-815) (-862)) 103)) (-2258 (((-804) $) 114) (($ (-597 (-597 (-884 (-208))))) 109)) (-1292 (((-1186) $ (-884 (-208))) 107)) (-2148 (((-110) $ $) NIL)))
-(((-448) (-13 (-1027) (-10 -8 (-15 -1347 ($)) (-15 -1336 ($ $)) (-15 -1336 ($ (-597 (-597 (-884 (-208)))))) (-15 -1336 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -1336 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -1326 ((-597 (-597 (-884 (-208)))) $)) (-15 -2940 ((-530) $)) (-15 -1314 ((-597 (-1022 (-360))) $)) (-15 -1314 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1786 ((-597 (-360)) $)) (-15 -1786 ((-597 (-360)) $ (-597 (-360)))) (-15 -1303 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1303 ((-1186) $ (-884 (-208)))) (-15 -1303 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1292 ((-1186) $ (-884 (-208)))) (-15 -4109 ((-1186) $ (-884 (-208)) (-815))) (-15 -2258 ($ (-597 (-597 (-884 (-208)))))) (-15 -2258 ((-804) $)) (-15 -1281 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -1271 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))) (T -448))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-448)))) (-1347 (*1 *1) (-5 *1 (-448))) (-1336 (*1 *1 *1) (-5 *1 (-448))) (-1336 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-1336 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *1 (-448)))) (-1336 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-448)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-1314 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1786 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1303 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1303 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1303 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-4109 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-1281 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *1 (-448)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208))) (-5 *1 (-448)))))
-(-13 (-1027) (-10 -8 (-15 -1347 ($)) (-15 -1336 ($ $)) (-15 -1336 ($ (-597 (-597 (-884 (-208)))))) (-15 -1336 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -1336 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -1326 ((-597 (-597 (-884 (-208)))) $)) (-15 -2940 ((-530) $)) (-15 -1314 ((-597 (-1022 (-360))) $)) (-15 -1314 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1786 ((-597 (-360)) $)) (-15 -1786 ((-597 (-360)) $ (-597 (-360)))) (-15 -1303 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1303 ((-1186) $ (-884 (-208)))) (-15 -1303 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1292 ((-1186) $ (-884 (-208)))) (-15 -4109 ((-1186) $ (-884 (-208)) (-815))) (-15 -2258 ($ (-597 (-597 (-884 (-208)))))) (-15 -2258 ((-804) $)) (-15 -1281 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -1271 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))
-((-2245 (($ $) NIL) (($ $ $) 11)))
-(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449))
-NIL
-(-10 -8 (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3409 ((|#2| $) 19)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 15) (($ $ $) 13)) (-2234 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2319 (((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862)) 18)) (-3056 (((-1181 (-1181 (-530))) (-862)) 16)))
+(((-446) (-10 -7 (-15 -2319 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -3056 ((-1181 (-1181 (-530))) (-862))))) (T -446))
+((-3056 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))) (-2319 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
+(-10 -7 (-15 -2319 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -3056 ((-1181 (-1181 (-530))) (-862))))
+((-2470 (((-530) (-530)) 30) (((-530)) 22)) (-3841 (((-530) (-530)) 26) (((-530)) 18)) (-3191 (((-530) (-530)) 28) (((-530)) 20)) (-2728 (((-110) (-110)) 12) (((-110)) 10)) (-1353 (((-110) (-110)) 11) (((-110)) 9)) (-4178 (((-110) (-110)) 24) (((-110)) 15)))
+(((-447) (-10 -7 (-15 -1353 ((-110))) (-15 -2728 ((-110))) (-15 -1353 ((-110) (-110))) (-15 -2728 ((-110) (-110))) (-15 -4178 ((-110))) (-15 -3191 ((-530))) (-15 -3841 ((-530))) (-15 -2470 ((-530))) (-15 -4178 ((-110) (-110))) (-15 -3191 ((-530) (-530))) (-15 -3841 ((-530) (-530))) (-15 -2470 ((-530) (-530))))) (T -447))
+((-2470 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-4178 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2470 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3841 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3191 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-4178 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2728 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1353 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(-10 -7 (-15 -1353 ((-110))) (-15 -2728 ((-110))) (-15 -1353 ((-110) (-110))) (-15 -2728 ((-110) (-110))) (-15 -4178 ((-110))) (-15 -3191 ((-530))) (-15 -3841 ((-530))) (-15 -2470 ((-530))) (-15 -4178 ((-110) (-110))) (-15 -3191 ((-530) (-530))) (-15 -3841 ((-530) (-530))) (-15 -2470 ((-530) (-530))))
+((-2352 (((-110) $ $) NIL)) (-1854 (((-597 (-360)) $) 28) (((-597 (-360)) $ (-597 (-360))) 96)) (-3694 (((-597 (-1022 (-360))) $) 16) (((-597 (-1022 (-360))) $ (-597 (-1022 (-360)))) 94)) (-1597 (((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815))) 45)) (-3486 (((-597 (-597 (-884 (-208)))) $) 90)) (-2422 (((-1186) $ (-884 (-208)) (-815)) 108)) (-3358 (($ $) 89) (($ (-597 (-597 (-884 (-208))))) 99) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862))) 98) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245))) 100)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 71)) (-2624 (((-1046) $) NIL)) (-3899 (($) 97)) (-2990 (((-597 (-208)) (-597 (-597 (-884 (-208))))) 56)) (-1278 (((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862)) 102) (((-1186) $ (-884 (-208))) 104) (((-1186) $ (-884 (-208)) (-815) (-815) (-862)) 103)) (-2366 (((-804) $) 114) (($ (-597 (-597 (-884 (-208))))) 109)) (-1391 (((-1186) $ (-884 (-208))) 107)) (-2248 (((-110) $ $) NIL)))
+(((-448) (-13 (-1027) (-10 -8 (-15 -3899 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-597 (-597 (-884 (-208)))))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -3486 ((-597 (-597 (-884 (-208)))) $)) (-15 -3078 ((-530) $)) (-15 -3694 ((-597 (-1022 (-360))) $)) (-15 -3694 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1854 ((-597 (-360)) $)) (-15 -1854 ((-597 (-360)) $ (-597 (-360)))) (-15 -1278 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1278 ((-1186) $ (-884 (-208)))) (-15 -1278 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1391 ((-1186) $ (-884 (-208)))) (-15 -2422 ((-1186) $ (-884 (-208)) (-815))) (-15 -2366 ($ (-597 (-597 (-884 (-208)))))) (-15 -2366 ((-804) $)) (-15 -1597 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -2990 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))) (T -448))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-448)))) (-3899 (*1 *1) (-5 *1 (-448))) (-3358 (*1 *1 *1) (-5 *1 (-448))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-3358 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *1 (-448)))) (-3358 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-448)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-3694 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1854 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1391 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-2422 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-1597 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *1 (-448)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208))) (-5 *1 (-448)))))
+(-13 (-1027) (-10 -8 (-15 -3899 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-597 (-597 (-884 (-208)))))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -3486 ((-597 (-597 (-884 (-208)))) $)) (-15 -3078 ((-530) $)) (-15 -3694 ((-597 (-1022 (-360))) $)) (-15 -3694 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1854 ((-597 (-360)) $)) (-15 -1854 ((-597 (-360)) $ (-597 (-360)))) (-15 -1278 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1278 ((-1186) $ (-884 (-208)))) (-15 -1278 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1391 ((-1186) $ (-884 (-208)))) (-15 -2422 ((-1186) $ (-884 (-208)) (-815))) (-15 -2366 ($ (-597 (-597 (-884 (-208)))))) (-15 -2366 ((-804) $)) (-15 -1597 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -2990 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))
+((-2351 (($ $) NIL) (($ $ $) 11)))
+(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449))
+NIL
+(-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 ((|#2| $) 19)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 15) (($ $ $) 13)) (-2339 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-450 |#1| |#2|) (-133) (-162) (-23)) (T -450))
-((-3409 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-2943 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2245 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2234 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-1027) (-10 -8 (-15 -3409 (|t#2| $)) (-15 (-2943) ($) -2562) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2245 ($ $)) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $))))
+((-1429 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-3080 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-1027) (-10 -8 (-15 -1429 (|t#2| $)) (-15 (-3080) ($) -2708) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2351 ($ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1371 (((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|))) 92)) (-1361 (((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 90)) (-1384 (((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 61)))
-(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -1361 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -1371 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -1384 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))))) (-597 (-1099)) (-432) (-432)) (T -451))
-((-1384 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-597 (-230 *5 *6))) (|:| |coords| (-597 (-530))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))) (-1371 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(-10 -7 (-15 -1361 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -1371 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -1384 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))))
-((-1673 (((-3 $ "failed") $) 11)) (-1800 (($ $ $) 20)) (-1527 (($ $ $) 21)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 14)) (-2257 (($ $ $) 9)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 19)))
-(((-452 |#1|) (-10 -8 (-15 -1527 (|#1| |#1| |#1|)) (-15 -1800 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| (-530))) (-15 ** (|#1| |#1| (-530))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -2723 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862)))) (-453)) (T -452))
-NIL
-(-10 -8 (-15 -1527 (|#1| |#1| |#1|)) (-15 -1800 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| (-530))) (-15 ** (|#1| |#1| (-530))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -2723 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3956 (($) 20 T CONST)) (-1673 (((-3 $ "failed") $) 16)) (-3150 (((-110) $) 19)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 27)) (-2485 (((-1046) $) 10)) (-1800 (($ $ $) 23)) (-1527 (($ $ $) 22)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 13) (($ $ (-719)) 17) (($ $ (-530)) 24)) (-2955 (($) 21 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 26)) (** (($ $ (-862)) 14) (($ $ (-719)) 18) (($ $ (-530)) 25)) (* (($ $ $) 15)))
+((-2486 (((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|))) 92)) (-2608 (((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 90)) (-2044 (((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 61)))
+(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2486 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2044 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))))) (-597 (-1099)) (-432) (-432)) (T -451))
+((-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-597 (-230 *5 *6))) (|:| |coords| (-597 (-530))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))) (-2486 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
+(-10 -7 (-15 -2608 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2486 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2044 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))))
+((-2707 (((-3 $ "failed") $) 11)) (-2555 (($ $ $) 18)) (-2607 (($ $ $) 19)) (-2364 (($ $ $) 9)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 17)))
+(((-452 |#1|) (-10 -8 (-15 -2607 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862)))) (-453)) (T -452))
+NIL
+(-10 -8 (-15 -2607 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-2731 (((-110) $) 17)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 24)) (-2624 (((-1046) $) 10)) (-2555 (($ $ $) 21)) (-2607 (($ $ $) 20)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 23)) (** (($ $ (-862)) 13) (($ $ (-719)) 16) (($ $ (-530)) 22)) (* (($ $ $) 14)))
(((-453) (-133)) (T -453))
-((-2359 (*1 *1 *1) (-4 *1 (-453))) (-2257 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530)))) (-2723 (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530)))) (-1800 (*1 *1 *1 *1) (-4 *1 (-453))) (-1527 (*1 *1 *1 *1) (-4 *1 (-453))))
-(-13 (-675) (-10 -8 (-15 -2359 ($ $)) (-15 -2257 ($ $ $)) (-15 ** ($ $ (-530))) (-15 -2723 ($ $ (-530))) (-6 -4267) (-15 -1800 ($ $ $)) (-15 -1527 ($ $ $))))
+((-2483 (*1 *1 *1) (-4 *1 (-453))) (-2364 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530)))) (-2555 (*1 *1 *1 *1) (-4 *1 (-453))) (-2607 (*1 *1 *1 *1) (-4 *1 (-453))))
+(-13 (-675) (-10 -8 (-15 -2483 ($ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-530))) (-6 -4266) (-15 -2555 ($ $ $)) (-15 -2607 ($ $ $))))
(((-99) . T) ((-571 (-804)) . T) ((-675) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 17)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) 22)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) 26 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 33 (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 27 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 25 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 15)) (-3409 (((-388 (-530)) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1177 |#2|)) NIL) (($ (-1166 |#1| |#2| |#3|)) 9) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 18)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) 24)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-454 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -2258 ($ (-1166 |#1| |#2| |#3|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -454))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1162 |#1|) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -2258 ($ (-1166 |#1| |#2| |#3|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) 18)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) 19)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 16)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) NIL)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 17)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 26 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 33 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 27 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 25 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 15)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1177 |#2|)) NIL) (($ (-1166 |#1| |#2| |#3|)) 9) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 18)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 24)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-454 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -2366 ($ (-1166 |#1| |#2| |#3|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -454))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1162 |#1|) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -2366 ($ (-1166 |#1| |#2| |#3|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) 18)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 19)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 16)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-455 |#1| |#2| |#3| |#4|) (-1112 |#1| |#2|) (-1027) (-1027) (-1112 |#1| |#2|) |#2|) (T -455))
NIL
(-1112 |#1| |#2|)
-((-2246 (((-110) $ $) NIL)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) NIL)) (-2844 (((-597 $) (-597 |#4|)) NIL)) (-2596 (((-597 |#3|) $) NIL)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2906 ((|#4| |#4| $) NIL)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) 26 (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3064 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2446 (($ (-597 |#4|)) NIL)) (-2918 (((-3 $ "failed") $) 39)) (-2878 ((|#4| |#4| $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2272 (($ |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2856 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) NIL)) (-2456 (((-597 |#4|) $) 16 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4167 ((|#3| $) 33)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#4|) $) 17 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2847 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 21)) (-3222 (((-597 |#3|) $) NIL)) (-3209 (((-110) |#3| $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-2294 (((-3 |#4| "failed") $) 37)) (-3011 (((-597 |#4|) $) NIL)) (-2938 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2888 ((|#4| |#4| $) NIL)) (-1845 (((-110) $ $) NIL)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2898 ((|#4| |#4| $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-3 |#4| "failed") $) 35)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2807 (((-3 $ "failed") $ |#4|) 47)) (-1312 (($ $ |#4|) NIL)) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 15)) (-4227 (($) 13)) (-3409 (((-719) $) NIL)) (-2494 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) 12)) (-3173 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 20)) (-3170 (($ $ |#3|) 42)) (-3196 (($ $ |#3|) 44)) (-2866 (($ $) NIL)) (-3183 (($ $ |#3|) NIL)) (-2258 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2795 (((-719) $) NIL (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) NIL)) (-3292 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) NIL)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2407 (((-3 |#4| "failed") $) 37)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 47)) (-3168 (($ $ |#4|) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-2856 (((-110) |#3| $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-456 |#1| |#2| |#3| |#4|) (-1129 |#1| |#2| |#3| |#4|) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -456))
NIL
(-1129 |#1| |#2| |#3| |#4|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-1877 (($) 18)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3173 (((-360) $) 22) (((-208) $) 25) (((-388 (-1095 (-530))) $) 19) (((-506) $) 52)) (-2258 (((-804) $) 50) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (((-208) $) 24) (((-360) $) 21)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 36 T CONST)) (-2955 (($) 11 T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-457) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1877 ($))))) (T -457))
-((-1877 (*1 *1) (-5 *1 (-457))))
-(-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1877 ($))))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) 16)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) 20)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 18)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) 13)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 19)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 11 (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) 15 (|has| $ (-6 -4270)))))
-(((-458 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270))) (-1027) (-1027) (-1082)) (T -458))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270)))
-((-1394 (((-530) (-530) (-530)) 7)) (-1405 (((-110) (-530) (-530) (-530) (-530)) 11)) (-2112 (((-1181 (-597 (-530))) (-719) (-719)) 23)))
-(((-459) (-10 -7 (-15 -1394 ((-530) (-530) (-530))) (-15 -1405 ((-110) (-530) (-530) (-530) (-530))) (-15 -2112 ((-1181 (-597 (-530))) (-719) (-719))))) (T -459))
-((-2112 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1181 (-597 (-530)))) (-5 *1 (-459)))) (-1405 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))) (-1394 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
-(-10 -7 (-15 -1394 ((-530) (-530) (-530))) (-15 -1405 ((-110) (-530) (-530) (-530) (-530))) (-15 -2112 ((-1181 (-597 (-530))) (-719) (-719))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-806 |#1|)) $) NIL)) (-2439 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3031 (($ $) NIL (|has| |#2| (-522)))) (-3006 (((-110) $) NIL (|has| |#2| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL (|has| |#2| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-2330 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1416 (($ $ (-597 (-530))) NIL)) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#2| (-850)))) (-2097 (($ $ |#2| (-461 (-2167 |#1|) (-719)) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#2| (-461 (-2167 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-806 |#1|)) NIL)) (-3674 (((-461 (-2167 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-2107 (($ (-1 (-461 (-2167 |#1|) (-719)) (-461 (-2167 |#1|) (-719))) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-1367 (((-3 (-806 |#1|) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#2| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3059 (-719))) "failed") $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#2| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-2341 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3211 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3409 (((-461 (-2167 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-461 (-2167 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#2| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-460 |#1| |#2|) (-13 (-890 |#2| (-461 (-2167 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -460))
-((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(-13 (-890 |#2| (-461 (-2167 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1416 ($ $ (-597 (-530))))))
-((-2246 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3015 (((-110) $) NIL (|has| |#2| (-128)))) (-1909 (($ (-862)) NIL (|has| |#2| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) NIL (|has| |#2| (-741)))) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#2| (-349)))) (-3592 (((-530) $) NIL (|has| |#2| (-793)))) (-2416 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2446 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-1298 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-1673 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1376 (($) NIL (|has| |#2| (-349)))) (-2858 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ (-530)) 11)) (-2991 (((-110) $) NIL (|has| |#2| (-793)))) (-2456 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (|has| |#2| (-675)))) (-3002 (((-110) $) NIL (|has| |#2| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3252 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#2| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#2| (-1027)))) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#2| (-349)))) (-2485 (((-1046) $) NIL (|has| |#2| (-1027)))) (-2907 ((|#2| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-1796 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2515 (($ (-1181 |#2|)) NIL)) (-1248 (((-130)) NIL (|has| |#2| (-344)))) (-3211 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2494 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1476 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-1667 (((-719)) NIL (|has| |#2| (-984)))) (-1515 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#2| (-793)))) (-2723 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (-2943 (($) NIL (|has| |#2| (-128)) CONST)) (-2955 (($) NIL (|has| |#2| (-675)) CONST)) (-3286 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2195 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2172 (((-110) $ $) 15 (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2234 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-1948 (($) 18)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3260 (((-360) $) 22) (((-208) $) 25) (((-388 (-1095 (-530))) $) 19) (((-506) $) 52)) (-2366 (((-804) $) 50) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (((-208) $) 24) (((-360) $) 21)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 36 T CONST)) (-3093 (($) 11 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-457) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1948 ($))))) (T -457))
+((-1948 (*1 *1) (-5 *1 (-457))))
+(-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1948 ($))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) 16)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 20)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 18)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) 13)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 19)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 11 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) 15 (|has| $ (-6 -4269)))))
+(((-458 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-1082)) (T -458))
+NIL
+(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-3708 (((-530) (-530) (-530)) 7)) (-2565 (((-110) (-530) (-530) (-530) (-530)) 11)) (-2208 (((-1181 (-597 (-530))) (-719) (-719)) 23)))
+(((-459) (-10 -7 (-15 -3708 ((-530) (-530) (-530))) (-15 -2565 ((-110) (-530) (-530) (-530) (-530))) (-15 -2208 ((-1181 (-597 (-530))) (-719) (-719))))) (T -459))
+((-2208 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1181 (-597 (-530)))) (-5 *1 (-459)))) (-2565 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
+(-10 -7 (-15 -3708 ((-530) (-530) (-530))) (-15 -2565 ((-110) (-530) (-530) (-530) (-530))) (-15 -2208 ((-1181 (-597 (-530))) (-719) (-719))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) NIL)) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-461 (-2267 |#1|) (-719)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-461 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-461 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-461 (-2267 |#1|) (-719)) (-461 (-2267 |#1|) (-719))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-461 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-461 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-460 |#1| |#2|) (-13 (-890 |#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -460))
+((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
+(-13 (-890 |#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
+((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) NIL (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 11)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) NIL)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) NIL (|has| |#2| (-128)) CONST)) (-3093 (($) NIL (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 15 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-461 |#1| |#2|) (-221 |#1| |#2|) (-719) (-741)) (T -461))
NIL
(-221 |#1| |#2|)
-((-2246 (((-110) $ $) NIL)) (-2034 (((-597 (-1099)) $) 11)) (-3901 (((-1099) $) 10)) (-3443 (((-1082) $) NIL)) (-1426 (($ (-597 (-1099))) 9)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL) (((-1104) $) NIL)) (-2148 (((-110) $ $) NIL)))
-(((-462) (-13 (-91) (-10 -8 (-15 -1426 ($ (-597 (-1099)))) (-15 -3901 ((-1099) $)) (-15 -2034 ((-597 (-1099)) $))))) (T -462))
-((-1426 (*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-462)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
-(-13 (-91) (-10 -8 (-15 -1426 ($ (-597 (-1099)))) (-15 -3901 ((-1099) $)) (-15 -2034 ((-597 (-1099)) $))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-2767 (($ $ $) 32)) (-3842 (($ $ $) 31)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1757 ((|#1| $) 26)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) 27)) (-3440 (($ |#1| $) 10)) (-1436 (($ (-597 |#1|)) 12)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3287 ((|#1| $) 23)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 9)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 29)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) 21 (|has| $ (-6 -4270)))))
-(((-463 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -1436 ($ (-597 |#1|))))) (-795)) (T -463))
-((-1436 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
-(-13 (-909 |#1|) (-10 -8 (-15 -1436 ($ (-597 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3856 (($ $) 69)) (-4240 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-1712 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-2485 (((-1046) $) NIL)) (-1898 (((-3 |#4| "failed") $) 107)) (-1212 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-530)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-1482 (((-2 (|:| -3511 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2258 (((-804) $) 102)) (-2943 (($) 33 T CONST)) (-2148 (((-110) $ $) 109)) (-2245 (($ $) 72) (($ $ $) NIL)) (-2234 (($ $ $) 70)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 73)))
+((-2352 (((-110) $ $) NIL)) (-3411 (((-597 (-1099)) $) 11)) (-3907 (((-1099) $) 10)) (-1424 (((-1082) $) NIL)) (-4130 (($ (-597 (-1099))) 9)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (((-1104) $) NIL)) (-2248 (((-110) $ $) NIL)))
+(((-462) (-13 (-91) (-10 -8 (-15 -4130 ($ (-597 (-1099)))) (-15 -3907 ((-1099) $)) (-15 -3411 ((-597 (-1099)) $))))) (T -462))
+((-4130 (*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-462)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
+(-13 (-91) (-10 -8 (-15 -4130 ($ (-597 (-1099)))) (-15 -3907 ((-1099) $)) (-15 -3411 ((-597 (-1099)) $))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2090 (($ $ $) 32)) (-3683 (($ $ $) 31)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1817 ((|#1| $) 26)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 27)) (-2441 (($ |#1| $) 10)) (-2032 (($ (-597 |#1|)) 12)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 23)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 9)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 29)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) 21 (|has| $ (-6 -4269)))))
+(((-463 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2032 ($ (-597 |#1|))))) (-795)) (T -463))
+((-2032 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
+(-13 (-909 |#1|) (-10 -8 (-15 -2032 ($ (-597 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ $) 69)) (-1809 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-2624 (((-1046) $) NIL)) (-1974 (((-3 |#4| "failed") $) 107)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-530)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2366 (((-804) $) 102)) (-3080 (($) 33 T CONST)) (-2248 (((-110) $ $) 109)) (-2351 (($ $) 72) (($ $ $) NIL)) (-2339 (($ $ $) 70)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 73)))
(((-464 |#1| |#2| |#3| |#4|) (-316 |#1| |#2| |#3| |#4|) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -464))
NIL
(-316 |#1| |#2| |#3| |#4|)
-((-1480 (((-530) (-597 (-530))) 30)) (-1447 ((|#1| (-597 |#1|)) 56)) (-1469 (((-597 |#1|) (-597 |#1|)) 57)) (-1457 (((-597 |#1|) (-597 |#1|)) 59)) (-2108 ((|#1| (-597 |#1|)) 58)) (-3658 (((-597 (-530)) (-597 |#1|)) 33)))
-(((-465 |#1|) (-10 -7 (-15 -2108 (|#1| (-597 |#1|))) (-15 -1447 (|#1| (-597 |#1|))) (-15 -1457 ((-597 |#1|) (-597 |#1|))) (-15 -1469 ((-597 |#1|) (-597 |#1|))) (-15 -3658 ((-597 (-530)) (-597 |#1|))) (-15 -1480 ((-530) (-597 (-530))))) (-1157 (-530))) (T -465))
-((-1480 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4)) (-4 *4 (-1157 *2)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530))) (-5 *1 (-465 *4)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
-(-10 -7 (-15 -2108 (|#1| (-597 |#1|))) (-15 -1447 (|#1| (-597 |#1|))) (-15 -1457 ((-597 |#1|) (-597 |#1|))) (-15 -1469 ((-597 |#1|) (-597 |#1|))) (-15 -3658 ((-597 (-530)) (-597 |#1|))) (-15 -1480 ((-530) (-597 (-530)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-530) $) NIL (|has| (-530) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-530) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2446 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-530) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-530) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-530) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-3002 (((-110) $) NIL (|has| (-530) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-530) (-795)))) (-3114 (($ (-1 (-530) (-530)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-530) (-1075)) CONST)) (-1493 (($ (-388 (-530))) 9)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-1702 (((-530) $) NIL (|has| (-530) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-530) $) NIL)) (-3173 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 16) $) 10)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-530) $) NIL (|has| (-530) (-515)))) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| (-530) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2257 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-466) (-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 16) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -1493 ($ (-388 (-530))))))) (T -466))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -2258 ((-943 16) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -1493 ($ (-388 (-530))))))
-((-3252 (((-597 |#2|) $) 23)) (-3455 (((-110) |#2| $) 28)) (-1505 (((-110) (-1 (-110) |#2|) $) 21)) (-4084 (($ $ (-597 (-276 |#2|))) 13) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-2494 (((-719) (-1 (-110) |#2|) $) 22) (((-719) |#2| $) 26)) (-2258 (((-804) $) 37)) (-1515 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 31)) (-2167 (((-719) $) 17)))
-(((-467 |#1| |#2|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -3252 ((-597 |#2|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|))) (-468 |#2|) (-1135)) (T -467))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#2| |#2|)) (-15 -4084 (|#1| |#1| (-276 |#2|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -3455 ((-110) |#2| |#1|)) (-15 -2494 ((-719) |#2| |#1|)) (-15 -3252 ((-597 |#2|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3652 (((-530) (-597 (-530))) 30)) (-3749 ((|#1| (-597 |#1|)) 56)) (-2069 (((-597 |#1|) (-597 |#1|)) 57)) (-3472 (((-597 |#1|) (-597 |#1|)) 59)) (-2204 ((|#1| (-597 |#1|)) 58)) (-3829 (((-597 (-530)) (-597 |#1|)) 33)))
+(((-465 |#1|) (-10 -7 (-15 -2204 (|#1| (-597 |#1|))) (-15 -3749 (|#1| (-597 |#1|))) (-15 -3472 ((-597 |#1|) (-597 |#1|))) (-15 -2069 ((-597 |#1|) (-597 |#1|))) (-15 -3829 ((-597 (-530)) (-597 |#1|))) (-15 -3652 ((-530) (-597 (-530))))) (-1157 (-530))) (T -465))
+((-3652 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4)) (-4 *4 (-1157 *2)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530))) (-5 *1 (-465 *4)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
+(-10 -7 (-15 -2204 (|#1| (-597 |#1|))) (-15 -3749 (|#1| (-597 |#1|))) (-15 -3472 ((-597 |#1|) (-597 |#1|))) (-15 -2069 ((-597 |#1|) (-597 |#1|))) (-15 -3829 ((-597 (-530)) (-597 |#1|))) (-15 -3652 ((-530) (-597 (-530)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-3458 (($ (-388 (-530))) 9)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 16) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
+(((-466) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 16) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -3458 ($ (-388 (-530))))))) (T -466))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
+(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 16) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -3458 ($ (-388 (-530))))))
+((-2395 (((-597 |#2|) $) 23)) (-4197 (((-110) |#2| $) 28)) (-1533 (((-110) (-1 (-110) |#2|) $) 21)) (-4098 (($ $ (-597 (-276 |#2|))) 13) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-2632 (((-719) (-1 (-110) |#2|) $) 22) (((-719) |#2| $) 26)) (-2366 (((-804) $) 37)) (-3889 (((-110) (-1 (-110) |#2|) $) 20)) (-2248 (((-110) $ $) 31)) (-2267 (((-719) $) 17)))
+(((-467 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2395 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|))) (-468 |#2|) (-1135)) (T -467))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2395 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-468 |#1|) (-133) (-1135)) (T -468))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-2847 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4271)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-1515 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-1505 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-2494 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-719)))) (-2456 (*1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-3252 (*1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2494 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-3455 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4271)) (-15 -2847 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1515 ((-110) (-1 (-110) |t#1|) $)) (-15 -1505 ((-110) (-1 (-110) |t#1|) $)) (-15 -2494 ((-719) (-1 (-110) |t#1|) $)) (-15 -2456 ((-597 |t#1|) $)) (-15 -3252 ((-597 |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2494 ((-719) |t#1| $)) (-15 -3455 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-1526 (($ (-1082)) 8)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 14) (((-1082) $) 11)) (-2148 (((-110) $ $) 10)))
-(((-469) (-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -1526 ($ (-1082)))))) (T -469))
-((-1526 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
-(-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -1526 ($ (-1082)))))
-((-2276 (($ $) 15)) (-2253 (($ $) 24)) (-2297 (($ $) 12)) (-2308 (($ $) 10)) (-2287 (($ $) 17)) (-2263 (($ $) 22)))
-(((-470 |#1|) (-10 -8 (-15 -2263 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|))) (-471)) (T -470))
-NIL
-(-10 -8 (-15 -2263 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)))
-((-2276 (($ $) 11)) (-2253 (($ $) 10)) (-2297 (($ $) 9)) (-2308 (($ $) 8)) (-2287 (($ $) 7)) (-2263 (($ $) 6)))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-3583 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-3889 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-1533 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-2632 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-719)))) (-3779 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2395 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2632 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-4197 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4270)) (-15 -3583 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4269)) (PROGN (-15 -3889 ((-110) (-1 (-110) |t#1|) $)) (-15 -1533 ((-110) (-1 (-110) |t#1|) $)) (-15 -2632 ((-719) (-1 (-110) |t#1|) $)) (-15 -3779 ((-597 |t#1|) $)) (-15 -2395 ((-597 |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2632 ((-719) |t#1| $)) (-15 -4197 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2482 (($ (-1082)) 8)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 14) (((-1082) $) 11)) (-2248 (((-110) $ $) 10)))
+(((-469) (-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -2482 ($ (-1082)))))) (T -469))
+((-2482 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
+(-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -2482 ($ (-1082)))))
+((-2386 (($ $) 15)) (-2360 (($ $) 24)) (-2409 (($ $) 12)) (-2421 (($ $) 10)) (-2398 (($ $) 17)) (-2373 (($ $) 22)))
+(((-470 |#1|) (-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)))
+((-2386 (($ $) 11)) (-2360 (($ $) 10)) (-2409 (($ $) 9)) (-2421 (($ $) 8)) (-2398 (($ $) 7)) (-2373 (($ $) 6)))
(((-471) (-133)) (T -471))
-((-2276 (*1 *1 *1) (-4 *1 (-471))) (-2253 (*1 *1 *1) (-4 *1 (-471))) (-2297 (*1 *1 *1) (-4 *1 (-471))) (-2308 (*1 *1 *1) (-4 *1 (-471))) (-2287 (*1 *1 *1) (-4 *1 (-471))) (-2263 (*1 *1 *1) (-4 *1 (-471))))
-(-13 (-10 -8 (-15 -2263 ($ $)) (-15 -2287 ($ $)) (-15 -2308 ($ $)) (-15 -2297 ($ $)) (-15 -2253 ($ $)) (-15 -2276 ($ $))))
-((-2473 (((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)) 42)))
-(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) (-344) (-1157 |#1|) (-13 (-344) (-140) (-673 |#1| |#2|)) (-1157 |#3|)) (T -472))
-((-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-399 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1157 *7)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|))))
-((-2246 (((-110) $ $) NIL)) (-2728 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4101 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3015 (((-110) $) 39)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-1537 (((-110) $ $) 64)) (-2350 (((-597 (-570 $)) $) 48)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3155 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-4115 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4189 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3012 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2446 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) 50)) (-3607 (($ $ $) NIL)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-3856 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2986 (($ $) NIL) (($ (-597 $)) NIL)) (-2676 (((-597 (-112)) $) NIL)) (-2221 (((-112) (-112)) NIL)) (-3150 (((-110) $) 42)) (-1555 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1848 (((-1051 (-530) (-570 $)) $) 37)) (-1817 (($ $ (-530)) NIL)) (-1717 (((-1095 $) (-1095 $) (-570 $)) 78) (((-1095 $) (-1095 $) (-597 (-570 $))) 55) (($ $ (-570 $)) 67) (($ $ (-597 (-570 $))) 68)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2657 (((-1095 $) (-570 $)) 65 (|has| $ (-984)))) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 $ $) (-570 $)) NIL)) (-2685 (((-3 (-570 $) "failed") $) NIL)) (-2072 (($ (-597 $)) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2422 (((-597 (-570 $)) $) NIL)) (-1912 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-2300 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2359 (($ $) NIL)) (-4150 (((-719) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2667 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4084 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1934 (((-719) $) NIL)) (-1832 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2695 (($ $) NIL) (($ $ $) NIL)) (-3211 (($ $ (-719)) NIL) (($ $) 36)) (-1857 (((-1051 (-530) (-570 $)) $) 20)) (-4212 (($ $) NIL (|has| $ (-984)))) (-3173 (((-360) $) 92) (((-208) $) 100) (((-159 (-360)) $) 108)) (-2258 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) 21)) (-1667 (((-719)) NIL)) (-3998 (($ $) NIL) (($ (-597 $)) NIL)) (-2212 (((-110) (-112)) 84)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-530)) NIL) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) 10 T CONST)) (-2955 (($) 22 T CONST)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 24)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2257 (($ $ $) 44)) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) 46) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) 27) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-473) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2258 ($ (-1051 (-530) (-570 $)))) (-15 -1848 ((-1051 (-530) (-570 $)) $)) (-15 -1857 ((-1051 (-530) (-570 $)) $)) (-15 -3856 ($ $)) (-15 -1537 ((-110) $ $)) (-15 -1717 ((-1095 $) (-1095 $) (-570 $))) (-15 -1717 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -1717 ($ $ (-570 $))) (-15 -1717 ($ $ (-597 (-570 $))))))) (T -473))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-3856 (*1 *1 *1) (-5 *1 (-473))) (-1537 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-1717 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473)))) (-1717 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473)))) (-5 *1 (-473)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473)))))
-(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2258 ($ (-1051 (-530) (-570 $)))) (-15 -1848 ((-1051 (-530) (-570 $)) $)) (-15 -1857 ((-1051 (-530) (-570 $)) $)) (-15 -3856 ($ $)) (-15 -1537 ((-110) $ $)) (-15 -1717 ((-1095 $) (-1095 $) (-570 $))) (-15 -1717 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -1717 ($ $ (-570 $))) (-15 -1717 ($ $ (-597 (-570 $))))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) 25 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 22 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 21)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 14)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 12 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) 23 (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) 10 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 13)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 24) (($ $ (-1148 (-530))) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) 9 (|has| $ (-6 -4270)))))
+((-2386 (*1 *1 *1) (-4 *1 (-471))) (-2360 (*1 *1 *1) (-4 *1 (-471))) (-2409 (*1 *1 *1) (-4 *1 (-471))) (-2421 (*1 *1 *1) (-4 *1 (-471))) (-2398 (*1 *1 *1) (-4 *1 (-471))) (-2373 (*1 *1 *1) (-4 *1 (-471))))
+(-13 (-10 -8 (-15 -2373 ($ $)) (-15 -2398 ($ $)) (-15 -2421 ($ $)) (-15 -2409 ($ $)) (-15 -2360 ($ $)) (-15 -2386 ($ $))))
+((-2611 (((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)) 42)))
+(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) (-344) (-1157 |#1|) (-13 (-344) (-140) (-673 |#1| |#2|)) (-1157 |#3|)) (T -472))
+((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-399 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1157 *7)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|))))
+((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4202 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-1813 (((-110) $) 39)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2230 (((-110) $ $) 64)) (-2473 (((-597 (-570 $)) $) 48)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2933 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-1326 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) 50)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-2134 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) 42)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1918 (((-1051 (-530) (-570 $)) $) 37)) (-3741 (($ $ (-530)) NIL)) (-2376 (((-1095 $) (-1095 $) (-570 $)) 78) (((-1095 $) (-1095 $) (-597 (-570 $))) 55) (($ $ (-570 $)) 67) (($ $ (-597 (-570 $))) 68)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3210 (((-1095 $) (-570 $)) 65 (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2483 (($ $) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-2356 (((-719) $) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) 36)) (-1928 (((-1051 (-530) (-570 $)) $) 20)) (-1781 (($ $) NIL (|has| $ (-984)))) (-3260 (((-360) $) 92) (((-208) $) 100) (((-159 (-360)) $) 108)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) 21)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) 84)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 10 T CONST)) (-3093 (($) 22 T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 24)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) 44)) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) 46) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) 27) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
+(((-473) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2230 ((-110) $ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))) (T -473))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-2134 (*1 *1 *1) (-5 *1 (-473))) (-2230 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473)))) (-5 *1 (-473)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473)))))
+(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2230 ((-110) $ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 25 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 22 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 21)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 14)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 12 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) 23 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 10 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 13)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 24) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 9 (|has| $ (-6 -4269)))))
(((-474 |#1| |#2|) (-19 |#1|) (-1135) (-530)) (T -474))
NIL
(-19 |#1|)
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2992 (($ $ (-530) (-474 |#1| |#3|)) NIL)) (-2979 (($ $ (-530) (-474 |#1| |#2|)) NIL)) (-3956 (($) NIL T CONST)) (-1564 (((-474 |#1| |#3|) $ (-530)) NIL)) (-2858 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2787 ((|#1| $ (-530) (-530)) NIL)) (-2456 (((-597 |#1|) $) NIL)) (-3531 (((-719) $) NIL)) (-3547 (($ (-719) (-719) |#1|) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-1554 (((-474 |#1| |#2|) $ (-530)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2626 (($ $ (-530) (-474 |#1| |#3|)) NIL)) (-3959 (($ $ (-530) (-474 |#1| |#2|)) NIL)) (-2350 (($) NIL T CONST)) (-1325 (((-474 |#1| |#3|) $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-474 |#1| |#2|) $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-475 |#1| |#2| |#3|) (-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) (-1135) (-530) (-530)) (T -475))
NIL
(-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|))
-((-1558 (((-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719)) 27)) (-1547 (((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719)) 34)) (-3233 (((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)) 85)))
-(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -1547 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -1558 ((-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -3233 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -476))
-((-3233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-2 (|:| -3853 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7))))) (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330)) (-5 *2 (-2 (|:| -3853 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-1558 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3853 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -3853 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6)))) (-4 *7 (-1157 *6)))) (-1547 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3)) (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1157 *5)))))
-(-10 -7 (-15 -1547 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -1558 ((-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -3233 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719))))
-((-1618 (((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 62)) (-1569 ((|#1| (-637 |#1|) |#1| (-719)) 25)) (-1588 (((-719) (-719) (-719)) 30)) (-1609 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 42)) (-1598 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 50) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 47)) (-1578 ((|#1| (-637 |#1|) (-637 |#1|) |#1| (-530)) 29)) (-2911 ((|#1| (-637 |#1|)) 18)))
-(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2911 (|#1| (-637 |#1|))) (-15 -1569 (|#1| (-637 |#1|) |#1| (-719))) (-15 -1578 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -1588 ((-719) (-719) (-719))) (-15 -1598 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1598 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1609 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1618 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))))) (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -477))
-((-1618 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1609 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1598 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1598 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1588 (*1 *2 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1578 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-530)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-1569 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-719)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4)))))
-(-10 -7 (-15 -2911 (|#1| (-637 |#1|))) (-15 -1569 (|#1| (-637 |#1|) |#1| (-719))) (-15 -1578 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -1588 ((-719) (-719) (-719))) (-15 -1598 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1598 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1609 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1618 ((-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3853 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))))
-((-2246 (((-110) $ $) NIL)) (-2390 (($ $) NIL)) (-2947 (($ $ $) 35)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-4017 (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4271)))) (-1317 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4271))) (((-110) $ (-530) (-110)) 36 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2272 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-3856 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2858 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4271)))) (-2787 (((-110) $ (-530)) NIL)) (-1944 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-2456 (((-597 (-110)) $) NIL (|has| $ (-6 -4270)))) (-2656 (($ $ $) 33)) (-3694 (($ $) NIL)) (-3447 (($ $ $) NIL)) (-3547 (($ (-719) (-110)) 23)) (-3309 (($ $ $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 8 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL)) (-3842 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-3252 (((-597 (-110)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL)) (-2847 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-110) $) NIL (|has| (-530) (-795)))) (-4221 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1946 (($ $ (-110)) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027))))) (-2002 (((-597 (-110)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 24)) (-1832 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) 18) (((-110) $ (-530) (-110)) NIL)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2494 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) 25)) (-3173 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2268 (($ (-597 (-110))) NIL)) (-3476 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2258 (((-804) $) 22)) (-1515 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3340 (($ $ $) 31)) (-1267 (($ $ $) NIL)) (-1552 (($ $ $) 39)) (-1562 (($ $) 37)) (-1541 (($ $ $) 38)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 26)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 27)) (-1256 (($ $ $) NIL)) (-2167 (((-719) $) 10 (|has| $ (-6 -4270)))))
-(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -1562 ($ $)) (-15 -1552 ($ $ $)) (-15 -1541 ($ $ $)))) (-530)) (T -478))
-((-1562 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1552 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1541 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))))
-(-13 (-121) (-10 -8 (-15 -1562 ($ $)) (-15 -1552 ($ $ $)) (-15 -1541 ($ $ $))))
-((-1639 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|)) 35)) (-1627 (((-1095 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1095 |#4|)) 22)) (-1649 (((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|))) 46)) (-1659 (((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1627 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -1627 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1639 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1649 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -1659 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|))) (-984) (-1157 |#1|) (-1157 |#2|) (-984)) (T -479))
-((-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))) (-1649 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1157 *6)))) (-1639 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1157 *4)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
-(-10 -7 (-15 -1627 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -1627 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1639 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1649 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -1659 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1671 (((-1186) $) 19)) (-1832 (((-1082) $ (-1099)) 23)) (-2278 (((-1186) $) 15)) (-2258 (((-804) $) 21) (($ (-1082)) 20)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 8)))
-(((-480) (-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $)) (-15 -2258 ($ (-1082)))))) (T -480))
-((-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1082)) (-5 *1 (-480)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-480)))))
-(-13 (-795) (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $)) (-15 -1671 ((-1186) $)) (-15 -2258 ($ (-1082)))))
-((-2173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2149 ((|#1| |#4|) 10)) (-2159 ((|#3| |#4|) 17)))
-(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2149 (|#1| |#4|)) (-15 -2159 (|#3| |#4|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-522) (-932 |#1|) (-354 |#1|) (-354 |#2|)) (T -481))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) (-2159 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-354 *4)))))
-(-10 -7 (-15 -2149 (|#1| |#4|)) (-15 -2159 (|#3| |#4|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2246 (((-110) $ $) NIL)) (-3634 (((-110) $ (-597 |#3|)) 105) (((-110) $) 106)) (-3015 (((-110) $) 149)) (-1687 (($ $ |#4|) 97) (($ $ |#4| (-597 |#3|)) 101)) (-1679 (((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|)) 142 (|has| |#3| (-572 (-1099))))) (-3624 (($ $ $) 91) (($ $ |#4|) 89)) (-3150 (((-110) $) 148)) (-1720 (($ $) 109)) (-3443 (((-1082) $) NIL)) (-3418 (($ $ $) 83) (($ (-597 $)) 85)) (-3641 (((-110) |#4| $) 108)) (-3651 (((-110) $ $) 72)) (-1712 (($ (-597 |#4|)) 90)) (-2485 (((-1046) $) NIL)) (-1705 (($ (-597 |#4|)) 146)) (-1697 (((-110) $) 147)) (-2178 (($ $) 74)) (-1736 (((-597 |#4|) $) 63)) (-3615 (((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|)) NIL)) (-3660 (((-110) |#4| $) 77)) (-1248 (((-530) $ (-597 |#3|)) 110) (((-530) $) 111)) (-2258 (((-804) $) 145) (($ (-597 |#4|)) 86)) (-1729 (($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $))) NIL)) (-2148 (((-110) $ $) 73)) (-2234 (($ $ $) 93)) (** (($ $ (-719)) 96)) (* (($ $ $) 95)))
-(((-482 |#1| |#2| |#3| |#4|) (-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2234 ($ $ $)) (-15 -3150 ((-110) $)) (-15 -3015 ((-110) $)) (-15 -3660 ((-110) |#4| $)) (-15 -3651 ((-110) $ $)) (-15 -3641 ((-110) |#4| $)) (-15 -3634 ((-110) $ (-597 |#3|))) (-15 -3634 ((-110) $)) (-15 -3418 ($ $ $)) (-15 -3418 ($ (-597 $))) (-15 -3624 ($ $ $)) (-15 -3624 ($ $ |#4|)) (-15 -2178 ($ $)) (-15 -3615 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -1729 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -1248 ((-530) $ (-597 |#3|))) (-15 -1248 ((-530) $)) (-15 -1720 ($ $)) (-15 -1712 ($ (-597 |#4|))) (-15 -1705 ($ (-597 |#4|))) (-15 -1697 ((-110) $)) (-15 -1736 ((-597 |#4|) $)) (-15 -2258 ($ (-597 |#4|))) (-15 -1687 ($ $ |#4|)) (-15 -1687 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1679 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -482))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2234 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3150 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3015 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3651 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3641 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3634 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-3634 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3418 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3624 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3624 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-2178 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1248 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-1248 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1720 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-1705 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-1697 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1736 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-1687 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-1687 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099))) (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4))))) (-5 *1 (-482 *4 *5 *6 *7)))))
-(-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2234 ($ $ $)) (-15 -3150 ((-110) $)) (-15 -3015 ((-110) $)) (-15 -3660 ((-110) |#4| $)) (-15 -3651 ((-110) $ $)) (-15 -3641 ((-110) |#4| $)) (-15 -3634 ((-110) $ (-597 |#3|))) (-15 -3634 ((-110) $)) (-15 -3418 ($ $ $)) (-15 -3418 ($ (-597 $))) (-15 -3624 ($ $ $)) (-15 -3624 ($ $ |#4|)) (-15 -2178 ($ $)) (-15 -3615 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -1729 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -1248 ((-530) $ (-597 |#3|))) (-15 -1248 ((-530) $)) (-15 -1720 ($ $)) (-15 -1712 ($ (-597 |#4|))) (-15 -1705 ($ (-597 |#4|))) (-15 -1697 ((-110) $)) (-15 -1736 ((-597 |#4|) $)) (-15 -2258 ($ (-597 |#4|))) (-15 -1687 ($ $ |#4|)) (-15 -1687 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1679 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|)))
-((-3669 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 150)) (-3676 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 151)) (-3670 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 108)) (-2049 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) NIL)) (-3685 (((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 153)) (-3693 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))) 165)))
-(((-483 |#1| |#2|) (-10 -7 (-15 -3669 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3676 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -2049 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3670 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3685 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3693 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))))) (-597 (-1099)) (-719)) (T -483))
-((-3693 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *1 (-483 *4 *5)))) (-3685 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-597 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))))
-(-10 -7 (-15 -3669 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3676 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -2049 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3670 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3685 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3693 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-2575 (($ |#1| |#2|) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3701 ((|#2| $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2943 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) 11) (($ $ $) 24)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 18)))
+((-2740 (((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719)) 27)) (-3859 (((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719)) 34)) (-4164 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)) 85)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3859 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2740 ((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -4164 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -476))
+((-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7))))) (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330)) (-5 *2 (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-2740 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6)))) (-4 *7 (-1157 *6)))) (-3859 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3)) (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1157 *5)))))
+(-10 -7 (-15 -3859 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2740 ((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -4164 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719))))
+((-2883 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 62)) (-1693 ((|#1| (-637 |#1|) |#1| (-719)) 25)) (-3011 (((-719) (-719) (-719)) 30)) (-1233 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 42)) (-1488 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 50) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 47)) (-3189 ((|#1| (-637 |#1|) (-637 |#1|) |#1| (-530)) 29)) (-3896 ((|#1| (-637 |#1|)) 18)))
+(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -3896 (|#1| (-637 |#1|))) (-15 -1693 (|#1| (-637 |#1|) |#1| (-719))) (-15 -3189 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -3011 ((-719) (-719) (-719))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1233 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2883 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))))) (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -477))
+((-2883 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1233 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1488 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1488 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3011 (*1 *2 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3189 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-530)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-1693 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-719)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4)))))
+(-10 -7 (-15 -3896 (|#1| (-637 |#1|))) (-15 -1693 (|#1| (-637 |#1|) |#1| (-719))) (-15 -3189 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -3011 ((-719) (-719) (-719))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1233 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2883 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))))
+((-2352 (((-110) $ $) NIL)) (-2522 (($ $) NIL)) (-3085 (($ $ $) 35)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) 36 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2383 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3592 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) NIL)) (-2027 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-3779 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-2813 (($ $ $) 33)) (-3676 (($ $) NIL)) (-1493 (($ $ $) NIL)) (-3538 (($ (-719) (-110)) 23)) (-4073 (($ $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 8 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL)) (-3683 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2395 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL)) (-3583 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-110) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1522 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 24)) (-1902 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) 18) (((-110) $ (-530) (-110)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2632 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) 25)) (-3260 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) NIL)) (-3483 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2366 (((-804) $) 22)) (-3889 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3380 (($ $ $) 31)) (-1262 (($ $ $) NIL)) (-1547 (($ $ $) 39)) (-1559 (($ $) 37)) (-1536 (($ $ $) 38)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 26)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 27)) (-1253 (($ $ $) NIL)) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
+(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -1559 ($ $)) (-15 -1547 ($ $ $)) (-15 -1536 ($ $ $)))) (-530)) (T -478))
+((-1559 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1547 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1536 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))))
+(-13 (-121) (-10 -8 (-15 -1559 ($ $)) (-15 -1547 ($ $ $)) (-15 -1536 ($ $ $))))
+((-1721 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|)) 35)) (-2127 (((-1095 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1095 |#4|)) 22)) (-1231 (((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|))) 46)) (-3928 (((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2127 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -2127 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1721 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1231 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -3928 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|))) (-984) (-1157 |#1|) (-1157 |#2|) (-984)) (T -479))
+((-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))) (-1231 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1157 *6)))) (-1721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1157 *4)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
+(-10 -7 (-15 -2127 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -2127 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1721 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1231 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -3928 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3595 (((-1186) $) 19)) (-1902 (((-1082) $ (-1099)) 23)) (-2388 (((-1186) $) 15)) (-2366 (((-804) $) 21) (($ (-1082)) 20)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 9)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
+(((-480) (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -2366 ($ (-1082)))))) (T -480))
+((-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1082)) (-5 *1 (-480)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-480)))))
+(-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -2366 ($ (-1082)))))
+((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3912 ((|#1| |#4|) 10)) (-2765 ((|#3| |#4|) 17)))
+(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 (|#1| |#4|)) (-15 -2765 (|#3| |#4|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-522) (-932 |#1|) (-354 |#1|) (-354 |#2|)) (T -481))
+((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-354 *4)))))
+(-10 -7 (-15 -3912 (|#1| |#4|)) (-15 -2765 (|#3| |#4|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2352 (((-110) $ $) NIL)) (-3322 (((-110) $ (-597 |#3|)) 105) (((-110) $) 106)) (-1813 (((-110) $) 149)) (-2330 (($ $ |#4|) 97) (($ $ |#4| (-597 |#3|)) 101)) (-1959 (((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|)) 142 (|has| |#3| (-572 (-1099))))) (-1324 (($ $ $) 91) (($ $ |#4|) 89)) (-2731 (((-110) $) 148)) (-1440 (($ $) 109)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 83) (($ (-597 $)) 85)) (-2969 (((-110) |#4| $) 108)) (-1332 (((-110) $ $) 72)) (-3046 (($ (-597 |#4|)) 90)) (-2624 (((-1046) $) NIL)) (-3437 (($ (-597 |#4|)) 146)) (-3752 (((-110) $) 147)) (-1241 (($ $) 74)) (-3478 (((-597 |#4|) $) 63)) (-2819 (((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|)) NIL)) (-4045 (((-110) |#4| $) 77)) (-2488 (((-530) $ (-597 |#3|)) 110) (((-530) $) 111)) (-2366 (((-804) $) 145) (($ (-597 |#4|)) 86)) (-4077 (($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $))) NIL)) (-2248 (((-110) $ $) 73)) (-2339 (($ $ $) 93)) (** (($ $ (-719)) 96)) (* (($ $ $) 95)))
+(((-482 |#1| |#2| |#3| |#4|) (-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2339 ($ $ $)) (-15 -2731 ((-110) $)) (-15 -1813 ((-110) $)) (-15 -4045 ((-110) |#4| $)) (-15 -1332 ((-110) $ $)) (-15 -2969 ((-110) |#4| $)) (-15 -3322 ((-110) $ (-597 |#3|))) (-15 -3322 ((-110) $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ (-597 $))) (-15 -1324 ($ $ $)) (-15 -1324 ($ $ |#4|)) (-15 -1241 ($ $)) (-15 -2819 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -4077 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -2488 ((-530) $ (-597 |#3|))) (-15 -2488 ((-530) $)) (-15 -1440 ($ $)) (-15 -3046 ($ (-597 |#4|))) (-15 -3437 ($ (-597 |#4|))) (-15 -3752 ((-110) $)) (-15 -3478 ((-597 |#4|) $)) (-15 -2366 ($ (-597 |#4|))) (-15 -2330 ($ $ |#4|)) (-15 -2330 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1959 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -482))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2731 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1813 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-4045 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-1332 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2969 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-3322 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-1324 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-1241 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1440 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3752 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3478 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-2330 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099))) (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4))))) (-5 *1 (-482 *4 *5 *6 *7)))))
+(-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2339 ($ $ $)) (-15 -2731 ((-110) $)) (-15 -1813 ((-110) $)) (-15 -4045 ((-110) |#4| $)) (-15 -1332 ((-110) $ $)) (-15 -2969 ((-110) |#4| $)) (-15 -3322 ((-110) $ (-597 |#3|))) (-15 -3322 ((-110) $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ (-597 $))) (-15 -1324 ($ $ $)) (-15 -1324 ($ $ |#4|)) (-15 -1241 ($ $)) (-15 -2819 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -4077 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -2488 ((-530) $ (-597 |#3|))) (-15 -2488 ((-530) $)) (-15 -1440 ($ $)) (-15 -3046 ($ (-597 |#4|))) (-15 -3437 ($ (-597 |#4|))) (-15 -3752 ((-110) $)) (-15 -3478 ((-597 |#4|) $)) (-15 -2366 ($ (-597 |#4|))) (-15 -2330 ($ $ |#4|)) (-15 -2330 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1959 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|)))
+((-3640 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 150)) (-3114 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 151)) (-1932 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 108)) (-3295 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) NIL)) (-1395 (((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 153)) (-1695 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))) 165)))
+(((-483 |#1| |#2|) (-10 -7 (-15 -3640 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3114 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3295 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1932 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1395 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1695 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))))) (-597 (-1099)) (-719)) (T -483))
+((-1695 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *1 (-483 *4 *5)))) (-1395 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-597 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))))
+(-10 -7 (-15 -3640 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3114 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3295 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1932 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1395 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1695 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) 12 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 11) (($ $ $) 24)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 18)))
(((-484 |#1| |#2|) (-13 (-21) (-486 |#1| |#2|)) (-21) (-795)) (T -484))
NIL
(-13 (-21) (-486 |#1| |#2|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 12)) (-3956 (($) NIL T CONST)) (-2425 (($ $) 28)) (-2575 (($ |#1| |#2|) 25)) (-3114 (($ (-1 |#1| |#1|) $) 27)) (-3701 ((|#2| $) NIL)) (-2402 ((|#1| $) 29)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2943 (($) 10 T CONST)) (-2148 (((-110) $ $) NIL)) (-2234 (($ $ $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) 23)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 12)) (-2350 (($) NIL T CONST)) (-2562 (($ $) 28)) (-2725 (($ |#1| |#2|) 25)) (-3217 (($ (-1 |#1| |#1|) $) 27)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) 29)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) 10 T CONST)) (-2248 (((-110) $ $) NIL)) (-2339 (($ $ $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) 23)))
(((-485 |#1| |#2|) (-13 (-23) (-486 |#1| |#2|)) (-23) (-795)) (T -485))
NIL
(-13 (-23) (-486 |#1| |#2|))
-((-2246 (((-110) $ $) 7)) (-2425 (($ $) 13)) (-2575 (($ |#1| |#2|) 16)) (-3114 (($ (-1 |#1| |#1|) $) 17)) (-3701 ((|#2| $) 14)) (-2402 ((|#1| $) 15)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-2562 (($ $) 13)) (-2725 (($ |#1| |#2|) 16)) (-3217 (($ (-1 |#1| |#1|) $) 17)) (-4115 ((|#2| $) 14)) (-2533 ((|#1| $) 15)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-486 |#1| |#2|) (-133) (-1027) (-795)) (T -486))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-795)))) (-2575 (*1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))))
-(-13 (-1027) (-10 -8 (-15 -3114 ($ (-1 |t#1| |t#1|) $)) (-15 -2575 ($ |t#1| |t#2|)) (-15 -2402 (|t#1| $)) (-15 -3701 (|t#2| $)) (-15 -2425 ($ $))))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-795)))) (-2725 (*1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))))
+(-13 (-1027) (-10 -8 (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -2725 ($ |t#1| |t#2|)) (-15 -2533 (|t#1| $)) (-15 -4115 (|t#2| $)) (-15 -2562 ($ $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-2575 (($ |#1| |#2|) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3701 ((|#2| $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2943 (($) NIL T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 13)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 13)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
(((-487 |#1| |#2|) (-13 (-740) (-486 |#1| |#2|)) (-740) (-795)) (T -487))
NIL
(-13 (-740) (-486 |#1| |#2|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3821 (($ $ $) 16)) (-3618 (((-3 $ "failed") $ $) 13)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-2575 (($ |#1| |#2|) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3701 ((|#2| $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL)) (-2943 (($) NIL T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) 16)) (-1889 (((-3 $ "failed") $ $) 13)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
(((-488 |#1| |#2|) (-13 (-741) (-486 |#1| |#2|)) (-741) (-795)) (T -488))
NIL
(-13 (-741) (-486 |#1| |#2|))
-((-2246 (((-110) $ $) NIL)) (-2425 (($ $) 25)) (-2575 (($ |#1| |#2|) 22)) (-3114 (($ (-1 |#1| |#1|) $) 24)) (-3701 ((|#2| $) 27)) (-2402 ((|#1| $) 26)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 21)) (-2148 (((-110) $ $) 14)))
+((-2352 (((-110) $ $) NIL)) (-2562 (($ $) 25)) (-2725 (($ |#1| |#2|) 22)) (-3217 (($ (-1 |#1| |#1|) $) 24)) (-4115 ((|#2| $) 27)) (-2533 ((|#1| $) 26)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21)) (-2248 (((-110) $ $) 14)))
(((-489 |#1| |#2|) (-486 |#1| |#2|) (-1027) (-795)) (T -489))
NIL
(-486 |#1| |#2|)
-((-4084 (($ $ (-597 |#2|) (-597 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-490 |#1| |#2| |#3|) (-10 -8 (-15 -4084 (|#1| |#1| |#2| |#3|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#3|)))) (-491 |#2| |#3|) (-1027) (-1135)) (T -490))
+((-4098 (($ $ (-597 |#2|) (-597 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-490 |#1| |#2| |#3|) (-10 -8 (-15 -4098 (|#1| |#1| |#2| |#3|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#3|)))) (-491 |#2| |#3|) (-1027) (-1135)) (T -490))
NIL
-(-10 -8 (-15 -4084 (|#1| |#1| |#2| |#3|)) (-15 -4084 (|#1| |#1| (-597 |#2|) (-597 |#3|))))
-((-4084 (($ $ (-597 |#1|) (-597 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(-10 -8 (-15 -4098 (|#1| |#1| |#2| |#3|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#3|))))
+((-4098 (($ $ (-597 |#1|) (-597 |#2|)) 7) (($ $ |#1| |#2|) 6)))
(((-491 |#1| |#2|) (-133) (-1027) (-1135)) (T -491))
-((-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *5)) (-4 *1 (-491 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1135)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1135)))))
-(-13 (-10 -8 (-15 -4084 ($ $ |t#1| |t#2|)) (-15 -4084 ($ $ (-597 |t#1|) (-597 |t#2|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 16)) (-1344 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))) $) 18)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719) $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-4173 ((|#1| $ (-530)) 23)) (-2073 ((|#2| $ (-530)) 21)) (-1320 (($ (-1 |#1| |#1|) $) 46)) (-2062 (($ (-1 |#2| |#2|) $) 43)) (-3443 (((-1082) $) NIL)) (-2053 (($ $ $) 53 (|has| |#2| (-740)))) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 42) (($ |#1|) NIL)) (-2782 ((|#2| |#1| $) 49)) (-2943 (($) 11 T CONST)) (-2148 (((-110) $ $) 29)) (-2234 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) 36) (($ |#2| |#1|) 31)))
+((-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *5)) (-4 *1 (-491 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1135)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1135)))))
+(-13 (-10 -8 (-15 -4098 ($ $ |t#1| |t#2|)) (-15 -4098 ($ $ (-597 |t#1|) (-597 |t#2|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 16)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 18)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) 23)) (-4016 ((|#2| $ (-530)) 21)) (-2580 (($ (-1 |#1| |#1|) $) 46)) (-1466 (($ (-1 |#2| |#2|) $) 43)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) 53 (|has| |#2| (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 42) (($ |#1|) NIL)) (-4085 ((|#2| |#1| $) 49)) (-3080 (($) 11 T CONST)) (-2248 (((-110) $ $) 29)) (-2339 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) 36) (($ |#2| |#1|) 31)))
(((-492 |#1| |#2| |#3|) (-304 |#1| |#2|) (-1027) (-128) |#2|) (T -492))
NIL
(-304 |#1| |#2|)
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-3710 (((-110) (-110)) 25)) (-2416 ((|#1| $ (-530) |#1|) 28 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) 52)) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-3929 (($ $) 56 (|has| |#1| (-1027)))) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 44)) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3722 (($ $ (-530)) 13)) (-3731 (((-719) $) 11)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 23)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 21 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-2767 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) 20 (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3440 (($ $ $ (-530)) 51) (($ |#1| $ (-530)) 37)) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3740 (($ (-597 |#1|)) 29)) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) 19 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 40)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 16)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 33) (($ $ (-1148 (-530))) NIL)) (-2434 (($ $ (-1148 (-530))) 50) (($ $ (-530)) 45)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) 41 (|has| $ (-6 -4271)))) (-2441 (($ $) 32)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-1501 (($ $ $) 42) (($ $ |#1|) 39)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) 17 (|has| $ (-6 -4270)))))
-(((-493 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -3740 ($ (-597 |#1|))) (-15 -3731 ((-719) $)) (-15 -3722 ($ $ (-530))) (-15 -3710 ((-110) (-110))))) (-1135) (-530)) (T -493))
-((-3740 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4)) (-14 *4 (-530)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))) (-3722 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))))
-(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -3740 ($ (-597 |#1|))) (-15 -3731 ((-719) $)) (-15 -3722 ($ $ (-530))) (-15 -3710 ((-110) (-110)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-543 |#1|) (-349)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL (|has| (-543 |#1|) (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-543 |#1|) "failed") $) NIL)) (-2446 (((-543 |#1|) $) NIL)) (-3477 (($ (-1181 (-543 |#1|))) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-543 |#1|) (-349)))) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-543 |#1|) (-349)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL (|has| (-543 |#1|) (-349)))) (-1674 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-3175 (($ $ (-719)) NIL (-1476 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349)))) (($ $) NIL (-1476 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2049 (((-110) $) NIL)) (-1334 (((-862) $) NIL (|has| (-543 |#1|) (-349))) (((-781 (-862)) $) NIL (-1476 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| (-543 |#1|) (-349)))) (-3840 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-1717 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-543 |#1|) (-349)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 (-543 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-3830 (((-862) $) NIL (|has| (-543 |#1|) (-349)))) (-2130 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349)))) (-2120 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-1095 (-543 |#1|)) "failed") $ $) NIL (|has| (-543 |#1|) (-349)))) (-2142 (($ $ (-1095 (-543 |#1|))) NIL (|has| (-543 |#1|) (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-543 |#1|) (-349)) CONST)) (-1910 (($ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL (|has| (-543 |#1|) (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-543 |#1|) (-349)))) (-2473 (((-399 $) $) NIL)) (-3255 (((-781 (-862))) NIL) (((-862)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-719) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1476 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-1248 (((-130)) NIL)) (-3211 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-3409 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-4212 (((-1095 (-543 |#1|))) NIL)) (-1612 (($) NIL (|has| (-543 |#1|) (-349)))) (-2153 (($) NIL (|has| (-543 |#1|) (-349)))) (-3351 (((-1181 (-543 |#1|)) $) NIL) (((-637 (-543 |#1|)) (-1181 $)) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-543 |#1|) (-349)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-543 |#1|)) NIL)) (-1795 (($ $) NIL (|has| (-543 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1476 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-3286 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL) (($ $ (-543 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-543 |#1|)) NIL) (($ (-543 |#1|) $) NIL)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1770 (((-110) (-110)) 25)) (-2552 ((|#1| $ (-530) |#1|) 28 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 52)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-2287 (($ $) 56 (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 44)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3219 (($ $ (-530)) 13)) (-2871 (((-719) $) 11)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 23)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 21 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) 20 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ $ $ (-530)) 51) (($ |#1| $ (-530)) 37)) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2403 (($ (-597 |#1|)) 29)) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 19 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 40)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 16)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 33) (($ $ (-1148 (-530))) NIL)) (-3715 (($ $ (-1148 (-530))) 50) (($ $ (-530)) 45)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) 41 (|has| $ (-6 -4270)))) (-2579 (($ $) 32)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) 42) (($ $ |#1|) 39)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 17 (|has| $ (-6 -4269)))))
+(((-493 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110))))) (-1135) (-530)) (T -493))
+((-2403 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4)) (-14 *4 (-530)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))) (-3219 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-543 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-543 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-543 |#1|) "failed") $) NIL)) (-2585 (((-543 |#1|) $) NIL)) (-1574 (($ (-1181 (-543 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-543 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-543 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-543 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-543 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-543 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-2376 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-543 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-543 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-543 |#1|) (-349)))) (-3005 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349)))) (-3396 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-1095 (-543 |#1|)) "failed") $ $) NIL (|has| (-543 |#1|) (-349)))) (-1658 (($ $ (-1095 (-543 |#1|))) NIL (|has| (-543 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-543 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| (-543 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-543 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-543 |#1|))) NIL)) (-3406 (($) NIL (|has| (-543 |#1|) (-349)))) (-1698 (($) NIL (|has| (-543 |#1|) (-349)))) (-2328 (((-1181 (-543 |#1|)) $) NIL) (((-637 (-543 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-543 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-543 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-543 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-543 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-543 |#1|)) NIL) (($ (-543 |#1|) $) NIL)))
(((-494 |#1| |#2|) (-310 (-543 |#1|)) (-862) (-862)) (T -494))
NIL
(-310 (-543 |#1|))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) 35)) (-2992 (($ $ (-530) |#4|) NIL)) (-2979 (($ $ (-530) |#5|) NIL)) (-3956 (($) NIL T CONST)) (-1564 ((|#4| $ (-530)) NIL)) (-2858 ((|#1| $ (-530) (-530) |#1|) 34)) (-2787 ((|#1| $ (-530) (-530)) 32)) (-2456 (((-597 |#1|) $) NIL)) (-3531 (((-719) $) 28)) (-3547 (($ (-719) (-719) |#1|) 25)) (-3544 (((-719) $) 30)) (-2014 (((-110) $ (-719)) NIL)) (-1604 (((-530) $) 26)) (-1583 (((-530) $) 27)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) 29)) (-1574 (((-530) $) 31)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) 38 (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 14)) (-4227 (($) 16)) (-1832 ((|#1| $ (-530) (-530)) 33) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-1554 ((|#5| $ (-530)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) 35)) (-2626 (($ $ (-530) |#4|) NIL)) (-3959 (($ $ (-530) |#5|) NIL)) (-2350 (($) NIL T CONST)) (-1325 ((|#4| $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) 34)) (-3532 ((|#1| $ (-530) (-530)) 32)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) 28)) (-3538 (($ (-719) (-719) |#1|) 25)) (-1810 (((-719) $) 30)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) 26)) (-3643 (((-530) $) 27)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 29)) (-3909 (((-530) $) 31)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) 38 (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 16)) (-1902 ((|#1| $ (-530) (-530)) 33) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 ((|#5| $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-495 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1135) (-530) (-530) (-354 |#1|) (-354 |#1|)) (T -495))
NIL
(-55 |#1| |#4| |#5|)
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) NIL)) (-3165 ((|#1| $) NIL)) (-2040 (($ $) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 59 (|has| $ (-6 -4271)))) (-4038 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-4017 (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4271)))) (-1317 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1467 (($ $ $) 23 (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 21 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4271))) (($ $ "rest" $) 24 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) NIL)) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3152 ((|#1| $) NIL)) (-3956 (($) NIL T CONST)) (-1389 (($ $) 28 (|has| $ (-6 -4271)))) (-4093 (($ $) 29)) (-2918 (($ $) 18) (($ $ (-719)) 32)) (-3929 (($ $) 55 (|has| |#1| (-1027)))) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2272 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1539 (((-110) $) NIL)) (-1944 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-2456 (((-597 |#1|) $) 27 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 31 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-2767 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3842 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2783 (($ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) 51 (|has| |#1| (-1027)))) (-2294 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3440 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) 13) (($ $ (-719)) NIL)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1549 (((-110) $) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 12)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) 17)) (-4227 (($) 16)) (-1832 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL)) (-1984 (((-530) $ $) NIL)) (-2434 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-3663 (((-110) $) 34)) (-1513 (($ $) NIL)) (-1489 (($ $) NIL (|has| $ (-6 -4271)))) (-1524 (((-719) $) NIL)) (-1534 (($ $) 36)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) 35)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 26)) (-1501 (($ $ $) 54) (($ $ |#1|) NIL)) (-3476 (($ $ $) NIL) (($ |#1| $) 10) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2258 (((-804) $) 46 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 48 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) 9 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 59 (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 23 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 21 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4270))) (($ $ "rest" $) 24 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) 28 (|has| $ (-6 -4270)))) (-4106 (($ $) 29)) (-3057 (($ $) 18) (($ $ (-719)) 32)) (-2287 (($ $) 55 (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) 27 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 31 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) 51 (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) 13) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 12)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) 17)) (-3958 (($) 16)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-4246 (((-110) $) 34)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) 36)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) 35)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 26)) (-1328 (($ $ $) 54) (($ $ |#1|) NIL)) (-3483 (($ $ $) NIL) (($ |#1| $) 10) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (((-804) $) 46 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 48 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 9 (|has| $ (-6 -4269)))))
(((-496 |#1| |#2|) (-617 |#1|) (-1135) (-530)) (T -496))
NIL
(-617 |#1|)
-((-1543 ((|#4| |#4|) 27)) (-4113 (((-719) |#4|) 32)) (-1532 (((-719) |#4|) 33)) (-1522 (((-597 |#3|) |#4|) 40 (|has| |#3| (-6 -4271)))) (-3248 (((-3 |#4| "failed") |#4|) 51)) (-3750 ((|#4| |#4|) 44)) (-2900 ((|#1| |#4|) 43)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1543 (|#4| |#4|)) (-15 -4113 ((-719) |#4|)) (-15 -1532 ((-719) |#4|)) (IF (|has| |#3| (-6 -4271)) (-15 -1522 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2900 (|#1| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3248 ((-3 |#4| "failed") |#4|))) (-344) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -497))
-((-3248 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-1522 (*1 *2 *3) (-12 (|has| *6 (-6 -4271)) (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -1543 (|#4| |#4|)) (-15 -4113 ((-719) |#4|)) (-15 -1532 ((-719) |#4|)) (IF (|has| |#3| (-6 -4271)) (-15 -1522 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2900 (|#1| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3248 ((-3 |#4| "failed") |#4|)))
-((-1543 ((|#8| |#4|) 20)) (-1522 (((-597 |#3|) |#4|) 29 (|has| |#7| (-6 -4271)))) (-3248 (((-3 |#8| "failed") |#4|) 23)))
-(((-498 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1543 (|#8| |#4|)) (-15 -3248 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4271)) (-15 -1522 ((-597 |#3|) |#4|)) |%noBranch|)) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-932 |#1|) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -498))
-((-1522 (*1 *2 *3) (-12 (|has| *9 (-6 -4271)) (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)) (-5 *2 (-597 *6)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6)) (-4 *10 (-635 *7 *8 *9)))) (-3248 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))))
-(-10 -7 (-15 -1543 (|#8| |#4|)) (-15 -3248 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4271)) (-15 -1522 ((-597 |#3|) |#4|)) |%noBranch|))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719) (-719)) NIL)) (-3698 (($ $ $) NIL)) (-1350 (($ (-561 |#1| |#3|)) NIL) (($ $) NIL)) (-1623 (((-110) $) NIL)) (-3689 (($ $ (-530) (-530)) 12)) (-3681 (($ $ (-530) (-530)) NIL)) (-3672 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3714 (($ $) NIL)) (-1645 (((-110) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-3665 (($ $ (-530) (-530) $) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2992 (($ $ (-530) (-561 |#1| |#3|)) NIL)) (-2979 (($ $ (-530) (-561 |#1| |#2|)) NIL)) (-2944 (($ (-719) |#1|) NIL)) (-3956 (($) NIL T CONST)) (-1543 (($ $) 21 (|has| |#1| (-289)))) (-1564 (((-561 |#1| |#3|) $ (-530)) NIL)) (-4113 (((-719) $) 24 (|has| |#1| (-522)))) (-2858 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2787 ((|#1| $ (-530) (-530)) NIL)) (-2456 (((-597 |#1|) $) NIL)) (-1532 (((-719) $) 26 (|has| |#1| (-522)))) (-1522 (((-597 (-561 |#1| |#2|)) $) 29 (|has| |#1| (-522)))) (-3531 (((-719) $) NIL)) (-3547 (($ (-719) (-719) |#1|) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-2892 ((|#1| $) 19 (|has| |#1| (-6 (-4272 "*"))))) (-1604 (((-530) $) 10)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) 11)) (-1574 (((-530) $) NIL)) (-2162 (($ (-597 (-597 |#1|))) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3285 (((-597 (-597 |#1|)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3248 (((-3 $ "failed") $) 33 (|has| |#1| (-344)))) (-3705 (($ $ $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2933 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1635 (((-110) $) NIL)) (-2900 ((|#1| $) 17 (|has| |#1| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-1554 (((-561 |#1| |#2|) $ (-530)) NIL)) (-2258 (($ (-561 |#1| |#2|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-561 |#1| |#2|) $ (-561 |#1| |#2|)) NIL) (((-561 |#1| |#3|) (-561 |#1| |#3|) $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-1583 ((|#4| |#4|) 27)) (-2426 (((-719) |#4|) 32)) (-1791 (((-719) |#4|) 33)) (-2515 (((-597 |#3|) |#4|) 40 (|has| |#3| (-6 -4270)))) (-1991 (((-3 |#4| "failed") |#4|) 51)) (-3717 ((|#4| |#4|) 44)) (-2338 ((|#1| |#4|) 43)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1583 (|#4| |#4|)) (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2338 (|#1| |#4|)) (-15 -3717 (|#4| |#4|)) (-15 -1991 ((-3 |#4| "failed") |#4|))) (-344) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -497))
+((-1991 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-2515 (*1 *2 *3) (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1791 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(-10 -7 (-15 -1583 (|#4| |#4|)) (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2338 (|#1| |#4|)) (-15 -3717 (|#4| |#4|)) (-15 -1991 ((-3 |#4| "failed") |#4|)))
+((-1583 ((|#8| |#4|) 20)) (-2515 (((-597 |#3|) |#4|) 29 (|has| |#7| (-6 -4270)))) (-1991 (((-3 |#8| "failed") |#4|) 23)))
+(((-498 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1583 (|#8| |#4|)) (-15 -1991 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|)) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-932 |#1|) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -498))
+((-2515 (*1 *2 *3) (-12 (|has| *9 (-6 -4270)) (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)) (-5 *2 (-597 *6)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6)) (-4 *10 (-635 *7 *8 *9)))) (-1991 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))))
+(-10 -7 (-15 -1583 (|#8| |#4|)) (-15 -1991 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) NIL)) (-3844 (($ $ $) NIL)) (-4114 (($ (-561 |#1| |#3|)) NIL) (($ $) NIL)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) 12)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-561 |#1| |#3|)) NIL)) (-3959 (($ $ (-530) (-561 |#1| |#2|)) NIL)) (-1570 (($ (-719) |#1|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 21 (|has| |#1| (-289)))) (-1325 (((-561 |#1| |#3|) $ (-530)) NIL)) (-2426 (((-719) $) 24 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) 26 (|has| |#1| (-522)))) (-2515 (((-597 (-561 |#1| |#2|)) $) 29 (|has| |#1| (-522)))) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) 19 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 10)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 11)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#1|))) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 33 (|has| |#1| (-344)))) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) 17 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-561 |#1| |#2|) $ (-530)) NIL)) (-2366 (($ (-561 |#1| |#2|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-561 |#1| |#2|) $ (-561 |#1| |#2|)) NIL) (((-561 |#1| |#3|) (-561 |#1| |#3|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-499 |#1| |#2| |#3|) (-635 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) (-984) (-530) (-530)) (T -499))
NIL
(-635 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|))
-((-3781 (((-1095 |#1|) (-719)) 76)) (-1380 (((-1181 |#1|) (-1181 |#1|) (-862)) 69)) (-3760 (((-1186) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) |#1|) 84)) (-3800 (((-1181 |#1|) (-1181 |#1|) (-719)) 36)) (-1376 (((-1181 |#1|) (-862)) 71)) (-3819 (((-1181 |#1|) (-1181 |#1|) (-530)) 24)) (-3770 (((-1095 |#1|) (-1181 |#1|)) 77)) (-3863 (((-1181 |#1|) (-862)) 95)) (-3840 (((-110) (-1181 |#1|)) 80)) (-1717 (((-1181 |#1|) (-1181 |#1|) (-862)) 62)) (-3873 (((-1095 |#1|) (-1181 |#1|)) 89)) (-3830 (((-862) (-1181 |#1|)) 59)) (-2359 (((-1181 |#1|) (-1181 |#1|)) 30)) (-1910 (((-1181 |#1|) (-862) (-862)) 97)) (-3810 (((-1181 |#1|) (-1181 |#1|) (-1046) (-1046)) 23)) (-3791 (((-1181 |#1|) (-1181 |#1|) (-719) (-1046)) 37)) (-3853 (((-1181 (-1181 |#1|)) (-862)) 94)) (-2257 (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 81)) (** (((-1181 |#1|) (-1181 |#1|) (-530)) 45)) (* (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 25)))
-(((-500 |#1|) (-10 -7 (-15 -3760 ((-1186) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) |#1|)) (-15 -1376 ((-1181 |#1|) (-862))) (-15 -1910 ((-1181 |#1|) (-862) (-862))) (-15 -3770 ((-1095 |#1|) (-1181 |#1|))) (-15 -3781 ((-1095 |#1|) (-719))) (-15 -3791 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -3800 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -3810 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3819 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2257 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1717 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1380 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2359 ((-1181 |#1|) (-1181 |#1|))) (-15 -3830 ((-862) (-1181 |#1|))) (-15 -3840 ((-110) (-1181 |#1|))) (-15 -3853 ((-1181 (-1181 |#1|)) (-862))) (-15 -3863 ((-1181 |#1|) (-862))) (-15 -3873 ((-1095 |#1|) (-1181 |#1|)))) (-330)) (T -500))
-((-3873 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-500 *4)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862)) (-5 *1 (-500 *4)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (-1380 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-1717 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3819 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3810 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3800 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3791 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330)) (-5 *1 (-500 *5)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-1910 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
-(-10 -7 (-15 -3760 ((-1186) (-1181 (-597 (-2 (|:| -3387 |#1|) (|:| -1910 (-1046))))) |#1|)) (-15 -1376 ((-1181 |#1|) (-862))) (-15 -1910 ((-1181 |#1|) (-862) (-862))) (-15 -3770 ((-1095 |#1|) (-1181 |#1|))) (-15 -3781 ((-1095 |#1|) (-719))) (-15 -3791 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -3800 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -3810 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3819 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2257 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1717 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1380 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2359 ((-1181 |#1|) (-1181 |#1|))) (-15 -3830 ((-862) (-1181 |#1|))) (-15 -3840 ((-110) (-1181 |#1|))) (-15 -3853 ((-1181 (-1181 |#1|)) (-862))) (-15 -3863 ((-1181 |#1|) (-862))) (-15 -3873 ((-1095 |#1|) (-1181 |#1|))))
-((-2132 (((-1 |#1| |#1|) |#1|) 11)) (-3882 (((-1 |#1| |#1|)) 10)))
-(((-501 |#1|) (-10 -7 (-15 -3882 ((-1 |#1| |#1|))) (-15 -2132 ((-1 |#1| |#1|) |#1|))) (-13 (-675) (-25))) (T -501))
-((-2132 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))) (-3882 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
-(-10 -7 (-15 -3882 ((-1 |#1| |#1|))) (-15 -2132 ((-1 |#1| |#1|) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3821 (($ $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-2575 (($ (-719) |#1|) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 (-719) (-719)) $) NIL)) (-3701 ((|#1| $) NIL)) (-2402 (((-719) $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 20)) (-2943 (($) NIL T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
+((-1643 (((-1095 |#1|) (-719)) 76)) (-1367 (((-1181 |#1|) (-1181 |#1|) (-862)) 69)) (-3329 (((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|) 84)) (-2884 (((-1181 |#1|) (-1181 |#1|) (-719)) 36)) (-1364 (((-1181 |#1|) (-862)) 71)) (-3338 (((-1181 |#1|) (-1181 |#1|) (-530)) 24)) (-3109 (((-1095 |#1|) (-1181 |#1|)) 77)) (-2931 (((-1181 |#1|) (-862)) 95)) (-1672 (((-110) (-1181 |#1|)) 80)) (-2376 (((-1181 |#1|) (-1181 |#1|) (-862)) 62)) (-1359 (((-1095 |#1|) (-1181 |#1|)) 89)) (-1905 (((-862) (-1181 |#1|)) 59)) (-2483 (((-1181 |#1|) (-1181 |#1|)) 30)) (-1986 (((-1181 |#1|) (-862) (-862)) 97)) (-2370 (((-1181 |#1|) (-1181 |#1|) (-1046) (-1046)) 23)) (-3222 (((-1181 |#1|) (-1181 |#1|) (-719) (-1046)) 37)) (-3220 (((-1181 (-1181 |#1|)) (-862)) 94)) (-2364 (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 81)) (** (((-1181 |#1|) (-1181 |#1|) (-530)) 45)) (* (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 25)))
+(((-500 |#1|) (-10 -7 (-15 -3329 ((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|)) (-15 -1364 ((-1181 |#1|) (-862))) (-15 -1986 ((-1181 |#1|) (-862) (-862))) (-15 -3109 ((-1095 |#1|) (-1181 |#1|))) (-15 -1643 ((-1095 |#1|) (-719))) (-15 -3222 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -2884 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -2370 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3338 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2364 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2376 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1367 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2483 ((-1181 |#1|) (-1181 |#1|))) (-15 -1905 ((-862) (-1181 |#1|))) (-15 -1672 ((-110) (-1181 |#1|))) (-15 -3220 ((-1181 (-1181 |#1|)) (-862))) (-15 -2931 ((-1181 |#1|) (-862))) (-15 -1359 ((-1095 |#1|) (-1181 |#1|)))) (-330)) (T -500))
+((-1359 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-500 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862)) (-5 *1 (-500 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3338 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2370 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2884 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3222 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330)) (-5 *1 (-500 *5)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-1986 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
+(-10 -7 (-15 -3329 ((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|)) (-15 -1364 ((-1181 |#1|) (-862))) (-15 -1986 ((-1181 |#1|) (-862) (-862))) (-15 -3109 ((-1095 |#1|) (-1181 |#1|))) (-15 -1643 ((-1095 |#1|) (-719))) (-15 -3222 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -2884 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -2370 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3338 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2364 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2376 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1367 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2483 ((-1181 |#1|) (-1181 |#1|))) (-15 -1905 ((-862) (-1181 |#1|))) (-15 -1672 ((-110) (-1181 |#1|))) (-15 -3220 ((-1181 (-1181 |#1|)) (-862))) (-15 -2931 ((-1181 |#1|) (-862))) (-15 -1359 ((-1095 |#1|) (-1181 |#1|))))
+((-2233 (((-1 |#1| |#1|) |#1|) 11)) (-4047 (((-1 |#1| |#1|)) 10)))
+(((-501 |#1|) (-10 -7 (-15 -4047 ((-1 |#1| |#1|))) (-15 -2233 ((-1 |#1| |#1|) |#1|))) (-13 (-675) (-25))) (T -501))
+((-2233 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))) (-4047 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
+(-10 -7 (-15 -4047 ((-1 |#1| |#1|))) (-15 -2233 ((-1 |#1| |#1|) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ (-719) |#1|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 (-719) (-719)) $) NIL)) (-4115 ((|#1| $) NIL)) (-2533 (((-719) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
(((-502 |#1|) (-13 (-741) (-486 (-719) |#1|)) (-795)) (T -502))
NIL
(-13 (-741) (-486 (-719) |#1|))
-((-3903 (((-597 |#2|) (-1095 |#1|) |#3|) 83)) (-3914 (((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))) 100)) (-3893 (((-1095 |#1|) (-637 |#1|)) 95)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-1095 |#1|) (-637 |#1|))) (-15 -3903 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3914 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))))) (-344) (-344) (-13 (-344) (-793))) (T -503))
-((-3914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6))) (-4 *6 (-344)) (-5 *2 (-597 (-2 (|:| |outval| *7) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *7)))))) (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))) (-3903 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4)) (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
-(-10 -7 (-15 -3893 ((-1095 |#1|) (-637 |#1|))) (-15 -3903 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3914 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|)))))
-((-1490 (((-788 (-530))) 12)) (-1502 (((-788 (-530))) 14)) (-1886 (((-781 (-530))) 9)))
-(((-504) (-10 -7 (-15 -1886 ((-781 (-530)))) (-15 -1490 ((-788 (-530)))) (-15 -1502 ((-788 (-530)))))) (T -504))
-((-1502 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1490 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1886 (*1 *2) (-12 (-5 *2 (-781 (-530))) (-5 *1 (-504)))))
-(-10 -7 (-15 -1886 ((-781 (-530)))) (-15 -1490 ((-788 (-530)))) (-15 -1502 ((-788 (-530)))))
-((-3944 (((-506) (-1099)) 15)) (-3193 ((|#1| (-506)) 20)))
-(((-505 |#1|) (-10 -7 (-15 -3944 ((-506) (-1099))) (-15 -3193 (|#1| (-506)))) (-1135)) (T -505))
-((-3193 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *1 (-505 *2)) (-4 *2 (-1135)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -3944 ((-506) (-1099))) (-15 -3193 (|#1| (-506))))
-((-2246 (((-110) $ $) NIL)) (-3925 (((-1082) $) 48)) (-3548 (((-110) $) 43)) (-3758 (((-1099) $) 44)) (-3558 (((-110) $) 41)) (-3045 (((-1082) $) 42)) (-3583 (((-110) $) NIL)) (-3604 (((-110) $) NIL)) (-3570 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-2833 (($ $ (-597 (-1099))) 20)) (-3193 (((-51) $) 22)) (-3535 (((-110) $) NIL)) (-3778 (((-530) $) NIL)) (-2485 (((-1046) $) NIL)) (-1962 (($ $ (-597 (-1099)) (-1099)) 60)) (-3523 (((-110) $) NIL)) (-2873 (((-208) $) NIL)) (-4054 (($ $) 38)) (-3954 (((-804) $) NIL)) (-2623 (((-110) $ $) NIL)) (-1832 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2537 (((-597 $) $) 28)) (-2382 (((-1099) (-597 $)) 49)) (-3173 (($ (-597 $)) 53) (($ (-1082)) NIL) (($ (-1099)) 18) (($ (-530)) 8) (($ (-208)) 25) (($ (-804)) NIL) (((-1031) $) 11) (($ (-1031)) 12)) (-2131 (((-1099) (-1099) (-597 $)) 52)) (-2258 (((-804) $) 46)) (-2809 (($ $) 51)) (-2797 (($ $) 50)) (-3935 (($ $ (-597 $)) 57)) (-3595 (((-110) $) 27)) (-2943 (($) 9 T CONST)) (-2955 (($) 10 T CONST)) (-2148 (((-110) $ $) 61)) (-2257 (($ $ $) 66)) (-2234 (($ $ $) 62)) (** (($ $ (-719)) 65) (($ $ (-530)) 64)) (* (($ $ $) 63)) (-2167 (((-530) $) NIL)))
-(((-506) (-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3193 ((-51) $)) (-15 -3173 ($ (-1031))) (-15 -3935 ($ $ (-597 $))) (-15 -1962 ($ $ (-597 (-1099)) (-1099))) (-15 -2833 ($ $ (-597 (-1099)))) (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 -2257 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 0 ($) -2562) (-15 1 ($) -2562) (-15 -4054 ($ $)) (-15 -3925 ((-1082) $)) (-15 -2382 ((-1099) (-597 $))) (-15 -2131 ((-1099) (-1099) (-597 $)))))) (T -506))
-((-3193 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-506)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-506)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))) (-1962 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1099)) (-5 *1 (-506)))) (-2833 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))) (-2234 (*1 *1 *1 *1) (-5 *1 (-506))) (* (*1 *1 *1 *1) (-5 *1 (-506))) (-2257 (*1 *1 *1 *1) (-5 *1 (-506))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-506)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-506)))) (-2943 (*1 *1) (-5 *1 (-506))) (-2955 (*1 *1) (-5 *1 (-506))) (-4054 (*1 *1 *1) (-5 *1 (-506))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))) (-2131 (*1 *2 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-506))) (-5 *1 (-506)))))
-(-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3193 ((-51) $)) (-15 -3173 ($ (-1031))) (-15 -3935 ($ $ (-597 $))) (-15 -1962 ($ $ (-597 (-1099)) (-1099))) (-15 -2833 ($ $ (-597 (-1099)))) (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 -2257 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 (-2943) ($) -2562) (-15 (-2955) ($) -2562) (-15 -4054 ($ $)) (-15 -3925 ((-1082) $)) (-15 -2382 ((-1099) (-597 $))) (-15 -2131 ((-1099) (-1099) (-597 $)))))
-((-1590 ((|#2| |#2|) 17)) (-1571 ((|#2| |#2|) 13)) (-1600 ((|#2| |#2| (-530) (-530)) 20)) (-1580 ((|#2| |#2|) 15)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -1571 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1600 (|#2| |#2| (-530) (-530)))) (-13 (-522) (-140)) (-1172 |#1|)) (T -507))
-((-1600 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1172 *4)))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -1571 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1600 (|#2| |#2| (-530) (-530))))
-((-3975 (((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))) 32)) (-3953 (((-597 |#2|) (-893 |#1|) |#3|) 53) (((-597 |#2|) (-1095 |#1|) |#3|) 52)) (-3965 (((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|) 91)))
-(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3953 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3953 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -3965 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3975 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))))) (-432) (-344) (-13 (-344) (-793))) (T -508))
-((-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344)) (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))) (-3965 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-793))))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -3953 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3953 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -3965 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3975 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099)))))
-((-4004 ((|#2| |#2| |#1|) 17)) (-3984 ((|#2| (-597 |#2|)) 27)) (-3993 ((|#2| (-597 |#2|)) 46)))
-(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3984 (|#2| (-597 |#2|))) (-15 -3993 (|#2| (-597 |#2|))) (-15 -4004 (|#2| |#2| |#1|))) (-289) (-1157 |#1|) |#1| (-1 |#1| |#1| (-719))) (T -509))
-((-4004 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719))) (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(-10 -7 (-15 -3984 (|#2| (-597 |#2|))) (-15 -3993 (|#2| (-597 |#2|))) (-15 -4004 (|#2| |#2| |#1|)))
-((-2473 (((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 80) (((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 169)))
-(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -510))
-((-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-890 *7 *6 *5)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1095 *8)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-510 *5 *6 *7 *3)) (-4 *3 (-890 *7 *6 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))))
-((-1590 ((|#4| |#4|) 74)) (-1571 ((|#4| |#4|) 70)) (-1600 ((|#4| |#4| (-530) (-530)) 76)) (-1580 ((|#4| |#4|) 72)))
-(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1571 (|#4| |#4|)) (-15 -1580 (|#4| |#4|)) (-15 -1590 (|#4| |#4|)) (-15 -1600 (|#4| |#4| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1157 |#1|) (-673 |#1| |#2|) (-1172 |#3|)) (T -511))
-((-1600 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
-(-10 -7 (-15 -1571 (|#4| |#4|)) (-15 -1580 (|#4| |#4|)) (-15 -1590 (|#4| |#4|)) (-15 -1600 (|#4| |#4| (-530) (-530))))
-((-1590 ((|#2| |#2|) 27)) (-1571 ((|#2| |#2|) 23)) (-1600 ((|#2| |#2| (-530) (-530)) 29)) (-1580 ((|#2| |#2|) 25)))
-(((-512 |#1| |#2|) (-10 -7 (-15 -1571 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1600 (|#2| |#2| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1172 |#1|)) (T -512))
-((-1600 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4)))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -1571 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1600 (|#2| |#2| (-530) (-530))))
-((-4013 (((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)) 14) (((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|)) 13) (((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|)) 26)))
-(((-513 |#1| |#2|) (-10 -7 (-15 -4013 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -4013 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -4013 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)))) (-984) (-1157 |#1|)) (T -513))
-((-4013 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-4013 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-4013 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -4013 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -4013 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -4013 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|))))
-((-4075 (($ $ $) 79)) (-3550 (((-399 $) $) 47)) (-3012 (((-3 (-530) "failed") $) 59)) (-2446 (((-530) $) 37)) (-1936 (((-3 (-388 (-530)) "failed") $) 74)) (-1928 (((-110) $) 24)) (-1917 (((-388 (-530)) $) 72)) (-2049 (((-110) $) 50)) (-4034 (($ $ $ $) 86)) (-2991 (((-110) $) 16)) (-1364 (($ $ $) 57)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 69)) (-1560 (((-3 $ "failed") $) 64)) (-2966 (($ $) 23)) (-4024 (($ $ $) 84)) (-3677 (($) 60)) (-1339 (($ $) 53)) (-2473 (((-399 $) $) 45)) (-1565 (((-110) $) 14)) (-1934 (((-719) $) 28)) (-3211 (($ $ (-719)) NIL) (($ $) 10)) (-2441 (($ $) 17)) (-3173 (((-530) $) NIL) (((-506) $) 36) (((-833 (-530)) $) 40) (((-360) $) 31) (((-208) $) 33)) (-1667 (((-719)) 8)) (-4098 (((-110) $ $) 20)) (-1464 (($ $ $) 55)))
-(((-514 |#1|) (-10 -8 (-15 -4024 (|#1| |#1| |#1|)) (-15 -4034 (|#1| |#1| |#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -4098 ((-110) |#1| |#1|)) (-15 -1565 ((-110) |#1|)) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -1364 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -1464 (|#1| |#1| |#1|)) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -3173 ((-530) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -2991 ((-110) |#1|)) (-15 -1934 ((-719) |#1|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -2049 ((-110) |#1|)) (-15 -1667 ((-719)))) (-515)) (T -514))
-((-1667 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515)))))
-(-10 -8 (-15 -4024 (|#1| |#1| |#1|)) (-15 -4034 (|#1| |#1| |#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -4075 (|#1| |#1| |#1|)) (-15 -4098 ((-110) |#1| |#1|)) (-15 -1565 ((-110) |#1|)) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -1364 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1|)) (-15 -1464 (|#1| |#1| |#1|)) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -3173 ((-530) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -2991 ((-110) |#1|)) (-15 -1934 ((-719) |#1|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -2049 ((-110) |#1|)) (-15 -1667 ((-719))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-4075 (($ $ $) 85)) (-3618 (((-3 $ "failed") $ $) 19)) (-4055 (($ $ $ $) 73)) (-1359 (($ $) 51)) (-3550 (((-399 $) $) 52)) (-1945 (((-110) $ $) 125)) (-3592 (((-530) $) 114)) (-4206 (($ $ $) 88)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 106)) (-2446 (((-530) $) 105)) (-3607 (($ $ $) 129)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 104) (((-637 (-530)) (-637 $)) 103)) (-1673 (((-3 $ "failed") $) 34)) (-1936 (((-3 (-388 (-530)) "failed") $) 82)) (-1928 (((-110) $) 84)) (-1917 (((-388 (-530)) $) 83)) (-1376 (($) 81) (($ $) 80)) (-3588 (($ $ $) 128)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 123)) (-2049 (((-110) $) 53)) (-4034 (($ $ $ $) 71)) (-4086 (($ $ $) 86)) (-2991 (((-110) $) 116)) (-1364 (($ $ $) 97)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 100)) (-3150 (((-110) $) 31)) (-1555 (((-110) $) 92)) (-1560 (((-3 $ "failed") $) 94)) (-3002 (((-110) $) 115)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 132)) (-4044 (($ $ $ $) 72)) (-4194 (($ $ $) 117)) (-1757 (($ $ $) 118)) (-2966 (($ $) 75)) (-2171 (($ $) 89)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-4024 (($ $ $) 70)) (-3677 (($) 93 T CONST)) (-3820 (($ $) 77)) (-2485 (((-1046) $) 10) (($ $) 79)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1339 (($ $) 98)) (-2473 (((-399 $) $) 50)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 130)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 124)) (-1565 (((-110) $) 91)) (-1934 (((-719) $) 126)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 127)) (-3211 (($ $ (-719)) 111) (($ $) 109)) (-1692 (($ $) 76)) (-2441 (($ $) 78)) (-3173 (((-530) $) 108) (((-506) $) 102) (((-833 (-530)) $) 101) (((-360) $) 96) (((-208) $) 95)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-530)) 107)) (-1667 (((-719)) 29)) (-4098 (((-110) $ $) 87)) (-1464 (($ $ $) 99)) (-3256 (($) 90)) (-3020 (((-110) $ $) 39)) (-4066 (($ $ $ $) 74)) (-2218 (($ $) 113)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-719)) 112) (($ $) 110)) (-2204 (((-110) $ $) 120)) (-2182 (((-110) $ $) 121)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 119)) (-2172 (((-110) $ $) 122)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1386 (((-597 |#2|) (-1095 |#1|) |#3|) 83)) (-3112 (((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))) 100)) (-2866 (((-1095 |#1|) (-637 |#1|)) 95)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2866 ((-1095 |#1|) (-637 |#1|))) (-15 -1386 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3112 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))))) (-344) (-344) (-13 (-344) (-793))) (T -503))
+((-3112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6))) (-4 *6 (-344)) (-5 *2 (-597 (-2 (|:| |outval| *7) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *7)))))) (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4)) (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2866 ((-1095 |#1|) (-637 |#1|))) (-15 -1386 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3112 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|)))))
+((-1477 (((-788 (-530))) 12)) (-1490 (((-788 (-530))) 14)) (-1960 (((-781 (-530))) 9)))
+(((-504) (-10 -7 (-15 -1960 ((-781 (-530)))) (-15 -1477 ((-788 (-530)))) (-15 -1490 ((-788 (-530)))))) (T -504))
+((-1490 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1477 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1960 (*1 *2) (-12 (-5 *2 (-781 (-530))) (-5 *1 (-504)))))
+(-10 -7 (-15 -1960 ((-781 (-530)))) (-15 -1477 ((-788 (-530)))) (-15 -1490 ((-788 (-530)))))
+((-3473 (((-506) (-1099)) 15)) (-3275 ((|#1| (-506)) 20)))
+(((-505 |#1|) (-10 -7 (-15 -3473 ((-506) (-1099))) (-15 -3275 (|#1| (-506)))) (-1135)) (T -505))
+((-3275 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *1 (-505 *2)) (-4 *2 (-1135)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4)) (-4 *4 (-1135)))))
+(-10 -7 (-15 -3473 ((-506) (-1099))) (-15 -3275 (|#1| (-506))))
+((-2352 (((-110) $ $) NIL)) (-1865 (((-1082) $) 48)) (-4201 (((-110) $) 43)) (-3747 (((-1099) $) 44)) (-2872 (((-110) $) 41)) (-3166 (((-1082) $) 42)) (-2709 (((-110) $) NIL)) (-3815 (((-110) $) NIL)) (-1529 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-4166 (($ $ (-597 (-1099))) 20)) (-3275 (((-51) $) 22)) (-1298 (((-110) $) NIL)) (-3771 (((-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-2047 (($ $ (-597 (-1099)) (-1099)) 60)) (-2826 (((-110) $) NIL)) (-3018 (((-208) $) NIL)) (-4068 (($ $) 38)) (-3964 (((-804) $) NIL)) (-2776 (((-110) $ $) NIL)) (-1902 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2681 (((-597 $) $) 28)) (-2511 (((-1099) (-597 $)) 49)) (-3260 (($ (-597 $)) 53) (($ (-1082)) NIL) (($ (-1099)) 18) (($ (-530)) 8) (($ (-208)) 25) (($ (-804)) NIL) (((-1031) $) 11) (($ (-1031)) 12)) (-2229 (((-1099) (-1099) (-597 $)) 52)) (-2366 (((-804) $) 46)) (-2960 (($ $) 51)) (-2950 (($ $) 50)) (-1611 (($ $ (-597 $)) 57)) (-2181 (((-110) $) 27)) (-3080 (($) 9 T CONST)) (-3093 (($) 10 T CONST)) (-2248 (((-110) $ $) 61)) (-2364 (($ $ $) 66)) (-2339 (($ $ $) 62)) (** (($ $ (-719)) 65) (($ $ (-530)) 64)) (* (($ $ $) 63)) (-2267 (((-530) $) NIL)))
+(((-506) (-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3275 ((-51) $)) (-15 -3260 ($ (-1031))) (-15 -1611 ($ $ (-597 $))) (-15 -2047 ($ $ (-597 (-1099)) (-1099))) (-15 -4166 ($ $ (-597 (-1099)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 0 ($) -2708) (-15 1 ($) -2708) (-15 -4068 ($ $)) (-15 -1865 ((-1082) $)) (-15 -2511 ((-1099) (-597 $))) (-15 -2229 ((-1099) (-1099) (-597 $)))))) (T -506))
+((-3275 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-506)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-506)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1099)) (-5 *1 (-506)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))) (-2339 (*1 *1 *1 *1) (-5 *1 (-506))) (* (*1 *1 *1 *1) (-5 *1 (-506))) (-2364 (*1 *1 *1 *1) (-5 *1 (-506))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-506)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-506)))) (-3080 (*1 *1) (-5 *1 (-506))) (-3093 (*1 *1) (-5 *1 (-506))) (-4068 (*1 *1 *1) (-5 *1 (-506))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-506))) (-5 *1 (-506)))))
+(-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3275 ((-51) $)) (-15 -3260 ($ (-1031))) (-15 -1611 ($ $ (-597 $))) (-15 -2047 ($ $ (-597 (-1099)) (-1099))) (-15 -4166 ($ $ (-597 (-1099)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 (-3080) ($) -2708) (-15 (-3093) ($) -2708) (-15 -4068 ($ $)) (-15 -1865 ((-1082) $)) (-15 -2511 ((-1099) (-597 $))) (-15 -2229 ((-1099) (-1099) (-597 $)))))
+((-1976 ((|#2| |#2|) 17)) (-1858 ((|#2| |#2|) 13)) (-1740 ((|#2| |#2| (-530) (-530)) 20)) (-3348 ((|#2| |#2|) 15)))
+(((-507 |#1| |#2|) (-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530)))) (-13 (-522) (-140)) (-1172 |#1|)) (T -507))
+((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1172 *4)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530))))
+((-3442 (((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))) 32)) (-2112 (((-597 |#2|) (-893 |#1|) |#3|) 53) (((-597 |#2|) (-1095 |#1|) |#3|) 52)) (-1887 (((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|) 91)))
+(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -2112 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -2112 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -1887 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3442 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))))) (-432) (-344) (-13 (-344) (-793))) (T -508))
+((-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344)) (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))) (-1887 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-793))))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -2112 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -2112 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -1887 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3442 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099)))))
+((-1920 ((|#2| |#2| |#1|) 17)) (-1939 ((|#2| (-597 |#2|)) 27)) (-1557 ((|#2| (-597 |#2|)) 46)))
+(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#2| (-597 |#2|))) (-15 -1557 (|#2| (-597 |#2|))) (-15 -1920 (|#2| |#2| |#1|))) (-289) (-1157 |#1|) |#1| (-1 |#1| |#1| (-719))) (T -509))
+((-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719))) (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
+(-10 -7 (-15 -1939 (|#2| (-597 |#2|))) (-15 -1557 (|#2| (-597 |#2|))) (-15 -1920 (|#2| |#2| |#1|)))
+((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 80) (((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 169)))
+(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -510))
+((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-890 *7 *6 *5)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1095 *8)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-510 *5 *6 *7 *3)) (-4 *3 (-890 *7 *6 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))))
+((-1976 ((|#4| |#4|) 74)) (-1858 ((|#4| |#4|) 70)) (-1740 ((|#4| |#4| (-530) (-530)) 76)) (-3348 ((|#4| |#4|) 72)))
+(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1858 (|#4| |#4|)) (-15 -3348 (|#4| |#4|)) (-15 -1976 (|#4| |#4|)) (-15 -1740 (|#4| |#4| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1157 |#1|) (-673 |#1| |#2|) (-1172 |#3|)) (T -511))
+((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
+(-10 -7 (-15 -1858 (|#4| |#4|)) (-15 -3348 (|#4| |#4|)) (-15 -1976 (|#4| |#4|)) (-15 -1740 (|#4| |#4| (-530) (-530))))
+((-1976 ((|#2| |#2|) 27)) (-1858 ((|#2| |#2|) 23)) (-1740 ((|#2| |#2| (-530) (-530)) 29)) (-3348 ((|#2| |#2|) 25)))
+(((-512 |#1| |#2|) (-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1172 |#1|)) (T -512))
+((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))))
+(-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530))))
+((-1343 (((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)) 14) (((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|)) 13) (((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|)) 26)))
+(((-513 |#1| |#2|) (-10 -7 (-15 -1343 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)))) (-984) (-1157 |#1|)) (T -513))
+((-1343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-1343 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-1343 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5)))))
+(-10 -7 (-15 -1343 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|))))
+((-2660 (($ $ $) 79)) (-3272 (((-399 $) $) 47)) (-3139 (((-3 (-530) "failed") $) 59)) (-2585 (((-530) $) 37)) (-2180 (((-3 (-388 (-530)) "failed") $) 74)) (-3016 (((-110) $) 24)) (-3370 (((-388 (-530)) $) 72)) (-3295 (((-110) $) 50)) (-3547 (($ $ $ $) 86)) (-2514 (((-110) $) 16)) (-2937 (($ $ $) 57)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 69)) (-2972 (((-3 $ "failed") $) 64)) (-3103 (($ $) 23)) (-3972 (($ $ $) 84)) (-3657 (($) 60)) (-1303 (($ $) 53)) (-2611 (((-399 $) $) 45)) (-1403 (((-110) $) 14)) (-2356 (((-719) $) 28)) (-3289 (($ $ (-719)) NIL) (($ $) 10)) (-2579 (($ $) 17)) (-3260 (((-530) $) NIL) (((-506) $) 36) (((-833 (-530)) $) 40) (((-360) $) 31) (((-208) $) 33)) (-3300 (((-719)) 8)) (-3918 (((-110) $ $) 20)) (-2947 (($ $ $) 55)))
+(((-514 |#1|) (-10 -8 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -3918 ((-110) |#1| |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3260 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2514 ((-110) |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3300 ((-719)))) (-515)) (T -514))
+((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515)))))
+(-10 -8 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -3918 ((-110) |#1| |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3260 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2514 ((-110) |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3300 ((-719))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2660 (($ $ $) 83)) (-1889 (((-3 $ "failed") $ $) 19)) (-1531 (($ $ $ $) 71)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-1426 (((-110) $ $) 123)) (-1867 (((-530) $) 112)) (-4207 (($ $ $) 86)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 104)) (-2585 (((-530) $) 103)) (-3590 (($ $ $) 127)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 102) (((-637 (-530)) (-637 $)) 101)) (-2707 (((-3 $ "failed") $) 32)) (-2180 (((-3 (-388 (-530)) "failed") $) 80)) (-3016 (((-110) $) 82)) (-3370 (((-388 (-530)) $) 81)) (-1364 (($) 79) (($ $) 78)) (-3571 (($ $ $) 126)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 121)) (-3295 (((-110) $) 51)) (-3547 (($ $ $ $) 69)) (-2411 (($ $ $) 84)) (-2514 (((-110) $) 114)) (-2937 (($ $ $) 95)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 98)) (-2731 (((-110) $) 30)) (-3457 (((-110) $) 90)) (-2972 (((-3 $ "failed") $) 92)) (-2166 (((-110) $) 113)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 130)) (-1999 (($ $ $ $) 70)) (-2508 (($ $ $) 115)) (-1817 (($ $ $) 116)) (-3103 (($ $) 73)) (-4109 (($ $) 87)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-3972 (($ $ $) 68)) (-3657 (($) 91 T CONST)) (-3820 (($ $) 75)) (-2624 (((-1046) $) 10) (($ $) 77)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1303 (($ $) 96)) (-2611 (((-399 $) $) 48)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 128)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 122)) (-1403 (((-110) $) 89)) (-2356 (((-719) $) 124)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 125)) (-3289 (($ $ (-719)) 109) (($ $) 107)) (-1725 (($ $) 74)) (-2579 (($ $) 76)) (-3260 (((-530) $) 106) (((-506) $) 100) (((-833 (-530)) $) 99) (((-360) $) 94) (((-208) $) 93)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 105)) (-3300 (((-719)) 28)) (-3918 (((-110) $ $) 85)) (-2947 (($ $ $) 97)) (-1510 (($) 88)) (-3944 (((-110) $ $) 37)) (-3998 (($ $ $ $) 72)) (-3934 (($ $) 111)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-719)) 110) (($ $) 108)) (-2306 (((-110) $ $) 118)) (-2284 (((-110) $ $) 119)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 117)) (-2272 (((-110) $ $) 120)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-515) (-133)) (T -515))
-((-1555 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-3256 (*1 *1) (-4 *1 (-515))) (-2171 (*1 *1 *1) (-4 *1 (-515))) (-4206 (*1 *1 *1 *1) (-4 *1 (-515))) (-4098 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-4086 (*1 *1 *1 *1) (-4 *1 (-515))) (-4075 (*1 *1 *1 *1) (-4 *1 (-515))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-1936 (*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-1376 (*1 *1) (-4 *1 (-515))) (-1376 (*1 *1 *1) (-4 *1 (-515))) (-2485 (*1 *1 *1) (-4 *1 (-515))) (-2441 (*1 *1 *1) (-4 *1 (-515))) (-3820 (*1 *1 *1) (-4 *1 (-515))) (-1692 (*1 *1 *1) (-4 *1 (-515))) (-2966 (*1 *1 *1) (-4 *1 (-515))) (-4066 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-4055 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-4044 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-4034 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-4024 (*1 *1 *1 *1) (-4 *1 (-515))))
-(-13 (-1139) (-289) (-768) (-216) (-572 (-530)) (-975 (-530)) (-593 (-530)) (-572 (-506)) (-572 (-833 (-530))) (-827 (-530)) (-136) (-960) (-140) (-1075) (-10 -8 (-15 -1555 ((-110) $)) (-15 -1565 ((-110) $)) (-6 -4269) (-15 -3256 ($)) (-15 -2171 ($ $)) (-15 -4206 ($ $ $)) (-15 -4098 ((-110) $ $)) (-15 -4086 ($ $ $)) (-15 -4075 ($ $ $)) (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $)) (-15 -1376 ($)) (-15 -1376 ($ $)) (-15 -2485 ($ $)) (-15 -2441 ($ $)) (-15 -3820 ($ $)) (-15 -1692 ($ $)) (-15 -2966 ($ $)) (-15 -4066 ($ $ $ $)) (-15 -4055 ($ $ $ $)) (-15 -4044 ($ $ $ $)) (-15 -4034 ($ $ $ $)) (-15 -4024 ($ $ $)) (-6 -4268)))
+((-3457 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1510 (*1 *1) (-4 *1 (-515))) (-4109 (*1 *1 *1) (-4 *1 (-515))) (-4207 (*1 *1 *1 *1) (-4 *1 (-515))) (-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-2411 (*1 *1 *1 *1) (-4 *1 (-515))) (-2660 (*1 *1 *1 *1) (-4 *1 (-515))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-1364 (*1 *1) (-4 *1 (-515))) (-1364 (*1 *1 *1) (-4 *1 (-515))) (-2624 (*1 *1 *1) (-4 *1 (-515))) (-2579 (*1 *1 *1) (-4 *1 (-515))) (-3820 (*1 *1 *1) (-4 *1 (-515))) (-1725 (*1 *1 *1) (-4 *1 (-515))) (-3103 (*1 *1 *1) (-4 *1 (-515))) (-3998 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-1531 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-1999 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-3547 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-3972 (*1 *1 *1 *1) (-4 *1 (-515))))
+(-13 (-1139) (-289) (-768) (-216) (-572 (-530)) (-975 (-530)) (-593 (-530)) (-572 (-506)) (-572 (-833 (-530))) (-827 (-530)) (-136) (-960) (-140) (-1075) (-10 -8 (-15 -3457 ((-110) $)) (-15 -1403 ((-110) $)) (-6 -4268) (-15 -1510 ($)) (-15 -4109 ($ $)) (-15 -4207 ($ $ $)) (-15 -3918 ((-110) $ $)) (-15 -2411 ($ $ $)) (-15 -2660 ($ $ $)) (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $)) (-15 -1364 ($)) (-15 -1364 ($ $)) (-15 -2624 ($ $)) (-15 -2579 ($ $)) (-15 -3820 ($ $)) (-15 -1725 ($ $)) (-15 -3103 ($ $)) (-15 -3998 ($ $ $ $)) (-15 -1531 ($ $ $ $)) (-15 -1999 ($ $ $ $)) (-15 -3547 ($ $ $ $)) (-15 -3972 ($ $ $)) (-6 -4267)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-136) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-506)) . T) ((-572 (-530)) . T) ((-572 (-833 (-530))) . T) ((-216) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-593 (-530)) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-768) . T) ((-793) . T) ((-795) . T) ((-827 (-530)) . T) ((-861) . T) ((-960) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) . T) ((-1139) . T))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) NIL)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) NIL)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-516 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270))) (-1027) (-1027) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270)))) (T -516))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270)))
-((-4110 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))) 51)))
-(((-517 |#1| |#2|) (-10 -7 (-15 -4110 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))))) (-13 (-795) (-522)) (-13 (-27) (-411 |#1|))) (T -517))
-((-4110 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3))) (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522))) (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
-(-10 -7 (-15 -4110 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|)))))
-((-4137 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-4149 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-4122 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-518 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4122 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4137 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4149 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-795) (-522) (-975 (-530))) (-13 (-27) (-411 |#1|)) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -518))
-((-4149 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-27) (-411 *4))) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-4122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
-(-10 -7 (-15 -4122 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4137 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4149 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2948 (((-110) (-530) (-530)) 10)) (-4161 (((-530) (-530)) 7)) (-4171 (((-530) (-530) (-530)) 8)))
-(((-519) (-10 -7 (-15 -4161 ((-530) (-530))) (-15 -4171 ((-530) (-530) (-530))) (-15 -2948 ((-110) (-530) (-530))))) (T -519))
-((-2948 (*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))) (-4171 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(-10 -7 (-15 -4161 ((-530) (-530))) (-15 -4171 ((-530) (-530) (-530))) (-15 -2948 ((-110) (-530) (-530))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1461 ((|#1| $) 61)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-2276 (($ $) 91)) (-2144 (($ $) 74)) (-3821 ((|#1| $) 62)) (-3618 (((-3 $ "failed") $ $) 19)) (-2487 (($ $) 73)) (-2253 (($ $) 90)) (-2121 (($ $) 75)) (-2297 (($ $) 89)) (-2169 (($ $) 76)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 69)) (-2446 (((-530) $) 68)) (-1673 (((-3 $ "failed") $) 34)) (-2984 (($ |#1| |#1|) 66)) (-2991 (((-110) $) 60)) (-1877 (($) 101)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 72)) (-3002 (((-110) $) 59)) (-4194 (($ $ $) 107)) (-1757 (($ $ $) 106)) (-2070 (($ $) 98)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2996 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-388 (-530))) 64)) (-2973 ((|#1| $) 63)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-3562 (((-3 $ "failed") $ $) 42)) (-2693 (($ $) 99)) (-2308 (($ $) 88)) (-2181 (($ $) 77)) (-2287 (($ $) 87)) (-2155 (($ $) 78)) (-2263 (($ $) 86)) (-2133 (($ $) 79)) (-2960 (((-110) $ |#1|) 58)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-530)) 70)) (-1667 (((-719)) 29)) (-2339 (($ $) 97)) (-2211 (($ $) 85)) (-3020 (((-110) $ $) 39)) (-2318 (($ $) 96)) (-2192 (($ $) 84)) (-2361 (($ $) 95)) (-2230 (($ $) 83)) (-2910 (($ $) 94)) (-2241 (($ $) 82)) (-2349 (($ $) 93)) (-2220 (($ $) 81)) (-2328 (($ $) 92)) (-2202 (($ $) 80)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 104)) (-2182 (((-110) $ $) 103)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 105)) (-2172 (((-110) $ $) 102)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ $) 100) (($ $ (-388 (-530))) 71)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-516 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))) (T -516))
+NIL
+(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-2674 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))) 51)))
+(((-517 |#1| |#2|) (-10 -7 (-15 -2674 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))))) (-13 (-795) (-522)) (-13 (-27) (-411 |#1|))) (T -517))
+((-2674 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3))) (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522))) (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
+(-10 -7 (-15 -2674 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|)))))
+((-3372 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-1953 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2252 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-518 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2252 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3372 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1953 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-795) (-522) (-975 (-530))) (-13 (-27) (-411 |#1|)) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -518))
+((-1953 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-27) (-411 *4))) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
+(-10 -7 (-15 -2252 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3372 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1953 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1786 (((-110) (-530) (-530)) 10)) (-3636 (((-530) (-530)) 7)) (-3440 (((-530) (-530) (-530)) 8)))
+(((-519) (-10 -7 (-15 -3636 ((-530) (-530))) (-15 -3440 ((-530) (-530) (-530))) (-15 -1786 ((-110) (-530) (-530))))) (T -519))
+((-1786 (*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))) (-3440 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
+(-10 -7 (-15 -3636 ((-530) (-530))) (-15 -3440 ((-530) (-530) (-530))) (-15 -1786 ((-110) (-530) (-530))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1447 ((|#1| $) 59)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2386 (($ $) 89)) (-2244 (($ $) 72)) (-3418 ((|#1| $) 60)) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 71)) (-2360 (($ $) 88)) (-2219 (($ $) 73)) (-2409 (($ $) 87)) (-2269 (($ $) 74)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 67)) (-2585 (((-530) $) 66)) (-2707 (((-3 $ "failed") $) 32)) (-3184 (($ |#1| |#1|) 64)) (-2514 (((-110) $) 58)) (-1948 (($) 99)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 70)) (-2166 (((-110) $) 57)) (-2508 (($ $ $) 105)) (-1817 (($ $ $) 104)) (-2168 (($ $) 96)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2910 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-388 (-530))) 62)) (-1726 ((|#1| $) 61)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-2853 (($ $) 97)) (-2421 (($ $) 86)) (-2281 (($ $) 75)) (-2398 (($ $) 85)) (-2254 (($ $) 76)) (-2373 (($ $) 84)) (-2231 (($ $) 77)) (-4000 (((-110) $ |#1|) 56)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 68)) (-3300 (((-719)) 28)) (-2459 (($ $) 95)) (-2314 (($ $) 83)) (-3944 (((-110) $ $) 37)) (-2434 (($ $) 94)) (-2293 (($ $) 82)) (-2485 (($ $) 93)) (-2334 (($ $) 81)) (-3632 (($ $) 92)) (-2347 (($ $) 80)) (-2472 (($ $) 91)) (-2324 (($ $) 79)) (-2446 (($ $) 90)) (-2304 (($ $) 78)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 102)) (-2284 (((-110) $ $) 101)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 103)) (-2272 (((-110) $ $) 100)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ $) 98) (($ $ (-388 (-530))) 69)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-520 |#1|) (-133) (-13 (-385) (-1121))) (T -520))
-((-2996 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2984 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2996 (*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
-(-13 (-432) (-795) (-1121) (-941) (-975 (-530)) (-10 -8 (-6 -4125) (-15 -2996 ($ |t#1| |t#1|)) (-15 -2984 ($ |t#1| |t#1|)) (-15 -2996 ($ |t#1|)) (-15 -2996 ($ (-388 (-530)))) (-15 -2973 (|t#1| $)) (-15 -3821 (|t#1| $)) (-15 -1461 (|t#1| $)) (-15 -2991 ((-110) $)) (-15 -3002 ((-110) $)) (-15 -2960 ((-110) $ |t#1|))))
+((-2910 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-3184 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2910 (*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-4000 (*1 *2 *1 *3) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
+(-13 (-432) (-795) (-1121) (-941) (-975 (-530)) (-10 -8 (-6 -4136) (-15 -2910 ($ |t#1| |t#1|)) (-15 -3184 ($ |t#1| |t#1|)) (-15 -2910 ($ |t#1|)) (-15 -2910 ($ (-388 (-530)))) (-15 -1726 (|t#1| $)) (-15 -3418 (|t#1| $)) (-15 -1447 (|t#1| $)) (-15 -2514 ((-110) $)) (-15 -2166 ((-110) $)) (-15 -4000 ((-110) $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-266) . T) ((-272) . T) ((-432) . T) ((-471) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-941) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) . T) ((-1124) . T))
-((-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 9)) (-3031 (($ $) 11)) (-3006 (((-110) $) 18)) (-1673 (((-3 $ "failed") $) 16)) (-3020 (((-110) $ $) 20)))
-(((-521 |#1|) (-10 -8 (-15 -3006 ((-110) |#1|)) (-15 -3020 ((-110) |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|))) (-522)) (T -521))
+((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 9)) (-3446 (($ $) 11)) (-1276 (((-110) $) 18)) (-2707 (((-3 $ "failed") $) 16)) (-3944 (((-110) $ $) 20)))
+(((-521 |#1|) (-10 -8 (-15 -1276 ((-110) |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|))) (-522)) (T -521))
NIL
-(-10 -8 (-15 -3006 ((-110) |#1|)) (-15 -3020 ((-110) |#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3042 ((-2 (|:| -3251 |#1|) (|:| -4257 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ $) 42)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -1276 ((-110) |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-522) (-133)) (T -522))
-((-3562 (*1 *1 *1 *1) (|partial| -4 *1 (-522))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3251 *1) (|:| -4257 *1) (|:| |associate| *1))) (-4 *1 (-522)))) (-3031 (*1 *1 *1) (-4 *1 (-522))) (-3020 (*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3562 ((-3 $ "failed") $ $)) (-15 -3042 ((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $)) (-15 -3031 ($ $)) (-15 -3020 ((-110) $ $)) (-15 -3006 ((-110) $))))
+((-3551 (*1 *1 *1 *1) (|partial| -4 *1 (-522))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2291 *1) (|:| -4256 *1) (|:| |associate| *1))) (-4 *1 (-522)))) (-3446 (*1 *1 *1) (-4 *1 (-522))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
+(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3551 ((-3 $ "failed") $ $)) (-15 -2141 ((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $)) (-15 -3446 ($ $)) (-15 -3944 ((-110) $ $)) (-15 -1276 ((-110) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3063 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|)) 37)) (-3087 (((-547 |#2|) |#2| (-1099)) 62)) (-3075 (((-3 |#2| "failed") |#2| (-1099)) 152)) (-3098 (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))) 155)) (-3053 (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|) 40)))
-(((-523 |#1| |#2|) (-10 -7 (-15 -3053 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3063 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -3075 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3087 ((-547 |#2|) |#2| (-1099))) (-15 -3098 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -523))
-((-3098 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3))) (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-523 *7 *3)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3075 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3063 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6 *3)))) (-3053 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(-10 -7 (-15 -3053 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3063 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -3075 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3087 ((-547 |#2|) |#2| (-1099))) (-15 -3098 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|)))))
-((-3550 (((-399 |#1|) |#1|) 18)) (-2473 (((-399 |#1|) |#1|) 33)) (-3122 (((-3 |#1| "failed") |#1|) 44)) (-3110 (((-399 |#1|) |#1|) 51)))
-(((-524 |#1|) (-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -3110 ((-399 |#1|) |#1|)) (-15 -3122 ((-3 |#1| "failed") |#1|))) (-515)) (T -524))
-((-3122 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-3550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -3110 ((-399 |#1|) |#1|)) (-15 -3122 ((-3 |#1| "failed") |#1|)))
-((-3133 (($) 9)) (-1377 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-3202 (((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-3440 (($ (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3157 (($ (-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1806 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-2002 (((-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3144 (((-1186)) 12)))
-(((-525) (-10 -8 (-15 -3133 ($)) (-15 -3144 ((-1186))) (-15 -3202 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -3157 ($ (-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3440 ($ (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1377 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2002 ((-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1806 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -525))
-((-1806 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-1377 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-525)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-525)))) (-3144 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))) (-3133 (*1 *1) (-5 *1 (-525))))
-(-10 -8 (-15 -3133 ($)) (-15 -3144 ((-1186))) (-15 -3202 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -3157 ($ (-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3440 ($ (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1377 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2002 ((-597 (-2 (|:| -2940 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1806 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2902 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-2439 (((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|)) 32)) (-3194 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|)) 110)) (-3169 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 80) (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 52)) (-3182 (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|))) 87) (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|)) 109)) (-3207 (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|)) 111)) (-3221 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 128 (|has| |#3| (-607 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 127 (|has| |#3| (-607 |#2|)))) (-2586 ((|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|) 50)) (-3844 (((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|)) 31)))
-(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -3169 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -3169 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3182 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3182 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -3194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3207 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -3207 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2439 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2586 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -3844 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -3221 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -3221 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -526))
-((-3221 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4))) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-3221 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7)) (-5 *3 (-1095 *6)) (-4 *7 (-1027)))) (-2586 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1095 (-388 (-1095 *2)))) (-5 *4 (-570 *2)) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *5 *2 *6)) (-4 *6 (-1027)))) (-2439 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *3)))) (-5 *1 (-526 *6 *3 *7)) (-5 *5 (-1095 *3)) (-4 *7 (-1027)))) (-3207 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-3207 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2)) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-3194 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-3194 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3)) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-3182 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-3182 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-3169 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-3169 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(-10 -7 (-15 -3169 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -3169 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3182 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3182 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -3194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3207 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -3207 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2439 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2586 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -3844 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -3221 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -3221 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|))
-((-3343 (((-530) (-530) (-719)) 66)) (-3330 (((-530) (-530)) 65)) (-3317 (((-530) (-530)) 64)) (-3305 (((-530) (-530)) 69)) (-3536 (((-530) (-530) (-530)) 49)) (-3294 (((-530) (-530) (-530)) 46)) (-3282 (((-388 (-530)) (-530)) 20)) (-3270 (((-530) (-530)) 21)) (-3258 (((-530) (-530)) 58)) (-3503 (((-530) (-530)) 32)) (-3245 (((-597 (-530)) (-530)) 63)) (-3233 (((-530) (-530) (-530) (-530) (-530)) 44)) (-3456 (((-388 (-530)) (-530)) 41)))
-(((-527) (-10 -7 (-15 -3456 ((-388 (-530)) (-530))) (-15 -3233 ((-530) (-530) (-530) (-530) (-530))) (-15 -3245 ((-597 (-530)) (-530))) (-15 -3503 ((-530) (-530))) (-15 -3258 ((-530) (-530))) (-15 -3270 ((-530) (-530))) (-15 -3282 ((-388 (-530)) (-530))) (-15 -3294 ((-530) (-530) (-530))) (-15 -3536 ((-530) (-530) (-530))) (-15 -3305 ((-530) (-530))) (-15 -3317 ((-530) (-530))) (-15 -3330 ((-530) (-530))) (-15 -3343 ((-530) (-530) (-719))))) (T -527))
-((-3343 (*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3536 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3294 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3282 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3245 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-3233 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3456 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
-(-10 -7 (-15 -3456 ((-388 (-530)) (-530))) (-15 -3233 ((-530) (-530) (-530) (-530) (-530))) (-15 -3245 ((-597 (-530)) (-530))) (-15 -3503 ((-530) (-530))) (-15 -3258 ((-530) (-530))) (-15 -3270 ((-530) (-530))) (-15 -3282 ((-388 (-530)) (-530))) (-15 -3294 ((-530) (-530) (-530))) (-15 -3536 ((-530) (-530) (-530))) (-15 -3305 ((-530) (-530))) (-15 -3317 ((-530) (-530))) (-15 -3330 ((-530) (-530))) (-15 -3343 ((-530) (-530) (-719))))
-((-3355 (((-2 (|:| |answer| |#4|) (|:| -2546 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-2 (|:| |answer| |#4|) (|:| -2546 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -528))
-((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2546 *3))) (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))))
-(-10 -7 (-15 -3355 ((-2 (|:| |answer| |#4|) (|:| -2546 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3355 (((-2 (|:| |answer| (-388 |#2|)) (|:| -2546 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -3355 ((-2 (|:| |answer| (-388 |#2|)) (|:| -2546 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -529))
-((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -2546 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -3355 ((-2 (|:| |answer| (-388 |#2|)) (|:| -2546 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 25)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 87)) (-3031 (($ $) 88)) (-3006 (((-110) $) NIL)) (-4075 (($ $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-4055 (($ $ $ $) 42)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL)) (-4206 (($ $ $) 81)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL)) (-2446 (((-530) $) NIL)) (-3607 (($ $ $) 80)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 61) (((-637 (-530)) (-637 $)) 57)) (-1673 (((-3 $ "failed") $) 84)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL)) (-1928 (((-110) $) NIL)) (-1917 (((-388 (-530)) $) NIL)) (-1376 (($) 63) (($ $) 64)) (-3588 (($ $ $) 79)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-4034 (($ $ $ $) NIL)) (-4086 (($ $ $) 54)) (-2991 (((-110) $) NIL)) (-1364 (($ $ $) NIL)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-3150 (((-110) $) 26)) (-1555 (((-110) $) 74)) (-1560 (((-3 $ "failed") $) NIL)) (-3002 (((-110) $) 34)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4044 (($ $ $ $) 43)) (-4194 (($ $ $) 76)) (-1757 (($ $ $) 75)) (-2966 (($ $) NIL)) (-2171 (($ $) 40)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) 53)) (-4024 (($ $ $) NIL)) (-3677 (($) NIL T CONST)) (-3820 (($ $) 31)) (-2485 (((-1046) $) NIL) (($ $) 33)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 118)) (-2108 (($ $ $) 85) (($ (-597 $)) NIL)) (-1339 (($ $) NIL)) (-2473 (((-399 $) $) 104)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) 83)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 78)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-1692 (($ $) 32)) (-2441 (($ $) 30)) (-3173 (((-530) $) 39) (((-506) $) 51) (((-833 (-530)) $) NIL) (((-360) $) 46) (((-208) $) 48) (((-1082) $) 52)) (-2258 (((-804) $) 37) (($ (-530)) 38) (($ $) NIL) (($ (-530)) 38)) (-1667 (((-719)) NIL)) (-4098 (((-110) $ $) NIL)) (-1464 (($ $ $) NIL)) (-3256 (($) 29)) (-3020 (((-110) $ $) NIL)) (-4066 (($ $ $ $) 41)) (-2218 (($ $) 62)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 27 T CONST)) (-2955 (($) 28 T CONST)) (-2437 (((-1082) $) 20) (((-1082) $ (-110)) 22) (((-1186) (-770) $) 23) (((-1186) (-770) $ (-110)) 24)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 65)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 66)) (-2245 (($ $) 67) (($ $ $) 69)) (-2234 (($ $ $) 68)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 71) (($ $ $) 70)))
-(((-530) (-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1376 ($ $)) (-6 -4257) (-6 -4262) (-6 -4258) (-6 -4252)))) (T -530))
-((-1376 (*1 *1 *1) (-5 *1 (-530))))
-(-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1376 ($ $)) (-6 -4257) (-6 -4262) (-6 -4258) (-6 -4252)))
-((-1523 (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996)) 108) (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717)) 110)) (-1637 (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099)) 172) (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082)) 171) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996)) 176) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360)) 177) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360)) 178) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360))))) 179) (((-973) (-297 (-360)) (-1022 (-788 (-360)))) 167) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360)) 166) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360)) 162) (((-973) (-717)) 155) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996)) 161)))
-(((-531) (-10 -7 (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1637 ((-973) (-717))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1637 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1637 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))) (T -531))
-((-1637 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1099)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1082)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1637 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))))
-(-10 -7 (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1637 ((-973) (-717))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1637 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1637 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1637 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))
-((-3389 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|)) 184)) (-3366 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|)) 98)) (-3376 (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|) 180)) (-3401 (((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099))) 189)) (-3412 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099)) 197 (|has| |#3| (-607 |#2|)))))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -3366 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -3376 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -3389 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3401 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -3412 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -532))
-((-3412 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-3401 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))) (-3389 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))) (-3376 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))) (-3366 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(-10 -7 (-15 -3366 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -3376 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -3389 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3401 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -3412 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3853 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|))
-((-3424 (((-2 (|:| -1716 |#2|) (|:| |nconst| |#2|)) |#2| (-1099)) 64)) (-3449 (((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|)) 164 (-12 (|has| |#2| (-1063)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 147 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))) (-3437 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 148 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))))
-(((-533 |#1| |#2|) (-10 -7 (-15 -3424 ((-2 (|:| -1716 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -3437 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -3449 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -3449 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-795) (-975 (-530)) (-432) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -533))
-((-3449 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *1 (-533 *5 *2)))) (-3449 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3437 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| -1716 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(-10 -7 (-15 -3424 ((-2 (|:| -1716 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -3437 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -3449 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -3449 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3484 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))) 41)) (-1637 (((-547 (-388 |#2|)) (-388 |#2|)) 28)) (-3460 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-3471 (((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48)))
-(((-534 |#1| |#2|) (-10 -7 (-15 -1637 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3460 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -3471 ((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -3484 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -534))
-((-3484 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *5 *6)))) (-3471 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2555 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))) (-3460 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-547 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
-(-10 -7 (-15 -1637 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3460 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -3471 ((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -3484 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|)))))
-((-3495 (((-3 (-530) "failed") |#1|) 14)) (-3535 (((-110) |#1|) 13)) (-3778 (((-530) |#1|) 9)))
-(((-535 |#1|) (-10 -7 (-15 -3778 ((-530) |#1|)) (-15 -3535 ((-110) |#1|)) (-15 -3495 ((-3 (-530) "failed") |#1|))) (-975 (-530))) (T -535))
-((-3495 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530))))) (-3778 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
-(-10 -7 (-15 -3778 ((-530) |#1|)) (-15 -3535 ((-110) |#1|)) (-15 -3495 ((-3 (-530) "failed") |#1|)))
-((-3526 (((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|)))) 48)) (-3506 (((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099)) 28)) (-3517 (((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099)) 23)) (-3539 (((-3 (-2 (|:| -2555 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 35)))
-(((-536 |#1|) (-10 -7 (-15 -3506 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3517 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -3526 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -3539 ((-3 (-2 (|:| -2555 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))))) (-13 (-522) (-975 (-530)) (-140))) (T -536))
-((-3539 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| -2555 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5))))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))) (-3526 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-536 *6)))) (-3517 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
-(-10 -7 (-15 -3506 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3517 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -3526 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -3539 ((-3 (-2 (|:| -2555 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))))
-((-2246 (((-110) $ $) 59)) (-3015 (((-110) $) 36)) (-1461 ((|#1| $) 30)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) 63)) (-2276 (($ $) 123)) (-2144 (($ $) 103)) (-3821 ((|#1| $) 28)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL)) (-2253 (($ $) 125)) (-2121 (($ $) 99)) (-2297 (($ $) 127)) (-2169 (($ $) 107)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) 78)) (-2446 (((-530) $) 80)) (-1673 (((-3 $ "failed") $) 62)) (-2984 (($ |#1| |#1|) 26)) (-2991 (((-110) $) 33)) (-1877 (($) 89)) (-3150 (((-110) $) 43)) (-1817 (($ $ (-530)) NIL)) (-3002 (((-110) $) 34)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2070 (($ $) 91)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2996 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-530))) 77)) (-2973 ((|#1| $) 27)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) 65) (($ (-597 $)) NIL)) (-3562 (((-3 $ "failed") $ $) 64)) (-2693 (($ $) 93)) (-2308 (($ $) 131)) (-2181 (($ $) 105)) (-2287 (($ $) 133)) (-2155 (($ $) 109)) (-2263 (($ $) 129)) (-2133 (($ $) 101)) (-2960 (((-110) $ |#1|) 31)) (-2258 (((-804) $) 85) (($ (-530)) 67) (($ $) NIL) (($ (-530)) 67)) (-1667 (((-719)) 87)) (-2339 (($ $) 145)) (-2211 (($ $) 115)) (-3020 (((-110) $ $) NIL)) (-2318 (($ $) 143)) (-2192 (($ $) 111)) (-2361 (($ $) 141)) (-2230 (($ $) 121)) (-2910 (($ $) 139)) (-2241 (($ $) 119)) (-2349 (($ $) 137)) (-2220 (($ $) 117)) (-2328 (($ $) 135)) (-2202 (($ $) 113)) (-2723 (($ $ (-862)) 55) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 10 T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 37)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 35)) (-2245 (($ $) 41) (($ $ $) 42)) (-2234 (($ $ $) 40)) (** (($ $ (-862)) 54) (($ $ (-719)) NIL) (($ $ $) 95) (($ $ (-388 (-530))) 147)) (* (($ (-862) $) 51) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 48)))
+((-3503 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|)) 37)) (-3214 (((-547 |#2|) |#2| (-1099)) 62)) (-2076 (((-3 |#2| "failed") |#2| (-1099)) 152)) (-1877 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))) 155)) (-3819 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|) 40)))
+(((-523 |#1| |#2|) (-10 -7 (-15 -3819 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3503 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -2076 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3214 ((-547 |#2|) |#2| (-1099))) (-15 -1877 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -523))
+((-1877 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3))) (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *7 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2076 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3503 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6 *3)))) (-3819 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(-10 -7 (-15 -3819 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3503 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -2076 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3214 ((-547 |#2|) |#2| (-1099))) (-15 -1877 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|)))))
+((-3272 (((-399 |#1|) |#1|) 18)) (-2611 (((-399 |#1|) |#1|) 33)) (-3449 (((-3 |#1| "failed") |#1|) 44)) (-1748 (((-399 |#1|) |#1|) 51)))
+(((-524 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -1748 ((-399 |#1|) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|))) (-515)) (T -524))
+((-3449 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))) (-1748 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-3272 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -1748 ((-399 |#1|) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|)))
+((-2137 (($) 9)) (-1365 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-3282 (((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-2441 (($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2825 (($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1874 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-2261 (((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1480 (((-1186)) 12)))
+(((-525) (-10 -8 (-15 -2137 ($)) (-15 -1480 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2825 ($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1365 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2261 ((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1874 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -525))
+((-1874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-1365 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-525)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-525)))) (-1480 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))) (-2137 (*1 *1) (-5 *1 (-525))))
+(-10 -8 (-15 -2137 ($)) (-15 -1480 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2825 ($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1365 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2261 ((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1874 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-2577 (((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|)) 32)) (-1246 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|)) 110)) (-1558 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 80) (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 52)) (-3536 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|))) 87) (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|)) 109)) (-4079 (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|)) 111)) (-2279 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 128 (|has| |#3| (-607 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 127 (|has| |#3| (-607 |#2|)))) (-2735 ((|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|) 50)) (-2123 (((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|)) 31)))
+(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2577 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2735 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -2123 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -526))
+((-2279 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4))) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-2279 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7)) (-5 *3 (-1095 *6)) (-4 *7 (-1027)))) (-2735 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1095 (-388 (-1095 *2)))) (-5 *4 (-570 *2)) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *5 *2 *6)) (-4 *6 (-1027)))) (-2577 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *3)))) (-5 *1 (-526 *6 *3 *7)) (-5 *5 (-1095 *3)) (-4 *7 (-1027)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2)) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-1246 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-1246 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3)) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-3536 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-3536 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-1558 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-1558 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
+(-10 -7 (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2577 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2735 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -2123 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|))
+((-2693 (((-530) (-530) (-719)) 66)) (-3822 (((-530) (-530)) 65)) (-2851 (((-530) (-530)) 64)) (-3644 (((-530) (-530)) 69)) (-1387 (((-530) (-530) (-530)) 49)) (-1804 (((-530) (-530) (-530)) 46)) (-4036 (((-388 (-530)) (-530)) 20)) (-2439 (((-530) (-530)) 21)) (-1614 (((-530) (-530)) 58)) (-2067 (((-530) (-530)) 32)) (-2955 (((-597 (-530)) (-530)) 63)) (-4164 (((-530) (-530) (-530) (-530) (-530)) 44)) (-3190 (((-388 (-530)) (-530)) 41)))
+(((-527) (-10 -7 (-15 -3190 ((-388 (-530)) (-530))) (-15 -4164 ((-530) (-530) (-530) (-530) (-530))) (-15 -2955 ((-597 (-530)) (-530))) (-15 -2067 ((-530) (-530))) (-15 -1614 ((-530) (-530))) (-15 -2439 ((-530) (-530))) (-15 -4036 ((-388 (-530)) (-530))) (-15 -1804 ((-530) (-530) (-530))) (-15 -1387 ((-530) (-530) (-530))) (-15 -3644 ((-530) (-530))) (-15 -2851 ((-530) (-530))) (-15 -3822 ((-530) (-530))) (-15 -2693 ((-530) (-530) (-719))))) (T -527))
+((-2693 (*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1387 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-4036 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-4164 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
+(-10 -7 (-15 -3190 ((-388 (-530)) (-530))) (-15 -4164 ((-530) (-530) (-530) (-530) (-530))) (-15 -2955 ((-597 (-530)) (-530))) (-15 -2067 ((-530) (-530))) (-15 -1614 ((-530) (-530))) (-15 -2439 ((-530) (-530))) (-15 -4036 ((-388 (-530)) (-530))) (-15 -1804 ((-530) (-530) (-530))) (-15 -1387 ((-530) (-530) (-530))) (-15 -3644 ((-530) (-530))) (-15 -2851 ((-530) (-530))) (-15 -3822 ((-530) (-530))) (-15 -2693 ((-530) (-530) (-719))))
+((-1389 (((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 ((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -528))
+((-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3403 *3))) (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))))
+(-10 -7 (-15 -1389 ((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1389 (((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18)))
+(((-529 |#1| |#2|) (-10 -7 (-15 -1389 ((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -529))
+((-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -3403 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -1389 ((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 25)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 87)) (-3446 (($ $) 88)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) 42)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) 81)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) 80)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 61) (((-637 (-530)) (-637 $)) 57)) (-2707 (((-3 $ "failed") $) 84)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) 63) (($ $) 64)) (-3571 (($ $ $) 79)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) 54)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) 26)) (-3457 (((-110) $) 74)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) 34)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) 43)) (-2508 (($ $ $) 76)) (-1817 (($ $ $) 75)) (-3103 (($ $) NIL)) (-4109 (($ $) 40)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) 53)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) 31)) (-2624 (((-1046) $) NIL) (($ $) 33)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 118)) (-2204 (($ $ $) 85) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) 104)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 83)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 78)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) 32)) (-2579 (($ $) 30)) (-3260 (((-530) $) 39) (((-506) $) 51) (((-833 (-530)) $) NIL) (((-360) $) 46) (((-208) $) 48) (((-1082) $) 52)) (-2366 (((-804) $) 37) (($ (-530)) 38) (($ $) NIL) (($ (-530)) 38)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) 29)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) 41)) (-3934 (($ $) 62)) (-3080 (($) 27 T CONST)) (-3093 (($) 28 T CONST)) (-3987 (((-1082) $) 20) (((-1082) $ (-110)) 22) (((-1186) (-770) $) 23) (((-1186) (-770) $ (-110)) 24)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 65)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 66)) (-2351 (($ $) 67) (($ $ $) 69)) (-2339 (($ $ $) 68)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 71) (($ $ $) 70)))
+(((-530) (-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1364 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))) (T -530))
+((-1364 (*1 *1 *1) (-5 *1 (-530))))
+(-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1364 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))
+((-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996)) 108) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717)) 110)) (-1545 (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099)) 172) (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082)) 171) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996)) 176) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360)) 177) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360)) 178) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360))))) 179) (((-973) (-297 (-360)) (-1022 (-788 (-360)))) 167) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360)) 166) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360)) 162) (((-973) (-717)) 155) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996)) 161)))
+(((-531) (-10 -7 (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1545 ((-973) (-717))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))) (T -531))
+((-1545 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1099)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1082)) (-5 *2 (-973)) (-5 *1 (-531)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))))
+(-10 -7 (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1545 ((-973) (-717))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))
+((-2392 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|)) 184)) (-1244 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|)) 98)) (-2964 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|) 180)) (-3878 (((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099))) 189)) (-1713 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099)) 197 (|has| |#3| (-607 |#2|)))))
+(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1244 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -2964 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3878 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -1713 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -532))
+((-1713 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-3878 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))) (-2392 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))) (-2964 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))) (-1244 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
+(-10 -7 (-15 -1244 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -2964 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3878 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -1713 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|))
+((-3377 (((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099)) 64)) (-1743 (((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|)) 164 (-12 (|has| |#2| (-1063)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 147 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))) (-2155 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 148 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))))
+(((-533 |#1| |#2|) (-10 -7 (-15 -3377 ((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -1743 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -1743 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-795) (-975 (-530)) (-432) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -533))
+((-1743 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *1 (-533 *5 *2)))) (-1743 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3377 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| -2259 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(-10 -7 (-15 -3377 ((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -1743 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -1743 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-4096 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))) 41)) (-1545 (((-547 (-388 |#2|)) (-388 |#2|)) 28)) (-3515 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-2389 (((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48)))
+(((-534 |#1| |#2|) (-10 -7 (-15 -1545 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3515 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2389 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -4096 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -534))
+((-4096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *5 *6)))) (-2389 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2104 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))) (-3515 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-547 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -1545 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3515 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2389 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -4096 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|)))))
+((-2743 (((-3 (-530) "failed") |#1|) 14)) (-1298 (((-110) |#1|) 13)) (-3771 (((-530) |#1|) 9)))
+(((-535 |#1|) (-10 -7 (-15 -3771 ((-530) |#1|)) (-15 -1298 ((-110) |#1|)) (-15 -2743 ((-3 (-530) "failed") |#1|))) (-975 (-530))) (T -535))
+((-2743 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))) (-1298 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530))))) (-3771 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
+(-10 -7 (-15 -3771 ((-530) |#1|)) (-15 -1298 ((-110) |#1|)) (-15 -2743 ((-3 (-530) "failed") |#1|)))
+((-1839 (((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|)))) 48)) (-3631 (((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099)) 28)) (-3363 (((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099)) 23)) (-1714 (((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 35)))
+(((-536 |#1|) (-10 -7 (-15 -3631 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3363 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -1714 ((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))))) (-13 (-522) (-975 (-530)) (-140))) (T -536))
+((-1714 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| -2104 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5))))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))) (-1839 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-536 *6)))) (-3363 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
+(-10 -7 (-15 -3631 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3363 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -1714 ((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))))
+((-2352 (((-110) $ $) 58)) (-1813 (((-110) $) 36)) (-1447 ((|#1| $) 30)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) 62)) (-2386 (($ $) 122)) (-2244 (($ $) 102)) (-3418 ((|#1| $) 28)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL)) (-2360 (($ $) 124)) (-2219 (($ $) 98)) (-2409 (($ $) 126)) (-2269 (($ $) 106)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 77)) (-2585 (((-530) $) 79)) (-2707 (((-3 $ "failed") $) 61)) (-3184 (($ |#1| |#1|) 26)) (-2514 (((-110) $) 33)) (-1948 (($) 88)) (-2731 (((-110) $) 43)) (-3741 (($ $ (-530)) NIL)) (-2166 (((-110) $) 34)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2168 (($ $) 90)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2910 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-530))) 76)) (-1726 ((|#1| $) 27)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) 64) (($ (-597 $)) NIL)) (-3551 (((-3 $ "failed") $ $) 63)) (-2853 (($ $) 92)) (-2421 (($ $) 130)) (-2281 (($ $) 104)) (-2398 (($ $) 132)) (-2254 (($ $) 108)) (-2373 (($ $) 128)) (-2231 (($ $) 100)) (-4000 (((-110) $ |#1|) 31)) (-2366 (((-804) $) 84) (($ (-530)) 66) (($ $) NIL) (($ (-530)) 66)) (-3300 (((-719)) 86)) (-2459 (($ $) 144)) (-2314 (($ $) 114)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 142)) (-2293 (($ $) 110)) (-2485 (($ $) 140)) (-2334 (($ $) 120)) (-3632 (($ $) 138)) (-2347 (($ $) 118)) (-2472 (($ $) 136)) (-2324 (($ $) 116)) (-2446 (($ $) 134)) (-2304 (($ $) 112)) (-3080 (($) 21 T CONST)) (-3093 (($) 10 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 37)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)) (-2351 (($ $) 41) (($ $ $) 42)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) 54) (($ $ (-719)) NIL) (($ $ $) 94) (($ $ (-388 (-530))) 146)) (* (($ (-862) $) 51) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 48)))
(((-537 |#1|) (-520 |#1|) (-13 (-385) (-1121))) (T -537))
NIL
(-520 |#1|)
-((-1810 (((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530))) 24)))
-(((-538) (-10 -7 (-15 -1810 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))) (T -538))
-((-1810 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530))) (-5 *1 (-538)))))
-(-10 -7 (-15 -1810 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))
-((-3552 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099)) 19)) (-3589 (((-597 (-570 |#2|)) (-597 |#2|) (-1099)) 23)) (-4204 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|))) 11)) (-3598 ((|#2| |#2| (-1099)) 54 (|has| |#1| (-522)))) (-2336 ((|#2| |#2| (-1099)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-3576 (((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099)) 25)) (-3563 (((-570 |#2|) (-597 (-570 |#2|))) 24)) (-2347 (((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-583)) (|has| |#2| (-975 (-1099))) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-432)) (|has| |#1| (-827 (-530)))))))
-(((-539 |#1| |#2|) (-10 -7 (-15 -3552 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -3563 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3576 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -3589 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -3598 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2336 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2347 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-795) (-411 |#1|)) (T -539))
-((-2347 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-547 *3) *3 (-1099))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1099))) (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7)) (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432)) (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3)) (-5 *1 (-539 *7 *3)))) (-2336 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))) (-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))) (-4204 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-570 *4))) (-4 *4 (-411 *3)) (-4 *3 (-795)) (-5 *1 (-539 *3 *4)))) (-3576 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5)) (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4)) (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
-(-10 -7 (-15 -3552 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -3563 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3576 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -3589 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -3598 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2336 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2347 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2376 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|)) 172)) (-2410 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|))) 148)) (-2448 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|))) 145)) (-2459 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2358 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2435 (((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-2387 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|)) 178)) (-2481 (((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-2495 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2423 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|))) 152)) (-2469 (((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 137)) (-2367 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 162)) (-2400 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|)) 183)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -2358 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2367 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2376 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2387 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -2400 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -2410 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2423 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -2435 ((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -2448 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2459 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2469 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2481 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2495 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -540))
-((-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-540 *5 *3)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2469 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3657 *4) (|:| |sol?| (-110))) (-530) *4)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))) (-2459 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))) (-2448 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *7)))) (-2435 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2555 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2423 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3657 *7) (|:| |sol?| (-110))) (-530) *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-2410 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2555 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-2400 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3657 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2555 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2387 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2555 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2555 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3657 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2358 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2555 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(-10 -7 (-15 -2358 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2367 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2376 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2387 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -2400 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -2410 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2423 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -2435 ((-3 (-2 (|:| -2555 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -2448 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2459 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2469 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3657 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2481 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2495 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2505 (((-3 |#2| "failed") |#2| (-1099) (-1099)) 10)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -2505 ((-3 |#2| "failed") |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-1063) (-29 |#1|))) (T -541))
-((-2505 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
-(-10 -7 (-15 -2505 ((-3 |#2| "failed") |#2| (-1099) (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $ (-530)) 66)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-2077 (($ (-1095 (-530)) (-530)) 72)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) 58)) (-2088 (($ $) 34)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-1334 (((-719) $) 15)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2113 (((-530)) 29)) (-2100 (((-530) $) 32)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1312 (($ $ (-530)) 21)) (-3562 (((-3 $ "failed") $ $) 59)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) 16)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 61)) (-2124 (((-1080 (-530)) $) 18)) (-3021 (($ $) 23)) (-2258 (((-804) $) 87) (($ (-530)) 52) (($ $) NIL)) (-1667 (((-719)) 14)) (-3020 (((-110) $ $) NIL)) (-4125 (((-530) $ (-530)) 36)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 35 T CONST)) (-2955 (($) 19 T CONST)) (-2148 (((-110) $ $) 39)) (-2245 (($ $) 51) (($ $ $) 37)) (-2234 (($ $ $) 50)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 54) (($ $ $) 55)))
+((-1708 (((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530))) 24)))
+(((-538) (-10 -7 (-15 -1708 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))) (T -538))
+((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530))) (-5 *1 (-538)))))
+(-10 -7 (-15 -1708 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))
+((-3423 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099)) 19)) (-2792 (((-597 (-570 |#2|)) (-597 |#2|) (-1099)) 23)) (-4204 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|))) 11)) (-1297 ((|#2| |#2| (-1099)) 54 (|has| |#1| (-522)))) (-2809 ((|#2| |#2| (-1099)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-3956 (((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099)) 25)) (-1989 (((-570 |#2|) (-597 (-570 |#2|))) 24)) (-2331 (((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-583)) (|has| |#2| (-975 (-1099))) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-432)) (|has| |#1| (-827 (-530)))))))
+(((-539 |#1| |#2|) (-10 -7 (-15 -3423 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -1989 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3956 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -2792 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -1297 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2809 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2331 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-795) (-411 |#1|)) (T -539))
+((-2331 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-547 *3) *3 (-1099))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1099))) (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7)) (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432)) (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3)) (-5 *1 (-539 *7 *3)))) (-2809 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))) (-1297 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))) (-4204 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-570 *4))) (-4 *4 (-411 *3)) (-4 *3 (-795)) (-5 *1 (-539 *3 *4)))) (-3956 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5)) (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))) (-3423 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4)) (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
+(-10 -7 (-15 -3423 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -1989 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3956 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -2792 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -1297 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2809 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2331 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2634 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|)) 172)) (-3335 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|))) 148)) (-3436 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|))) 145)) (-2029 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1636 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3821 (((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-2270 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|)) 178)) (-3351 (((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-1901 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2986 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|))) 152)) (-1727 (((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 137)) (-4070 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 162)) (-3795 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|)) 183)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -1636 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4070 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2634 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -3795 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -3335 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2986 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -3821 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -3436 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2029 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1727 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -3351 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -540))
+((-1901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-540 *5 *3)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-1727 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110))) (-530) *4)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))) (-2029 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))) (-3436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *7)))) (-3821 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2104 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2986 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3638 *7) (|:| |sol?| (-110))) (-530) *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-3335 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-3795 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2270 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2634 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-4070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(-10 -7 (-15 -1636 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4070 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2634 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -3795 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -3335 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2986 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -3821 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -3436 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2029 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1727 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -3351 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1855 (((-3 |#2| "failed") |#2| (-1099) (-1099)) 10)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -1855 ((-3 |#2| "failed") |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-1063) (-29 |#1|))) (T -541))
+((-1855 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
+(-10 -7 (-15 -1855 ((-3 |#2| "failed") |#2| (-1099) (-1099))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) 66)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) 72)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 58)) (-2957 (($ $) 34)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) 15)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) 29)) (-1439 (((-530) $) 32)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) 21)) (-3551 (((-3 $ "failed") $ $) 59)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) 16)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 61)) (-2513 (((-1080 (-530)) $) 18)) (-4050 (($ $) 23)) (-2366 (((-804) $) 87) (($ (-530)) 52) (($ $) NIL)) (-3300 (((-719)) 14)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) 36)) (-3080 (($) 35 T CONST)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 39)) (-2351 (($ $) 51) (($ $ $) 37)) (-2339 (($ $ $) 50)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 54) (($ $ $) 55)))
(((-542 |#1| |#2|) (-810 |#1|) (-530) (-110)) (T -542))
NIL
(-810 |#1|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 21)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-1621 (((-1109 (-862) (-719)) (-530)) 47)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 $ "failed") $) 75)) (-2446 (($ $) 74)) (-3477 (($ (-1181 $)) 73)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) 32)) (-1376 (($) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) 49)) (-1674 (((-110) $) NIL)) (-3175 (($ $) NIL) (($ $ (-719)) NIL)) (-2049 (((-110) $) NIL)) (-1334 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-3150 (((-110) $) NIL)) (-3863 (($) 37 (|has| $ (-349)))) (-3840 (((-110) $) NIL (|has| $ (-349)))) (-1717 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-1560 (((-3 $ "failed") $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) 83)) (-3830 (((-862) $) 55)) (-2130 (((-1095 $) $) NIL (|has| $ (-349)))) (-2120 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-2142 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL T CONST)) (-1910 (($ (-862)) 48)) (-3268 (((-110) $) 67)) (-2485 (((-1046) $) NIL)) (-1898 (($) 19 (|has| $ (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 42)) (-2473 (((-399 $) $) NIL)) (-3255 (((-862)) 66) (((-781 (-862))) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-1248 (((-130)) NIL)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-3409 (((-862) $) 65) (((-781 (-862)) $) NIL)) (-4212 (((-1095 $)) 82)) (-1612 (($) 54)) (-2153 (($) 38 (|has| $ (-349)))) (-3351 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) 71)) (-3173 (((-530) $) 28)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) 30) (($ $) NIL) (($ (-388 (-530))) NIL)) (-1795 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1667 (((-719)) 39)) (-3853 (((-1181 $) (-862)) 77) (((-1181 $)) 76)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 22 T CONST)) (-2955 (($) 18 T CONST)) (-3231 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 61) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 21)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) 47)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $) 75)) (-2585 (($ $) 74)) (-1574 (($ (-1181 $)) 73)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 49)) (-2798 (((-110) $) NIL)) (-3948 (($ $) NIL) (($ $ (-719)) NIL)) (-3295 (((-110) $) NIL)) (-2031 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-2731 (((-110) $) NIL)) (-2931 (($) 37 (|has| $ (-349)))) (-1672 (((-110) $) NIL (|has| $ (-349)))) (-2376 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) 83)) (-1905 (((-862) $) 55)) (-3005 (((-1095 $) $) NIL (|has| $ (-349)))) (-3396 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-1658 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL T CONST)) (-1986 (($ (-862)) 48)) (-1655 (((-110) $) 67)) (-2624 (((-1046) $) NIL)) (-1974 (($) 19 (|has| $ (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 42)) (-2611 (((-399 $) $) NIL)) (-1415 (((-862)) 66) (((-781 (-862))) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-2488 (((-130)) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1429 (((-862) $) 65) (((-781 (-862)) $) NIL)) (-1781 (((-1095 $)) 82)) (-3406 (($) 54)) (-1698 (($) 38 (|has| $ (-349)))) (-2328 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) 71)) (-3260 (((-530) $) 28)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) 30) (($ $) NIL) (($ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3300 (((-719)) 39)) (-3220 (((-1181 $) (-862)) 77) (((-1181 $)) 76)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 22 T CONST)) (-3093 (($) 18 T CONST)) (-3962 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 61) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
(((-543 |#1|) (-13 (-330) (-310 $) (-572 (-530))) (-862)) (T -543))
NIL
(-13 (-330) (-310 $) (-572 (-530)))
-((-2518 (((-1186) (-1082)) 10)))
-(((-544) (-10 -7 (-15 -2518 ((-1186) (-1082))))) (T -544))
-((-2518 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
-(-10 -7 (-15 -2518 ((-1186) (-1082))))
-((-1373 (((-547 |#2|) (-547 |#2|)) 40)) (-2147 (((-597 |#2|) (-547 |#2|)) 42)) (-2647 ((|#2| (-547 |#2|)) 48)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -1373 ((-547 |#2|) (-547 |#2|))) (-15 -2147 ((-597 |#2|) (-547 |#2|))) (-15 -2647 (|#2| (-547 |#2|)))) (-13 (-432) (-975 (-530)) (-795) (-593 (-530))) (-13 (-29 |#1|) (-1121))) (T -545))
-((-2647 (*1 *2 *3) (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121))) (-5 *1 (-545 *4 *2)) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-547 *5)) (-4 *5 (-13 (-29 *4) (-1121))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 *5)) (-5 *1 (-545 *4 *5)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-545 *3 *4)))))
-(-10 -7 (-15 -1373 ((-547 |#2|) (-547 |#2|))) (-15 -2147 ((-597 |#2|) (-547 |#2|))) (-15 -2647 (|#2| (-547 |#2|))))
-((-3114 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 30)))
-(((-546 |#1| |#2|) (-10 -7 (-15 -3114 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3114 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3114 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3114 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -546))
-((-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-546 *5 *6)))) (-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-546 *5 *2)))) (-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2555 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2555 *6) (|:| |coeff| *6))) (-5 *1 (-546 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-547 *6)) (-5 *1 (-546 *5 *6)))))
-(-10 -7 (-15 -3114 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3114 ((-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2555 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3114 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3114 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 69)) (-2446 ((|#1| $) NIL)) (-2555 ((|#1| $) 26)) (-2536 (((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2565 (($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2546 (((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $) 27)) (-3443 (((-1082) $) NIL)) (-2553 (($ |#1| |#1|) 33) (($ |#1| (-1099)) 44 (|has| |#1| (-975 (-1099))))) (-2485 (((-1046) $) NIL)) (-2527 (((-110) $) 30)) (-3211 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1099)) 82 (|has| |#1| (-841 (-1099))))) (-2258 (((-804) $) 96) (($ |#1|) 25)) (-2943 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) 15) (($ $ $) NIL)) (-2234 (($ $ $) 78)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 14) (($ (-388 (-530)) $) 36) (($ $ (-388 (-530))) NIL)))
-(((-547 |#1|) (-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -2565 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2555 (|#1| $)) (-15 -2546 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -2536 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2527 ((-110) $)) (-15 -2553 ($ |#1| |#1|)) (-15 -3211 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3211 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -2553 ($ |#1| (-1099))) |%noBranch|))) (-344)) (T -547))
-((-2565 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2)) (|:| |logand| (-1095 *2))))) (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-547 *2)))) (-2555 (*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3)) (|:| |logand| (-1095 *3))))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-2553 (*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3211 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3211 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-547 *2)) (-5 *3 (-1099)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3)) (-4 *2 (-344)))))
-(-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -2565 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2555 (|#1| $)) (-15 -2546 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -2536 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2527 ((-110) $)) (-15 -2553 ($ |#1| |#1|)) (-15 -3211 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3211 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -2553 ($ |#1| (-1099))) |%noBranch|)))
-((-2605 (((-110) |#1|) 16)) (-2617 (((-3 |#1| "failed") |#1|) 14)) (-2585 (((-2 (|:| -3256 |#1|) (|:| -3059 (-719))) |#1|) 31) (((-3 |#1| "failed") |#1| (-719)) 18)) (-2574 (((-110) |#1| (-719)) 19)) (-2628 ((|#1| |#1|) 32)) (-2595 ((|#1| |#1| (-719)) 34)))
-(((-548 |#1|) (-10 -7 (-15 -2574 ((-110) |#1| (-719))) (-15 -2585 ((-3 |#1| "failed") |#1| (-719))) (-15 -2585 ((-2 (|:| -3256 |#1|) (|:| -3059 (-719))) |#1|)) (-15 -2595 (|#1| |#1| (-719))) (-15 -2605 ((-110) |#1|)) (-15 -2617 ((-3 |#1| "failed") |#1|)) (-15 -2628 (|#1| |#1|))) (-515)) (T -548))
-((-2628 (*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2617 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2605 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2585 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3256 *3) (|:| -3059 (-719)))) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2585 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -2574 ((-110) |#1| (-719))) (-15 -2585 ((-3 |#1| "failed") |#1| (-719))) (-15 -2585 ((-2 (|:| -3256 |#1|) (|:| -3059 (-719))) |#1|)) (-15 -2595 (|#1| |#1| (-719))) (-15 -2605 ((-110) |#1|)) (-15 -2617 ((-3 |#1| "failed") |#1|)) (-15 -2628 (|#1| |#1|)))
-((-2638 (((-1095 |#1|) (-862)) 27)))
-(((-549 |#1|) (-10 -7 (-15 -2638 ((-1095 |#1|) (-862)))) (-330)) (T -549))
-((-2638 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4)) (-4 *4 (-330)))))
-(-10 -7 (-15 -2638 ((-1095 |#1|) (-862))))
-((-1373 (((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|)))) 27)) (-1637 (((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 34 (|has| |#1| (-140)))) (-2147 (((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|)))) 19)) (-2658 (((-297 |#1|) (-388 (-893 |#1|)) (-1099)) 32 (|has| |#1| (-140)))) (-2647 (((-297 |#1|) (-547 (-388 (-893 |#1|)))) 21)))
-(((-550 |#1|) (-10 -7 (-15 -1373 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2147 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -2647 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1637 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2658 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (T -550))
-((-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-3 (-297 *5) (-597 (-297 *5)))) (-5 *1 (-550 *5)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 (-297 *4))) (-5 *1 (-550 *4)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-547 (-388 (-893 *3)))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-550 *3)))))
-(-10 -7 (-15 -1373 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2147 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -2647 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1637 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2658 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|))
-((-2677 (((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530)))) 46) (((-597 (-637 (-530))) (-597 (-530))) 47) (((-637 (-530)) (-597 (-530)) (-846 (-530))) 42)) (-2668 (((-719) (-597 (-530))) 40)))
-(((-551) (-10 -7 (-15 -2668 ((-719) (-597 (-530)))) (-15 -2677 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2677 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2677 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))) (T -551))
-((-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-551)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
-(-10 -7 (-15 -2668 ((-719) (-597 (-530)))) (-15 -2677 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2677 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2677 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))
-((-3240 (((-597 |#5|) |#5| (-110)) 73)) (-2686 (((-110) |#5| (-597 |#5|)) 30)))
-(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3240 ((-597 |#5|) |#5| (-110))) (-15 -2686 ((-110) |#5| (-597 |#5|)))) (-13 (-289) (-140)) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -552))
-((-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-552 *5 *6 *7 *8 *3)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3240 ((-597 |#5|) |#5| (-110))) (-15 -2686 ((-110) |#5| (-597 |#5|))))
-((-2246 (((-110) $ $) NIL (|has| (-137) (-1027)))) (-1386 (($ $) 34)) (-1396 (($ $) NIL)) (-1363 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-2869 (((-110) $ $) 51)) (-2850 (((-110) $ $ (-530)) 46)) (-1373 (((-597 $) $ (-137)) 60) (((-597 $) $ (-134)) 61)) (-4038 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-4017 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-137) (-795))))) (-1317 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-137) $ (-530) (-137)) 45 (|has| $ (-6 -4271))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-2705 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-3074 (($ $ (-1148 (-530)) $) 44)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2272 (($ (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2858 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4271)))) (-2787 (((-137) $ (-530)) NIL)) (-2891 (((-110) $ $) 72)) (-1944 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 48 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 47) (((-530) (-134) $ (-530)) 50)) (-2456 (((-597 (-137)) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) (-137)) 9)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 28 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| (-137) (-795)))) (-3842 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-3252 (((-597 (-137)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-1965 (((-530) $) 42 (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-137) (-795)))) (-3763 (((-110) $ $ (-137)) 73)) (-2762 (((-719) $ $ (-137)) 70)) (-2847 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1407 (($ $) 37)) (-1418 (($ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-2716 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-3443 (((-1082) $) 38 (|has| (-137) (-1027)))) (-4016 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) 23)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-530) $) 69) (((-1046) $) NIL (|has| (-137) (-1027)))) (-2907 (((-137) $) NIL (|has| (-530) (-795)))) (-4221 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1946 (($ $ (-137)) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2002 (((-597 (-137)) $) NIL)) (-1262 (((-110) $) 12)) (-4227 (($) 10)) (-1832 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) 52) (($ $ (-1148 (-530))) 21) (($ $ $) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-4027 (($ $ $ (-530)) 66 (|has| $ (-6 -4271)))) (-2441 (($ $) 17)) (-3173 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2268 (($ (-597 (-137))) NIL)) (-3476 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-597 $)) 67)) (-2258 (($ (-137)) NIL) (((-804) $) 27 (|has| (-137) (-571 (-804))))) (-1515 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2148 (((-110) $ $) 14 (|has| (-137) (-1027)))) (-2195 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2172 (((-110) $ $) 15 (|has| (-137) (-795)))) (-2167 (((-719) $) 13 (|has| $ (-6 -4270)))))
-(((-553 |#1|) (-13 (-1068) (-10 -8 (-15 -2485 ((-530) $)))) (-530)) (T -553))
-((-2485 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-553 *3)) (-14 *3 *2))))
-(-13 (-1068) (-10 -8 (-15 -2485 ((-530) $))))
-((-3400 (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|)) 32)))
-(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|)) (T -554))
-((-3400 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-3400 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1022 *3)) (-4 *3 (-890 *7 *6 *4)) (-4 *6 (-741)) (-4 *4 (-795)) (-4 *7 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 63)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-530)) 54) (($ $ (-530) (-530)) 55)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 60)) (-1842 (($ $) 100)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1825 (((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530))) 224)) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 34)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3032 (((-110) $) NIL)) (-1334 (((-530) $) 58) (((-530) $ (-530)) 59)) (-3150 (((-110) $) NIL)) (-1382 (($ $ (-862)) 76)) (-1647 (($ (-1 |#1| (-530)) $) 73)) (-3327 (((-110) $) 25)) (-2575 (($ |#1| (-530)) 22) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) 67)) (-1879 (($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 13)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-1637 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-1851 (((-3 $ "failed") $ $ (-110)) 99)) (-1834 (($ $ $) 108)) (-2485 (((-1046) $) NIL)) (-1860 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 15)) (-1869 (((-964 (-788 (-530))) $) 14)) (-1312 (($ $ (-530)) 45)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-1832 ((|#1| $ (-530)) 57) (($ $ $) NIL (|has| (-530) (-1039)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-3409 (((-530) $) NIL)) (-3021 (($ $) 46)) (-2258 (((-804) $) NIL) (($ (-530)) 28) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 27 (|has| |#1| (-162)))) (-2782 ((|#1| $ (-530)) 56)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) 37)) (-3721 ((|#1| $) NIL)) (-2792 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2926 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2817 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-1783 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2769 (($ $) 189 (|has| |#1| (-37 (-388 (-530)))))) (-2903 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-1808 (($ $ (-388 (-530))) 166 (|has| |#1| (-37 (-388 (-530)))))) (-1816 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-530)))))) (-1793 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-1799 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2758 (($ $) 191 (|has| |#1| (-37 (-388 (-530)))))) (-2895 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-2779 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-2914 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-2804 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-1774 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-2729 (($ $) 197 (|has| |#1| (-37 (-388 (-530)))))) (-2863 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-2748 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2885 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-2707 (($ $) 201 (|has| |#1| (-37 (-388 (-530)))))) (-2841 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-2696 (($ $) 203 (|has| |#1| (-37 (-388 (-530)))))) (-2829 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-2718 (($ $) 199 (|has| |#1| (-37 (-388 (-530)))))) (-2853 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2739 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2874 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-4125 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 29 T CONST)) (-2955 (($) 38 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2148 (((-110) $ $) 65)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) 84) (($ $ $) 64)) (-2234 (($ $ $) 81)) (** (($ $ (-862)) NIL) (($ $ (-719)) 103)) (* (($ (-862) $) 89) (($ (-719) $) 87) (($ (-530) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-555 |#1|) (-13 (-1159 |#1| (-530)) (-10 -8 (-15 -1879 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1869 ((-964 (-788 (-530))) $)) (-15 -1860 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -4148 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3327 ((-110) $)) (-15 -1647 ($ (-1 |#1| (-530)) $)) (-15 -1851 ((-3 $ "failed") $ $ (-110))) (-15 -1842 ($ $)) (-15 -1834 ($ $ $)) (-15 -1825 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $)) (-15 -1816 ($ $ |#1|)) (-15 -1808 ($ $ (-388 (-530)))) (-15 -1799 ($ $)) (-15 -1793 ($ $)) (-15 -1783 ($ $)) (-15 -1774 ($ $)) (-15 -2926 ($ $)) (-15 -2914 ($ $)) (-15 -2903 ($ $)) (-15 -2895 ($ $)) (-15 -2885 ($ $)) (-15 -2874 ($ $)) (-15 -2863 ($ $)) (-15 -2853 ($ $)) (-15 -2841 ($ $)) (-15 -2829 ($ $)) (-15 -2817 ($ $)) (-15 -2804 ($ $)) (-15 -2792 ($ $)) (-15 -2779 ($ $)) (-15 -2769 ($ $)) (-15 -2758 ($ $)) (-15 -2748 ($ $)) (-15 -2739 ($ $)) (-15 -2729 ($ $)) (-15 -2718 ($ $)) (-15 -2707 ($ $)) (-15 -2696 ($ $))) |%noBranch|))) (-984)) (T -555))
-((-3327 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-1879 (*1 *1 *2 *3) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984)) (-5 *1 (-555 *4)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-1647 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-1851 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-1834 (*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-1825 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6)))) (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530))) (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))) (-1637 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1816 (*1 *1 *1 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2)) (-4 *3 (-984)))) (-1799 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1793 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1783 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1774 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2914 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2903 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2895 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2885 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2853 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2841 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2829 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2817 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2804 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2792 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2758 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2748 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2729 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2696 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(-13 (-1159 |#1| (-530)) (-10 -8 (-15 -1879 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1869 ((-964 (-788 (-530))) $)) (-15 -1860 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -4148 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3327 ((-110) $)) (-15 -1647 ($ (-1 |#1| (-530)) $)) (-15 -1851 ((-3 $ "failed") $ $ (-110))) (-15 -1842 ($ $)) (-15 -1834 ($ $ $)) (-15 -1825 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $)) (-15 -1816 ($ $ |#1|)) (-15 -1808 ($ $ (-388 (-530)))) (-15 -1799 ($ $)) (-15 -1793 ($ $)) (-15 -1783 ($ $)) (-15 -1774 ($ $)) (-15 -2926 ($ $)) (-15 -2914 ($ $)) (-15 -2903 ($ $)) (-15 -2895 ($ $)) (-15 -2885 ($ $)) (-15 -2874 ($ $)) (-15 -2863 ($ $)) (-15 -2853 ($ $)) (-15 -2841 ($ $)) (-15 -2829 ($ $)) (-15 -2817 ($ $)) (-15 -2804 ($ $)) (-15 -2792 ($ $)) (-15 -2779 ($ $)) (-15 -2769 ($ $)) (-15 -2758 ($ $)) (-15 -2748 ($ $)) (-15 -2739 ($ $)) (-15 -2729 ($ $)) (-15 -2718 ($ $)) (-15 -2707 ($ $)) (-15 -2696 ($ $))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-4148 (($ (-1080 |#1|)) 9)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) 42)) (-3032 (((-110) $) 52)) (-1334 (((-719) $) 55) (((-719) $ (-719)) 54)) (-3150 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ $) 44 (|has| |#1| (-522)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-1080 |#1|) $) 23)) (-1667 (((-719)) 51)) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 10 T CONST)) (-2955 (($) 14 T CONST)) (-2148 (((-110) $ $) 22)) (-2245 (($ $) 30) (($ $ $) 16)) (-2234 (($ $ $) 25)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-530)) 36)))
-(((-556 |#1|) (-13 (-984) (-10 -8 (-15 -1669 ((-1080 |#1|) $)) (-15 -4148 ($ (-1080 |#1|))) (-15 -3032 ((-110) $)) (-15 -1334 ((-719) $)) (-15 -1334 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|))) (-984)) (T -556))
-((-1669 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-1334 (*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984)))))
-(-13 (-984) (-10 -8 (-15 -1669 ((-1080 |#1|) $)) (-15 -4148 ($ (-1080 |#1|))) (-15 -3032 ((-110) $)) (-15 -1334 ((-719) $)) (-15 -1334 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|)))
-((-3114 (((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)) 15)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3114 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)))) (-1135) (-1135)) (T -557))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6)))))
-(-10 -7 (-15 -3114 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|))))
-((-3114 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)) 20) (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|)) 19) (((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|)) 18)))
-(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -558))
-((-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-560 *8)) (-5 *1 (-558 *6 *7 *8)))))
-(-10 -7 (-15 -3114 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|))))
-((-1927 ((|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))) 55)) (-1916 (((-159 |#2|) |#3|) 117)) (-1889 ((|#3| (-159 |#2|)) 44)) (-1897 ((|#2| |#3|) 19)) (-1906 ((|#3| |#2|) 33)))
-(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -1889 (|#3| (-159 |#2|))) (-15 -1897 (|#2| |#3|)) (-15 -1906 (|#3| |#2|)) (-15 -1916 ((-159 |#2|) |#3|)) (-15 -1927 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))))) (-13 (-522) (-795)) (-13 (-411 |#1|) (-941) (-1121)) (-13 (-411 (-159 |#1|)) (-941) (-1121))) (T -559))
-((-1927 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099))) (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121))) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2)) (-4 *6 (-13 (-411 *5) (-941) (-1121))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5)) (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-1906 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))) (-1897 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3)) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *5 *2)))))
-(-10 -7 (-15 -1889 (|#3| (-159 |#2|))) (-15 -1897 (|#2| |#3|)) (-15 -1906 (|#3| |#2|)) (-15 -1916 ((-159 |#2|) |#3|)) (-15 -1927 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099)))))
-((-2180 (($ (-1 (-110) |#1|) $) 17)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2112 (($ (-1 |#1| |#1|) |#1|) 9)) (-2157 (($ (-1 (-110) |#1|) $) 13)) (-2168 (($ (-1 (-110) |#1|) $) 15)) (-2268 (((-1080 |#1|) $) 18)) (-2258 (((-804) $) NIL)))
-(((-560 |#1|) (-13 (-571 (-804)) (-10 -8 (-15 -3114 ($ (-1 |#1| |#1|) $)) (-15 -2157 ($ (-1 (-110) |#1|) $)) (-15 -2168 ($ (-1 (-110) |#1|) $)) (-15 -2180 ($ (-1 (-110) |#1|) $)) (-15 -2112 ($ (-1 |#1| |#1|) |#1|)) (-15 -2268 ((-1080 |#1|) $)))) (-1135)) (T -560))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2157 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2168 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2112 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1135)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3114 ($ (-1 |#1| |#1|) $)) (-15 -2157 ($ (-1 (-110) |#1|) $)) (-15 -2168 ($ (-1 (-110) |#1|) $)) (-15 -2180 ($ (-1 (-110) |#1|) $)) (-15 -2112 ($ (-1 |#1| |#1|) |#1|)) (-15 -2268 ((-1080 |#1|) $))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719)) NIL (|has| |#1| (-23)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-4172 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1777 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1987 (((-110) $ (-719)) NIL)) (-2171 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1796 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1788 (($ $ $) NIL (|has| |#1| (-984)))) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2245 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2234 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2584 (((-1186) (-1082)) 10)))
+(((-544) (-10 -7 (-15 -2584 ((-1186) (-1082))))) (T -544))
+((-2584 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
+(-10 -7 (-15 -2584 ((-1186) (-1082))))
+((-1489 (((-547 |#2|) (-547 |#2|)) 40)) (-2246 (((-597 |#2|) (-547 |#2|)) 42)) (-3637 ((|#2| (-547 |#2|)) 48)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -1489 ((-547 |#2|) (-547 |#2|))) (-15 -2246 ((-597 |#2|) (-547 |#2|))) (-15 -3637 (|#2| (-547 |#2|)))) (-13 (-432) (-975 (-530)) (-795) (-593 (-530))) (-13 (-29 |#1|) (-1121))) (T -545))
+((-3637 (*1 *2 *3) (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121))) (-5 *1 (-545 *4 *2)) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-547 *5)) (-4 *5 (-13 (-29 *4) (-1121))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 *5)) (-5 *1 (-545 *4 *5)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-545 *3 *4)))))
+(-10 -7 (-15 -1489 ((-547 |#2|) (-547 |#2|))) (-15 -2246 ((-597 |#2|) (-547 |#2|))) (-15 -3637 (|#2| (-547 |#2|))))
+((-3217 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 30)))
+(((-546 |#1| |#2|) (-10 -7 (-15 -3217 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3217 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3217 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -546))
+((-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-546 *5 *6)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-546 *5 *2)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2104 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2104 *6) (|:| |coeff| *6))) (-5 *1 (-546 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-547 *6)) (-5 *1 (-546 *5 *6)))))
+(-10 -7 (-15 -3217 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3217 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3217 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 69)) (-2585 ((|#1| $) NIL)) (-2104 ((|#1| $) 26)) (-1659 (((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3978 (($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3403 (((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $) 27)) (-1424 (((-1082) $) NIL)) (-1900 (($ |#1| |#1|) 33) (($ |#1| (-1099)) 44 (|has| |#1| (-975 (-1099))))) (-2624 (((-1046) $) NIL)) (-1861 (((-110) $) 30)) (-3289 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1099)) 82 (|has| |#1| (-841 (-1099))))) (-2366 (((-804) $) 96) (($ |#1|) 25)) (-3080 (($) 16 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 15) (($ $ $) NIL)) (-2339 (($ $ $) 78)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 14) (($ (-388 (-530)) $) 36) (($ $ (-388 (-530))) NIL)))
+(((-547 |#1|) (-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -3978 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2104 (|#1| $)) (-15 -3403 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -1659 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1861 ((-110) $)) (-15 -1900 ($ |#1| |#1|)) (-15 -3289 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3289 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -1900 ($ |#1| (-1099))) |%noBranch|))) (-344)) (T -547))
+((-3978 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2)) (|:| |logand| (-1095 *2))))) (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-547 *2)))) (-2104 (*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3)) (|:| |logand| (-1095 *3))))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1900 (*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3289 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3289 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-547 *2)) (-5 *3 (-1099)))) (-1900 (*1 *1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3)) (-4 *2 (-344)))))
+(-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -3978 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2104 (|#1| $)) (-15 -3403 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -1659 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1861 ((-110) $)) (-15 -1900 ($ |#1| |#1|)) (-15 -3289 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3289 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -1900 ($ |#1| (-1099))) |%noBranch|)))
+((-3647 (((-110) |#1|) 16)) (-2371 (((-3 |#1| "failed") |#1|) 14)) (-2375 (((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|) 31) (((-3 |#1| "failed") |#1| (-719)) 18)) (-2622 (((-110) |#1| (-719)) 19)) (-1625 ((|#1| |#1|) 32)) (-3941 ((|#1| |#1| (-719)) 34)))
+(((-548 |#1|) (-10 -7 (-15 -2622 ((-110) |#1| (-719))) (-15 -2375 ((-3 |#1| "failed") |#1| (-719))) (-15 -2375 ((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|)) (-15 -3941 (|#1| |#1| (-719))) (-15 -3647 ((-110) |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1|)) (-15 -1625 (|#1| |#1|))) (-515)) (T -548))
+((-1625 (*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2371 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-3647 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1510 *3) (|:| -3194 (-719)))) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2375 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -2622 ((-110) |#1| (-719))) (-15 -2375 ((-3 |#1| "failed") |#1| (-719))) (-15 -2375 ((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|)) (-15 -3941 (|#1| |#1| (-719))) (-15 -3647 ((-110) |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1|)) (-15 -1625 (|#1| |#1|)))
+((-4189 (((-1095 |#1|) (-862)) 27)))
+(((-549 |#1|) (-10 -7 (-15 -4189 ((-1095 |#1|) (-862)))) (-330)) (T -549))
+((-4189 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4)) (-4 *4 (-330)))))
+(-10 -7 (-15 -4189 ((-1095 |#1|) (-862))))
+((-1489 (((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|)))) 27)) (-1545 (((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 34 (|has| |#1| (-140)))) (-2246 (((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|)))) 19)) (-3280 (((-297 |#1|) (-388 (-893 |#1|)) (-1099)) 32 (|has| |#1| (-140)))) (-3637 (((-297 |#1|) (-547 (-388 (-893 |#1|)))) 21)))
+(((-550 |#1|) (-10 -7 (-15 -1489 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2246 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -3637 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1545 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3280 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (T -550))
+((-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-3 (-297 *5) (-597 (-297 *5)))) (-5 *1 (-550 *5)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 (-297 *4))) (-5 *1 (-550 *4)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-547 (-388 (-893 *3)))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-550 *3)))))
+(-10 -7 (-15 -1489 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2246 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -3637 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1545 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3280 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|))
+((-2479 (((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530)))) 46) (((-597 (-637 (-530))) (-597 (-530))) 47) (((-637 (-530)) (-597 (-530)) (-846 (-530))) 42)) (-2941 (((-719) (-597 (-530))) 40)))
+(((-551) (-10 -7 (-15 -2941 ((-719) (-597 (-530)))) (-15 -2479 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))) (T -551))
+((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-551)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
+(-10 -7 (-15 -2941 ((-719) (-597 (-530)))) (-15 -2479 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))
+((-3654 (((-597 |#5|) |#5| (-110)) 73)) (-1834 (((-110) |#5| (-597 |#5|)) 30)))
+(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3654 ((-597 |#5|) |#5| (-110))) (-15 -1834 ((-110) |#5| (-597 |#5|)))) (-13 (-289) (-140)) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -552))
+((-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-552 *5 *6 *7 *8 *3)))) (-3654 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3654 ((-597 |#5|) |#5| (-110))) (-15 -1834 ((-110) |#5| (-597 |#5|))))
+((-2352 (((-110) $ $) NIL (|has| (-137) (-1027)))) (-2289 (($ $) 34)) (-3910 (($ $) NIL)) (-2879 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 51)) (-2996 (((-110) $ $ (-530)) 46)) (-1489 (((-597 $) $ (-137)) 60) (((-597 $) $ (-134)) 61)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-137) $ (-530) (-137)) 45 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2865 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3782 (($ $ (-1148 (-530)) $) 44)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2383 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) NIL)) (-3034 (((-110) $ $) 72)) (-2027 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 48 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 47) (((-530) (-134) $ (-530)) 50)) (-3779 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 9)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 28 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1549 (((-530) $) 42 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 73)) (-2918 (((-719) $ $ (-137)) 70)) (-3583 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2794 (($ $) 37)) (-1502 (($ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-2875 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-1424 (((-1082) $) 38 (|has| (-137) (-1027)))) (-4028 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) 23)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-530) $) 69) (((-1046) $) NIL (|has| (-137) (-1027)))) (-3048 (((-137) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1522 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) NIL)) (-3250 (((-110) $) 12)) (-3958 (($) 10)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) 52) (($ $ (-1148 (-530))) 21) (($ $ $) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3121 (($ $ $ (-530)) 66 (|has| $ (-6 -4270)))) (-2579 (($ $) 17)) (-3260 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) NIL)) (-3483 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-597 $)) 67)) (-2366 (($ (-137)) NIL) (((-804) $) 27 (|has| (-137) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2248 (((-110) $ $) 14 (|has| (-137) (-1027)))) (-2297 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2272 (((-110) $ $) 15 (|has| (-137) (-795)))) (-2267 (((-719) $) 13 (|has| $ (-6 -4269)))))
+(((-553 |#1|) (-13 (-1068) (-10 -8 (-15 -2624 ((-530) $)))) (-530)) (T -553))
+((-2624 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-553 *3)) (-14 *3 *2))))
+(-13 (-1068) (-10 -8 (-15 -2624 ((-530) $))))
+((-3426 (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|)) 32)))
+(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|)) (T -554))
+((-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1022 *3)) (-4 *3 (-890 *7 *6 *4)) (-4 *6 (-741)) (-4 *4 (-795)) (-4 *7 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 63)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 54) (($ $ (-530) (-530)) 55)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 60)) (-2292 (($ $) 100)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1644 (((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530))) 224)) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 34)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3555 (((-110) $) NIL)) (-2031 (((-530) $) 58) (((-530) $ (-530)) 59)) (-2731 (((-110) $) NIL)) (-3081 (($ $ (-862)) 76)) (-4219 (($ (-1 |#1| (-530)) $) 73)) (-3668 (((-110) $) 25)) (-2725 (($ |#1| (-530)) 22) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 67)) (-3963 (($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 13)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-3803 (((-3 $ "failed") $ $ (-110)) 99)) (-2668 (($ $ $) 108)) (-2624 (((-1046) $) NIL)) (-2498 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 15)) (-1455 (((-964 (-788 (-530))) $) 14)) (-3168 (($ $ (-530)) 45)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-1902 ((|#1| $ (-530)) 57) (($ $ $) NIL (|has| (-530) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-1429 (((-530) $) NIL)) (-4050 (($ $) 46)) (-2366 (((-804) $) NIL) (($ (-530)) 28) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 27 (|has| |#1| (-162)))) (-4085 ((|#1| $ (-530)) 56)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 37)) (-3705 ((|#1| $) NIL)) (-3557 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2811 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2547 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-1595 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2316 (($ $) 189 (|has| |#1| (-37 (-388 (-530)))))) (-1410 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-1483 (($ $ (-388 (-530))) 166 (|has| |#1| (-37 (-388 (-530)))))) (-1840 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-530)))))) (-4192 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-3578 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2669 (($ $) 191 (|has| |#1| (-37 (-388 (-530)))))) (-3040 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-3783 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-4214 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-2300 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2016 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-3540 (($ $) 197 (|has| |#1| (-37 (-388 (-530)))))) (-2774 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-4099 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-3199 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-2091 (($ $) 201 (|has| |#1| (-37 (-388 (-530)))))) (-4181 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-3409 (($ $) 203 (|has| |#1| (-37 (-388 (-530)))))) (-2644 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-3768 (($ $) 199 (|has| |#1| (-37 (-388 (-530)))))) (-4001 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2025 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-1284 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3080 (($) 29 T CONST)) (-3093 (($) 38 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2248 (((-110) $ $) 65)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 84) (($ $ $) 64)) (-2339 (($ $ $) 81)) (** (($ $ (-862)) NIL) (($ $ (-719)) 103)) (* (($ (-862) $) 89) (($ (-719) $) 87) (($ (-530) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-555 |#1|) (-13 (-1159 |#1| (-530)) (-10 -8 (-15 -3963 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1455 ((-964 (-788 (-530))) $)) (-15 -2498 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3668 ((-110) $)) (-15 -4219 ($ (-1 |#1| (-530)) $)) (-15 -3803 ((-3 $ "failed") $ $ (-110))) (-15 -2292 ($ $)) (-15 -2668 ($ $ $)) (-15 -1644 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (-15 -1840 ($ $ |#1|)) (-15 -1483 ($ $ (-388 (-530)))) (-15 -3578 ($ $)) (-15 -4192 ($ $)) (-15 -1595 ($ $)) (-15 -2016 ($ $)) (-15 -2811 ($ $)) (-15 -4214 ($ $)) (-15 -1410 ($ $)) (-15 -3040 ($ $)) (-15 -3199 ($ $)) (-15 -1284 ($ $)) (-15 -2774 ($ $)) (-15 -4001 ($ $)) (-15 -4181 ($ $)) (-15 -2644 ($ $)) (-15 -2547 ($ $)) (-15 -2300 ($ $)) (-15 -3557 ($ $)) (-15 -3783 ($ $)) (-15 -2316 ($ $)) (-15 -2669 ($ $)) (-15 -4099 ($ $)) (-15 -2025 ($ $)) (-15 -3540 ($ $)) (-15 -3768 ($ $)) (-15 -2091 ($ $)) (-15 -3409 ($ $))) |%noBranch|))) (-984)) (T -555))
+((-3668 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984)) (-5 *1 (-555 *4)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-3803 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-2668 (*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-1644 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6)))) (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530))) (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1840 (*1 *1 *1 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2)) (-4 *3 (-984)))) (-3578 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4192 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1410 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1284 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4181 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2547 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2669 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4099 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2025 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3409 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(-13 (-1159 |#1| (-530)) (-10 -8 (-15 -3963 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1455 ((-964 (-788 (-530))) $)) (-15 -2498 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3668 ((-110) $)) (-15 -4219 ($ (-1 |#1| (-530)) $)) (-15 -3803 ((-3 $ "failed") $ $ (-110))) (-15 -2292 ($ $)) (-15 -2668 ($ $ $)) (-15 -1644 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (-15 -1840 ($ $ |#1|)) (-15 -1483 ($ $ (-388 (-530)))) (-15 -3578 ($ $)) (-15 -4192 ($ $)) (-15 -1595 ($ $)) (-15 -2016 ($ $)) (-15 -2811 ($ $)) (-15 -4214 ($ $)) (-15 -1410 ($ $)) (-15 -3040 ($ $)) (-15 -3199 ($ $)) (-15 -1284 ($ $)) (-15 -2774 ($ $)) (-15 -4001 ($ $)) (-15 -4181 ($ $)) (-15 -2644 ($ $)) (-15 -2547 ($ $)) (-15 -2300 ($ $)) (-15 -3557 ($ $)) (-15 -3783 ($ $)) (-15 -2316 ($ $)) (-15 -2669 ($ $)) (-15 -4099 ($ $)) (-15 -2025 ($ $)) (-15 -3540 ($ $)) (-15 -3768 ($ $)) (-15 -2091 ($ $)) (-15 -3409 ($ $))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2460 (($ (-1080 |#1|)) 9)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 42)) (-3555 (((-110) $) 52)) (-2031 (((-719) $) 55) (((-719) $ (-719)) 54)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ $) 44 (|has| |#1| (-522)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-1080 |#1|) $) 23)) (-3300 (((-719)) 51)) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 10 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) 22)) (-2351 (($ $) 30) (($ $ $) 16)) (-2339 (($ $ $) 25)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-530)) 36)))
+(((-556 |#1|) (-13 (-984) (-10 -8 (-15 -3441 ((-1080 |#1|) $)) (-15 -2460 ($ (-1080 |#1|))) (-15 -3555 ((-110) $)) (-15 -2031 ((-719) $)) (-15 -2031 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|))) (-984)) (T -556))
+((-3441 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2031 (*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984)))))
+(-13 (-984) (-10 -8 (-15 -3441 ((-1080 |#1|) $)) (-15 -2460 ($ (-1080 |#1|))) (-15 -3555 ((-110) $)) (-15 -2031 ((-719) $)) (-15 -2031 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|)))
+((-3217 (((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)) 15)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -3217 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)))) (-1135) (-1135)) (T -557))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6)))))
+(-10 -7 (-15 -3217 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|))))
+((-3217 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)) 20) (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|)) 19) (((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|)) 18)))
+(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -558))
+((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-560 *8)) (-5 *1 (-558 *6 *7 *8)))))
+(-10 -7 (-15 -3217 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|))))
+((-2934 ((|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))) 55)) (-3291 (((-159 |#2|) |#3|) 117)) (-3609 ((|#3| (-159 |#2|)) 44)) (-2132 ((|#2| |#3|) 19)) (-1795 ((|#3| |#2|) 33)))
+(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -3609 (|#3| (-159 |#2|))) (-15 -2132 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -3291 ((-159 |#2|) |#3|)) (-15 -2934 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))))) (-13 (-522) (-795)) (-13 (-411 |#1|) (-941) (-1121)) (-13 (-411 (-159 |#1|)) (-941) (-1121))) (T -559))
+((-2934 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099))) (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121))) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2)) (-4 *6 (-13 (-411 *5) (-941) (-1121))))) (-3291 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5)) (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3)) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *5 *2)))))
+(-10 -7 (-15 -3609 (|#3| (-159 |#2|))) (-15 -2132 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -3291 ((-159 |#2|) |#3|)) (-15 -2934 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099)))))
+((-2283 (($ (-1 (-110) |#1|) $) 17)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ (-1 |#1| |#1|) |#1|) 9)) (-2257 (($ (-1 (-110) |#1|) $) 13)) (-2271 (($ (-1 (-110) |#1|) $) 15)) (-2377 (((-1080 |#1|) $) 18)) (-2366 (((-804) $) NIL)))
+(((-560 |#1|) (-13 (-571 (-804)) (-10 -8 (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)) (-15 -2283 ($ (-1 (-110) |#1|) $)) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2377 ((-1080 |#1|) $)))) (-1135)) (T -560))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1135)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)) (-15 -2283 ($ (-1 (-110) |#1|) $)) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2377 ((-1080 |#1|) $))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) NIL (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-561 |#1| |#2|) (-1179 |#1|) (-1135) (-530)) (T -561))
NIL
(-1179 |#1|)
-((-1935 (((-1186) $ |#2| |#2|) 36)) (-1954 ((|#2| $) 23)) (-1965 ((|#2| $) 21)) (-2847 (($ (-1 |#3| |#3|) $) 32)) (-3114 (($ (-1 |#3| |#3|) $) 30)) (-2907 ((|#3| $) 26)) (-1946 (($ $ |#3|) 33)) (-1973 (((-110) |#3| $) 17)) (-2002 (((-597 |#3|) $) 15)) (-1832 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -1935 ((-1186) |#1| |#2| |#2|)) (-15 -1946 (|#1| |#1| |#3|)) (-15 -2907 (|#3| |#1|)) (-15 -1954 (|#2| |#1|)) (-15 -1965 (|#2| |#1|)) (-15 -1973 ((-110) |#3| |#1|)) (-15 -2002 ((-597 |#3|) |#1|)) (-15 -1832 (|#3| |#1| |#2|)) (-15 -1832 (|#3| |#1| |#2| |#3|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3114 (|#1| (-1 |#3| |#3|) |#1|))) (-563 |#2| |#3|) (-1027) (-1135)) (T -562))
+((-2097 (((-1186) $ |#2| |#2|) 36)) (-4010 ((|#2| $) 23)) (-1549 ((|#2| $) 21)) (-3583 (($ (-1 |#3| |#3|) $) 32)) (-3217 (($ (-1 |#3| |#3|) $) 30)) (-3048 ((|#3| $) 26)) (-1522 (($ $ |#3|) 33)) (-4064 (((-110) |#3| $) 17)) (-2261 (((-597 |#3|) $) 15)) (-1902 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -2097 ((-1186) |#1| |#2| |#2|)) (-15 -1522 (|#1| |#1| |#3|)) (-15 -3048 (|#3| |#1|)) (-15 -4010 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -4064 ((-110) |#3| |#1|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|))) (-563 |#2| |#3|) (-1027) (-1135)) (T -562))
NIL
-(-10 -8 (-15 -1935 ((-1186) |#1| |#2| |#2|)) (-15 -1946 (|#1| |#1| |#3|)) (-15 -2907 (|#3| |#1|)) (-15 -1954 (|#2| |#1|)) (-15 -1965 (|#2| |#1|)) (-15 -1973 ((-110) |#3| |#1|)) (-15 -2002 ((-597 |#3|) |#1|)) (-15 -1832 (|#3| |#1| |#2|)) (-15 -1832 (|#3| |#1| |#2| |#3|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3114 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-1935 (((-1186) $ |#1| |#1|) 40 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-2858 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) 51)) (-2456 (((-597 |#2|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-1954 ((|#1| $) 43 (|has| |#1| (-795)))) (-3252 (((-597 |#2|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-1965 ((|#1| $) 44 (|has| |#1| (-795)))) (-2847 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#2| (-1027)))) (-1983 (((-597 |#1|) $) 46)) (-1993 (((-110) |#1| $) 47)) (-2485 (((-1046) $) 21 (|has| |#2| (-1027)))) (-2907 ((|#2| $) 42 (|has| |#1| (-795)))) (-1946 (($ $ |#2|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2494 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4270))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -2097 ((-1186) |#1| |#2| |#2|)) (-15 -1522 (|#1| |#1| |#3|)) (-15 -3048 (|#3| |#1|)) (-15 -4010 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -4064 ((-110) |#3| |#1|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-2097 (((-1186) $ |#1| |#1|) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3592 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 51)) (-3779 (((-597 |#2|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 43 (|has| |#1| (-795)))) (-2395 (((-597 |#2|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 44 (|has| |#1| (-795)))) (-3583 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#2| (-1027)))) (-3567 (((-597 |#1|) $) 46)) (-1927 (((-110) |#1| $) 47)) (-2624 (((-1046) $) 21 (|has| |#2| (-1027)))) (-3048 ((|#2| $) 42 (|has| |#1| (-795)))) (-1522 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2632 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-563 |#1| |#2|) (-133) (-1027) (-1135)) (T -563))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *4)))) (-1993 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *3)))) (-1973 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795)) (-4 *2 (-1135)))) (-1946 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-1935 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-1186)))))
-(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -2002 ((-597 |t#2|) $)) (-15 -1993 ((-110) |t#1| $)) (-15 -1983 ((-597 |t#1|) $)) (IF (|has| |t#2| (-1027)) (IF (|has| $ (-6 -4270)) (-15 -1973 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1965 (|t#1| $)) (-15 -1954 (|t#1| $)) (-15 -2907 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4271)) (PROGN (-15 -1946 ($ $ |t#2|)) (-15 -1935 ((-1186) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#2| (-1027)) ((-571 (-804)) -1476 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-1027) |has| |#2| (-1027)) ((-1135) . T))
-((-2258 (((-804) $) 19) (((-127) $) 14) (($ (-127)) 13)))
-(((-564) (-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2258 ($ (-127)))))) (T -564))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-564)))))
-(-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2258 ($ (-127)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3251 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3337 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-4007 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3956 (($) NIL T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3743 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3428 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3987 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3093 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2150 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-3128 (($ $ (-862)) NIL)) (-3969 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3764 (((-1095 |#1|) $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3453 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3947 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-3886 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3477 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-4113 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3857 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3395 (($ $ (-862)) NIL)) (-3813 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3794 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3834 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3753 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3441 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3997 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3416 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3105 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2197 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-3117 (($ $ (-862)) NIL)) (-3978 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3773 (((-1095 |#1|) $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3464 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3959 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-3896 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3443 (((-1082) $) NIL)) (-3803 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3824 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3843 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2485 (((-1046) $) NIL)) (-3876 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1832 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-3351 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3173 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2059 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1527 (($ $ $) NIL)) (-3938 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2258 (((-804) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3853 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3785 (((-597 (-1181 |#1|))) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1538 (($ $ $ $) NIL)) (-3918 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2857 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1516 (($ $ $) NIL)) (-3928 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3907 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3867 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2943 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) 24)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-565 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2258 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -565))
-((-2258 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3)))))
-(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2258 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3697 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) 33)) (-3534 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL) (($) NIL)) (-1935 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-1082) |#1|) 43)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#1| "failed") (-1082) $) 46)) (-3956 (($) NIL T CONST)) (-3734 (($ $ (-1082)) 24)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-1283 (((-3 |#1| "failed") (-1082) $) 47) (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (|has| $ (-6 -4270)))) (-2272 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-3856 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-3704 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) 32)) (-2858 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-1082)) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-1232 (($ $) 48)) (-2415 (($ (-369)) 22) (($ (-369) (-1082)) 21)) (-3901 (((-369) $) 34)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270))) (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (((-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-1965 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3202 (((-597 (-1082)) $) 39)) (-2010 (((-110) (-1082) $) NIL)) (-3713 (((-1082) $) 35)) (-3275 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-1983 (((-597 (-1082)) $) NIL)) (-1993 (((-110) (-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 ((|#1| $) NIL (|has| (-1082) (-795)))) (-4221 (((-3 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) "failed") (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 37)) (-1832 ((|#1| $ (-1082) |#1|) NIL) ((|#1| $ (-1082)) 42)) (-3839 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL) (($) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (((-719) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-2258 (((-804) $) 20)) (-3725 (($ $) 25)) (-3298 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 19)) (-2167 (((-719) $) 41 (|has| $ (-6 -4270)))))
-(((-566 |#1|) (-13 (-345 (-369) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4270) (-15 -1232 ($ $)))) (-1027)) (T -566))
-((-1232 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027)))))
-(-13 (-345 (-369) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4270) (-15 -1232 ($ $))))
-((-3455 (((-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) 15)) (-3202 (((-597 |#2|) $) 19)) (-2010 (((-110) |#2| $) 12)))
-(((-567 |#1| |#2| |#3|) (-10 -8 (-15 -3202 ((-597 |#2|) |#1|)) (-15 -2010 ((-110) |#2| |#1|)) (-15 -3455 ((-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|))) (-568 |#2| |#3|) (-1027) (-1027)) (T -567))
-NIL
-(-10 -8 (-15 -3202 ((-597 |#2|) |#1|)) (-15 -2010 ((-110) |#2| |#1|)) (-15 -3455 ((-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 55 (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) 61)) (-3956 (($) 7 T CONST)) (-2939 (($ $) 58 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 46 (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 62)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 54 (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 56 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 53 (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-3202 (((-597 |#1|) $) 63)) (-2010 (((-110) |#1| $) 64)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 39)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 40)) (-2485 (((-1046) $) 21 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 51)) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 41)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) 26 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 25 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 24 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 23 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3839 (($) 49) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 48)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 31 (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 50)) (-2258 (((-804) $) 18 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 42)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2261 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *4)))) (-1927 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *3)))) (-4064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795)) (-4 *2 (-1135)))) (-1522 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2097 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-1186)))))
+(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -2261 ((-597 |t#2|) $)) (-15 -1927 ((-110) |t#1| $)) (-15 -3567 ((-597 |t#1|) $)) (IF (|has| |t#2| (-1027)) (IF (|has| $ (-6 -4269)) (-15 -4064 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1549 (|t#1| $)) (-15 -4010 (|t#1| $)) (-15 -3048 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1522 ($ $ |t#2|)) (-15 -2097 ((-1186) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#2| (-1027)) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-1027) |has| |#2| (-1027)) ((-1135) . T))
+((-2366 (((-804) $) 19) (((-127) $) 14) (($ (-127)) 13)))
+(((-564) (-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2366 ($ (-127)))))) (T -564))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-564)))))
+(-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2366 ($ (-127)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3990 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1383 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2603 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-4209 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2635 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3991 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3581 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3988 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2670 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2662 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1574 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2426 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3485 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3470 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2305 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3832 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1257 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2465 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3846 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1232 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3342 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2209 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2837 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2461 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1921 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3766 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1902 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-2328 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3260 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3028 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2366 (((-804) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3220 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3758 (((-597 (-1181 |#1|))) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3003 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3566 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1957 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 24)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-565 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -565))
+((-2366 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3)))))
+(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-3753 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) 33)) (-3527 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL) (($) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-1082) |#1|) 43)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#1| "failed") (-1082) $) 46)) (-2350 (($) NIL T CONST)) (-3102 (($ $ (-1082)) 24)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1842 (((-3 |#1| "failed") (-1082) $) 47) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (|has| $ (-6 -4269)))) (-2383 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1214 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) 32)) (-3592 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-1082)) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2453 (($ $) 48)) (-2551 (($ (-369)) 22) (($ (-369) (-1082)) 21)) (-3907 (((-369) $) 34)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3282 (((-597 (-1082)) $) 39)) (-3718 (((-110) (-1082) $) NIL)) (-3816 (((-1082) $) 35)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 37)) (-1902 ((|#1| $ (-1082) |#1|) NIL) ((|#1| $ (-1082)) 42)) (-1560 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL) (($) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2366 (((-804) $) 20)) (-3422 (($ $) 25)) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 19)) (-2267 (((-719) $) 41 (|has| $ (-6 -4269)))))
+(((-566 |#1|) (-13 (-345 (-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4269) (-15 -2453 ($ $)))) (-1027)) (T -566))
+((-2453 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027)))))
+(-13 (-345 (-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4269) (-15 -2453 ($ $))))
+((-4197 (((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 15)) (-3282 (((-597 |#2|) $) 19)) (-3718 (((-110) |#2| $) 12)))
+(((-567 |#1| |#2| |#3|) (-10 -8 (-15 -3282 ((-597 |#2|) |#1|)) (-15 -3718 ((-110) |#2| |#1|)) (-15 -4197 ((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|))) (-568 |#2| |#3|) (-1027) (-1027)) (T -567))
+NIL
+(-10 -8 (-15 -3282 ((-597 |#2|) |#1|)) (-15 -3718 ((-110) |#2| |#1|)) (-15 -4197 ((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40)) (-2624 (((-1046) $) 21 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51)) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50)) (-2366 (((-804) $) 18 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-568 |#1| |#2|) (-133) (-1027) (-1027)) (T -568))
-((-2010 (*1 *2 *3 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-1283 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-2614 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(-13 (-212 (-2 (|:| -2940 |t#1|) (|:| -1806 |t#2|))) (-10 -8 (-15 -2010 ((-110) |t#1| $)) (-15 -3202 ((-597 |t#1|) $)) (-15 -1283 ((-3 |t#2| "failed") |t#1| $)) (-15 -2614 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((-99) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) ((-571 (-804)) -1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-291 #0#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-468 #0#) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-1027) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) ((-1135) . T))
-((-2036 (((-570 |#2|) |#1|) 15)) (-2045 (((-3 |#1| "failed") (-570 |#2|)) 19)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -2036 ((-570 |#2|) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-570 |#2|)))) (-795) (-795)) (T -569))
-((-2045 (*1 *2 *3) (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795)) (-5 *1 (-569 *2 *4)))) (-2036 (*1 *2 *3) (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795)) (-4 *4 (-795)))))
-(-10 -7 (-15 -2036 ((-570 |#2|) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-570 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-2019 (((-3 (-1099) "failed") $) 37)) (-3627 (((-1186) $ (-719)) 26)) (-1944 (((-719) $) 25)) (-2221 (((-112) $) 12)) (-3901 (((-1099) $) 20)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-1912 (($ (-112) (-597 |#1|) (-719)) 30) (($ (-1099)) 31)) (-2300 (((-110) $ (-112)) 18) (((-110) $ (-1099)) 16)) (-4150 (((-719) $) 22)) (-2485 (((-1046) $) NIL)) (-3173 (((-833 (-530)) $) 77 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 84 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 69 (|has| |#1| (-572 (-506))))) (-2258 (((-804) $) 55)) (-2027 (((-597 |#1|) $) 24)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 42)))
-(((-570 |#1|) (-13 (-129) (-825 |#1|) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2221 ((-112) $)) (-15 -2027 ((-597 |#1|) $)) (-15 -4150 ((-719) $)) (-15 -1912 ($ (-112) (-597 |#1|) (-719))) (-15 -1912 ($ (-1099))) (-15 -2019 ((-3 (-1099) "failed") $)) (-15 -2300 ((-110) $ (-112))) (-15 -2300 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-795)) (T -570))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-1912 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-795)) (-5 *1 (-570 *5)))) (-1912 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-2019 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))))
-(-13 (-129) (-825 |#1|) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -2221 ((-112) $)) (-15 -2027 ((-597 |#1|) $)) (-15 -4150 ((-719) $)) (-15 -1912 ($ (-112) (-597 |#1|) (-719))) (-15 -1912 ($ (-1099))) (-15 -2019 ((-3 (-1099) "failed") $)) (-15 -2300 ((-110) $ (-112))) (-15 -2300 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-((-2258 ((|#1| $) 6)))
+((-3718 (*1 *2 *3 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-1842 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-2767 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(-13 (-212 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))) (-10 -8 (-15 -3718 ((-110) |t#1| $)) (-15 -3282 ((-597 |t#1|) $)) (-15 -1842 ((-3 |t#2| "failed") |t#1| $)) (-15 -2767 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) ((-571 (-804)) -1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-468 #0#) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-1027) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) ((-1135) . T))
+((-1509 (((-570 |#2|) |#1|) 15)) (-4154 (((-3 |#1| "failed") (-570 |#2|)) 19)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -1509 ((-570 |#2|) |#1|)) (-15 -4154 ((-3 |#1| "failed") (-570 |#2|)))) (-795) (-795)) (T -569))
+((-4154 (*1 *2 *3) (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795)) (-5 *1 (-569 *2 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795)) (-4 *4 (-795)))))
+(-10 -7 (-15 -1509 ((-570 |#2|) |#1|)) (-15 -4154 ((-3 |#1| "failed") (-570 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-3401 (((-3 (-1099) "failed") $) 37)) (-1664 (((-1186) $ (-719)) 26)) (-2027 (((-719) $) 25)) (-4124 (((-112) $) 12)) (-3907 (((-1099) $) 20)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1990 (($ (-112) (-597 |#1|) (-719)) 30) (($ (-1099)) 31)) (-1826 (((-110) $ (-112)) 18) (((-110) $ (-1099)) 16)) (-4156 (((-719) $) 22)) (-2624 (((-1046) $) NIL)) (-3260 (((-833 (-530)) $) 77 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 84 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 69 (|has| |#1| (-572 (-506))))) (-2366 (((-804) $) 55)) (-3117 (((-597 |#1|) $) 24)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 41)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 42)))
+(((-570 |#1|) (-13 (-129) (-825 |#1|) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -4124 ((-112) $)) (-15 -3117 ((-597 |#1|) $)) (-15 -4156 ((-719) $)) (-15 -1990 ($ (-112) (-597 |#1|) (-719))) (-15 -1990 ($ (-1099))) (-15 -3401 ((-3 (-1099) "failed") $)) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-795)) (T -570))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-1990 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-795)) (-5 *1 (-570 *5)))) (-1990 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))))
+(-13 (-129) (-825 |#1|) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -4124 ((-112) $)) (-15 -3117 ((-597 |#1|) $)) (-15 -4156 ((-719) $)) (-15 -1990 ($ (-112) (-597 |#1|) (-719))) (-15 -1990 ($ (-1099))) (-15 -3401 ((-3 (-1099) "failed") $)) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
+((-2366 ((|#1| $) 6)))
(((-571 |#1|) (-133) (-1135)) (T -571))
-((-2258 (*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -2258 (|t#1| $))))
-((-3173 ((|#1| $) 6)))
+((-2366 (*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1135)))))
+(-13 (-10 -8 (-15 -2366 (|t#1| $))))
+((-3260 ((|#1| $) 6)))
(((-572 |#1|) (-133) (-1135)) (T -572))
-((-3173 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -3173 (|t#1| $))))
-((-2054 (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)) 15) (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -2054 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2054 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -573))
-((-2054 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))) (-2054 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-388 *5)))))
-(-10 -7 (-15 -2054 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2054 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|))))
-((-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
-(((-574 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-575 |#2|) (-984)) (T -574))
-NIL
-(-10 -8 (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 36)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+((-3260 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1135)))))
+(-13 (-10 -8 (-15 -3260 (|t#1| $))))
+((-2606 (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)) 15) (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -573))
+((-2606 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))) (-2606 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|))))
+((-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
+(((-574 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-575 |#2|) (-984)) (T -574))
+NIL
+(-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 34)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
(((-575 |#1|) (-133) (-984)) (T -575))
-((-2258 (*1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-599 |t#1|) (-10 -8 (-15 -2258 ($ |t#1|))))
+((-2366 (*1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-599 |t#1|) (-10 -8 (-15 -2366 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3592 (((-530) $) NIL (|has| |#1| (-793)))) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-2991 (((-110) $) NIL (|has| |#1| (-793)))) (-3150 (((-110) $) NIL)) (-1848 ((|#1| $) 13)) (-3002 (((-110) $) NIL (|has| |#1| (-793)))) (-4194 (($ $ $) NIL (|has| |#1| (-793)))) (-1757 (($ $ $) NIL (|has| |#1| (-793)))) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1857 ((|#3| $) 15)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL)) (-1667 (((-719)) 20)) (-2218 (($ $) NIL (|has| |#1| (-793)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) 12 T CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2257 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-576 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2257 ($ $ |#3|)) (-15 -2257 ($ |#1| |#3|)) (-15 -1848 (|#1| $)) (-15 -1857 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -576))
-((-2257 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2257 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-576 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-576 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1857 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2257 ($ $ |#3|)) (-15 -2257 ($ |#1| |#3|)) (-15 -1848 (|#1| $)) (-15 -1857 (|#3| $))))
-((-2063 ((|#2| |#2| (-1099) (-1099)) 18)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -2063 (|#2| |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -577))
-((-2063 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
-(-10 -7 (-15 -2063 (|#2| |#2| (-1099) (-1099))))
-((-2246 (((-110) $ $) 56)) (-3015 (((-110) $) 52)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-2075 ((|#1| $) 49)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2280 (((-2 (|:| -3149 $) (|:| -3138 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) 24)) (-1673 (((-3 $ "failed") $) 75)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1334 (((-530) $) 19)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) 36)) (-2575 (($ |#1| (-530)) 21)) (-2402 ((|#1| $) 51)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ $) 79)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1934 (((-719) $) 99 (|has| |#1| (-344)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 98 (|has| |#1| (-344)))) (-3211 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3409 (((-530) $) 34)) (-3173 (((-388 |#2|) $) 42)) (-2258 (((-804) $) 62) (($ (-530)) 32) (($ $) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 31) (($ |#2|) 22)) (-2782 ((|#1| $ (-530)) 63)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 9 T CONST)) (-2955 (($) 12 T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) 17)) (-2245 (($ $) 46) (($ $ $) NIL)) (-2234 (($ $ $) 76)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 26) (($ $ $) 44)))
-(((-578 |#1| |#2|) (-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3327 ((-110) $)) (-15 -3409 ((-530) $)) (-15 -1334 ((-530) $)) (-15 -2425 ($ $)) (-15 -2402 (|#1| $)) (-15 -2075 (|#1| $)) (-15 -2782 (|#1| $ (-530))) (-15 -2575 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2280 ((-2 (|:| -3149 $) (|:| -3138 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-522) (-1157 |#1|)) (T -578))
-((-3327 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-3409 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-1334 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-2425 (*1 *1 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-2075 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3149 (-578 *4 *5)) (|:| -3138 (-388 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5)))))
-(-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3327 ((-110) $)) (-15 -3409 ((-530) $)) (-15 -1334 ((-530) $)) (-15 -2425 ($ $)) (-15 -2402 (|#1| $)) (-15 -2075 (|#1| $)) (-15 -2782 (|#1| $ (-530))) (-15 -2575 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2280 ((-2 (|:| -3149 $) (|:| -3138 (-388 |#2|))) (-388 |#2|)))) |%noBranch|)))
-((-2844 (((-597 |#6|) (-597 |#4|) (-110)) 47)) (-2085 ((|#6| |#6|) 40)))
-(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2085 (|#6| |#6|)) (-15 -2844 ((-597 |#6|) (-597 |#4|) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|) (-1036 |#1| |#2| |#3| |#4|)) (T -579))
-((-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *10 (-1036 *5 *6 *7 *8)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2085 (|#6| |#6|)) (-15 -2844 ((-597 |#6|) (-597 |#4|) (-110))))
-((-2098 (((-110) |#3| (-719) (-597 |#3|)) 23)) (-2109 (((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4162 (-597 (-2 (|:| |irr| |#4|) (|:| -3001 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)) 55)))
-(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2098 ((-110) |#3| (-719) (-597 |#3|))) (-15 -2109 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4162 (-597 (-2 (|:| |irr| |#4|) (|:| -3001 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)))) (-795) (-741) (-289) (-890 |#3| |#2| |#1|)) (T -580))
-((-2109 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4162 (-597 (-2 (|:| |irr| *10) (|:| -3001 (-530))))))) (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289)) (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741)) (-5 *2 (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3) (|:| |corrfact| (-597 (-1095 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795)) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-890 *3 *7 *6)))))
-(-10 -7 (-15 -2098 ((-110) |#3| (-719) (-597 |#3|))) (-15 -2109 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4162 (-597 (-2 (|:| |irr| |#4|) (|:| -3001 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|))))
-((-2246 (((-110) $ $) NIL)) (-3717 (((-597 |#1|) $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3315 (($ $) 67)) (-2070 (((-615 |#1| |#2|) $) 52)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 70)) (-2122 (((-597 (-276 |#2|)) $ $) 33)) (-2485 (((-1046) $) NIL)) (-2693 (($ (-615 |#1| |#2|)) 48)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) 58) (((-1194 |#1| |#2|) $) NIL) (((-1199 |#1| |#2|) $) 66)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 53 T CONST)) (-2134 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) 31)) (-2143 (((-597 (-615 |#1| |#2|)) (-597 |#1|)) 65)) (-1477 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) 37)) (-2148 (((-110) $ $) 54)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 44)))
-(((-581 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2693 ($ (-615 |#1| |#2|))) (-15 -2070 ((-615 |#1| |#2|) $)) (-15 -1477 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2258 ((-1194 |#1| |#2|) $)) (-15 -2258 ((-1199 |#1| |#2|) $)) (-15 -3315 ($ $)) (-15 -3717 ((-597 |#1|) $)) (-15 -2143 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -2134 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -2122 ((-597 (-276 |#2|)) $ $)))) (-795) (-13 (-162) (-666 (-388 (-530)))) (-862)) (T -581))
-((-2693 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-5 *1 (-581 *3 *4 *5)) (-14 *5 (-862)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5))) (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530))))) (-14 *6 (-862)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2122 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
-(-13 (-453) (-10 -8 (-15 -2693 ($ (-615 |#1| |#2|))) (-15 -2070 ((-615 |#1| |#2|) $)) (-15 -1477 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2258 ((-1194 |#1| |#2|) $)) (-15 -2258 ((-1199 |#1| |#2|) $)) (-15 -3315 ($ $)) (-15 -3717 ((-597 |#1|) $)) (-15 -2143 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -2134 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -2122 ((-597 (-276 |#2|)) $ $))))
-((-2844 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 72) (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 58)) (-2154 (((-110) (-597 (-728 |#1| (-806 |#2|)))) 23)) (-2201 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 71)) (-2191 (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 57)) (-2178 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) 27)) (-2165 (((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|)))) 26)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -2154 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2165 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -2178 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2191 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2201 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2844 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2844 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)))) (-432) (-597 (-1099))) (T -582))
-((-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2178 (*1 *2 *2) (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-2165 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432)) (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
-(-10 -7 (-15 -2154 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2165 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -2178 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2191 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2201 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2844 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2844 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))))
-((-2276 (($ $) 38)) (-2144 (($ $) 21)) (-2253 (($ $) 37)) (-2121 (($ $) 22)) (-2297 (($ $) 36)) (-2169 (($ $) 23)) (-1877 (($) 48)) (-2070 (($ $) 45)) (-1821 (($ $) 17)) (-2553 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)) (-2693 (($ $) 46)) (-2074 (($ $) 15)) (-2110 (($ $) 16)) (-2308 (($ $) 35)) (-2181 (($ $) 24)) (-2287 (($ $) 34)) (-2155 (($ $) 25)) (-2263 (($ $) 33)) (-2133 (($ $) 26)) (-2339 (($ $) 44)) (-2211 (($ $) 32)) (-2318 (($ $) 43)) (-2192 (($ $) 31)) (-2361 (($ $) 42)) (-2230 (($ $) 30)) (-2910 (($ $) 41)) (-2241 (($ $) 29)) (-2349 (($ $) 40)) (-2220 (($ $) 28)) (-2328 (($ $) 39)) (-2202 (($ $) 27)) (-2239 (($ $) 19)) (-2250 (($ $) 20)) (-2229 (($ $) 18)) (** (($ $ $) 47)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-2731 (((-110) $) NIL)) (-1918 ((|#1| $) 13)) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1928 ((|#3| $) 15)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL)) (-3300 (((-719)) 20)) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) 12 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2364 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-576 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -576))
+((-2364 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2364 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-576 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-576 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1928 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $))))
+((-1599 ((|#2| |#2| (-1099) (-1099)) 18)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -1599 (|#2| |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -577))
+((-1599 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
+(-10 -7 (-15 -1599 (|#2| |#2| (-1099) (-1099))))
+((-2352 (((-110) $ $) 56)) (-1813 (((-110) $) 52)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-4112 ((|#1| $) 49)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2026 (((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 24)) (-2707 (((-3 $ "failed") $) 75)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2031 (((-530) $) 19)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) 36)) (-2725 (($ |#1| (-530)) 21)) (-2533 ((|#1| $) 51)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) 79)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2356 (((-719) $) 99 (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 98 (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-1429 (((-530) $) 34)) (-3260 (((-388 |#2|) $) 42)) (-2366 (((-804) $) 62) (($ (-530)) 32) (($ $) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 31) (($ |#2|) 22)) (-4085 ((|#1| $ (-530)) 63)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 29)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 9 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) 17)) (-2351 (($ $) 46) (($ $ $) NIL)) (-2339 (($ $ $) 76)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 26) (($ $ $) 44)))
+(((-578 |#1| |#2|) (-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3668 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -2031 ((-530) $)) (-15 -2562 ($ $)) (-15 -2533 (|#1| $)) (-15 -4112 (|#1| $)) (-15 -4085 (|#1| $ (-530))) (-15 -2725 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2026 ((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-522) (-1157 |#1|)) (T -578))
+((-3668 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-2031 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-2562 (*1 *1 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2605 (-578 *4 *5)) (|:| -1423 (-388 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5)))))
+(-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3668 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -2031 ((-530) $)) (-15 -2562 ($ $)) (-15 -2533 (|#1| $)) (-15 -4112 (|#1| $)) (-15 -4085 (|#1| $ (-530))) (-15 -2725 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2026 ((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)))) |%noBranch|)))
+((-1512 (((-597 |#6|) (-597 |#4|) (-110)) 47)) (-2769 ((|#6| |#6|) 40)))
+(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2769 (|#6| |#6|)) (-15 -1512 ((-597 |#6|) (-597 |#4|) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|) (-1036 |#1| |#2| |#3| |#4|)) (T -579))
+((-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *10 (-1036 *5 *6 *7 *8)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2769 (|#6| |#6|)) (-15 -1512 ((-597 |#6|) (-597 |#4|) (-110))))
+((-1250 (((-110) |#3| (-719) (-597 |#3|)) 23)) (-3860 (((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)) 55)))
+(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1250 ((-110) |#3| (-719) (-597 |#3|))) (-15 -3860 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)))) (-795) (-741) (-289) (-890 |#3| |#2| |#1|)) (T -580))
+((-3860 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3721 (-597 (-2 (|:| |irr| *10) (|:| -2075 (-530))))))) (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289)) (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741)) (-5 *2 (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3) (|:| |corrfact| (-597 (-1095 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795)) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-890 *3 *7 *6)))))
+(-10 -7 (-15 -1250 ((-110) |#3| (-719) (-597 |#3|))) (-15 -3860 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|))))
+((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2627 (($ $) 67)) (-2168 (((-615 |#1| |#2|) $) 52)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 70)) (-3469 (((-597 (-276 |#2|)) $ $) 33)) (-2624 (((-1046) $) NIL)) (-2853 (($ (-615 |#1| |#2|)) 48)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 58) (((-1194 |#1| |#2|) $) NIL) (((-1199 |#1| |#2|) $) 66)) (-3093 (($) 53 T CONST)) (-3091 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) 31)) (-1750 (((-597 (-615 |#1| |#2|)) (-597 |#1|)) 65)) (-1537 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) 37)) (-2248 (((-110) $ $) 54)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 44)))
+(((-581 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2853 ($ (-615 |#1| |#2|))) (-15 -2168 ((-615 |#1| |#2|) $)) (-15 -1537 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1199 |#1| |#2|) $)) (-15 -2627 ($ $)) (-15 -3702 ((-597 |#1|) $)) (-15 -1750 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -3091 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -3469 ((-597 (-276 |#2|)) $ $)))) (-795) (-13 (-162) (-666 (-388 (-530)))) (-862)) (T -581))
+((-2853 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-5 *1 (-581 *3 *4 *5)) (-14 *5 (-862)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5))) (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530))))) (-14 *6 (-862)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-3469 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
+(-13 (-453) (-10 -8 (-15 -2853 ($ (-615 |#1| |#2|))) (-15 -2168 ((-615 |#1| |#2|) $)) (-15 -1537 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1199 |#1| |#2|) $)) (-15 -2627 ($ $)) (-15 -3702 ((-597 |#1|) $)) (-15 -1750 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -3091 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -3469 ((-597 (-276 |#2|)) $ $))))
+((-1512 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 72) (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 58)) (-3669 (((-110) (-597 (-728 |#1| (-806 |#2|)))) 23)) (-2750 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 71)) (-3971 (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 57)) (-1241 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) 27)) (-2845 (((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|)))) 26)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -3669 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2845 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -1241 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -3971 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2750 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)))) (-432) (-597 (-1099))) (T -582))
+((-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-1241 (*1 *2 *2) (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-2845 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432)) (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
+(-10 -7 (-15 -3669 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2845 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -1241 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -3971 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2750 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))))
+((-2386 (($ $) 38)) (-2244 (($ $) 21)) (-2360 (($ $) 37)) (-2219 (($ $) 22)) (-2409 (($ $) 36)) (-2269 (($ $) 23)) (-1948 (($) 48)) (-2168 (($ $) 45)) (-1890 (($ $) 17)) (-1900 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)) (-2853 (($ $) 46)) (-2172 (($ $) 15)) (-2206 (($ $) 16)) (-2421 (($ $) 35)) (-2281 (($ $) 24)) (-2398 (($ $) 34)) (-2254 (($ $) 25)) (-2373 (($ $) 33)) (-2231 (($ $) 26)) (-2459 (($ $) 44)) (-2314 (($ $) 32)) (-2434 (($ $) 43)) (-2293 (($ $) 31)) (-2485 (($ $) 42)) (-2334 (($ $) 30)) (-3632 (($ $) 41)) (-2347 (($ $) 29)) (-2472 (($ $) 40)) (-2324 (($ $) 28)) (-2446 (($ $) 39)) (-2304 (($ $) 27)) (-2318 (($ $) 19)) (-1870 (($ $) 20)) (-2703 (($ $) 18)) (** (($ $ $) 47)))
(((-583) (-133)) (T -583))
-((-2250 (*1 *1 *1) (-4 *1 (-583))) (-2239 (*1 *1 *1) (-4 *1 (-583))) (-2229 (*1 *1 *1) (-4 *1 (-583))) (-1821 (*1 *1 *1) (-4 *1 (-583))) (-2110 (*1 *1 *1) (-4 *1 (-583))) (-2074 (*1 *1 *1) (-4 *1 (-583))))
-(-13 (-900) (-1121) (-10 -8 (-15 -2250 ($ $)) (-15 -2239 ($ $)) (-15 -2229 ($ $)) (-15 -1821 ($ $)) (-15 -2110 ($ $)) (-15 -2074 ($ $))))
+((-1870 (*1 *1 *1) (-4 *1 (-583))) (-2318 (*1 *1 *1) (-4 *1 (-583))) (-2703 (*1 *1 *1) (-4 *1 (-583))) (-1890 (*1 *1 *1) (-4 *1 (-583))) (-2206 (*1 *1 *1) (-4 *1 (-583))) (-2172 (*1 *1 *1) (-4 *1 (-583))))
+(-13 (-900) (-1121) (-10 -8 (-15 -1870 ($ $)) (-15 -2318 ($ $)) (-15 -2703 ($ $)) (-15 -1890 ($ $)) (-15 -2206 ($ $)) (-15 -2172 ($ $))))
(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-900) . T) ((-1121) . T) ((-1124) . T))
-((-2221 (((-112) (-112)) 83)) (-1821 ((|#2| |#2|) 30)) (-2553 ((|#2| |#2| (-1020 |#2|)) 79) ((|#2| |#2| (-1099)) 52)) (-2074 ((|#2| |#2|) 29)) (-2110 ((|#2| |#2|) 31)) (-2212 (((-110) (-112)) 34)) (-2239 ((|#2| |#2|) 26)) (-2250 ((|#2| |#2|) 28)) (-2229 ((|#2| |#2|) 27)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2250 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2553 (|#2| |#2| (-1099))) (-15 -2553 (|#2| |#2| (-1020 |#2|)))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941) (-1121))) (T -584))
-((-2553 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)))) (-2553 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4)) (-4 *4 (-13 (-411 *3) (-941) (-1121))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
-(-10 -7 (-15 -2212 ((-110) (-112))) (-15 -2221 ((-112) (-112))) (-15 -2250 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2553 (|#2| |#2| (-1099))) (-15 -2553 (|#2| |#2| (-1020 |#2|))))
-((-1222 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-2288 (((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 68)) (-2298 (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 70) (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 69)) (-2264 (((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|))) 108)) (-4241 (((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 83)) (-2275 (((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|))) 118)) (-2319 (((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|))) 58)) (-2309 (((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 41)) (-1213 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 50)) (-4230 (((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 91)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -2264 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2275 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -2288 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -2298 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2298 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2309 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -2319 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -4230 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -4241 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1213 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1222 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-597 (-1099)) (-432)) (T -585))
-((-1222 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))) (-1213 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-4241 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6)) (-5 *1 (-585 *5 *6)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))) (-2298 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-2298 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))) (-2275 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530))))) (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-597 (-230 *4 *5))) (|:| |gvlist| (-597 (-530))))) (-5 *1 (-585 *4 *5)))))
-(-10 -7 (-15 -2264 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2275 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -2288 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -2298 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2298 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -2309 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -2319 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -4230 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -4241 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1213 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1222 ((-460 |#1| |#2|) (-230 |#1| |#2|))))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL)) (-1935 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-51) $ (-1082) (-51)) 16) (((-51) $ (-1099) (-51)) 17)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 (-51) "failed") (-1082) $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027))))) (-1283 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-3 (-51) "failed") (-1082) $) NIL)) (-2272 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (((-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2858 (((-51) $ (-1082) (-51)) NIL (|has| $ (-6 -4271)))) (-2787 (((-51) $ (-1082)) NIL)) (-2456 (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-1232 (($ $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3252 (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-1965 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4271))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4242 (($ (-369)) 9)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027))))) (-3202 (((-597 (-1082)) $) NIL)) (-2010 (((-110) (-1082) $) NIL)) (-3275 (((-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL)) (-3440 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL)) (-1983 (((-597 (-1082)) $) NIL)) (-1993 (((-110) (-1082) $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027))))) (-2907 (((-51) $) NIL (|has| (-1082) (-795)))) (-4221 (((-3 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) "failed") (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL)) (-1946 (($ $ (-51)) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (($ $ (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-2002 (((-597 (-51)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (((-51) $ (-1082)) 14) (((-51) $ (-1082) (-51)) NIL) (((-51) $ (-1099)) 15)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 (-51))) (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-586) (-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4242 ($ (-369))) (-15 -1232 ($ $)) (-15 -1832 ((-51) $ (-1099))) (-15 -2416 ((-51) $ (-1099) (-51)))))) (T -586))
-((-4242 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))) (-1232 (*1 *1 *1) (-5 *1 (-586))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-586)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1099)) (-5 *1 (-586)))))
-(-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4242 ($ (-369))) (-15 -1232 ($ $)) (-15 -1832 ((-51) $ (-1099))) (-15 -2416 ((-51) $ (-1099) (-51)))))
-((-2257 (($ $ |#2|) 10)))
-(((-587 |#1| |#2|) (-10 -8 (-15 -2257 (|#1| |#1| |#2|))) (-588 |#2|) (-162)) (T -587))
-NIL
-(-10 -8 (-15 -2257 (|#1| |#1| |#2|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2268 (($ $ $) 29)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4124 (((-112) (-112)) 83)) (-1890 ((|#2| |#2|) 30)) (-1900 ((|#2| |#2| (-1020 |#2|)) 79) ((|#2| |#2| (-1099)) 52)) (-2172 ((|#2| |#2|) 29)) (-2206 ((|#2| |#2|) 31)) (-4195 (((-110) (-112)) 34)) (-2318 ((|#2| |#2|) 26)) (-1870 ((|#2| |#2|) 28)) (-2703 ((|#2| |#2|) 27)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1870 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1099))) (-15 -1900 (|#2| |#2| (-1020 |#2|)))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941) (-1121))) (T -584))
+((-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)))) (-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2172 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4)) (-4 *4 (-13 (-411 *3) (-941) (-1121))))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
+(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1870 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1099))) (-15 -1900 (|#2| |#2| (-1020 |#2|))))
+((-3392 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-1339 (((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 68)) (-1654 (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 70) (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 69)) (-3336 (((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|))) 108)) (-1908 (((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 83)) (-2987 (((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|))) 118)) (-3672 (((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|))) 58)) (-4227 (((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 41)) (-1910 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 50)) (-3069 (((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 91)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3336 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2987 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -1339 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -4227 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -3672 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -3069 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1908 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1910 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -3392 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-597 (-1099)) (-432)) (T -585))
+((-3392 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))) (-1910 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-1908 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-3069 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6)) (-5 *1 (-585 *5 *6)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))) (-2987 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530))))) (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-597 (-230 *4 *5))) (|:| |gvlist| (-597 (-530))))) (-5 *1 (-585 *4 *5)))))
+(-10 -7 (-15 -3336 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2987 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -1339 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -4227 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -3672 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -3069 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1908 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1910 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -3392 ((-460 |#1| |#2|) (-230 |#1| |#2|))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-51) $ (-1082) (-51)) 16) (((-51) $ (-1099) (-51)) 17)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1082) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1082) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-51) $ (-1082) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1082)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-2453 (($ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4243 (($ (-369)) 9)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1082)) $) NIL)) (-3718 (((-110) (-1082) $) NIL)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3048 (((-51) $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1082)) 14) (((-51) $ (-1082) (-51)) NIL) (((-51) $ (-1099)) 15)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-586) (-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4243 ($ (-369))) (-15 -2453 ($ $)) (-15 -1902 ((-51) $ (-1099))) (-15 -2552 ((-51) $ (-1099) (-51)))))) (T -586))
+((-4243 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))) (-2453 (*1 *1 *1) (-5 *1 (-586))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-586)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1099)) (-5 *1 (-586)))))
+(-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4243 ($ (-369))) (-15 -2453 ($ $)) (-15 -1902 ((-51) $ (-1099))) (-15 -2552 ((-51) $ (-1099) (-51)))))
+((-2364 (($ $ |#2|) 10)))
+(((-587 |#1| |#2|) (-10 -8 (-15 -2364 (|#1| |#1| |#2|))) (-588 |#2|) (-162)) (T -587))
+NIL
+(-10 -8 (-15 -2364 (|#1| |#1| |#2|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2377 (($ $ $) 29)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-588 |#1|) (-133) (-162)) (T -588))
-((-2268 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)))) (-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(-13 (-666 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2268 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -2257 ($ $ |t#1|)) |%noBranch|)))
+((-2377 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-666 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2377 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3251 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3337 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-4007 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3956 (($) NIL T CONST)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3743 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3428 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3987 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3093 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2150 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-3128 (($ $ (-862)) NIL)) (-3969 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3764 (((-1095 |#1|) $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3453 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3947 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-3886 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3477 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-4113 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3857 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3395 (($ $ (-862)) NIL)) (-3813 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3794 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3834 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3753 (((-3 $ "failed")) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3441 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3997 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3416 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3105 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2197 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-3117 (($ $ (-862)) NIL)) (-3978 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3773 (((-1095 |#1|) $) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3464 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3959 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-3896 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3443 (((-1082) $) NIL)) (-3803 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3824 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3843 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2485 (((-1046) $) NIL)) (-3876 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1832 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-3351 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3173 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2059 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1527 (($ $ $) NIL)) (-3938 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2258 (((-804) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3853 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3785 (((-597 (-1181 |#1|))) NIL (-1476 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1538 (($ $ $ $) NIL)) (-3918 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2857 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1516 (($ $ $) NIL)) (-3928 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3907 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3867 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2943 (($) 15 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) 17)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-589 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2258 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -589))
-((-2258 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-589 *3 *2)) (-4 *2 (-693 *3)))))
-(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2258 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
-((-1254 (((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)) 82) (((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|))) 104)) (-1243 (((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|))) 109)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -1254 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -1243 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1254 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -590))
-((-1254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3)))) (-1243 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-276 (-781 *3))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-1254 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-590 *5 *3)))))
-(-10 -7 (-15 -1254 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -1243 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1254 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082))))
-((-1254 (((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)) 80) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 20) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|)))) 35)) (-1243 (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 23) (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|)))) 43)))
-(((-591 |#1|) (-10 -7 (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1243 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -1243 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)))) (-432)) (T -591))
-((-1254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3)) (-5 *1 (-591 *6)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))) (-1254 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-591 *5)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-788 (-388 (-893 *5))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))) "failed")) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))))
-(-10 -7 (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1243 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -1243 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1254 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082))))
-((-1286 (((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|) 57 (-3694 (|has| |#1| (-344)))) (((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-1265 (((-110) (-1181 |#2|)) 30)) (-1276 (((-3 (-1181 |#1|) "failed") (-1181 |#2|)) 33)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -1265 ((-110) (-1181 |#2|))) (-15 -1276 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -1286 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -1286 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|)))) (-522) (-593 |#1|)) (T -592))
-((-1286 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-3694 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5))) (-5 *1 (-592 *5 *4)))) (-1286 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4)))) (-1276 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
-(-10 -7 (-15 -1265 ((-110) (-1181 |#2|))) (-15 -1276 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -1286 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -1286 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1298 (((-637 |#1|) (-637 $)) 36) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 35)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3990 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1383 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2603 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-4209 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2635 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3991 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3581 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3988 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2670 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2662 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1574 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2426 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3485 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3470 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2305 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3832 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1257 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2465 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3846 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1232 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3342 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2209 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2837 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2461 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1921 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3766 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1902 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-2328 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3260 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3028 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2366 (((-804) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3220 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3758 (((-597 (-1181 |#1|))) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3003 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3566 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1957 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3080 (($) 15 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 17)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-589 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -589))
+((-2366 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-589 *3 *2)) (-4 *2 (-693 *3)))))
+(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-1492 (((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)) 82) (((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|))) 104)) (-3129 (((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|))) 109)))
+(((-590 |#1| |#2|) (-10 -7 (-15 -1492 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -3129 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1492 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -590))
+((-1492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3)))) (-3129 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-276 (-781 *3))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-590 *5 *3)))))
+(-10 -7 (-15 -1492 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -3129 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1492 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082))))
+((-1492 (((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)) 80) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 20) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|)))) 35)) (-3129 (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 23) (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|)))) 43)))
+(((-591 |#1|) (-10 -7 (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)))) (-432)) (T -591))
+((-1492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3)) (-5 *1 (-591 *6)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-591 *5)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-788 (-388 (-893 *5))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))) "failed")) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))))
+(-10 -7 (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082))))
+((-3951 (((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|) 57 (-3676 (|has| |#1| (-344)))) (((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-3523 (((-110) (-1181 |#2|)) 30)) (-2295 (((-3 (-1181 |#1|) "failed") (-1181 |#2|)) 33)))
+(((-592 |#1| |#2|) (-10 -7 (-15 -3523 ((-110) (-1181 |#2|))) (-15 -2295 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -3951 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -3951 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|)))) (-522) (-593 |#1|)) (T -592))
+((-3951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-3676 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5))) (-5 *1 (-592 *5 *4)))) (-3951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4)))) (-2295 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
+(-10 -7 (-15 -3523 ((-110) (-1181 |#2|))) (-15 -2295 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -3951 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -3951 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2329 (((-637 |#1|) (-637 $)) 34) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 33)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-593 |#1|) (-133) (-984)) (T -593))
-((-1298 (*1 *2 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984)) (-5 *2 (-637 *4)))) (-1298 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1896 (-637 *5)) (|:| |vec| (-1181 *5)))))))
-(-13 (-984) (-10 -8 (-15 -1298 ((-637 |t#1|) (-637 $))) (-15 -1298 ((-2 (|:| -1896 (-637 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-637 $) (-1181 $)))))
+((-2329 (*1 *2 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984)) (-5 *2 (-637 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 *5)))))))
+(-13 (-984) (-10 -8 (-15 -2329 ((-637 |t#1|) (-637 $))) (-15 -2329 ((-2 (|:| -2030 (-637 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-637 $) (-1181 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2762 ((|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|) 17) ((|#2| (-597 |#1|) (-597 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|)) 12)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)))) (-1027) (-1135)) (T -594))
-((-2762 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2762 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-594 *5 *6)))) (-2762 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 *5)) (-4 *6 (-1027)) (-4 *5 (-1135)) (-5 *2 (-1 *5 *6)) (-5 *1 (-594 *6 *5)))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-594 *5 *6)))))
-(-10 -7 (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2762 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2762 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|))))
-((-1802 (((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 18)) (-3114 (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 13)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -1802 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3114 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) (-1135) (-1135)) (T -595))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-595 *5 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5)))))
-(-10 -7 (-15 -1802 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3114 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))))
-((-3114 (((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)) 13)))
-(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)))) (-1135) (-1135) (-1135)) (T -596))
-((-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-597 *8)) (-5 *1 (-596 *6 *7 *8)))))
-(-10 -7 (-15 -3114 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) NIL)) (-3165 ((|#1| $) NIL)) (-2040 (($ $) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-4017 (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-1317 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1467 (($ $ $) NIL (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "rest" $) NIL (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-2845 (($ $ $) 32 (|has| |#1| (-1027)))) (-2834 (($ $ $) 34 (|has| |#1| (-1027)))) (-2821 (($ $ $) 37 (|has| |#1| (-1027)))) (-2421 (($ (-1 (-110) |#1|) $) NIL)) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3152 ((|#1| $) NIL)) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2918 (($ $) NIL) (($ $ (-719)) NIL)) (-3929 (($ $) NIL (|has| |#1| (-1027)))) (-2939 (($ $) 31 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2272 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1539 (((-110) $) NIL)) (-1944 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2920 (((-110) $) 9)) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4087 (($) 7)) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-2767 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3842 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2783 (($ |#1|) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2294 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-3440 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1549 (((-110) $) NIL)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 36) ((|#1| $ (-530) |#1|) NIL)) (-1984 (((-530) $ $) NIL)) (-2434 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-3663 (((-110) $) NIL)) (-1513 (($ $) NIL)) (-1489 (($ $) NIL (|has| $ (-6 -4271)))) (-1524 (((-719) $) NIL)) (-1534 (($ $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) 45 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-1631 (($ |#1| $) 10)) (-1501 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3476 (($ $ $) 30) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2096 (($ $ $) 11)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2437 (((-1082) $) 26 (|has| |#1| (-776))) (((-1082) $ (-110)) 27 (|has| |#1| (-776))) (((-1186) (-770) $) 28 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 29 (|has| |#1| (-776)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-597 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -4087 ($)) (-15 -2920 ((-110) $)) (-15 -1631 ($ |#1| $)) (-15 -2096 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2845 ($ $ $)) (-15 -2834 ($ $ $)) (-15 -2821 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|))) (-1135)) (T -597))
-((-4087 (*1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-597 *3)) (-4 *3 (-1135)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2096 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2834 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2821 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(-13 (-617 |#1|) (-10 -8 (-15 -4087 ($)) (-15 -2920 ((-110) $)) (-15 -1631 ($ |#1| $)) (-15 -2096 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2845 ($ $ $)) (-15 -2834 ($ $ $)) (-15 -2821 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2930 (($ |#1| |#1| $) 43)) (-4102 (((-110) $ (-719)) NIL)) (-2421 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-3929 (($ $) 45)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) 52 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 9 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 37)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) 46)) (-3440 (($ |#1| $) 26) (($ |#1| $ (-719)) 42)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3287 ((|#1| $) 48)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 21)) (-4227 (($) 25)) (-1309 (((-110) $) 50)) (-3919 (((-597 (-2 (|:| -1806 |#1|) (|:| -2494 (-719)))) $) 59)) (-3839 (($) 23) (($ (-597 |#1|)) 18)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) 56 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 19)) (-3173 (((-506) $) 34 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-2258 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 22)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 61 (|has| |#1| (-1027)))) (-2167 (((-719) $) 16 (|has| $ (-6 -4270)))))
-(((-598 |#1|) (-13 (-643 |#1|) (-10 -8 (-6 -4270) (-15 -1309 ((-110) $)) (-15 -2930 ($ |#1| |#1| $)))) (-1027)) (T -598))
-((-1309 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))) (-2930 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
-(-13 (-643 |#1|) (-10 -8 (-6 -4270) (-15 -1309 ((-110) $)) (-15 -2930 ($ |#1| |#1| $))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23)))
+((-2918 ((|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|) 17) ((|#2| (-597 |#1|) (-597 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|)) 12)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)))) (-1027) (-1135)) (T -594))
+((-2918 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-594 *5 *6)))) (-2918 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 *5)) (-4 *6 (-1027)) (-4 *5 (-1135)) (-5 *2 (-1 *5 *6)) (-5 *1 (-594 *6 *5)))) (-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-594 *5 *6)))))
+(-10 -7 (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|))))
+((-2753 (((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 18)) (-3217 (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 13)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -2753 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) (-1135) (-1135)) (T -595))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-595 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5)))))
+(-10 -7 (-15 -2753 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))))
+((-3217 (((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)) 13)))
+(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)))) (-1135) (-1135) (-1135)) (T -596))
+((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-597 *8)) (-5 *1 (-596 *6 *7 *8)))))
+(-10 -7 (-15 -3217 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2992 (($ $ $) 32 (|has| |#1| (-1027)))) (-2982 (($ $ $) 34 (|has| |#1| (-1027)))) (-2971 (($ $ $) 37 (|has| |#1| (-1027)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $) NIL) (($ $ (-719)) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) 31 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3059 (((-110) $) 9)) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4100 (($) 7)) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 36) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 45 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1640 (($ |#1| $) 10)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ $) 30) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2192 (($ $ $) 11)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 26 (|has| |#1| (-776))) (((-1082) $ (-110)) 27 (|has| |#1| (-776))) (((-1186) (-770) $) 28 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 29 (|has| |#1| (-776)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-597 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -4100 ($)) (-15 -3059 ((-110) $)) (-15 -1640 ($ |#1| $)) (-15 -2192 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2992 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2971 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|))) (-1135)) (T -597))
+((-4100 (*1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-597 *3)) (-4 *3 (-1135)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2192 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2992 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2982 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2971 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
+(-13 (-617 |#1|) (-10 -8 (-15 -4100 ($)) (-15 -3059 ((-110) $)) (-15 -1640 ($ |#1| $)) (-15 -2192 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2992 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2971 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3068 (($ |#1| |#1| $) 43)) (-3186 (((-110) $ (-719)) NIL)) (-2901 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2287 (($ $) 45)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 52 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 9 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 37)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 46)) (-2441 (($ |#1| $) 26) (($ |#1| $ (-719)) 42)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2738 ((|#1| $) 48)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 21)) (-3958 (($) 25)) (-2761 (((-110) $) 50)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 59)) (-1560 (($) 23) (($ (-597 |#1|)) 18)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 56 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 19)) (-3260 (((-506) $) 34 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-2366 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 22)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 61 (|has| |#1| (-1027)))) (-2267 (((-719) $) 16 (|has| $ (-6 -4269)))))
+(((-598 |#1|) (-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2761 ((-110) $)) (-15 -3068 ($ |#1| |#1| $)))) (-1027)) (T -598))
+((-2761 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))) (-3068 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
+(-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2761 ((-110) $)) (-15 -3068 ($ |#1| |#1| $))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23)))
(((-599 |#1|) (-133) (-991)) (T -599))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-991)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-2879 (((-719) $) 15)) (-1366 (($ $ |#1|) 56)) (-1389 (($ $) 32)) (-4093 (($ $) 31)) (-3012 (((-3 |#1| "failed") $) 48)) (-2446 ((|#1| $) NIL)) (-3845 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3946 (((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530)) 46)) (-4173 ((|#1| $ (-530)) 30)) (-4183 ((|#2| $ (-530)) 29)) (-1320 (($ (-1 |#1| |#1|) $) 34)) (-1331 (($ (-1 |#2| |#2|) $) 38)) (-1378 (($) 10)) (-1410 (($ |#1| |#2|) 22)) (-1399 (($ (-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|)))) 23)) (-1421 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))) $) 13)) (-1355 (($ |#1| $) 57)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1341 (((-110) $ $) 60)) (-2258 (((-804) $) 19) (($ |#1|) 16)) (-2148 (((-110) $ $) 25)))
-(((-600 |#1| |#2| |#3|) (-13 (-1027) (-975 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1421 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))) $)) (-15 -1410 ($ |#1| |#2|)) (-15 -1399 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))))) (-15 -4183 (|#2| $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -4093 ($ $)) (-15 -1389 ($ $)) (-15 -2879 ((-719) $)) (-15 -1378 ($)) (-15 -1366 ($ $ |#1|)) (-15 -1355 ($ |#1| $)) (-15 -3845 ($ |#1| |#2| $)) (-15 -3845 ($ $ $)) (-15 -1341 ((-110) $ $)) (-15 -1331 ($ (-1 |#2| |#2|) $)) (-15 -1320 ($ (-1 |#1| |#1|) $)))) (-1027) (-23) |#2|) (T -600))
-((-3946 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804)) (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4)))) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-1410 (*1 *1 *2 *3) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4)))) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5)) (-4 *4 (-1027)) (-14 *5 *2))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4093 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-1378 (*1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1366 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1355 (*1 *1 *2 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3845 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3845 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1341 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))) (-1320 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1027) (-975 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1421 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))) $)) (-15 -1410 ($ |#1| |#2|)) (-15 -1399 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2693 |#2|))))) (-15 -4183 (|#2| $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -4093 ($ $)) (-15 -1389 ($ $)) (-15 -2879 ((-719) $)) (-15 -1378 ($)) (-15 -1366 ($ $ |#1|)) (-15 -1355 ($ |#1| $)) (-15 -3845 ($ |#1| |#2| $)) (-15 -3845 ($ $ $)) (-15 -1341 ((-110) $ $)) (-15 -1331 ($ (-1 |#2| |#2|) $)) (-15 -1320 ($ (-1 |#1| |#1|) $))))
-((-1965 (((-530) $) 24)) (-4016 (($ |#2| $ (-530)) 22) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) 12)) (-1993 (((-110) (-530) $) 15)) (-3476 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-597 $)) NIL)))
-(((-601 |#1| |#2|) (-10 -8 (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -1965 ((-530) |#1|)) (-15 -1983 ((-597 (-530)) |#1|)) (-15 -1993 ((-110) (-530) |#1|))) (-602 |#2|) (-1135)) (T -601))
-NIL
-(-10 -8 (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -3476 (|#1| (-597 |#1|))) (-15 -3476 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -1965 ((-530) |#1|)) (-15 -1983 ((-597 (-530)) |#1|)) (-15 -1993 ((-110) (-530) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 70)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) 15)) (-1933 (($ $ |#1|) 56)) (-1337 (($ $) 32)) (-4106 (($ $) 31)) (-3139 (((-3 |#1| "failed") $) 48)) (-2585 ((|#1| $) NIL)) (-3849 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2589 (((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530)) 46)) (-3519 ((|#1| $ (-530)) 30)) (-2033 ((|#2| $ (-530)) 29)) (-2580 (($ (-1 |#1| |#1|) $) 34)) (-3999 (($ (-1 |#2| |#2|) $) 38)) (-2810 (($) 10)) (-3098 (($ |#1| |#2|) 22)) (-4226 (($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|)))) 23)) (-1856 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 13)) (-3286 (($ |#1| $) 57)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1532 (((-110) $ $) 60)) (-2366 (((-804) $) 19) (($ |#1|) 16)) (-2248 (((-110) $ $) 25)))
+(((-600 |#1| |#2| |#3|) (-13 (-1027) (-975 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1856 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $)) (-15 -3098 ($ |#1| |#2|)) (-15 -4226 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))))) (-15 -2033 (|#2| $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4106 ($ $)) (-15 -1337 ($ $)) (-15 -3023 ((-719) $)) (-15 -2810 ($)) (-15 -1933 ($ $ |#1|)) (-15 -3286 ($ |#1| $)) (-15 -3849 ($ |#1| |#2| $)) (-15 -3849 ($ $ $)) (-15 -1532 ((-110) $ $)) (-15 -3999 ($ (-1 |#2| |#2|) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)))) (-1027) (-23) |#2|) (T -600))
+((-2589 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804)) (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-3098 (*1 *1 *2 *3) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5)) (-4 *4 (-1027)) (-14 *5 *2))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1337 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-2810 (*1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1933 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3286 (*1 *1 *2 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3849 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3849 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1532 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1027) (-975 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1856 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $)) (-15 -3098 ($ |#1| |#2|)) (-15 -4226 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))))) (-15 -2033 (|#2| $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4106 ($ $)) (-15 -1337 ($ $)) (-15 -3023 ((-719) $)) (-15 -2810 ($)) (-15 -1933 ($ $ |#1|)) (-15 -3286 ($ |#1| $)) (-15 -3849 ($ |#1| |#2| $)) (-15 -3849 ($ $ $)) (-15 -1532 ((-110) $ $)) (-15 -3999 ($ (-1 |#2| |#2|) $)) (-15 -2580 ($ (-1 |#1| |#1|) $))))
+((-1549 (((-530) $) 24)) (-4028 (($ |#2| $ (-530)) 22) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) 12)) (-1927 (((-110) (-530) $) 15)) (-3483 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-597 $)) NIL)))
+(((-601 |#1| |#2|) (-10 -8 (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -1549 ((-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1927 ((-110) (-530) |#1|))) (-602 |#2|) (-1135)) (T -601))
+NIL
+(-10 -8 (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -1549 ((-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1927 ((-110) (-530) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-602 |#1|) (-133) (-1135)) (T -602))
-((-3547 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3476 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3476 (*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3476 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3114 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1778 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1778 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-4016 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-4016 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4271)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))))
-(-13 (-563 (-530) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3547 ($ (-719) |t#1|)) (-15 -3476 ($ $ |t#1|)) (-15 -3476 ($ |t#1| $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ (-597 $))) (-15 -3114 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1832 ($ $ (-1148 (-530)))) (-15 -1778 ($ $ (-530))) (-15 -1778 ($ $ (-1148 (-530)))) (-15 -4016 ($ |t#1| $ (-530))) (-15 -4016 ($ $ $ (-530))) (IF (|has| $ (-6 -4271)) (-15 -2416 (|t#1| $ (-1148 (-530)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3066 (((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) "failed") |#3| |#2| (-1099)) 44)))
-(((-603 |#1| |#2| |#3|) (-10 -7 (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -3066 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -603))
-((-3066 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2)))) (-3066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3853 (-597 *4)))) (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -3066 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1431 (($ $) NIL (|has| |#1| (-344)))) (-1452 (($ $ $) NIL (|has| |#1| (-344)))) (-1463 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2771 (($ $ $) NIL (|has| |#1| (-344)))) (-2781 (($ $ $) NIL (|has| |#1| (-344)))) (-2794 (($ $ $) NIL (|has| |#1| (-344)))) (-2750 (($ $ $) NIL (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-3150 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) NIL)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-3674 (((-719) $) NIL)) (-2843 (($ $ $) NIL (|has| |#1| (-344)))) (-2855 (($ $ $) NIL (|has| |#1| (-344)))) (-2731 (($ $ $) NIL (|has| |#1| (-344)))) (-2819 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1832 ((|#1| $ |#1|) NIL)) (-1474 (($ $ $) NIL (|has| |#1| (-344)))) (-3409 (((-719) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2857 ((|#1| $ |#1| |#1|) NIL)) (-2630 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3538 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3483 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-4028 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-4028 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))))
+(-13 (-563 (-530) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3538 ($ (-719) |t#1|)) (-15 -3483 ($ $ |t#1|)) (-15 -3483 ($ |t#1| $)) (-15 -3483 ($ $ $)) (-15 -3483 ($ (-597 $))) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1902 ($ $ (-1148 (-530)))) (-15 -1843 ($ $ (-530))) (-15 -1843 ($ $ (-1148 (-530)))) (-15 -4028 ($ |t#1| $ (-530))) (-15 -4028 ($ $ $ (-530))) (IF (|has| $ (-6 -4270)) (-15 -2552 (|t#1| $ (-1148 (-530)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2688 (((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099)) 44)))
+(((-603 |#1| |#2| |#3|) (-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -2688 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -603))
+((-2688 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4)))) (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4)))))
+(-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -2688 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) NIL (|has| |#1| (-344)))) (-2857 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) NIL)) (-1330 (($ $ $) NIL (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) NIL)) (-1803 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-604 |#1|) (-607 |#1|) (-216)) (T -604))
NIL
(-607 |#1|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1431 (($ $) NIL (|has| |#1| (-344)))) (-1452 (($ $ $) NIL (|has| |#1| (-344)))) (-1463 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2771 (($ $ $) NIL (|has| |#1| (-344)))) (-2781 (($ $ $) NIL (|has| |#1| (-344)))) (-2794 (($ $ $) NIL (|has| |#1| (-344)))) (-2750 (($ $ $) NIL (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-3150 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) NIL)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-3674 (((-719) $) NIL)) (-2843 (($ $ $) NIL (|has| |#1| (-344)))) (-2855 (($ $ $) NIL (|has| |#1| (-344)))) (-2731 (($ $ $) NIL (|has| |#1| (-344)))) (-2819 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1832 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1474 (($ $ $) NIL (|has| |#1| (-344)))) (-3409 (((-719) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2857 ((|#1| $ |#1| |#1|) NIL)) (-2630 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-605 |#1| |#2|) (-13 (-607 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-599 |#1|) (-10 -8 (-15 -3211 ($ $))))) (T -605))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) NIL (|has| |#1| (-344)))) (-2857 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1330 (($ $ $) NIL (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) NIL)) (-1803 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-605 |#1| |#2|) (-13 (-607 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-599 |#1|) (-10 -8 (-15 -3289 ($ $))))) (T -605))
NIL
(-13 (-607 |#1|) (-268 |#2| |#2|))
-((-1431 (($ $) 26)) (-2630 (($ $) 24)) (-3286 (($) 12)))
-(((-606 |#1| |#2|) (-10 -8 (-15 -1431 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -3286 (|#1|))) (-607 |#2|) (-984)) (T -606))
+((-3443 (($ $) 26)) (-1803 (($ $) 24)) (-3340 (($) 12)))
+(((-606 |#1| |#2|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3340 (|#1|))) (-607 |#2|) (-984)) (T -606))
NIL
-(-10 -8 (-15 -1431 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -3286 (|#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1431 (($ $) 82 (|has| |#1| (-344)))) (-1452 (($ $ $) 84 (|has| |#1| (-344)))) (-1463 (($ $ (-719)) 83 (|has| |#1| (-344)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2771 (($ $ $) 45 (|has| |#1| (-344)))) (-2781 (($ $ $) 46 (|has| |#1| (-344)))) (-2794 (($ $ $) 48 (|has| |#1| (-344)))) (-2750 (($ $ $) 43 (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 42 (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) 44 (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 47 (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) 74 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 72 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 69)) (-2446 (((-530) $) 75 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 73 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 68)) (-2425 (($ $) 64)) (-1673 (((-3 $ "failed") $) 34)) (-3703 (($ $) 55 (|has| |#1| (-432)))) (-3150 (((-110) $) 31)) (-2575 (($ |#1| (-719)) 62)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57 (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 58 (|has| |#1| (-522)))) (-3674 (((-719) $) 66)) (-2843 (($ $ $) 52 (|has| |#1| (-344)))) (-2855 (($ $ $) 53 (|has| |#1| (-344)))) (-2731 (($ $ $) 41 (|has| |#1| (-344)))) (-2819 (($ $ $) 50 (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 49 (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) 51 (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 54 (|has| |#1| (-344)))) (-2402 ((|#1| $) 65)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-522)))) (-1832 ((|#1| $ |#1|) 87)) (-1474 (($ $ $) 81 (|has| |#1| (-344)))) (-3409 (((-719) $) 67)) (-3658 ((|#1| $) 56 (|has| |#1| (-432)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 71 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 70)) (-1669 (((-597 |#1|) $) 61)) (-2782 ((|#1| $ (-719)) 63)) (-1667 (((-719)) 29)) (-2857 ((|#1| $ |#1| |#1|) 60)) (-2630 (($ $) 85)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($) 86)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3340 (|#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3443 (($ $) 80 (|has| |#1| (-344)))) (-4167 (($ $ $) 82 (|has| |#1| (-344)))) (-2857 (($ $ (-719)) 81 (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1261 (($ $ $) 43 (|has| |#1| (-344)))) (-3973 (($ $ $) 44 (|has| |#1| (-344)))) (-2640 (($ $ $) 46 (|has| |#1| (-344)))) (-3174 (($ $ $) 41 (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 40 (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 45 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) 72 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 67)) (-2585 (((-530) $) 73 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 71 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 66)) (-2562 (($ $) 62)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 53 (|has| |#1| (-432)))) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 60)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 56 (|has| |#1| (-522)))) (-2944 (((-719) $) 64)) (-1396 (($ $ $) 50 (|has| |#1| (-344)))) (-3140 (($ $ $) 51 (|has| |#1| (-344)))) (-2615 (($ $ $) 39 (|has| |#1| (-344)))) (-4132 (($ $ $) 48 (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 47 (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 52 (|has| |#1| (-344)))) (-2533 ((|#1| $) 63)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) 85)) (-1330 (($ $ $) 79 (|has| |#1| (-344)))) (-1429 (((-719) $) 65)) (-3829 ((|#1| $) 54 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 69 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 68)) (-3441 (((-597 |#1|) $) 59)) (-4085 ((|#1| $ (-719)) 61)) (-3300 (((-719)) 28)) (-3003 ((|#1| $ |#1| |#1|) 58)) (-1803 (($ $) 83)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($) 84)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
(((-607 |#1|) (-133) (-984)) (T -607))
-((-3286 (*1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-2630 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-1452 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344)))) (-1431 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(-13 (-797 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -3286 ($)) (-15 -2630 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -1452 ($ $ $)) (-15 -1463 ($ $ (-719))) (-15 -1431 ($ $)) (-15 -1474 ($ $ $))) |%noBranch|)))
+((-3340 (*1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-1803 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1330 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(-13 (-797 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -3340 ($)) (-15 -1803 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -4167 ($ $ $)) (-15 -2857 ($ $ (-719))) (-15 -3443 ($ $)) (-15 -1330 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-268 |#1| |#1|) . T) ((-392 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-797 |#1|) . T))
-((-1442 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-2473 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 17)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -2473 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2473 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1442 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -608))
-((-1442 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-604 (-388 *6)))) (-5 *1 (-608 *5 *6)) (-5 *3 (-604 (-388 *6))))))
-(-10 -7 (-15 -2473 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2473 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1442 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1431 (($ $) NIL (|has| |#1| (-344)))) (-1452 (($ $ $) 28 (|has| |#1| (-344)))) (-1463 (($ $ (-719)) 31 (|has| |#1| (-344)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2771 (($ $ $) NIL (|has| |#1| (-344)))) (-2781 (($ $ $) NIL (|has| |#1| (-344)))) (-2794 (($ $ $) NIL (|has| |#1| (-344)))) (-2750 (($ $ $) NIL (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-3150 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) NIL)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-3674 (((-719) $) NIL)) (-2843 (($ $ $) NIL (|has| |#1| (-344)))) (-2855 (($ $ $) NIL (|has| |#1| (-344)))) (-2731 (($ $ $) NIL (|has| |#1| (-344)))) (-2819 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1832 ((|#1| $ |#1|) 24)) (-1474 (($ $ $) 33 (|has| |#1| (-344)))) (-3409 (((-719) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) 20) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2857 ((|#1| $ |#1| |#1|) 23)) (-2630 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 8 T CONST)) (-3286 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1454 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-2611 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 17)))
+(((-608 |#1| |#2|) (-10 -7 (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1454 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -608))
+((-1454 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-604 (-388 *6)))) (-5 *1 (-608 *5 *6)) (-5 *3 (-604 (-388 *6))))))
+(-10 -7 (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1454 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) 28 (|has| |#1| (-344)))) (-2857 (($ $ (-719)) 31 (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) 24)) (-1330 (($ $ $) 33 (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) 20) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) 23)) (-1803 (($ $) NIL)) (-3080 (($) 21 T CONST)) (-3093 (($) 8 T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-609 |#1| |#2|) (-607 |#1|) (-984) (-1 |#1| |#1|)) (T -609))
NIL
(-607 |#1|)
-((-1452 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1463 ((|#2| |#2| (-719) (-1 |#1| |#1|)) 40)) (-1474 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-610 |#1| |#2|) (-10 -7 (-15 -1452 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1463 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1474 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -610))
-((-1474 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))) (-1463 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))) (-1452 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))))
-(-10 -7 (-15 -1452 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1463 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1474 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-1267 (($ $ $) 9)))
-(((-611 |#1|) (-10 -8 (-15 -1267 (|#1| |#1| |#1|))) (-612)) (T -611))
-NIL
-(-10 -8 (-15 -1267 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-2390 (($ $) 10)) (-1267 (($ $ $) 8)) (-2148 (((-110) $ $) 6)) (-1256 (($ $ $) 9)))
+((-4167 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2857 ((|#2| |#2| (-719) (-1 |#1| |#1|)) 40)) (-1330 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -4167 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2857 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1330 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -610))
+((-1330 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))) (-2857 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))) (-4167 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))))
+(-10 -7 (-15 -4167 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2857 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1330 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-1262 (($ $ $) 9)))
+(((-611 |#1|) (-10 -8 (-15 -1262 (|#1| |#1| |#1|))) (-612)) (T -611))
+NIL
+(-10 -8 (-15 -1262 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2522 (($ $) 10)) (-1262 (($ $ $) 8)) (-2248 (((-110) $ $) 6)) (-1253 (($ $ $) 9)))
(((-612) (-133)) (T -612))
-((-2390 (*1 *1 *1) (-4 *1 (-612))) (-1256 (*1 *1 *1 *1) (-4 *1 (-612))) (-1267 (*1 *1 *1 *1) (-4 *1 (-612))))
-(-13 (-99) (-10 -8 (-15 -2390 ($ $)) (-15 -1256 ($ $ $)) (-15 -1267 ($ $ $))))
+((-2522 (*1 *1 *1) (-4 *1 (-612))) (-1253 (*1 *1 *1 *1) (-4 *1 (-612))) (-1262 (*1 *1 *1 *1) (-4 *1 (-612))))
+(-13 (-99) (-10 -8 (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $))))
(((-99) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 15)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1848 ((|#1| $) 21)) (-4194 (($ $ $) NIL (|has| |#1| (-739)))) (-1757 (($ $ $) NIL (|has| |#1| (-739)))) (-3443 (((-1082) $) 46)) (-2485 (((-1046) $) NIL)) (-1857 ((|#3| $) 22)) (-2258 (((-804) $) 42)) (-2943 (($) 10 T CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2172 (((-110) $ $) 24 (|has| |#1| (-739)))) (-2257 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2245 (($ $) 17) (($ $ $) NIL)) (-2234 (($ $ $) 27)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-613 |#1| |#2| |#3|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2257 ($ $ |#3|)) (-15 -2257 ($ |#1| |#3|)) (-15 -1848 (|#1| $)) (-15 -1857 (|#3| $)))) (-666 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -613))
-((-2257 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2257 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-666 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1857 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)))))
-(-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2257 ($ $ |#3|)) (-15 -2257 ($ |#1| |#3|)) (-15 -1848 (|#1| $)) (-15 -1857 (|#3| $))))
-((-1485 (((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)) 33)))
-(((-614 |#1|) (-10 -7 (-15 -1485 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)))) (-850)) (T -614))
-((-1485 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4)) (-4 *4 (-850)) (-5 *1 (-614 *4)))))
-(-10 -7 (-15 -1485 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3717 (((-597 |#1|) $) 82)) (-3398 (($ $ (-719)) 90)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3339 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 48)) (-3012 (((-3 (-622 |#1|) "failed") $) NIL)) (-2446 (((-622 |#1|) $) NIL)) (-2425 (($ $) 89)) (-3239 (((-719) $) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ (-622 |#1|) |#2|) 68)) (-3315 (($ $) 86)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-3352 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47)) (-2989 (((-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2388 (((-622 |#1|) $) NIL)) (-2402 ((|#2| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-4084 (($ $ |#1| $) 30) (($ $ (-597 |#1|) (-597 $)) 32)) (-3409 (((-719) $) 88)) (-2268 (($ $ $) 20) (($ (-622 |#1|) (-622 |#1|)) 77) (($ (-622 |#1|) $) 75) (($ $ (-622 |#1|)) 76)) (-2258 (((-804) $) NIL) (($ |#1|) 74) (((-1194 |#1| |#2|) $) 58) (((-1203 |#1| |#2|) $) 41) (($ (-622 |#1|)) 25)) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-622 |#1|)) NIL)) (-1981 ((|#2| (-1203 |#1| |#2|) $) 43)) (-2943 (($) 23 T CONST)) (-1477 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3385 (((-3 $ "failed") (-1194 |#1| |#2|)) 60)) (-4048 (($ (-622 |#1|)) 14)) (-2148 (((-110) $ $) 44)) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) 66) (($ $ $) NIL)) (-2234 (($ $ $) 29)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-622 |#1|)) NIL)))
-(((-615 |#1| |#2|) (-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -3385 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2268 ($ (-622 |#1|) (-622 |#1|))) (-15 -2268 ($ (-622 |#1|) $)) (-15 -2268 ($ $ (-622 |#1|))))) (-795) (-162)) (T -615))
-((-3385 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-615 *3 *4)))) (-2268 (*1 *1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2268 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2268 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))))
-(-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -3385 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2268 ($ (-622 |#1|) (-622 |#1|))) (-15 -2268 ($ (-622 |#1|) $)) (-15 -2268 ($ $ (-622 |#1|)))))
-((-4038 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-4017 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-2421 (($ (-1 (-110) |#2|) $) 28)) (-1389 (($ $) 56)) (-3929 (($ $) 64)) (-1283 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1944 (((-530) |#2| $ (-530)) 61) (((-530) |#2| $) NIL) (((-530) (-1 (-110) |#2|) $) 47)) (-3547 (($ (-719) |#2|) 54)) (-2767 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3842 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3114 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2783 (($ |#2|) 15)) (-3440 (($ $ $ (-530)) 36) (($ |#2| $ (-530)) 34)) (-4221 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-2434 (($ $ (-1148 (-530))) 44) (($ $ (-530)) 38)) (-4027 (($ $ $ (-530)) 60)) (-2441 (($ $) 58)) (-2172 (((-110) $ $) 66)))
-(((-616 |#1| |#2|) (-10 -8 (-15 -2783 (|#1| |#2|)) (-15 -2434 (|#1| |#1| (-530))) (-15 -2434 (|#1| |#1| (-1148 (-530)))) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3440 (|#1| |#2| |#1| (-530))) (-15 -3440 (|#1| |#1| |#1| (-530))) (-15 -2767 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2421 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -3842 (|#1| |#1| |#1|)) (-15 -4038 ((-110) |#1|)) (-15 -4027 (|#1| |#1| |#1| (-530))) (-15 -1389 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3547 (|#1| (-719) |#2|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|))) (-617 |#2|) (-1135)) (T -616))
-NIL
-(-10 -8 (-15 -2783 (|#1| |#2|)) (-15 -2434 (|#1| |#1| (-530))) (-15 -2434 (|#1| |#1| (-1148 (-530)))) (-15 -1283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3440 (|#1| |#2| |#1| (-530))) (-15 -3440 (|#1| |#1| |#1| (-530))) (-15 -2767 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2421 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1283 (|#1| |#2| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -3842 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -4038 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1944 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -1944 ((-530) |#2| |#1|)) (-15 -1944 ((-530) |#2| |#1| (-530))) (-15 -3842 (|#1| |#1| |#1|)) (-15 -4038 ((-110) |#1|)) (-15 -4027 (|#1| |#1| |#1| (-530))) (-15 -1389 (|#1| |#1|)) (-15 -4017 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4221 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3547 (|#1| (-719) |#2|)) (-15 -3114 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2441 (|#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-3165 ((|#1| $) 65)) (-2040 (($ $) 67)) (-1935 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 52 (|has| $ (-6 -4271)))) (-4038 (((-110) $) 142 (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-4017 (($ $) 146 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4271)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4271)))) (-1317 (($ $) 141 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-1467 (($ $ $) 56 (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 58 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4271))) (($ $ "rest" $) 55 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-2421 (($ (-1 (-110) |#1|) $) 129)) (-2180 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4270)))) (-3152 ((|#1| $) 66)) (-3956 (($) 7 T CONST)) (-1389 (($ $) 144 (|has| $ (-6 -4271)))) (-4093 (($ $) 134)) (-2918 (($ $) 73) (($ $ (-719)) 71)) (-3929 (($ $) 131 (|has| |#1| (-1027)))) (-2939 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 130 (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 125)) (-2272 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4270))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2858 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 87)) (-1539 (((-110) $) 83)) (-1944 (((-530) |#1| $ (-530)) 139 (|has| |#1| (-1027))) (((-530) |#1| $) 138 (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) 137)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) 108)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 95 (|has| (-530) (-795)))) (-4194 (($ $ $) 147 (|has| |#1| (-795)))) (-2767 (($ $ $) 132 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3842 (($ $ $) 140 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 94 (|has| (-530) (-795)))) (-1757 (($ $ $) 148 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2783 (($ |#1|) 122)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2294 ((|#1| $) 70) (($ $ (-719)) 68)) (-3440 (($ $ $ (-530)) 127) (($ |#1| $ (-530)) 126)) (-4016 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-1983 (((-597 (-530)) $) 92)) (-1993 (((-110) (-530) $) 91)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 76) (($ $ (-719)) 74)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1946 (($ $ |#1|) 96 (|has| $ (-6 -4271)))) (-1549 (((-110) $) 84)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 90)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-1984 (((-530) $ $) 44)) (-2434 (($ $ (-1148 (-530))) 124) (($ $ (-530)) 123)) (-1778 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-3663 (((-110) $) 46)) (-1513 (($ $) 62)) (-1489 (($ $) 59 (|has| $ (-6 -4271)))) (-1524 (((-719) $) 63)) (-1534 (($ $) 64)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 143 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 107)) (-1501 (($ $ $) 61) (($ $ |#1|) 60)) (-3476 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 150 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 151 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) 149 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 152 (|has| |#1| (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 15)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1918 ((|#1| $) 21)) (-2508 (($ $ $) NIL (|has| |#1| (-739)))) (-1817 (($ $ $) NIL (|has| |#1| (-739)))) (-1424 (((-1082) $) 46)) (-2624 (((-1046) $) NIL)) (-1928 ((|#3| $) 22)) (-2366 (((-804) $) 42)) (-3080 (($) 10 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2272 (((-110) $ $) 24 (|has| |#1| (-739)))) (-2364 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2351 (($ $) 17) (($ $ $) NIL)) (-2339 (($ $ $) 27)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-613 |#1| |#2| |#3|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $)))) (-666 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -613))
+((-2364 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2364 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-666 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1928 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)))))
+(-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $))))
+((-4152 (((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)) 33)))
+(((-614 |#1|) (-10 -7 (-15 -4152 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)))) (-850)) (T -614))
+((-4152 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4)) (-4 *4 (-850)) (-5 *1 (-614 *4)))))
+(-10 -7 (-15 -4152 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 82)) (-1911 (($ $ (-719)) 90)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3575 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 48)) (-3139 (((-3 (-622 |#1|) "failed") $) NIL)) (-2585 (((-622 |#1|) $) NIL)) (-2562 (($ $) 89)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-622 |#1|) |#2|) 68)) (-2627 (($ $) 86)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47)) (-3477 (((-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-622 |#1|) $) NIL)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ |#1| $) 30) (($ $ (-597 |#1|) (-597 $)) 32)) (-1429 (((-719) $) 88)) (-2377 (($ $ $) 20) (($ (-622 |#1|) (-622 |#1|)) 77) (($ (-622 |#1|) $) 75) (($ $ (-622 |#1|)) 76)) (-2366 (((-804) $) NIL) (($ |#1|) 74) (((-1194 |#1| |#2|) $) 58) (((-1203 |#1| |#2|) $) 41) (($ (-622 |#1|)) 25)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-622 |#1|)) NIL)) (-2065 ((|#2| (-1203 |#1| |#2|) $) 43)) (-3080 (($) 23 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1352 (((-3 $ "failed") (-1194 |#1| |#2|)) 60)) (-2288 (($ (-622 |#1|)) 14)) (-2248 (((-110) $ $) 44)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) 66) (($ $ $) NIL)) (-2339 (($ $ $) 29)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-622 |#1|)) NIL)))
+(((-615 |#1| |#2|) (-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -1352 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2377 ($ (-622 |#1|) (-622 |#1|))) (-15 -2377 ($ (-622 |#1|) $)) (-15 -2377 ($ $ (-622 |#1|))))) (-795) (-162)) (T -615))
+((-1352 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-615 *3 *4)))) (-2377 (*1 *1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2377 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))))
+(-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -1352 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2377 ($ (-622 |#1|) (-622 |#1|))) (-15 -2377 ($ (-622 |#1|) $)) (-15 -2377 ($ $ (-622 |#1|)))))
+((-2741 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-1627 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-2901 (($ (-1 (-110) |#2|) $) 28)) (-1337 (($ $) 56)) (-2287 (($ $) 64)) (-1842 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2027 (((-530) |#2| $ (-530)) 61) (((-530) |#2| $) NIL) (((-530) (-1 (-110) |#2|) $) 47)) (-3538 (($ (-719) |#2|) 54)) (-2090 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3683 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3217 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2939 (($ |#2|) 15)) (-2441 (($ $ $ (-530)) 36) (($ |#2| $ (-530)) 34)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-3715 (($ $ (-1148 (-530))) 44) (($ $ (-530)) 38)) (-3121 (($ $ $ (-530)) 60)) (-2579 (($ $) 58)) (-2272 (((-110) $ $) 66)))
+(((-616 |#1| |#2|) (-10 -8 (-15 -2939 (|#1| |#2|)) (-15 -3715 (|#1| |#1| (-530))) (-15 -3715 (|#1| |#1| (-1148 (-530)))) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2441 (|#1| |#2| |#1| (-530))) (-15 -2441 (|#1| |#1| |#1| (-530))) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2090 (|#1| |#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -1337 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3538 (|#1| (-719) |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|))) (-617 |#2|) (-1135)) (T -616))
+NIL
+(-10 -8 (-15 -2939 (|#1| |#2|)) (-15 -3715 (|#1| |#1| (-530))) (-15 -3715 (|#1| |#1| (-1148 (-530)))) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2441 (|#1| |#2| |#1| (-530))) (-15 -2441 (|#1| |#1| |#1| (-530))) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2090 (|#1| |#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -1337 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3538 (|#1| (-719) |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-2741 (((-110) $) 142 (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-1627 (($ $) 146 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4270)))) (-1307 (($ $) 141 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 129)) (-2283 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-1337 (($ $) 144 (|has| $ (-6 -4270)))) (-4106 (($ $) 134)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-2287 (($ $) 131 (|has| |#1| (-1027)))) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 130 (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 125)) (-2383 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-2027 (((-530) |#1| $ (-530)) 139 (|has| |#1| (-1027))) (((-530) |#1| $) 138 (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) 137)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2508 (($ $ $) 147 (|has| |#1| (-795)))) (-2090 (($ $ $) 132 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3683 (($ $ $) 140 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-1817 (($ $ $) 148 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2939 (($ |#1|) 122)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-2441 (($ $ $ (-530)) 127) (($ |#1| $ (-530)) 126)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-4083 (((-110) $) 84)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-3715 (($ $ (-1148 (-530))) 124) (($ $ (-530)) 123)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 143 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61) (($ $ |#1|) 60)) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 150 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 151 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 149 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 152 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-617 |#1|) (-133) (-1135)) (T -617))
-((-2783 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135)))))
-(-13 (-1073 |t#1|) (-354 |t#1|) (-264 |t#1|) (-10 -8 (-15 -2783 ($ |t#1|))))
-(((-33) . T) ((-99) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-264 |#1|) . T) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-949 |#1|) . T) ((-1027) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
-((-3066 (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|))) 22) (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 14)) (-4113 (((-719) (-637 |#1|) (-1181 |#1|)) 30)) (-1840 (((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|)) 24)) (-1498 (((-110) (-637 |#1|) (-1181 |#1|)) 27)))
-(((-618 |#1|) (-10 -7 (-15 -3066 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -3066 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -1840 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -1498 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -4113 ((-719) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -618))
-((-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-618 *5)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-618 *5)))) (-1840 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *1 (-618 *4)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3853 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3853 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3853 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3853 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))))
-(-10 -7 (-15 -3066 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -3066 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -1840 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -1498 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -4113 ((-719) (-637 |#1|) (-1181 |#1|))))
-((-3066 (((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|)))) |#4| (-597 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|) 45)) (-4113 (((-719) |#4| |#3|) 17)) (-1840 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1498 (((-110) |#4| |#3|) 13)))
-(((-619 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3066 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|)) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -1840 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1498 ((-110) |#4| |#3|)) (-15 -4113 ((-719) |#4| |#3|))) (-344) (-13 (-354 |#1|) (-10 -7 (-6 -4271))) (-13 (-354 |#1|) (-10 -7 (-6 -4271))) (-635 |#1| |#2| |#3|)) (T -619))
-((-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-719)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-1498 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-110)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-1840 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4271)))) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))) (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2)))) (-3066 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-597 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3853 (-597 *7))))) (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7)) (-4 *3 (-635 *5 *6 *7)))) (-3066 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(-10 -7 (-15 -3066 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|)) (-15 -3066 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -1840 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1498 ((-110) |#4| |#3|)) (-15 -4113 ((-719) |#4| |#3|)))
-((-1510 (((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3853 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)) 45)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1510 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3853 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)))) (-522) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -620))
-((-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed")) (|:| -3853 (-597 (-1181 (-388 *8)))))) (-5 *1 (-620 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1510 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3853 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3251 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-1380 ((|#2| $) NIL)) (-1623 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3337 (((-1181 (-637 |#2|))) NIL) (((-1181 (-637 |#2|)) (-1181 $)) NIL)) (-1645 (((-110) $) NIL)) (-4007 (((-1181 $)) 37)) (-4102 (((-110) $ (-719)) NIL)) (-2944 (($ |#2|) NIL)) (-3956 (($) NIL T CONST)) (-1543 (($ $) NIL (|has| |#2| (-289)))) (-1564 (((-223 |#1| |#2|) $ (-530)) NIL)) (-2216 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-3743 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-3428 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-3987 ((|#2| $) NIL)) (-3405 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-3093 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-2150 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-3128 (($ $ (-862)) NIL)) (-3969 ((|#2| $) NIL)) (-3764 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-3453 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-3947 (((-1095 |#2|) $) NIL)) (-3886 (((-110)) NIL)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-3477 (($ (-1181 |#2|)) NIL) (($ (-1181 |#2|) (-1181 $)) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-4113 (((-719) $) NIL (|has| |#2| (-522))) (((-862)) 38)) (-2787 ((|#2| $ (-530) (-530)) NIL)) (-3857 (((-110)) NIL)) (-3395 (($ $ (-862)) NIL)) (-2456 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL)) (-1532 (((-719) $) NIL (|has| |#2| (-522)))) (-1522 (((-597 (-223 |#1| |#2|)) $) NIL (|has| |#2| (-522)))) (-3531 (((-719) $) NIL)) (-3813 (((-110)) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-2892 ((|#2| $) NIL (|has| |#2| (-6 (-4272 "*"))))) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2162 (($ (-597 (-597 |#2|))) NIL)) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3285 (((-597 (-597 |#2|)) $) NIL)) (-3794 (((-110)) NIL)) (-3834 (((-110)) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -3853 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-3753 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-3441 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-3997 ((|#2| $) NIL)) (-3416 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-2197 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-3117 (($ $ (-862)) NIL)) (-3978 ((|#2| $) NIL)) (-3773 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-3464 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-3959 (((-1095 |#2|) $) NIL)) (-3896 (((-110)) NIL)) (-3443 (((-1082) $) NIL)) (-3803 (((-110)) NIL)) (-3824 (((-110)) NIL)) (-3843 (((-110)) NIL)) (-3248 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-2485 (((-1046) $) NIL)) (-3876 (((-110)) NIL)) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1505 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) 22) ((|#2| $ (-530)) NIL)) (-3211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2911 ((|#2| $) NIL)) (-2933 (($ (-597 |#2|)) NIL)) (-1635 (((-110) $) NIL)) (-2922 (((-223 |#1| |#2|) $) NIL)) (-2900 ((|#2| $) NIL (|has| |#2| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2441 (($ $) NIL)) (-3351 (((-637 |#2|) (-1181 $)) NIL) (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $ (-1181 $)) 25)) (-3173 (($ (-1181 |#2|)) NIL) (((-1181 |#2|) $) NIL)) (-2059 (((-597 (-893 |#2|))) NIL) (((-597 (-893 |#2|)) (-1181 $)) NIL)) (-1527 (($ $ $) NIL)) (-3938 (((-110)) NIL)) (-1554 (((-223 |#1| |#2|) $ (-530)) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) NIL)) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) 36)) (-3785 (((-597 (-1181 |#2|))) NIL (|has| |#2| (-522)))) (-1538 (($ $ $ $) NIL)) (-3918 (((-110)) NIL)) (-2857 (($ (-637 |#2|) $) NIL)) (-1515 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-1516 (($ $ $) NIL)) (-3928 (((-110)) NIL)) (-3907 (((-110)) NIL)) (-3867 (((-110)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) NIL) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2939 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135)))))
+(-13 (-1073 |t#1|) (-354 |t#1|) (-264 |t#1|) (-10 -8 (-15 -2939 ($ |t#1|))))
+(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-264 |#1|) . T) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-949 |#1|) . T) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
+((-2688 (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|))) 22) (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 14)) (-2426 (((-719) (-637 |#1|) (-1181 |#1|)) 30)) (-2057 (((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|)) 24)) (-2301 (((-110) (-637 |#1|) (-1181 |#1|)) 27)))
+(((-618 |#1|) (-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -2057 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -2301 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -2426 ((-719) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -618))
+((-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-618 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-618 *5)))) (-2057 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *1 (-618 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))))
+(-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -2057 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -2301 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -2426 ((-719) (-637 |#1|) (-1181 |#1|))))
+((-2688 (((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|) 45)) (-2426 (((-719) |#4| |#3|) 17)) (-2057 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2301 (((-110) |#4| |#3|) 13)))
+(((-619 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -2057 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2301 ((-110) |#4| |#3|)) (-15 -2426 ((-719) |#4| |#3|))) (-344) (-13 (-354 |#1|) (-10 -7 (-6 -4270))) (-13 (-354 |#1|) (-10 -7 (-6 -4270))) (-635 |#1| |#2| |#3|)) (T -619))
+((-2426 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-2057 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4270)))) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))) (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2)))) (-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-597 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3220 (-597 *7))))) (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7)) (-4 *3 (-635 *5 *6 *7)))) (-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
+(-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -2057 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2301 ((-110) |#4| |#3|)) (-15 -2426 ((-719) |#4| |#3|)))
+((-4244 (((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)) 45)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)))) (-522) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -620))
+((-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed")) (|:| -3220 (-597 (-1181 (-388 *8)))))) (-5 *1 (-620 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4244 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-1367 ((|#2| $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#2|))) NIL) (((-1181 (-637 |#2|)) (-1181 $)) NIL)) (-4040 (((-110) $) NIL)) (-3990 (((-1181 $)) 37)) (-3186 (((-110) $ (-719)) NIL)) (-1570 (($ |#2|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) NIL (|has| |#2| (-289)))) (-1325 (((-223 |#1| |#2|) $ (-530)) NIL)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-1383 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-2603 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-2228 ((|#2| $) NIL)) (-4209 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-3991 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#2| $) NIL)) (-3581 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-3988 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-2670 (((-1095 |#2|) $) NIL)) (-2662 (((-110)) NIL)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-1574 (($ (-1181 |#2|)) NIL) (($ (-1181 |#2|) (-1181 $)) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2426 (((-719) $) NIL (|has| |#2| (-522))) (((-862)) 38)) (-3532 ((|#2| $ (-530) (-530)) NIL)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL)) (-1791 (((-719) $) NIL (|has| |#2| (-522)))) (-2515 (((-597 (-223 |#1| |#2|)) $) NIL (|has| |#2| (-522)))) (-1796 (((-719) $) NIL)) (-3943 (((-110)) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#2| $) NIL (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#2|))) NIL)) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2654 (((-597 (-597 |#2|)) $) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-3832 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-1257 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-2465 ((|#2| $) NIL)) (-3846 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-3342 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#2| $) NIL)) (-2209 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-2837 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-2461 (((-1095 |#2|) $) NIL)) (-1921 (((-110)) NIL)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL)) (-2561 (((-110)) NIL)) (-3766 (((-110)) NIL)) (-1991 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) 22) ((|#2| $ (-530)) NIL)) (-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3896 ((|#2| $) NIL)) (-2128 (($ (-597 |#2|)) NIL)) (-1362 (((-110) $) NIL)) (-3614 (((-223 |#1| |#2|) $) NIL)) (-2338 ((|#2| $) NIL (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2328 (((-637 |#2|) (-1181 $)) NIL) (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $ (-1181 $)) 25)) (-3260 (($ (-1181 |#2|)) NIL) (((-1181 |#2|) $) NIL)) (-3028 (((-597 (-893 |#2|))) NIL) (((-597 (-893 |#2|)) (-1181 $)) NIL)) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL)) (-3350 (((-223 |#1| |#2|) $ (-530)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) 36)) (-3758 (((-597 (-1181 |#2|))) NIL (|has| |#2| (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL)) (-3003 (($ (-637 |#2|) $) NIL)) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL)) (-3566 (((-110)) NIL)) (-1957 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) NIL) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-621 |#1| |#2|) (-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-398 |#2|)) (-862) (-162)) (T -621))
NIL
(-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-398 |#2|))
-((-2246 (((-110) $ $) NIL)) (-3717 (((-597 |#1|) $) NIL)) (-3657 (($ $) 52)) (-1466 (((-110) $) NIL)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-1542 (((-3 $ "failed") (-767 |#1|)) 23)) (-1563 (((-110) (-767 |#1|)) 15)) (-1553 (($ (-767 |#1|)) 24)) (-4226 (((-110) $ $) 30)) (-2171 (((-862) $) 37)) (-3648 (($ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2473 (((-597 $) (-767 |#1|)) 17)) (-2258 (((-804) $) 43) (($ |#1|) 34) (((-767 |#1|) $) 39) (((-626 |#1|) $) 44)) (-1531 (((-57 (-597 $)) (-597 |#1|) (-862)) 57)) (-1521 (((-597 $) (-597 |#1|) (-862)) 60)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 53)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 38)))
-(((-622 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 -1466 ((-110) $)) (-15 -3648 ($ $)) (-15 -3657 ($ $)) (-15 -2171 ((-862) $)) (-15 -4226 ((-110) $ $)) (-15 -2258 ((-767 |#1|) $)) (-15 -2258 ((-626 |#1|) $)) (-15 -2473 ((-597 $) (-767 |#1|))) (-15 -1563 ((-110) (-767 |#1|))) (-15 -1553 ($ (-767 |#1|))) (-15 -1542 ((-3 $ "failed") (-767 |#1|))) (-15 -3717 ((-597 |#1|) $)) (-15 -1531 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -1521 ((-597 $) (-597 |#1|) (-862))))) (-795)) (T -622))
-((-1466 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3648 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-4226 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-622 *4))) (-5 *1 (-622 *4)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110)) (-5 *1 (-622 *4)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-1542 (*1 *1 *2) (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-1531 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
-(-13 (-795) (-975 |#1|) (-10 -8 (-15 -1466 ((-110) $)) (-15 -3648 ($ $)) (-15 -3657 ($ $)) (-15 -2171 ((-862) $)) (-15 -4226 ((-110) $ $)) (-15 -2258 ((-767 |#1|) $)) (-15 -2258 ((-626 |#1|) $)) (-15 -2473 ((-597 $) (-767 |#1|))) (-15 -1563 ((-110) (-767 |#1|))) (-15 -1553 ($ (-767 |#1|))) (-15 -1542 ((-3 $ "failed") (-767 |#1|))) (-15 -3717 ((-597 |#1|) $)) (-15 -1531 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -1521 ((-597 $) (-597 |#1|) (-862)))))
-((-3387 ((|#2| $) 76)) (-2040 (($ $) 96)) (-4102 (((-110) $ (-719)) 26)) (-2918 (($ $) 85) (($ $ (-719)) 88)) (-1539 (((-110) $) 97)) (-1994 (((-597 $) $) 72)) (-1966 (((-110) $ $) 71)) (-2014 (((-110) $ (-719)) 24)) (-1954 (((-530) $) 46)) (-1965 (((-530) $) 45)) (-1987 (((-110) $ (-719)) 22)) (-3937 (((-110) $) 74)) (-2294 ((|#2| $) 89) (($ $ (-719)) 92)) (-4016 (($ $ $ (-530)) 62) (($ |#2| $ (-530)) 61)) (-1983 (((-597 (-530)) $) 44)) (-1993 (((-110) (-530) $) 42)) (-2907 ((|#2| $) NIL) (($ $ (-719)) 84)) (-1312 (($ $ (-530)) 100)) (-1549 (((-110) $) 99)) (-1505 (((-110) (-1 (-110) |#2|) $) 32)) (-2002 (((-597 |#2|) $) 33)) (-1832 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1148 (-530))) 58) ((|#2| $ (-530)) 40) ((|#2| $ (-530) |#2|) 41)) (-1984 (((-530) $ $) 70)) (-1778 (($ $ (-1148 (-530))) 57) (($ $ (-530)) 51)) (-3663 (((-110) $) 66)) (-1513 (($ $) 81)) (-1524 (((-719) $) 80)) (-1534 (($ $) 79)) (-2268 (($ (-597 |#2|)) 37)) (-3021 (($ $) 101)) (-3885 (((-597 $) $) 69)) (-1974 (((-110) $ $) 68)) (-1515 (((-110) (-1 (-110) |#2|) $) 31)) (-2148 (((-110) $ $) 18)) (-2167 (((-719) $) 29)))
-(((-623 |#1| |#2|) (-10 -8 (-15 -3021 (|#1| |#1|)) (-15 -1312 (|#1| |#1| (-530))) (-15 -1539 ((-110) |#1|)) (-15 -1549 ((-110) |#1|)) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -2002 ((-597 |#2|) |#1|)) (-15 -1993 ((-110) (-530) |#1|)) (-15 -1983 ((-597 (-530)) |#1|)) (-15 -1965 ((-530) |#1|)) (-15 -1954 ((-530) |#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -1513 (|#1| |#1|)) (-15 -1524 ((-719) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "last")) (-15 -2294 (|#2| |#1|)) (-15 -2918 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| "rest")) (-15 -2918 (|#1| |#1|)) (-15 -2907 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "first")) (-15 -2907 (|#2| |#1|)) (-15 -1966 ((-110) |#1| |#1|)) (-15 -1974 ((-110) |#1| |#1|)) (-15 -1984 ((-530) |#1| |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719)))) (-624 |#2|) (-1135)) (T -623))
-NIL
-(-10 -8 (-15 -3021 (|#1| |#1|)) (-15 -1312 (|#1| |#1| (-530))) (-15 -1539 ((-110) |#1|)) (-15 -1549 ((-110) |#1|)) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -2002 ((-597 |#2|) |#1|)) (-15 -1993 ((-110) (-530) |#1|)) (-15 -1983 ((-597 (-530)) |#1|)) (-15 -1965 ((-530) |#1|)) (-15 -1954 ((-530) |#1|)) (-15 -2268 (|#1| (-597 |#2|))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -1778 (|#1| |#1| (-530))) (-15 -1778 (|#1| |#1| (-1148 (-530)))) (-15 -4016 (|#1| |#2| |#1| (-530))) (-15 -4016 (|#1| |#1| |#1| (-530))) (-15 -1513 (|#1| |#1|)) (-15 -1524 ((-719) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "last")) (-15 -2294 (|#2| |#1|)) (-15 -2918 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| "rest")) (-15 -2918 (|#1| |#1|)) (-15 -2907 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "first")) (-15 -2907 (|#2| |#1|)) (-15 -1966 ((-110) |#1| |#1|)) (-15 -1974 ((-110) |#1| |#1|)) (-15 -1984 ((-530) |#1| |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1505 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-3165 ((|#1| $) 65)) (-2040 (($ $) 67)) (-1935 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 52 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-1467 (($ $ $) 56 (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 58 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4271))) (($ $ "rest" $) 55 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 102)) (-3152 ((|#1| $) 66)) (-3956 (($) 7 T CONST)) (-1582 (($ $) 124)) (-2918 (($ $) 73) (($ $ (-719)) 71)) (-2939 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 103)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2858 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 87)) (-1539 (((-110) $) 83)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1573 (((-719) $) 123)) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) 108)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 95 (|has| (-530) (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 94 (|has| (-530) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-1602 (($ $) 126)) (-1613 (((-110) $) 127)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2294 ((|#1| $) 70) (($ $ (-719)) 68)) (-4016 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-1983 (((-597 (-530)) $) 92)) (-1993 (((-110) (-530) $) 91)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1592 ((|#1| $) 125)) (-2907 ((|#1| $) 76) (($ $ (-719)) 74)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1946 (($ $ |#1|) 96 (|has| $ (-6 -4271)))) (-1312 (($ $ (-530)) 122)) (-1549 (((-110) $) 84)) (-1622 (((-110) $) 128)) (-1634 (((-110) $) 129)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 90)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-1984 (((-530) $ $) 44)) (-1778 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-3663 (((-110) $) 46)) (-1513 (($ $) 62)) (-1489 (($ $) 59 (|has| $ (-6 -4271)))) (-1524 (((-719) $) 63)) (-1534 (($ $) 64)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 107)) (-1501 (($ $ $) 61 (|has| $ (-6 -4271))) (($ $ |#1|) 60 (|has| $ (-6 -4271)))) (-3476 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-3021 (($ $) 121)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) NIL)) (-3638 (($ $) 52)) (-3038 (((-110) $) NIL)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1459 (((-3 $ "failed") (-767 |#1|)) 23)) (-1247 (((-110) (-767 |#1|)) 15)) (-3218 (($ (-767 |#1|)) 24)) (-3847 (((-110) $ $) 30)) (-4109 (((-862) $) 37)) (-3628 (($ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2611 (((-597 $) (-767 |#1|)) 17)) (-2366 (((-804) $) 43) (($ |#1|) 34) (((-767 |#1|) $) 39) (((-626 |#1|) $) 44)) (-2935 (((-57 (-597 $)) (-597 |#1|) (-862)) 57)) (-3466 (((-597 $) (-597 |#1|) (-862)) 60)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 53)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 38)))
+(((-622 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 -3038 ((-110) $)) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ((-626 |#1|) $)) (-15 -2611 ((-597 $) (-767 |#1|))) (-15 -1247 ((-110) (-767 |#1|))) (-15 -3218 ($ (-767 |#1|))) (-15 -1459 ((-3 $ "failed") (-767 |#1|))) (-15 -3702 ((-597 |#1|) $)) (-15 -2935 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -3466 ((-597 $) (-597 |#1|) (-862))))) (-795)) (T -622))
+((-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-3638 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-622 *4))) (-5 *1 (-622 *4)))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110)) (-5 *1 (-622 *4)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-1459 (*1 *1 *2) (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
+(-13 (-795) (-975 |#1|) (-10 -8 (-15 -3038 ((-110) $)) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ((-626 |#1|) $)) (-15 -2611 ((-597 $) (-767 |#1|))) (-15 -1247 ((-110) (-767 |#1|))) (-15 -3218 ($ (-767 |#1|))) (-15 -1459 ((-3 $ "failed") (-767 |#1|))) (-15 -3702 ((-597 |#1|) $)) (-15 -2935 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -3466 ((-597 $) (-597 |#1|) (-862)))))
+((-3417 ((|#2| $) 76)) (-2133 (($ $) 96)) (-3186 (((-110) $ (-719)) 26)) (-3057 (($ $) 85) (($ $ (-719)) 88)) (-1230 (((-110) $) 97)) (-2011 (((-597 $) $) 72)) (-1646 (((-110) $ $) 71)) (-4027 (((-110) $ (-719)) 24)) (-4010 (((-530) $) 46)) (-1549 (((-530) $) 45)) (-2763 (((-110) $ (-719)) 22)) (-3615 (((-110) $) 74)) (-2407 ((|#2| $) 89) (($ $ (-719)) 92)) (-4028 (($ $ $ (-530)) 62) (($ |#2| $ (-530)) 61)) (-3567 (((-597 (-530)) $) 44)) (-1927 (((-110) (-530) $) 42)) (-3048 ((|#2| $) NIL) (($ $ (-719)) 84)) (-3168 (($ $ (-530)) 100)) (-4083 (((-110) $) 99)) (-1533 (((-110) (-1 (-110) |#2|) $) 32)) (-2261 (((-597 |#2|) $) 33)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1148 (-530))) 58) ((|#2| $ (-530)) 40) ((|#2| $ (-530) |#2|) 41)) (-2539 (((-530) $ $) 70)) (-1843 (($ $ (-1148 (-530))) 57) (($ $ (-530)) 51)) (-4246 (((-110) $) 66)) (-3697 (($ $) 81)) (-2754 (((-719) $) 80)) (-2004 (($ $) 79)) (-2377 (($ (-597 |#2|)) 37)) (-4050 (($ $) 101)) (-2557 (((-597 $) $) 69)) (-4153 (((-110) $ $) 68)) (-3889 (((-110) (-1 (-110) |#2|) $) 31)) (-2248 (((-110) $ $) 18)) (-2267 (((-719) $) 29)))
+(((-623 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3168 (|#1| |#1| (-530))) (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -2261 ((-597 |#2|) |#1|)) (-15 -1927 ((-110) (-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1549 ((-530) |#1|)) (-15 -4010 ((-530) |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -2539 ((-530) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719)))) (-624 |#2|) (-1135)) (T -623))
+NIL
+(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3168 (|#1| |#1| (-530))) (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -2261 ((-597 |#2|) |#1|)) (-15 -1927 ((-110) (-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1549 ((-530) |#1|)) (-15 -4010 ((-530) |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -2539 ((-530) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 102)) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3552 (($ $) 124)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 103)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3811 (((-719) $) 123)) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-3746 (($ $) 126)) (-3504 (((-110) $) 127)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2195 ((|#1| $) 125)) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-3168 (($ $ (-530)) 122)) (-4083 (((-110) $) 84)) (-2002 (((-110) $) 128)) (-1296 (((-110) $) 129)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-4050 (($ $) 121)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-624 |#1|) (-133) (-1135)) (T -624))
-((-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-2180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1602 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-1582 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(-13 (-1073 |t#1|) (-10 -8 (-15 -2272 ($ (-1 (-110) |t#1|) $)) (-15 -2180 ($ (-1 (-110) |t#1|) $)) (-15 -1634 ((-110) $)) (-15 -1622 ((-110) $)) (-15 -1613 ((-110) $)) (-15 -1602 ($ $)) (-15 -1592 (|t#1| $)) (-15 -1582 ($ $)) (-15 -1573 ((-719) $)) (-15 -1312 ($ $ (-530))) (-15 -3021 ($ $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1683 (($ (-719) (-719) (-719)) 33 (|has| |#1| (-984)))) (-4102 (((-110) $ (-719)) NIL)) (-1666 ((|#1| $ (-719) (-719) (-719) |#1|) 27)) (-3956 (($) NIL T CONST)) (-3845 (($ $ $) 37 (|has| |#1| (-984)))) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1644 (((-1181 (-719)) $) 9)) (-1654 (($ (-1099) $ $) 22)) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1675 (($ (-719)) 35 (|has| |#1| (-984)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-719) (-719) (-719)) 25)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2268 (($ (-597 (-597 (-597 |#1|)))) 44)) (-2258 (($ (-899 (-899 (-899 |#1|)))) 15) (((-899 (-899 (-899 |#1|))) $) 12) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-625 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1683 ($ (-719) (-719) (-719))) (-15 -1675 ($ (-719))) (-15 -3845 ($ $ $))) |%noBranch|) (-15 -2268 ($ (-597 (-597 (-597 |#1|))))) (-15 -1832 (|#1| $ (-719) (-719) (-719))) (-15 -1666 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2258 ($ (-899 (-899 (-899 |#1|))))) (-15 -2258 ((-899 (-899 (-899 |#1|))) $)) (-15 -1654 ($ (-1099) $ $)) (-15 -1644 ((-1181 (-719)) $)))) (-1027)) (T -625))
-((-1683 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-1675 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-3845 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-597 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-1832 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-1666 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-1654 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
-(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1683 ($ (-719) (-719) (-719))) (-15 -1675 ($ (-719))) (-15 -3845 ($ $ $))) |%noBranch|) (-15 -2268 ($ (-597 (-597 (-597 |#1|))))) (-15 -1832 (|#1| $ (-719) (-719) (-719))) (-15 -1666 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2258 ($ (-899 (-899 (-899 |#1|))))) (-15 -2258 ((-899 (-899 (-899 |#1|))) $)) (-15 -1654 ($ (-1099) $ $)) (-15 -1644 ((-1181 (-719)) $))))
-((-2246 (((-110) $ $) NIL)) (-3717 (((-597 |#1|) $) 14)) (-3657 (($ $) 18)) (-1466 (((-110) $) 19)) (-3012 (((-3 |#1| "failed") $) 22)) (-2446 ((|#1| $) 20)) (-2918 (($ $) 36)) (-3315 (($ $) 24)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-4226 (((-110) $ $) 42)) (-2171 (((-862) $) 38)) (-3648 (($ $) 17)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 ((|#1| $) 35)) (-2258 (((-804) $) 31) (($ |#1|) 23) (((-767 |#1|) $) 27)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 12)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 40)) (* (($ $ $) 34)))
-(((-626 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2258 ((-767 |#1|) $)) (-15 -2907 (|#1| $)) (-15 -3648 ($ $)) (-15 -2171 ((-862) $)) (-15 -4226 ((-110) $ $)) (-15 -3315 ($ $)) (-15 -2918 ($ $)) (-15 -1466 ((-110) $)) (-15 -3657 ($ $)) (-15 -3717 ((-597 |#1|) $)))) (-795)) (T -626))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-2907 (*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3648 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-4226 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2918 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2258 ((-767 |#1|) $)) (-15 -2907 (|#1| $)) (-15 -3648 ($ $)) (-15 -2171 ((-862) $)) (-15 -4226 ((-110) $ $)) (-15 -3315 ($ $)) (-15 -2918 ($ $)) (-15 -1466 ((-110) $)) (-15 -3657 ($ $)) (-15 -3717 ((-597 |#1|) $))))
-((-1708 ((|#1| (-1 |#1| (-719) |#1|) (-719) |#1|) 11)) (-2633 ((|#1| (-1 |#1| |#1|) (-719) |#1|) 9)))
-(((-627 |#1|) (-10 -7 (-15 -2633 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -1708 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|))) (-1027)) (T -627))
-((-1708 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))) (-2633 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))))
-(-10 -7 (-15 -2633 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -1708 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|)))
-((-3968 ((|#2| |#1| |#2|) 9)) (-3957 ((|#1| |#1| |#2|) 8)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -3957 (|#1| |#1| |#2|)) (-15 -3968 (|#2| |#1| |#2|))) (-1027) (-1027)) (T -628))
-((-3968 (*1 *2 *3 *2) (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3957 (*1 *2 *2 *3) (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -3957 (|#1| |#1| |#2|)) (-15 -3968 (|#2| |#1| |#2|)))
-((-1773 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -1773 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1027) (-1027) (-1027)) (T -629))
-((-1773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
-(-10 -7 (-15 -1773 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1708 (((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)) 23)) (-1693 (((-1 |#1|) |#1|) 8)) (-3511 ((|#1| |#1|) 16)) (-1701 (((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2258 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-719)) 20)))
-(((-630 |#1|) (-10 -7 (-15 -1693 ((-1 |#1|) |#1|)) (-15 -2258 ((-1 |#1|) |#1|)) (-15 -1701 (|#1| (-1 |#1| |#1|))) (-15 -1701 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3511 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -1708 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)))) (-1027)) (T -630))
-((-1708 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027)) (-5 *1 (-630 *4)))) (-3511 (*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530)) (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -1693 ((-1 |#1|) |#1|)) (-15 -2258 ((-1 |#1|) |#1|)) (-15 -1701 (|#1| (-1 |#1| |#1|))) (-15 -1701 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3511 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -1708 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|))))
-((-1734 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1724 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2562 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1716 (((-1 |#2| |#1|) |#2|) 11)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -1716 ((-1 |#2| |#1|) |#2|)) (-15 -1724 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2562 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1734 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1027) (-1027)) (T -631))
-((-1734 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)) (-4 *4 (-1027)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))) (-1716 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -1716 ((-1 |#2| |#1|) |#2|)) (-15 -1724 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2562 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1734 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3655 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1741 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1749 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1758 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3646 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -1741 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1749 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1758 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3646 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3655 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1027) (-1027) (-1027)) (T -632))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5)) (-5 *1 (-632 *5 *6 *7)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
-(-10 -7 (-15 -1741 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1749 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1758 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3646 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3655 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3856 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3114 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-633 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3114 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3114 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3856 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-984) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-984) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -633))
-((-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9)))) (-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))))
-(-10 -7 (-15 -3114 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3114 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3856 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1520 (($ (-719) (-719)) 33)) (-3698 (($ $ $) 56)) (-1350 (($ |#3|) 52) (($ $) 53)) (-1623 (((-110) $) 28)) (-3689 (($ $ (-530) (-530)) 58)) (-3681 (($ $ (-530) (-530)) 59)) (-3672 (($ $ (-530) (-530) (-530) (-530)) 63)) (-3714 (($ $) 54)) (-1645 (((-110) $) 14)) (-3665 (($ $ (-530) (-530) $) 64)) (-2416 ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) 62)) (-2944 (($ (-719) |#2|) 39)) (-2162 (($ (-597 (-597 |#2|))) 37)) (-3285 (((-597 (-597 |#2|)) $) 57)) (-3705 (($ $ $) 55)) (-3562 (((-3 $ "failed") $ |#2|) 91)) (-1832 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530))) 61)) (-2933 (($ (-597 |#2|)) 40) (($ (-597 $)) 42)) (-1635 (((-110) $) 24)) (-2258 (($ |#4|) 47) (((-804) $) NIL)) (-1614 (((-110) $) 30)) (-2257 (($ $ |#2|) 93)) (-2245 (($ $ $) 68) (($ $) 71)) (-2234 (($ $ $) 66)) (** (($ $ (-719)) 80) (($ $ (-530)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-530) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2257 (|#1| |#1| |#2|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| (-530) (-530) |#1|)) (-15 -3672 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -3681 (|#1| |#1| (-530) (-530))) (-15 -3689 (|#1| |#1| (-530) (-530))) (-15 -2416 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1832 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -3285 ((-597 (-597 |#2|)) |#1|)) (-15 -3698 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -1350 (|#1| |#3|)) (-15 -2258 (|#1| |#4|)) (-15 -2933 (|#1| (-597 |#1|))) (-15 -2933 (|#1| (-597 |#2|))) (-15 -2944 (|#1| (-719) |#2|)) (-15 -2162 (|#1| (-597 (-597 |#2|)))) (-15 -1520 (|#1| (-719) (-719))) (-15 -1614 ((-110) |#1|)) (-15 -1623 ((-110) |#1|)) (-15 -1635 ((-110) |#1|)) (-15 -1645 ((-110) |#1|)) (-15 -2416 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530)))) (-635 |#2| |#3| |#4|) (-984) (-354 |#2|) (-354 |#2|)) (T -634))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2257 (|#1| |#1| |#2|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| (-530) (-530) |#1|)) (-15 -3672 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -3681 (|#1| |#1| (-530) (-530))) (-15 -3689 (|#1| |#1| (-530) (-530))) (-15 -2416 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1832 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -3285 ((-597 (-597 |#2|)) |#1|)) (-15 -3698 (|#1| |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -1350 (|#1| |#3|)) (-15 -2258 (|#1| |#4|)) (-15 -2933 (|#1| (-597 |#1|))) (-15 -2933 (|#1| (-597 |#2|))) (-15 -2944 (|#1| (-719) |#2|)) (-15 -2162 (|#1| (-597 (-597 |#2|)))) (-15 -1520 (|#1| (-719) (-719))) (-15 -1614 ((-110) |#1|)) (-15 -1623 ((-110) |#1|)) (-15 -1635 ((-110) |#1|)) (-15 -1645 ((-110) |#1|)) (-15 -2416 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) (-530))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1520 (($ (-719) (-719)) 97)) (-3698 (($ $ $) 87)) (-1350 (($ |#2|) 91) (($ $) 90)) (-1623 (((-110) $) 99)) (-3689 (($ $ (-530) (-530)) 83)) (-3681 (($ $ (-530) (-530)) 82)) (-3672 (($ $ (-530) (-530) (-530) (-530)) 81)) (-3714 (($ $) 89)) (-1645 (((-110) $) 101)) (-4102 (((-110) $ (-719)) 8)) (-3665 (($ $ (-530) (-530) $) 80)) (-2416 ((|#1| $ (-530) (-530) |#1|) 44) (($ $ (-597 (-530)) (-597 (-530)) $) 84)) (-2992 (($ $ (-530) |#2|) 42)) (-2979 (($ $ (-530) |#3|) 41)) (-2944 (($ (-719) |#1|) 95)) (-3956 (($) 7 T CONST)) (-1543 (($ $) 67 (|has| |#1| (-289)))) (-1564 ((|#2| $ (-530)) 46)) (-4113 (((-719) $) 66 (|has| |#1| (-522)))) (-2858 ((|#1| $ (-530) (-530) |#1|) 43)) (-2787 ((|#1| $ (-530) (-530)) 48)) (-2456 (((-597 |#1|) $) 30)) (-1532 (((-719) $) 65 (|has| |#1| (-522)))) (-1522 (((-597 |#3|) $) 64 (|has| |#1| (-522)))) (-3531 (((-719) $) 51)) (-3547 (($ (-719) (-719) |#1|) 57)) (-3544 (((-719) $) 50)) (-2014 (((-110) $ (-719)) 9)) (-2892 ((|#1| $) 62 (|has| |#1| (-6 (-4272 "*"))))) (-1604 (((-530) $) 55)) (-1583 (((-530) $) 53)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1593 (((-530) $) 54)) (-1574 (((-530) $) 52)) (-2162 (($ (-597 (-597 |#1|))) 96)) (-2847 (($ (-1 |#1| |#1|) $) 34)) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3285 (((-597 (-597 |#1|)) $) 86)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3248 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-3705 (($ $ $) 88)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) 56)) (-3562 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-522)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47) (($ $ (-597 (-530)) (-597 (-530))) 85)) (-2933 (($ (-597 |#1|)) 94) (($ (-597 $)) 93)) (-1635 (((-110) $) 100)) (-2900 ((|#1| $) 63 (|has| |#1| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-1554 ((|#3| $ (-530)) 45)) (-2258 (($ |#3|) 92) (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-1614 (((-110) $) 98)) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2257 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-2245 (($ $ $) 78) (($ $) 77)) (-2234 (($ $ $) 79)) (** (($ $ (-719)) 70) (($ $ (-530)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-530) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-3552 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
+(-13 (-1073 |t#1|) (-10 -8 (-15 -2383 ($ (-1 (-110) |t#1|) $)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -1296 ((-110) $)) (-15 -2002 ((-110) $)) (-15 -3504 ((-110) $)) (-15 -3746 ($ $)) (-15 -2195 (|t#1| $)) (-15 -3552 ($ $)) (-15 -3811 ((-719) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1883 (($ (-719) (-719) (-719)) 33 (|has| |#1| (-984)))) (-3186 (((-110) $ (-719)) NIL)) (-3227 ((|#1| $ (-719) (-719) (-719) |#1|) 27)) (-2350 (($) NIL T CONST)) (-3849 (($ $ $) 37 (|has| |#1| (-984)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3957 (((-1181 (-719)) $) 9)) (-1688 (($ (-1099) $ $) 22)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2881 (($ (-719)) 35 (|has| |#1| (-984)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-719) (-719) (-719)) 25)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2377 (($ (-597 (-597 (-597 |#1|)))) 44)) (-2366 (($ (-899 (-899 (-899 |#1|)))) 15) (((-899 (-899 (-899 |#1|))) $) 12) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-625 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1883 ($ (-719) (-719) (-719))) (-15 -2881 ($ (-719))) (-15 -3849 ($ $ $))) |%noBranch|) (-15 -2377 ($ (-597 (-597 (-597 |#1|))))) (-15 -1902 (|#1| $ (-719) (-719) (-719))) (-15 -3227 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2366 ($ (-899 (-899 (-899 |#1|))))) (-15 -2366 ((-899 (-899 (-899 |#1|))) $)) (-15 -1688 ($ (-1099) $ $)) (-15 -3957 ((-1181 (-719)) $)))) (-1027)) (T -625))
+((-1883 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-3849 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-597 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-1902 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-3227 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-1688 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1883 ($ (-719) (-719) (-719))) (-15 -2881 ($ (-719))) (-15 -3849 ($ $ $))) |%noBranch|) (-15 -2377 ($ (-597 (-597 (-597 |#1|))))) (-15 -1902 (|#1| $ (-719) (-719) (-719))) (-15 -3227 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2366 ($ (-899 (-899 (-899 |#1|))))) (-15 -2366 ((-899 (-899 (-899 |#1|))) $)) (-15 -1688 ($ (-1099) $ $)) (-15 -3957 ((-1181 (-719)) $))))
+((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 14)) (-3638 (($ $) 18)) (-3038 (((-110) $) 19)) (-3139 (((-3 |#1| "failed") $) 22)) (-2585 ((|#1| $) 20)) (-3057 (($ $) 36)) (-2627 (($ $) 24)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3847 (((-110) $ $) 42)) (-4109 (((-862) $) 38)) (-3628 (($ $) 17)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) 35)) (-2366 (((-804) $) 31) (($ |#1|) 23) (((-767 |#1|) $) 27)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 12)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 40)) (* (($ $ $) 34)))
+(((-626 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3628 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2627 ($ $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3638 ($ $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -626))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3638 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3628 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2627 ($ $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3638 ($ $)) (-15 -3702 ((-597 |#1|) $))))
+((-2623 ((|#1| (-1 |#1| (-719) |#1|) (-719) |#1|) 11)) (-2785 ((|#1| (-1 |#1| |#1|) (-719) |#1|) 9)))
+(((-627 |#1|) (-10 -7 (-15 -2785 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2623 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|))) (-1027)) (T -627))
+((-2623 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))) (-2785 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))))
+(-10 -7 (-15 -2785 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2623 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|)))
+((-3979 ((|#2| |#1| |#2|) 9)) (-3966 ((|#1| |#1| |#2|) 8)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -3966 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|))) (-1027) (-1027)) (T -628))
+((-3979 (*1 *2 *3 *2) (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3966 (*1 *2 *2 *3) (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -3966 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|)))
+((-1837 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -1837 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1027) (-1027) (-1027)) (T -629))
+((-1837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
+(-10 -7 (-15 -1837 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2623 (((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)) 23)) (-1505 (((-1 |#1|) |#1|) 8)) (-3509 ((|#1| |#1|) 16)) (-4179 (((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2366 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-719)) 20)))
+(((-630 |#1|) (-10 -7 (-15 -1505 ((-1 |#1|) |#1|)) (-15 -2366 ((-1 |#1|) |#1|)) (-15 -4179 (|#1| (-1 |#1| |#1|))) (-15 -4179 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3509 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2623 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)))) (-1027)) (T -630))
+((-2623 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027)) (-5 *1 (-630 *4)))) (-3509 (*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530)) (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))) (-1505 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -1505 ((-1 |#1|) |#1|)) (-15 -2366 ((-1 |#1|) |#1|)) (-15 -4179 (|#1| (-1 |#1| |#1|))) (-15 -4179 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3509 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2623 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|))))
+((-3318 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1888 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2708 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2259 (((-1 |#2| |#1|) |#2|) 11)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -2259 ((-1 |#2| |#1|) |#2|)) (-15 -1888 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2708 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3318 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1027) (-1027)) (T -631))
+((-3318 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)) (-4 *4 (-1027)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))) (-2259 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2259 ((-1 |#2| |#1|) |#2|)) (-15 -1888 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2708 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3318 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-1807 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2820 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1753 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3116 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2143 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -2820 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1753 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3116 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1807 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1027) (-1027) (-1027)) (T -632))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5)) (-5 *1 (-632 *5 *6 *7)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
+(-10 -7 (-15 -2820 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1753 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3116 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1807 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2134 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3217 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-633 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3217 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2134 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-984) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-984) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -633))
+((-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))))
+(-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3217 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2134 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-1511 (($ (-719) (-719)) 33)) (-3844 (($ $ $) 56)) (-4114 (($ |#3|) 52) (($ $) 53)) (-3053 (((-110) $) 28)) (-1835 (($ $ (-530) (-530)) 58)) (-2277 (($ $ (-530) (-530)) 59)) (-2744 (($ $ (-530) (-530) (-530) (-530)) 63)) (-3904 (($ $) 54)) (-4040 (((-110) $) 14)) (-3302 (($ $ (-530) (-530) $) 64)) (-2552 ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) 62)) (-1570 (($ (-719) |#2|) 39)) (-2263 (($ (-597 (-597 |#2|))) 37)) (-2654 (((-597 (-597 |#2|)) $) 57)) (-1279 (($ $ $) 55)) (-3551 (((-3 $ "failed") $ |#2|) 91)) (-1902 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530))) 61)) (-2128 (($ (-597 |#2|)) 40) (($ (-597 $)) 42)) (-1362 (((-110) $) 24)) (-2366 (($ |#4|) 47) (((-804) $) NIL)) (-3589 (((-110) $) 30)) (-2364 (($ $ |#2|) 93)) (-2351 (($ $ $) 68) (($ $) 71)) (-2339 (($ $ $) 66)) (** (($ $ (-719)) 80) (($ $ (-530)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-530) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-634 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#2|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| (-530) (-530) |#1|)) (-15 -2744 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -2277 (|#1| |#1| (-530) (-530))) (-15 -1835 (|#1| |#1| (-530) (-530))) (-15 -2552 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1902 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -2654 ((-597 (-597 |#2|)) |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4114 (|#1| |#3|)) (-15 -2366 (|#1| |#4|)) (-15 -2128 (|#1| (-597 |#1|))) (-15 -2128 (|#1| (-597 |#2|))) (-15 -1570 (|#1| (-719) |#2|)) (-15 -2263 (|#1| (-597 (-597 |#2|)))) (-15 -1511 (|#1| (-719) (-719))) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530)))) (-635 |#2| |#3| |#4|) (-984) (-354 |#2|) (-354 |#2|)) (T -634))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#2|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| (-530) (-530) |#1|)) (-15 -2744 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -2277 (|#1| |#1| (-530) (-530))) (-15 -1835 (|#1| |#1| (-530) (-530))) (-15 -2552 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1902 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -2654 ((-597 (-597 |#2|)) |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4114 (|#1| |#3|)) (-15 -2366 (|#1| |#4|)) (-15 -2128 (|#1| (-597 |#1|))) (-15 -2128 (|#1| (-597 |#2|))) (-15 -1570 (|#1| (-719) |#2|)) (-15 -2263 (|#1| (-597 (-597 |#2|)))) (-15 -1511 (|#1| (-719) (-719))) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) 97)) (-3844 (($ $ $) 87)) (-4114 (($ |#2|) 91) (($ $) 90)) (-3053 (((-110) $) 99)) (-1835 (($ $ (-530) (-530)) 83)) (-2277 (($ $ (-530) (-530)) 82)) (-2744 (($ $ (-530) (-530) (-530) (-530)) 81)) (-3904 (($ $) 89)) (-4040 (((-110) $) 101)) (-3186 (((-110) $ (-719)) 8)) (-3302 (($ $ (-530) (-530) $) 80)) (-2552 ((|#1| $ (-530) (-530) |#1|) 44) (($ $ (-597 (-530)) (-597 (-530)) $) 84)) (-2626 (($ $ (-530) |#2|) 42)) (-3959 (($ $ (-530) |#3|) 41)) (-1570 (($ (-719) |#1|) 95)) (-2350 (($) 7 T CONST)) (-1583 (($ $) 67 (|has| |#1| (-289)))) (-1325 ((|#2| $ (-530)) 46)) (-2426 (((-719) $) 66 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) 43)) (-3532 ((|#1| $ (-530) (-530)) 48)) (-3779 (((-597 |#1|) $) 30)) (-1791 (((-719) $) 65 (|has| |#1| (-522)))) (-2515 (((-597 |#3|) $) 64 (|has| |#1| (-522)))) (-1796 (((-719) $) 51)) (-3538 (($ (-719) (-719) |#1|) 57)) (-1810 (((-719) $) 50)) (-4027 (((-110) $ (-719)) 9)) (-2714 ((|#1| $) 62 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 55)) (-3643 (((-530) $) 53)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 54)) (-3909 (((-530) $) 52)) (-2263 (($ (-597 (-597 |#1|))) 96)) (-3583 (($ (-1 |#1| |#1|) $) 34)) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2654 (((-597 (-597 |#1|)) $) 86)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-1279 (($ $ $) 88)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) 56)) (-3551 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47) (($ $ (-597 (-530)) (-597 (-530))) 85)) (-2128 (($ (-597 |#1|)) 94) (($ (-597 $)) 93)) (-1362 (((-110) $) 100)) (-2338 ((|#1| $) 63 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3350 ((|#3| $ (-530)) 45)) (-2366 (($ |#3|) 92) (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 98)) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-2351 (($ $ $) 78) (($ $) 77)) (-2339 (($ $ $) 79)) (** (($ $ (-719)) 70) (($ $ (-530)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-530) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-635 |#1| |#2| |#3|) (-133) (-984) (-354 |t#1|) (-354 |t#1|)) (T -635))
-((-1645 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1520 (*1 *1 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2944 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *2)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (-1350 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (-1350 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3714 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3705 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3698 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3))))) (-1832 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2416 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3689 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3681 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3672 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3665 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2234 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2245 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-522)))) (-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (-1543 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-289)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))) (-3248 (*1 *1 *1) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4271) (-6 -4270) (-15 -1645 ((-110) $)) (-15 -1635 ((-110) $)) (-15 -1623 ((-110) $)) (-15 -1614 ((-110) $)) (-15 -1520 ($ (-719) (-719))) (-15 -2162 ($ (-597 (-597 |t#1|)))) (-15 -2944 ($ (-719) |t#1|)) (-15 -2933 ($ (-597 |t#1|))) (-15 -2933 ($ (-597 $))) (-15 -2258 ($ |t#3|)) (-15 -1350 ($ |t#2|)) (-15 -1350 ($ $)) (-15 -3714 ($ $)) (-15 -3705 ($ $ $)) (-15 -3698 ($ $ $)) (-15 -3285 ((-597 (-597 |t#1|)) $)) (-15 -1832 ($ $ (-597 (-530)) (-597 (-530)))) (-15 -2416 ($ $ (-597 (-530)) (-597 (-530)) $)) (-15 -3689 ($ $ (-530) (-530))) (-15 -3681 ($ $ (-530) (-530))) (-15 -3672 ($ $ (-530) (-530) (-530) (-530))) (-15 -3665 ($ $ (-530) (-530) $)) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2245 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-530) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-719))) (IF (|has| |t#1| (-522)) (-15 -3562 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2257 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -1543 ($ $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -4113 ((-719) $)) (-15 -1532 ((-719) $)) (-15 -1522 ((-597 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4272 "*"))) (PROGN (-15 -2900 (|t#1| $)) (-15 -2892 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -3248 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-55 |#1| |#2| |#3|) . T) ((-1135) . T))
-((-1543 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-4113 (((-719) |#4|) 99 (|has| |#1| (-522)))) (-1532 (((-719) |#4|) 76 (|has| |#1| (-522)))) (-1522 (((-597 |#3|) |#4|) 83 (|has| |#1| (-522)))) (-4070 (((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-2892 ((|#1| |#4|) 35)) (-3765 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-522)))) (-3248 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-3754 ((|#4| |#4|) 68 (|has| |#1| (-522)))) (-3735 ((|#4| |#4| |#1| (-530) (-530)) 43)) (-3726 ((|#4| |#4| (-530) (-530)) 38)) (-3744 ((|#4| |#4| |#1| (-530) (-530)) 48)) (-2900 ((|#1| |#4|) 78)) (-2630 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-522)))))
-(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2900 (|#1| |#4|)) (-15 -2892 (|#1| |#4|)) (-15 -3726 (|#4| |#4| (-530) (-530))) (-15 -3735 (|#4| |#4| |#1| (-530) (-530))) (-15 -3744 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -4113 ((-719) |#4|)) (-15 -1532 ((-719) |#4|)) (-15 -1522 ((-597 |#3|) |#4|)) (-15 -3754 (|#4| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#4|)) (-15 -2630 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1543 (|#4| |#4|)) (-15 -4070 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3248 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -636))
-((-3248 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-4070 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5)))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-1522 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-3744 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-3735 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-3726 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2)) (-4 *2 (-635 *4 *5 *6)))) (-2892 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))))
-(-10 -7 (-15 -2900 (|#1| |#4|)) (-15 -2892 (|#1| |#4|)) (-15 -3726 (|#4| |#4| (-530) (-530))) (-15 -3735 (|#4| |#4| |#1| (-530) (-530))) (-15 -3744 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -4113 ((-719) |#4|)) (-15 -1532 ((-719) |#4|)) (-15 -1522 ((-597 |#3|) |#4|)) (-15 -3754 (|#4| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#4|)) (-15 -2630 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1543 (|#4| |#4|)) (-15 -4070 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3248 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719) (-719)) 47)) (-3698 (($ $ $) NIL)) (-1350 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-1623 (((-110) $) NIL)) (-3689 (($ $ (-530) (-530)) 12)) (-3681 (($ $ (-530) (-530)) NIL)) (-3672 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3714 (($ $) NIL)) (-1645 (((-110) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-3665 (($ $ (-530) (-530) $) NIL)) (-2416 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2992 (($ $ (-530) (-1181 |#1|)) NIL)) (-2979 (($ $ (-530) (-1181 |#1|)) NIL)) (-2944 (($ (-719) |#1|) 22)) (-3956 (($) NIL T CONST)) (-1543 (($ $) 31 (|has| |#1| (-289)))) (-1564 (((-1181 |#1|) $ (-530)) NIL)) (-4113 (((-719) $) 33 (|has| |#1| (-522)))) (-2858 ((|#1| $ (-530) (-530) |#1|) 51)) (-2787 ((|#1| $ (-530) (-530)) NIL)) (-2456 (((-597 |#1|) $) NIL)) (-1532 (((-719) $) 35 (|has| |#1| (-522)))) (-1522 (((-597 (-1181 |#1|)) $) 38 (|has| |#1| (-522)))) (-3531 (((-719) $) 20)) (-3547 (($ (-719) (-719) |#1|) 16)) (-3544 (((-719) $) 21)) (-2014 (((-110) $ (-719)) NIL)) (-2892 ((|#1| $) 29 (|has| |#1| (-6 (-4272 "*"))))) (-1604 (((-530) $) 9)) (-1583 (((-530) $) 10)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1593 (((-530) $) 11)) (-1574 (((-530) $) 48)) (-2162 (($ (-597 (-597 |#1|))) NIL)) (-2847 (($ (-1 |#1| |#1|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3285 (((-597 (-597 |#1|)) $) 60)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3248 (((-3 $ "failed") $) 45 (|has| |#1| (-344)))) (-3705 (($ $ $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1946 (($ $ |#1|) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2933 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL) (($ (-1181 |#1|)) 52)) (-1635 (((-110) $) NIL)) (-2900 ((|#1| $) 27 (|has| |#1| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-3173 (((-506) $) 64 (|has| |#1| (-572 (-506))))) (-1554 (((-1181 |#1|) $ (-530)) NIL)) (-2258 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $ $) NIL) (($ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) 23) (($ $ (-530)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) NIL) (((-1181 |#1|) (-1181 |#1|) $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-637 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2933 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3248 ((-3 $ "failed") $)) |%noBranch|))) (-984)) (T -637))
-((-3248 (*1 *1 *1) (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3)))))
-(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2933 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -3248 ((-3 $ "failed") $)) |%noBranch|)))
-((-3825 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 25)) (-3814 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 21)) (-3835 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719)) 26)) (-3786 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 14)) (-3795 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 18) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 16)) (-3804 (((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|)) 20)) (-3774 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 12)) (** (((-637 |#1|) (-637 |#1|) (-719)) 30)))
-(((-638 |#1|) (-10 -7 (-15 -3774 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3786 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3795 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3795 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3804 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -3814 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -3825 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3835 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719)))) (-984)) (T -638))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-3835 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-3825 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3814 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3804 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3795 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3786 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3774 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(-10 -7 (-15 -3774 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3786 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3795 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3795 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3804 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -3814 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -3825 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3835 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719))))
-((-2011 (($) 8 T CONST)) (-2258 (((-804) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2934 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -2011)) 16)) (-2474 ((|#1| $) 11)))
-(((-639 |#1|) (-13 (-1176) (-571 (-804)) (-10 -8 (-15 -2934 ((-110) $ (|[\|\|]| |#1|))) (-15 -2934 ((-110) $ (|[\|\|]| -2011))) (-15 -2258 ($ |#1|)) (-15 -2258 (|#1| $)) (-15 -2474 (|#1| $)) (-15 -2011 ($) -2562))) (-571 (-804))) (T -639))
-((-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-804))) (-5 *2 (-110)) (-5 *1 (-639 *4)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2011)) (-5 *2 (-110)) (-5 *1 (-639 *4)) (-4 *4 (-571 (-804))))) (-2258 (*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2258 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2474 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2011 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))))
-(-13 (-1176) (-571 (-804)) (-10 -8 (-15 -2934 ((-110) $ (|[\|\|]| |#1|))) (-15 -2934 ((-110) $ (|[\|\|]| -2011))) (-15 -2258 ($ |#1|)) (-15 -2258 (|#1| $)) (-15 -2474 (|#1| $)) (-15 -2011 ($) -2562)))
-((-3868 ((|#2| |#2| |#4|) 25)) (-3897 (((-637 |#2|) |#3| |#4|) 31)) (-3877 (((-637 |#2|) |#2| |#4|) 30)) (-3847 (((-1181 |#2|) |#2| |#4|) 16)) (-3858 ((|#2| |#3| |#4|) 24)) (-3908 (((-637 |#2|) |#3| |#4| (-719) (-719)) 38)) (-3887 (((-637 |#2|) |#2| |#4| (-719)) 37)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3847 ((-1181 |#2|) |#2| |#4|)) (-15 -3858 (|#2| |#3| |#4|)) (-15 -3868 (|#2| |#2| |#4|)) (-15 -3877 ((-637 |#2|) |#2| |#4|)) (-15 -3887 ((-637 |#2|) |#2| |#4| (-719))) (-15 -3897 ((-637 |#2|) |#3| |#4|)) (-15 -3908 ((-637 |#2|) |#3| |#4| (-719) (-719)))) (-1027) (-841 |#1|) (-354 |#2|) (-13 (-354 |#1|) (-10 -7 (-6 -4270)))) (T -640))
-((-3908 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6)) (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4270)))))) (-3897 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6)) (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))) (-3887 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6)) (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4270)))))) (-3877 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))) (-3868 (*1 *2 *2 *3) (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4270)))))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))) (-3847 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))))
-(-10 -7 (-15 -3847 ((-1181 |#2|) |#2| |#4|)) (-15 -3858 (|#2| |#3| |#4|)) (-15 -3868 (|#2| |#2| |#4|)) (-15 -3877 ((-637 |#2|) |#2| |#4|)) (-15 -3887 ((-637 |#2|) |#2| |#4| (-719))) (-15 -3897 ((-637 |#2|) |#3| |#4|)) (-15 -3908 ((-637 |#2|) |#3| |#4| (-719) (-719))))
-((-2173 (((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)) 20)) (-2149 ((|#1| (-637 |#2|)) 9)) (-2159 (((-637 |#1|) (-637 |#2|)) 18)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -2149 (|#1| (-637 |#2|))) (-15 -2159 ((-637 |#1|) (-637 |#2|))) (-15 -2173 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)))) (-522) (-932 |#1|)) (T -641))
-((-2173 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4))) (-5 *1 (-641 *4 *5)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-641 *2 *4)))))
-(-10 -7 (-15 -2149 (|#1| (-637 |#2|))) (-15 -2159 ((-637 |#1|) (-637 |#2|))) (-15 -2173 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3359 (((-637 (-647))) NIL) (((-637 (-647)) (-1181 $)) NIL)) (-1380 (((-647) $) NIL)) (-2276 (($ $) NIL (|has| (-647) (-1121)))) (-2144 (($ $) NIL (|has| (-647) (-1121)))) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-647) (-330)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1359 (($ $) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-3550 (((-399 $) $) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-2487 (($ $) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1945 (((-110) $ $) NIL (|has| (-647) (-289)))) (-2879 (((-719)) NIL (|has| (-647) (-349)))) (-2253 (($ $) NIL (|has| (-647) (-1121)))) (-2121 (($ $) NIL (|has| (-647) (-1121)))) (-2297 (($ $) NIL (|has| (-647) (-1121)))) (-2169 (($ $) NIL (|has| (-647) (-1121)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-647) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-2446 (((-530) $) NIL) (((-647) $) NIL) (((-388 (-530)) $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-3477 (($ (-1181 (-647))) NIL) (($ (-1181 (-647)) (-1181 $)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-647) (-330)))) (-3607 (($ $ $) NIL (|has| (-647) (-289)))) (-3348 (((-637 (-647)) $) NIL) (((-637 (-647)) $ (-1181 $)) NIL)) (-1298 (((-637 (-647)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-647))) (|:| |vec| (-1181 (-647)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-647) (-593 (-530)))) (((-637 (-530)) (-637 $)) NIL (|has| (-647) (-593 (-530))))) (-3856 (((-3 $ "failed") (-388 (-1095 (-647)))) NIL (|has| (-647) (-344))) (($ (-1095 (-647))) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2499 (((-647) $) 29)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-515)))) (-1928 (((-110) $) NIL (|has| (-647) (-515)))) (-1917 (((-388 (-530)) $) NIL (|has| (-647) (-515)))) (-4113 (((-862)) NIL)) (-1376 (($) NIL (|has| (-647) (-349)))) (-3588 (($ $ $) NIL (|has| (-647) (-289)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| (-647) (-289)))) (-2563 (($) NIL (|has| (-647) (-330)))) (-1674 (((-110) $) NIL (|has| (-647) (-330)))) (-3175 (($ $) NIL (|has| (-647) (-330))) (($ $ (-719)) NIL (|has| (-647) (-330)))) (-2049 (((-110) $) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-1429 (((-2 (|:| |r| (-647)) (|:| |phi| (-647))) $) NIL (-12 (|has| (-647) (-993)) (|has| (-647) (-1121))))) (-1877 (($) NIL (|has| (-647) (-1121)))) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-647) (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-647) (-827 (-530))))) (-1334 (((-781 (-862)) $) NIL (|has| (-647) (-330))) (((-862) $) NIL (|has| (-647) (-330)))) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-1717 (((-647) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-647) (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-3873 (((-1095 (-647)) $) NIL (|has| (-647) (-344)))) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3114 (($ (-1 (-647) (-647)) $) NIL)) (-3830 (((-862) $) NIL (|has| (-647) (-349)))) (-2070 (($ $) NIL (|has| (-647) (-1121)))) (-3844 (((-1095 (-647)) $) NIL)) (-2072 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| (-647) (-344)))) (-3677 (($) NIL (|has| (-647) (-330)) CONST)) (-1910 (($ (-862)) NIL (|has| (-647) (-349)))) (-1440 (($) NIL)) (-2510 (((-647) $) 31)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-647) (-289)))) (-2108 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-647) (-330)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-2473 (((-399 $) $) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-647) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| (-647) (-289)))) (-3562 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-647)) NIL (|has| (-647) (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-2693 (($ $) NIL (|has| (-647) (-1121)))) (-4084 (($ $ (-1099) (-647)) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-1099)) (-597 (-647))) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-276 (-647)))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-276 (-647))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-647) (-647)) NIL (|has| (-647) (-291 (-647)))) (($ $ (-597 (-647)) (-597 (-647))) NIL (|has| (-647) (-291 (-647))))) (-1934 (((-719) $) NIL (|has| (-647) (-289)))) (-1832 (($ $ (-647)) NIL (|has| (-647) (-268 (-647) (-647))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| (-647) (-289)))) (-2341 (((-647)) NIL) (((-647) (-1181 $)) NIL)) (-3187 (((-3 (-719) "failed") $ $) NIL (|has| (-647) (-330))) (((-719) $) NIL (|has| (-647) (-330)))) (-3211 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-3139 (((-637 (-647)) (-1181 $) (-1 (-647) (-647))) NIL (|has| (-647) (-344)))) (-4212 (((-1095 (-647))) NIL)) (-2308 (($ $) NIL (|has| (-647) (-1121)))) (-2181 (($ $) NIL (|has| (-647) (-1121)))) (-1612 (($) NIL (|has| (-647) (-330)))) (-2287 (($ $) NIL (|has| (-647) (-1121)))) (-2155 (($ $) NIL (|has| (-647) (-1121)))) (-2263 (($ $) NIL (|has| (-647) (-1121)))) (-2133 (($ $) NIL (|has| (-647) (-1121)))) (-3351 (((-637 (-647)) (-1181 $)) NIL) (((-1181 (-647)) $) NIL) (((-637 (-647)) (-1181 $) (-1181 $)) NIL) (((-1181 (-647)) $ (-1181 $)) NIL)) (-3173 (((-506) $) NIL (|has| (-647) (-572 (-506)))) (((-159 (-208)) $) NIL (|has| (-647) (-960))) (((-159 (-360)) $) NIL (|has| (-647) (-960))) (((-833 (-360)) $) NIL (|has| (-647) (-572 (-833 (-360))))) (((-833 (-530)) $) NIL (|has| (-647) (-572 (-833 (-530))))) (($ (-1095 (-647))) NIL) (((-1095 (-647)) $) NIL) (($ (-1181 (-647))) NIL) (((-1181 (-647)) $) NIL)) (-1800 (($ $) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-330))))) (-4136 (($ (-647) (-647)) 12)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-647)) NIL) (($ (-159 (-360))) 13) (($ (-159 (-530))) 19) (($ (-159 (-647))) 28) (($ (-159 (-649))) 25) (((-159 (-360)) $) 33) (($ (-388 (-530))) NIL (-1476 (|has| (-647) (-975 (-388 (-530)))) (|has| (-647) (-344))))) (-1795 (($ $) NIL (|has| (-647) (-330))) (((-3 $ "failed") $) NIL (-1476 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-138))))) (-1640 (((-1095 (-647)) $) NIL)) (-1667 (((-719)) NIL)) (-3853 (((-1181 $)) NIL)) (-2339 (($ $) NIL (|has| (-647) (-1121)))) (-2211 (($ $) NIL (|has| (-647) (-1121)))) (-3020 (((-110) $ $) NIL)) (-2318 (($ $) NIL (|has| (-647) (-1121)))) (-2192 (($ $) NIL (|has| (-647) (-1121)))) (-2361 (($ $) NIL (|has| (-647) (-1121)))) (-2230 (($ $) NIL (|has| (-647) (-1121)))) (-2027 (((-647) $) NIL (|has| (-647) (-1121)))) (-2910 (($ $) NIL (|has| (-647) (-1121)))) (-2241 (($ $) NIL (|has| (-647) (-1121)))) (-2349 (($ $) NIL (|has| (-647) (-1121)))) (-2220 (($ $) NIL (|has| (-647) (-1121)))) (-2328 (($ $) NIL (|has| (-647) (-1121)))) (-2202 (($ $) NIL (|has| (-647) (-1121)))) (-2218 (($ $) NIL (|has| (-647) (-993)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-647) (-344)))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL (|has| (-647) (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| (-647) (-1121))) (($ $ (-388 (-530))) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121)))) (($ $ (-530)) NIL (|has| (-647) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-647) $) NIL) (($ $ (-647)) NIL) (($ (-388 (-530)) $) NIL (|has| (-647) (-344))) (($ $ (-388 (-530))) NIL (|has| (-647) (-344)))))
-(((-642) (-13 (-368) (-156 (-647)) (-10 -8 (-15 -2258 ($ (-159 (-360)))) (-15 -2258 ($ (-159 (-530)))) (-15 -2258 ($ (-159 (-647)))) (-15 -2258 ($ (-159 (-649)))) (-15 -2258 ((-159 (-360)) $))))) (T -642))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-159 (-530))) (-5 *1 (-642)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-642)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-642)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))))
-(-13 (-368) (-156 (-647)) (-10 -8 (-15 -2258 ($ (-159 (-360)))) (-15 -2258 ($ (-159 (-530)))) (-15 -2258 ($ (-159 (-647)))) (-15 -2258 ($ (-159 (-649)))) (-15 -2258 ((-159 (-360)) $))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-3929 (($ $) 62)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3919 (((-597 (-2 (|:| -1806 |#1|) (|:| -2494 (-719)))) $) 61)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-4040 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1511 (*1 *1 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1570 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *2)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (-4114 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (-4114 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3904 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1279 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3844 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3))))) (-1902 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2552 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1835 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2277 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2744 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3302 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-522)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-289)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-1991 (*1 *1 *1) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -4040 ((-110) $)) (-15 -1362 ((-110) $)) (-15 -3053 ((-110) $)) (-15 -3589 ((-110) $)) (-15 -1511 ($ (-719) (-719))) (-15 -2263 ($ (-597 (-597 |t#1|)))) (-15 -1570 ($ (-719) |t#1|)) (-15 -2128 ($ (-597 |t#1|))) (-15 -2128 ($ (-597 $))) (-15 -2366 ($ |t#3|)) (-15 -4114 ($ |t#2|)) (-15 -4114 ($ $)) (-15 -3904 ($ $)) (-15 -1279 ($ $ $)) (-15 -3844 ($ $ $)) (-15 -2654 ((-597 (-597 |t#1|)) $)) (-15 -1902 ($ $ (-597 (-530)) (-597 (-530)))) (-15 -2552 ($ $ (-597 (-530)) (-597 (-530)) $)) (-15 -1835 ($ $ (-530) (-530))) (-15 -2277 ($ $ (-530) (-530))) (-15 -2744 ($ $ (-530) (-530) (-530) (-530))) (-15 -3302 ($ $ (-530) (-530) $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-530) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-719))) (IF (|has| |t#1| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -1583 ($ $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -2426 ((-719) $)) (-15 -1791 ((-719) $)) (-15 -2515 ((-597 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4271 "*"))) (PROGN (-15 -2338 (|t#1| $)) (-15 -2714 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -1991 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-55 |#1| |#2| |#3|) . T) ((-1135) . T))
+((-1583 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-2426 (((-719) |#4|) 99 (|has| |#1| (-522)))) (-1791 (((-719) |#4|) 76 (|has| |#1| (-522)))) (-2515 (((-597 |#3|) |#4|) 83 (|has| |#1| (-522)))) (-3297 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-2714 ((|#1| |#4|) 35)) (-2588 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-522)))) (-1991 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-3933 ((|#4| |#4|) 68 (|has| |#1| (-522)))) (-1937 ((|#4| |#4| |#1| (-530) (-530)) 43)) (-3501 ((|#4| |#4| (-530) (-530)) 38)) (-1468 ((|#4| |#4| |#1| (-530) (-530)) 48)) (-2338 ((|#1| |#4|) 78)) (-1803 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-522)))))
+(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2338 (|#1| |#4|)) (-15 -2714 (|#1| |#4|)) (-15 -3501 (|#4| |#4| (-530) (-530))) (-15 -1937 (|#4| |#4| |#1| (-530) (-530))) (-15 -1468 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (-15 -2515 ((-597 |#3|) |#4|)) (-15 -3933 (|#4| |#4|)) (-15 -2588 ((-3 |#4| "failed") |#4|)) (-15 -1803 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1583 (|#4| |#4|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -636))
+((-1991 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3297 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2588 (*1 *2 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1791 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1468 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-1937 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-3501 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2)) (-4 *2 (-635 *4 *5 *6)))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))))
+(-10 -7 (-15 -2338 (|#1| |#4|)) (-15 -2714 (|#1| |#4|)) (-15 -3501 (|#4| |#4| (-530) (-530))) (-15 -1937 (|#4| |#4| |#1| (-530) (-530))) (-15 -1468 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (-15 -2515 ((-597 |#3|) |#4|)) (-15 -3933 (|#4| |#4|)) (-15 -2588 ((-3 |#4| "failed") |#4|)) (-15 -1803 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1583 (|#4| |#4|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) 47)) (-3844 (($ $ $) NIL)) (-4114 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) 12)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-1181 |#1|)) NIL)) (-3959 (($ $ (-530) (-1181 |#1|)) NIL)) (-1570 (($ (-719) |#1|) 22)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 31 (|has| |#1| (-289)))) (-1325 (((-1181 |#1|) $ (-530)) NIL)) (-2426 (((-719) $) 33 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) 51)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) 35 (|has| |#1| (-522)))) (-2515 (((-597 (-1181 |#1|)) $) 38 (|has| |#1| (-522)))) (-1796 (((-719) $) 20)) (-3538 (($ (-719) (-719) |#1|) 16)) (-1810 (((-719) $) 21)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) 29 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 9)) (-3643 (((-530) $) 10)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 11)) (-3909 (((-530) $) 48)) (-2263 (($ (-597 (-597 |#1|))) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) 60)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 45 (|has| |#1| (-344)))) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL) (($ (-1181 |#1|)) 52)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) 27 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 64 (|has| |#1| (-572 (-506))))) (-3350 (((-1181 |#1|) $ (-530)) NIL)) (-2366 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) 23) (($ $ (-530)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) NIL) (((-1181 |#1|) (-1181 |#1|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-637 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2128 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 $ "failed") $)) |%noBranch|))) (-984)) (T -637))
+((-1991 (*1 *1 *1) (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3)))))
+(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2128 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 $ "failed") $)) |%noBranch|)))
+((-2679 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 25)) (-4037 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 21)) (-2423 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719)) 26)) (-3862 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 14)) (-3549 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 18) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 16)) (-1961 (((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|)) 20)) (-2336 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 12)) (** (((-637 |#1|) (-637 |#1|) (-719)) 30)))
+(((-638 |#1|) (-10 -7 (-15 -2336 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3862 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1961 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -4037 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2679 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2423 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719)))) (-984)) (T -638))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2423 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2679 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-4037 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-1961 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3549 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3549 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3862 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2336 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(-10 -7 (-15 -2336 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3862 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1961 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -4037 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2679 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2423 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719))))
+((-2099 (($) 8 T CONST)) (-2366 (((-804) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3071 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -2099)) 16)) (-2612 ((|#1| $) 11)))
+(((-639 |#1|) (-13 (-1176) (-571 (-804)) (-10 -8 (-15 -3071 ((-110) $ (|[\|\|]| |#1|))) (-15 -3071 ((-110) $ (|[\|\|]| -2099))) (-15 -2366 ($ |#1|)) (-15 -2366 (|#1| $)) (-15 -2612 (|#1| $)) (-15 -2099 ($) -2708))) (-571 (-804))) (T -639))
+((-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-804))) (-5 *2 (-110)) (-5 *1 (-639 *4)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2099)) (-5 *2 (-110)) (-5 *1 (-639 *4)) (-4 *4 (-571 (-804))))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2366 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2612 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2099 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))))
+(-13 (-1176) (-571 (-804)) (-10 -8 (-15 -3071 ((-110) $ (|[\|\|]| |#1|))) (-15 -3071 ((-110) $ (|[\|\|]| -2099))) (-15 -2366 ($ |#1|)) (-15 -2366 (|#1| $)) (-15 -2612 (|#1| $)) (-15 -2099 ($) -2708)))
+((-2074 ((|#2| |#2| |#4|) 25)) (-2028 (((-637 |#2|) |#3| |#4|) 31)) (-3824 (((-637 |#2|) |#2| |#4|) 30)) (-3872 (((-1181 |#2|) |#2| |#4|) 16)) (-3568 ((|#2| |#3| |#4|) 24)) (-3661 (((-637 |#2|) |#3| |#4| (-719) (-719)) 38)) (-2777 (((-637 |#2|) |#2| |#4| (-719)) 37)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3872 ((-1181 |#2|) |#2| |#4|)) (-15 -3568 (|#2| |#3| |#4|)) (-15 -2074 (|#2| |#2| |#4|)) (-15 -3824 ((-637 |#2|) |#2| |#4|)) (-15 -2777 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2028 ((-637 |#2|) |#3| |#4|)) (-15 -3661 ((-637 |#2|) |#3| |#4| (-719) (-719)))) (-1027) (-841 |#1|) (-354 |#2|) (-13 (-354 |#1|) (-10 -7 (-6 -4269)))) (T -640))
+((-3661 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6)) (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))) (-2028 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6)) (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6)) (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))) (-3824 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-2074 (*1 *2 *2 *3) (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4269)))))) (-3568 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-3872 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
+(-10 -7 (-15 -3872 ((-1181 |#2|) |#2| |#4|)) (-15 -3568 (|#2| |#3| |#4|)) (-15 -2074 (|#2| |#2| |#4|)) (-15 -3824 ((-637 |#2|) |#2| |#4|)) (-15 -2777 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2028 ((-637 |#2|) |#3| |#4|)) (-15 -3661 ((-637 |#2|) |#3| |#4| (-719) (-719))))
+((-1912 (((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)) 20)) (-3912 ((|#1| (-637 |#2|)) 9)) (-2765 (((-637 |#1|) (-637 |#2|)) 18)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -3912 (|#1| (-637 |#2|))) (-15 -2765 ((-637 |#1|) (-637 |#2|))) (-15 -1912 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)))) (-522) (-932 |#1|)) (T -641))
+((-1912 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4))) (-5 *1 (-641 *4 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-641 *2 *4)))))
+(-10 -7 (-15 -3912 (|#1| (-637 |#2|))) (-15 -2765 ((-637 |#1|) (-637 |#2|))) (-15 -1912 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1863 (((-637 (-647))) NIL) (((-637 (-647)) (-1181 $)) NIL)) (-1367 (((-647) $) NIL)) (-2386 (($ $) NIL (|has| (-647) (-1121)))) (-2244 (($ $) NIL (|has| (-647) (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-647) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-3544 (($ $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-3272 (((-399 $) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-2625 (($ $) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1426 (((-110) $ $) NIL (|has| (-647) (-289)))) (-3023 (((-719)) NIL (|has| (-647) (-349)))) (-2360 (($ $) NIL (|has| (-647) (-1121)))) (-2219 (($ $) NIL (|has| (-647) (-1121)))) (-2409 (($ $) NIL (|has| (-647) (-1121)))) (-2269 (($ $) NIL (|has| (-647) (-1121)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-647) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-2585 (((-530) $) NIL) (((-647) $) NIL) (((-388 (-530)) $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-1574 (($ (-1181 (-647))) NIL) (($ (-1181 (-647)) (-1181 $)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-647) (-330)))) (-3590 (($ $ $) NIL (|has| (-647) (-289)))) (-1984 (((-637 (-647)) $) NIL) (((-637 (-647)) $ (-1181 $)) NIL)) (-2329 (((-637 (-647)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-647))) (|:| |vec| (-1181 (-647)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-647) (-593 (-530)))) (((-637 (-530)) (-637 $)) NIL (|has| (-647) (-593 (-530))))) (-2134 (((-3 $ "failed") (-388 (-1095 (-647)))) NIL (|has| (-647) (-344))) (($ (-1095 (-647))) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2637 (((-647) $) 29)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-515)))) (-3016 (((-110) $) NIL (|has| (-647) (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| (-647) (-515)))) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-647) (-349)))) (-3571 (($ $ $) NIL (|has| (-647) (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-647) (-289)))) (-1677 (($) NIL (|has| (-647) (-330)))) (-2798 (((-110) $) NIL (|has| (-647) (-330)))) (-3948 (($ $) NIL (|has| (-647) (-330))) (($ $ (-719)) NIL (|has| (-647) (-330)))) (-3295 (((-110) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-3284 (((-2 (|:| |r| (-647)) (|:| |phi| (-647))) $) NIL (-12 (|has| (-647) (-993)) (|has| (-647) (-1121))))) (-1948 (($) NIL (|has| (-647) (-1121)))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-647) (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-647) (-827 (-530))))) (-2031 (((-781 (-862)) $) NIL (|has| (-647) (-330))) (((-862) $) NIL (|has| (-647) (-330)))) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-2376 (((-647) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-647) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-1359 (((-1095 (-647)) $) NIL (|has| (-647) (-344)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 (-647) (-647)) $) NIL)) (-1905 (((-862) $) NIL (|has| (-647) (-349)))) (-2168 (($ $) NIL (|has| (-647) (-1121)))) (-2123 (((-1095 (-647)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| (-647) (-344)))) (-3657 (($) NIL (|has| (-647) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-647) (-349)))) (-1254 (($) NIL)) (-2649 (((-647) $) 31)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-647) (-289)))) (-2204 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-647) (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-2611 (((-399 $) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-647) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-647) (-289)))) (-3551 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-647)) NIL (|has| (-647) (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-2853 (($ $) NIL (|has| (-647) (-1121)))) (-4098 (($ $ (-1099) (-647)) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-1099)) (-597 (-647))) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-276 (-647)))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-276 (-647))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-647) (-647)) NIL (|has| (-647) (-291 (-647)))) (($ $ (-597 (-647)) (-597 (-647))) NIL (|has| (-647) (-291 (-647))))) (-2356 (((-719) $) NIL (|has| (-647) (-289)))) (-1902 (($ $ (-647)) NIL (|has| (-647) (-268 (-647) (-647))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-647) (-289)))) (-3060 (((-647)) NIL) (((-647) (-1181 $)) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL (|has| (-647) (-330))) (((-719) $) NIL (|has| (-647) (-330)))) (-3289 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-1542 (((-637 (-647)) (-1181 $) (-1 (-647) (-647))) NIL (|has| (-647) (-344)))) (-1781 (((-1095 (-647))) NIL)) (-2421 (($ $) NIL (|has| (-647) (-1121)))) (-2281 (($ $) NIL (|has| (-647) (-1121)))) (-3406 (($) NIL (|has| (-647) (-330)))) (-2398 (($ $) NIL (|has| (-647) (-1121)))) (-2254 (($ $) NIL (|has| (-647) (-1121)))) (-2373 (($ $) NIL (|has| (-647) (-1121)))) (-2231 (($ $) NIL (|has| (-647) (-1121)))) (-2328 (((-637 (-647)) (-1181 $)) NIL) (((-1181 (-647)) $) NIL) (((-637 (-647)) (-1181 $) (-1181 $)) NIL) (((-1181 (-647)) $ (-1181 $)) NIL)) (-3260 (((-506) $) NIL (|has| (-647) (-572 (-506)))) (((-159 (-208)) $) NIL (|has| (-647) (-960))) (((-159 (-360)) $) NIL (|has| (-647) (-960))) (((-833 (-360)) $) NIL (|has| (-647) (-572 (-833 (-360))))) (((-833 (-530)) $) NIL (|has| (-647) (-572 (-833 (-530))))) (($ (-1095 (-647))) NIL) (((-1095 (-647)) $) NIL) (($ (-1181 (-647))) NIL) (((-1181 (-647)) $) NIL)) (-2555 (($ $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-330))))) (-4146 (($ (-647) (-647)) 12)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-647)) NIL) (($ (-159 (-360))) 13) (($ (-159 (-530))) 19) (($ (-159 (-647))) 28) (($ (-159 (-649))) 25) (((-159 (-360)) $) 33) (($ (-388 (-530))) NIL (-1461 (|has| (-647) (-975 (-388 (-530)))) (|has| (-647) (-344))))) (-3251 (($ $) NIL (|has| (-647) (-330))) (((-3 $ "failed") $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-138))))) (-1814 (((-1095 (-647)) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL)) (-2459 (($ $) NIL (|has| (-647) (-1121)))) (-2314 (($ $) NIL (|has| (-647) (-1121)))) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) NIL (|has| (-647) (-1121)))) (-2293 (($ $) NIL (|has| (-647) (-1121)))) (-2485 (($ $) NIL (|has| (-647) (-1121)))) (-2334 (($ $) NIL (|has| (-647) (-1121)))) (-3117 (((-647) $) NIL (|has| (-647) (-1121)))) (-3632 (($ $) NIL (|has| (-647) (-1121)))) (-2347 (($ $) NIL (|has| (-647) (-1121)))) (-2472 (($ $) NIL (|has| (-647) (-1121)))) (-2324 (($ $) NIL (|has| (-647) (-1121)))) (-2446 (($ $) NIL (|has| (-647) (-1121)))) (-2304 (($ $) NIL (|has| (-647) (-1121)))) (-3934 (($ $) NIL (|has| (-647) (-993)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-647) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| (-647) (-1121))) (($ $ (-388 (-530))) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121)))) (($ $ (-530)) NIL (|has| (-647) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-647) $) NIL) (($ $ (-647)) NIL) (($ (-388 (-530)) $) NIL (|has| (-647) (-344))) (($ $ (-388 (-530))) NIL (|has| (-647) (-344)))))
+(((-642) (-13 (-368) (-156 (-647)) (-10 -8 (-15 -2366 ($ (-159 (-360)))) (-15 -2366 ($ (-159 (-530)))) (-15 -2366 ($ (-159 (-647)))) (-15 -2366 ($ (-159 (-649)))) (-15 -2366 ((-159 (-360)) $))))) (T -642))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-530))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-642)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))))
+(-13 (-368) (-156 (-647)) (-10 -8 (-15 -2366 ($ (-159 (-360)))) (-15 -2366 ($ (-159 (-530)))) (-15 -2366 ($ (-159 (-647)))) (-15 -2366 ($ (-159 (-649)))) (-15 -2366 ((-159 (-360)) $))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-643 |#1|) (-133) (-1027)) (T -643))
-((-3440 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-3929 (*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027)) (-5 *2 (-597 (-2 (|:| -1806 *3) (|:| -2494 (-719))))))))
-(-13 (-218 |t#1|) (-10 -8 (-15 -3440 ($ |t#1| $ (-719))) (-15 -3929 ($ $)) (-15 -3919 ((-597 (-2 (|:| -1806 |t#1|) (|:| -2494 (-719)))) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3960 (((-597 |#1|) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) (-530)) 47)) (-3939 ((|#1| |#1| (-530)) 46)) (-2108 ((|#1| |#1| |#1| (-530)) 36)) (-2473 (((-597 |#1|) |#1| (-530)) 39)) (-3970 ((|#1| |#1| (-530) |#1| (-530)) 32)) (-3948 (((-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) |#1| (-530)) 45)))
-(((-644 |#1|) (-10 -7 (-15 -2108 (|#1| |#1| |#1| (-530))) (-15 -3939 (|#1| |#1| (-530))) (-15 -2473 ((-597 |#1|) |#1| (-530))) (-15 -3948 ((-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) |#1| (-530))) (-15 -3960 ((-597 |#1|) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) (-530))) (-15 -3970 (|#1| |#1| (-530) |#1| (-530)))) (-1157 (-530))) (T -644))
-((-3970 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| -2473 *5) (|:| -3409 (-530))))) (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5)) (-5 *1 (-644 *5)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2473 *3) (|:| -3409 *4)))) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 *3)) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-3939 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-2108 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -2108 (|#1| |#1| |#1| (-530))) (-15 -3939 (|#1| |#1| (-530))) (-15 -2473 ((-597 |#1|) |#1| (-530))) (-15 -3948 ((-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) |#1| (-530))) (-15 -3960 ((-597 |#1|) (-597 (-2 (|:| -2473 |#1|) (|:| -3409 (-530)))) (-530))) (-15 -3970 (|#1| |#1| (-530) |#1| (-530))))
-((-4008 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-3979 (((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 40) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 42) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 44)) (-3999 (((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245))) NIL)) (-3988 (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 45)))
-(((-645) (-10 -7 (-15 -3979 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3979 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3979 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3988 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3999 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4008 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -645))
-((-4008 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))) (-3999 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-3988 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-3979 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))) (-3979 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-3979 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))))
-(-10 -7 (-15 -3979 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3979 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3979 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3988 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3999 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4008 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
-((-2473 (((-399 (-1095 |#4|)) (-1095 |#4|)) 73) (((-399 |#4|) |#4|) 221)))
-(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4|)) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-330) (-890 |#3| |#2| |#1|)) (T -646))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4|)) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 84)) (-1694 (((-530) $) 30)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-1323 (($ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL)) (-3956 (($) NIL T CONST)) (-1676 (($ $) NIL)) (-3012 (((-3 (-530) "failed") $) 73) (((-3 (-388 (-530)) "failed") $) 26) (((-3 (-360) "failed") $) 70)) (-2446 (((-530) $) 75) (((-388 (-530)) $) 67) (((-360) $) 68)) (-3607 (($ $ $) 96)) (-1673 (((-3 $ "failed") $) 87)) (-3588 (($ $ $) 95)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-1214 (((-862)) 77) (((-862) (-862)) 76)) (-2991 (((-110) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-1334 (((-530) $) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL)) (-1717 (($ $) NIL)) (-3002 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4019 (((-530) (-530)) 81) (((-530)) 82)) (-4194 (($ $ $) NIL) (($) NIL (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-4028 (((-530) (-530)) 79) (((-530)) 80)) (-1757 (($ $ $) NIL) (($) NIL (-12 (-3694 (|has| $ (-6 -4253))) (-3694 (|has| $ (-6 -4261)))))) (-3102 (((-530) $) 16)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 91)) (-3214 (((-862) (-530)) NIL (|has| $ (-6 -4261)))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL)) (-1702 (($ $) NIL)) (-2873 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) 92)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3059 (((-530) $) 22)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 94)) (-2124 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4261)))) (-3200 (((-862) (-530)) NIL (|has| $ (-6 -4261)))) (-3173 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) NIL)) (-2258 (((-804) $) 52) (($ (-530)) 63) (($ $) NIL) (($ (-388 (-530))) 66) (($ (-530)) 63) (($ (-388 (-530))) 66) (($ (-360)) 60) (((-360) $) 50) (($ (-649)) 55)) (-1667 (((-719)) 103)) (-2337 (($ (-530) (-530) (-862)) 44)) (-1709 (($ $) NIL)) (-3227 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4261)))) (-3256 (((-862)) 35) (((-862) (-862)) 78)) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 32 T CONST)) (-2955 (($) 17 T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 83)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 101)) (-2257 (($ $ $) 65)) (-2245 (($ $) 99) (($ $ $) 100)) (-2234 (($ $ $) 98)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 90)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 97) (($ $ $) 88) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-647) (-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -1214 ((-862) (-862))) (-15 -1214 ((-862))) (-15 -3256 ((-862) (-862))) (-15 -3256 ((-862))) (-15 -4028 ((-530) (-530))) (-15 -4028 ((-530))) (-15 -4019 ((-530) (-530))) (-15 -4019 ((-530))) (-15 -2258 ((-360) $)) (-15 -2258 ($ (-649))) (-15 -3102 ((-530) $)) (-15 -3059 ((-530) $)) (-15 -2337 ($ (-530) (-530) (-862)))))) (T -647))
-((-3256 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-1214 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-1214 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-4028 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-4019 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-647)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647)))) (-2337 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647)))))
-(-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -1214 ((-862) (-862))) (-15 -1214 ((-862))) (-15 -3256 ((-862) (-862))) (-15 -3256 ((-862))) (-15 -4028 ((-530) (-530))) (-15 -4028 ((-530))) (-15 -4019 ((-530) (-530))) (-15 -4019 ((-530))) (-15 -2258 ((-360) $)) (-15 -2258 ($ (-649))) (-15 -3102 ((-530) $)) (-15 -3059 ((-530) $)) (-15 -2337 ($ (-530) (-530) (-862)))))
-((-4061 (((-637 |#1|) (-637 |#1|) |#1| |#1|) 65)) (-1543 (((-637 |#1|) (-637 |#1|) |#1|) 48)) (-4049 (((-637 |#1|) (-637 |#1|) |#1|) 66)) (-4039 (((-637 |#1|) (-637 |#1|)) 49)) (-4070 (((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|) 64)))
-(((-648 |#1|) (-10 -7 (-15 -4039 ((-637 |#1|) (-637 |#1|))) (-15 -1543 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -4049 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -4061 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -4070 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|))) (-289)) (T -648))
-((-4070 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-648 *3)) (-4 *3 (-289)))) (-4061 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-4049 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-1543 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(-10 -7 (-15 -4039 ((-637 |#1|) (-637 |#1|))) (-15 -1543 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -4049 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -4061 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -4070 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-4075 (($ $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-4055 (($ $ $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL)) (-4206 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) 27)) (-2446 (((-530) $) 25)) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL)) (-1928 (((-110) $) NIL)) (-1917 (((-388 (-530)) $) NIL)) (-1376 (($ $) NIL) (($) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-4034 (($ $ $ $) NIL)) (-4086 (($ $ $) NIL)) (-2991 (((-110) $) NIL)) (-1364 (($ $ $) NIL)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-3150 (((-110) $) NIL)) (-1555 (((-110) $) NIL)) (-1560 (((-3 $ "failed") $) NIL)) (-3002 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4044 (($ $ $ $) NIL)) (-4194 (($ $ $) NIL)) (-4080 (((-862) (-862)) 10) (((-862)) 9)) (-1757 (($ $ $) NIL)) (-2966 (($ $) NIL)) (-2171 (($ $) NIL)) (-2072 (($ (-597 $)) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-4024 (($ $ $) NIL)) (-3677 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2485 (((-1046) $) NIL) (($ $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1339 (($ $) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL) (($ $ (-719)) NIL)) (-1692 (($ $) NIL)) (-2441 (($ $) NIL)) (-3173 (((-208) $) NIL) (((-360) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (((-530) $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) 24) (($ $) NIL) (($ (-530)) 24) (((-297 $) (-297 (-530))) 18)) (-1667 (((-719)) NIL)) (-4098 (((-110) $ $) NIL)) (-1464 (($ $ $) NIL)) (-3256 (($) NIL)) (-3020 (((-110) $ $) NIL)) (-4066 (($ $ $ $) NIL)) (-2218 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL) (($ $ (-719)) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-649) (-13 (-368) (-515) (-10 -8 (-15 -4080 ((-862) (-862))) (-15 -4080 ((-862))) (-15 -2258 ((-297 $) (-297 (-530))))))) (T -649))
-((-4080 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-4080 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-297 (-530))) (-5 *2 (-297 (-649))) (-5 *1 (-649)))))
-(-13 (-368) (-515) (-10 -8 (-15 -4080 ((-862) (-862))) (-15 -4080 ((-862))) (-15 -2258 ((-297 $) (-297 (-530))))))
-((-4129 (((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)) 19)) (-4094 (((-1 |#4| |#2| |#3|) (-1099)) 12)))
-(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4094 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -4129 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)))) (-572 (-506)) (-1135) (-1135) (-1135)) (T -650))
-((-4129 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))))
-(-10 -7 (-15 -4094 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -4129 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3627 (((-1186) $ (-719)) 14)) (-1944 (((-719) $) 12)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 24)))
-(((-651 |#1|) (-13 (-129) (-571 |#1|) (-10 -8 (-15 -2258 ($ |#1|)))) (-1027)) (T -651))
-((-2258 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027)))))
-(-13 (-129) (-571 |#1|) (-10 -8 (-15 -2258 ($ |#1|))))
-((-4104 (((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)) 34) (((-1 (-208) (-208)) |#1| (-1099)) 39)))
-(((-652 |#1|) (-10 -7 (-15 -4104 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -4104 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)))) (-572 (-506))) (T -652))
-((-4104 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))) (-4104 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -4104 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -4104 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099))))
-((-1962 (((-1099) |#1| (-1099) (-597 (-1099))) 9) (((-1099) |#1| (-1099) (-1099) (-1099)) 12) (((-1099) |#1| (-1099) (-1099)) 11) (((-1099) |#1| (-1099)) 10)))
-(((-653 |#1|) (-10 -7 (-15 -1962 ((-1099) |#1| (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-597 (-1099))))) (-572 (-506))) (T -653))
-((-1962 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-1962 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-1962 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-1962 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -1962 ((-1099) |#1| (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -1962 ((-1099) |#1| (-1099) (-597 (-1099)))))
-((-2240 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-654 |#1| |#2|) (-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1135) (-1135)) (T -654))
-((-2240 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-4117 (((-1 |#3| |#2|) (-1099)) 11)) (-4129 (((-1 |#3| |#2|) |#1| (-1099)) 21)))
-(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4117 ((-1 |#3| |#2|) (-1099))) (-15 -4129 ((-1 |#3| |#2|) |#1| (-1099)))) (-572 (-506)) (-1135) (-1135)) (T -655))
-((-4129 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(-10 -7 (-15 -4117 ((-1 |#3| |#2|) (-1099))) (-15 -4129 ((-1 |#3| |#2|) |#1| (-1099))))
-((-4166 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|) 62)) (-4156 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|) 75)) (-4143 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|) 34)))
-(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4143 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -4156 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4166 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -656))
-((-4166 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13)) (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13)) (-5 *7 (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| *13))))) (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10)))) (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12)) (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))) (-4156 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9))) (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719))) (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11)) (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12))) (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))) (-4143 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11)) (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719))) (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795)) (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741)) (-5 *1 (-656 *9 *10 *8 *11)))))
-(-10 -7 (-15 -4143 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -4156 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4166 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2425 (($ $) 41)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-2575 (($ |#1| (-719)) 39)) (-3674 (((-719) $) 43)) (-2402 ((|#1| $) 42)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3409 (((-719) $) 44)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 38 (|has| |#1| (-162)))) (-2782 ((|#1| $ (-719)) 40)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-2441 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2287 (*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027)) (-5 *2 (-597 (-2 (|:| -1874 *3) (|:| -2632 (-719))))))))
+(-13 (-218 |t#1|) (-10 -8 (-15 -2441 ($ |t#1| $ (-719))) (-15 -2287 ($ $)) (-15 -2413 ((-597 (-2 (|:| -1874 |t#1|) (|:| -2632 (-719)))) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-1311 (((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530)) 47)) (-3774 ((|#1| |#1| (-530)) 46)) (-2204 ((|#1| |#1| |#1| (-530)) 36)) (-2611 (((-597 |#1|) |#1| (-530)) 39)) (-4120 ((|#1| |#1| (-530) |#1| (-530)) 32)) (-2827 (((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530)) 45)))
+(((-644 |#1|) (-10 -7 (-15 -2204 (|#1| |#1| |#1| (-530))) (-15 -3774 (|#1| |#1| (-530))) (-15 -2611 ((-597 |#1|) |#1| (-530))) (-15 -2827 ((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530))) (-15 -1311 ((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530))) (-15 -4120 (|#1| |#1| (-530) |#1| (-530)))) (-1157 (-530))) (T -644))
+((-4120 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| -2611 *5) (|:| -1429 (-530))))) (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5)) (-5 *1 (-644 *5)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -1429 *4)))) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 *3)) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-2204 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -2204 (|#1| |#1| |#1| (-530))) (-15 -3774 (|#1| |#1| (-530))) (-15 -2611 ((-597 |#1|) |#1| (-530))) (-15 -2827 ((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530))) (-15 -1311 ((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530))) (-15 -4120 (|#1| |#1| (-530) |#1| (-530))))
+((-4072 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-2719 (((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 40) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 42) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 44)) (-3761 (((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245))) NIL)) (-2343 (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 45)))
+(((-645) (-10 -7 (-15 -2719 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2343 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3761 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4072 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -645))
+((-4072 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))) (-3761 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2343 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2719 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))) (-2719 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2719 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))))
+(-10 -7 (-15 -2719 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2343 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3761 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4072 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|)) 73) (((-399 |#4|) |#4|) 221)))
+(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-330) (-890 |#3| |#2| |#1|)) (T -646))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 84)) (-1612 (((-530) $) 30)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-2350 (($) NIL T CONST)) (-2963 (($ $) NIL)) (-3139 (((-3 (-530) "failed") $) 73) (((-3 (-388 (-530)) "failed") $) 26) (((-3 (-360) "failed") $) 70)) (-2585 (((-530) $) 75) (((-388 (-530)) $) 67) (((-360) $) 68)) (-3590 (($ $ $) 96)) (-2707 (((-3 $ "failed") $) 87)) (-3571 (($ $ $) 95)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 77) (((-862) (-862)) 76)) (-2514 (((-110) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-2031 (((-530) $) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (($ $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1737 (((-530) (-530)) 81) (((-530)) 82)) (-2508 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3192 (((-530) (-530)) 79) (((-530)) 80)) (-1817 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 16)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 91)) (-2887 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL)) (-3175 (($ $) NIL)) (-3018 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 92)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 22)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 94)) (-2513 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1764 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) NIL)) (-2366 (((-804) $) 52) (($ (-530)) 63) (($ $) NIL) (($ (-388 (-530))) 66) (($ (-530)) 63) (($ (-388 (-530))) 66) (($ (-360)) 60) (((-360) $) 50) (($ (-649)) 55)) (-3300 (((-719)) 103)) (-2899 (($ (-530) (-530) (-862)) 44)) (-2748 (($ $) NIL)) (-1711 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1510 (((-862)) 35) (((-862) (-862)) 78)) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) 32 T CONST)) (-3093 (($) 17 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 83)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 101)) (-2364 (($ $ $) 65)) (-2351 (($ $) 99) (($ $ $) 100)) (-2339 (($ $ $) 98)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 90)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 97) (($ $ $) 88) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-647) (-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -2582 ((-862) (-862))) (-15 -2582 ((-862))) (-15 -1510 ((-862) (-862))) (-15 -1510 ((-862))) (-15 -3192 ((-530) (-530))) (-15 -3192 ((-530))) (-15 -1737 ((-530) (-530))) (-15 -1737 ((-530))) (-15 -2366 ((-360) $)) (-15 -2366 ($ (-649))) (-15 -3208 ((-530) $)) (-15 -3194 ((-530) $)) (-15 -2899 ($ (-530) (-530) (-862)))))) (T -647))
+((-1510 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-2582 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-3192 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-1737 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-647)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647)))) (-2899 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647)))))
+(-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -2582 ((-862) (-862))) (-15 -2582 ((-862))) (-15 -1510 ((-862) (-862))) (-15 -1510 ((-862))) (-15 -3192 ((-530) (-530))) (-15 -3192 ((-530))) (-15 -1737 ((-530) (-530))) (-15 -1737 ((-530))) (-15 -2366 ((-360) $)) (-15 -2366 ($ (-649))) (-15 -3208 ((-530) $)) (-15 -3194 ((-530) $)) (-15 -2899 ($ (-530) (-530) (-862)))))
+((-3685 (((-637 |#1|) (-637 |#1|) |#1| |#1|) 65)) (-1583 (((-637 |#1|) (-637 |#1|) |#1|) 48)) (-2354 (((-637 |#1|) (-637 |#1|) |#1|) 66)) (-2841 (((-637 |#1|) (-637 |#1|)) 49)) (-3297 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 64)))
+(((-648 |#1|) (-10 -7 (-15 -2841 ((-637 |#1|) (-637 |#1|))) (-15 -1583 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2354 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -3685 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) (-289)) (T -648))
+((-3297 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-648 *3)) (-4 *3 (-289)))) (-3685 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2354 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-1583 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2841 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(-10 -7 (-15 -2841 ((-637 |#1|) (-637 |#1|))) (-15 -1583 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2354 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -3685 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 27)) (-2585 (((-530) $) 25)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($ $) NIL) (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) NIL)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) NIL)) (-2508 (($ $ $) NIL)) (-3087 (((-862) (-862)) 10) (((-862)) 9)) (-1817 (($ $ $) NIL)) (-3103 (($ $) NIL)) (-4109 (($ $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2624 (((-1046) $) NIL) (($ $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-1725 (($ $) NIL)) (-2579 (($ $) NIL)) (-3260 (((-208) $) NIL) (((-360) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (((-530) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) 24) (($ $) NIL) (($ (-530)) 24) (((-297 $) (-297 (-530))) 18)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) NIL)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL) (($ $ (-719)) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
+(((-649) (-13 (-368) (-515) (-10 -8 (-15 -3087 ((-862) (-862))) (-15 -3087 ((-862))) (-15 -2366 ((-297 $) (-297 (-530))))))) (T -649))
+((-3087 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-3087 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-297 (-530))) (-5 *2 (-297 (-649))) (-5 *1 (-649)))))
+(-13 (-368) (-515) (-10 -8 (-15 -3087 ((-862) (-862))) (-15 -3087 ((-862))) (-15 -2366 ((-297 $) (-297 (-530))))))
+((-1484 (((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)) 19)) (-1738 (((-1 |#4| |#2| |#3|) (-1099)) 12)))
+(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1738 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -1484 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)))) (-572 (-506)) (-1135) (-1135) (-1135)) (T -650))
+((-1484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))))
+(-10 -7 (-15 -1738 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -1484 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099))))
+((-2352 (((-110) $ $) NIL)) (-1664 (((-1186) $ (-719)) 14)) (-2027 (((-719) $) 12)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 25)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 24)))
+(((-651 |#1|) (-13 (-129) (-571 |#1|) (-10 -8 (-15 -2366 ($ |#1|)))) (-1027)) (T -651))
+((-2366 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027)))))
+(-13 (-129) (-571 |#1|) (-10 -8 (-15 -2366 ($ |#1|))))
+((-3354 (((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)) 34) (((-1 (-208) (-208)) |#1| (-1099)) 39)))
+(((-652 |#1|) (-10 -7 (-15 -3354 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -3354 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)))) (-572 (-506))) (T -652))
+((-3354 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))) (-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
+(-10 -7 (-15 -3354 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -3354 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099))))
+((-2047 (((-1099) |#1| (-1099) (-597 (-1099))) 9) (((-1099) |#1| (-1099) (-1099) (-1099)) 12) (((-1099) |#1| (-1099) (-1099)) 11) (((-1099) |#1| (-1099)) 10)))
+(((-653 |#1|) (-10 -7 (-15 -2047 ((-1099) |#1| (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-597 (-1099))))) (-572 (-506))) (T -653))
+((-2047 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))))
+(-10 -7 (-15 -2047 ((-1099) |#1| (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-597 (-1099)))))
+((-2348 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-654 |#1| |#2|) (-10 -7 (-15 -2348 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1135) (-1135)) (T -654))
+((-2348 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
+(-10 -7 (-15 -2348 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3084 (((-1 |#3| |#2|) (-1099)) 11)) (-1484 (((-1 |#3| |#2|) |#1| (-1099)) 21)))
+(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -3084 ((-1 |#3| |#2|) (-1099))) (-15 -1484 ((-1 |#3| |#2|) |#1| (-1099)))) (-572 (-506)) (-1135) (-1135)) (T -655))
+((-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
+(-10 -7 (-15 -3084 ((-1 |#3| |#2|) (-1099))) (-15 -1484 ((-1 |#3| |#2|) |#1| (-1099))))
+((-4128 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|) 62)) (-1309 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|) 75)) (-2734 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|) 34)))
+(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -1309 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4128 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -656))
+((-4128 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13)) (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13)) (-5 *7 (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *13))))) (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10)))) (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12)) (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))) (-1309 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9))) (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719))) (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11)) (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12))) (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))) (-2734 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11)) (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719))) (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795)) (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741)) (-5 *1 (-656 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2734 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -1309 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4128 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 39)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 37)) (-2944 (((-719) $) 41)) (-2533 ((|#1| $) 40)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 (((-719) $) 42)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 36 (|has| |#1| (-162)))) (-4085 ((|#1| $ (-719)) 38)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
(((-657 |#1|) (-133) (-984)) (T -657))
-((-3409 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -3409 ((-719) $)) (-15 -3674 ((-719) $)) (-15 -2402 (|t#1| $)) (-15 -2425 ($ $)) (-15 -2782 (|t#1| $ (-719))) (-15 -2575 ($ |t#1| (-719)))))
+((-1429 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1429 ((-719) $)) (-15 -2944 ((-719) $)) (-15 -2533 (|t#1| $)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ (-719))) (-15 -2725 ($ |t#1| (-719)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3114 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-658 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 (|#6| (-1 |#4| |#1|) |#3|))) (-522) (-1157 |#1|) (-1157 (-388 |#2|)) (-522) (-1157 |#4|) (-1157 (-388 |#5|))) (T -658))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-522)) (-4 *7 (-522)) (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-388 *8))) (-5 *1 (-658 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-388 *6))) (-4 *8 (-1157 *7)))))
-(-10 -7 (-15 -3114 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-4178 (((-1082) (-804)) 31)) (-2278 (((-1186) (-1082)) 28)) (-4199 (((-1082) (-804)) 24)) (-4188 (((-1082) (-804)) 25)) (-2258 (((-804) $) NIL) (((-1082) (-804)) 23)) (-2148 (((-110) $ $) NIL)))
-(((-659) (-13 (-1027) (-10 -7 (-15 -2258 ((-1082) (-804))) (-15 -4199 ((-1082) (-804))) (-15 -4188 ((-1082) (-804))) (-15 -4178 ((-1082) (-804))) (-15 -2278 ((-1186) (-1082)))))) (T -659))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-659)))))
-(-13 (-1027) (-10 -7 (-15 -2258 ((-1082) (-804))) (-15 -4199 ((-1082) (-804))) (-15 -4188 ((-1082) (-804))) (-15 -4178 ((-1082) (-804))) (-15 -2278 ((-1186) (-1082)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL)) (-3856 (($ |#1| |#2|) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2113 ((|#2| $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3069 (((-3 $ "failed") $ $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) ((|#1| $) NIL)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-660 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -2113 (|#2| $)) (-15 -2258 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -3069 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -660))
-((-2113 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2258 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3069 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-344) (-10 -8 (-15 -2113 (|#2| $)) (-15 -2258 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -3069 ((-3 $ "failed") $ $))))
-((-2246 (((-110) $ $) 78)) (-3015 (((-110) $) 30)) (-1301 (((-1181 |#1|) $ (-719)) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-1279 (($ (-1095 |#1|)) NIL)) (-2439 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2322 (($ $ $) NIL (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2879 (((-719)) 47 (|has| |#1| (-349)))) (-2370 (($ $ (-719)) NIL)) (-2363 (($ $ (-719)) NIL)) (-3048 ((|#2| |#2|) 44)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-2330 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) 34)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3856 (($ |#2|) 42)) (-1673 (((-3 $ "failed") $) 86)) (-1376 (($) 51 (|has| |#1| (-349)))) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2352 (($ $ $) NIL)) (-2301 (($ $ $) NIL (|has| |#1| (-522)))) (-2291 (((-2 (|:| -1981 |#1|) (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-3001 (((-899 $)) 80)) (-2097 (($ $ |#1| (-719) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ $) NIL (|has| |#1| (-522)))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2586 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-1382 (($ $ (-719)) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) 77) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1012)) NIL) (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2113 ((|#2|) 45)) (-3674 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-719) (-719)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1289 (((-1095 |#1|) $) NIL)) (-1367 (((-3 (-1012) "failed") $) NIL)) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-3844 ((|#2| $) 41)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) 28)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1012)) (|:| -3059 (-719))) "failed") $) NIL)) (-1637 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) NIL (|has| |#1| (-1075)) CONST)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4211 (($ $) 79 (|has| |#1| (-330)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-1269 (((-3 $ "failed") $ (-719)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 87 (|has| |#1| (-344)))) (-2341 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3211 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3409 (((-719) $) 32) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2990 (((-899 $)) 36)) (-2312 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2258 (((-804) $) 61) (($ (-530)) NIL) (($ |#1|) 58) (($ (-1012)) NIL) (($ |#2|) 68) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) 63) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 20 T CONST)) (-3036 (((-1181 |#1|) $) 75)) (-3023 (($ (-1181 |#1|)) 50)) (-2955 (($) 8 T CONST)) (-3286 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3014 (((-1181 |#1|) $) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 69)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) 72) (($ $ $) NIL)) (-2234 (($ $ $) 33)) (** (($ $ (-862)) NIL) (($ $ (-719)) 81)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 57) (($ $ $) 74) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-661 |#1| |#2|) (-13 (-1157 |#1|) (-10 -8 (-15 -3048 (|#2| |#2|)) (-15 -2113 (|#2|)) (-15 -3856 ($ |#2|)) (-15 -3844 (|#2| $)) (-15 -2258 ($ |#2|)) (-15 -3036 ((-1181 |#1|) $)) (-15 -3023 ($ (-1181 |#1|))) (-15 -3014 ((-1181 |#1|) $)) (-15 -3001 ((-899 $))) (-15 -2990 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -4211 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-984) (-1157 |#1|)) (T -661))
-((-3048 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-2113 (*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-3856 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-3036 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-3014 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-3001 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-2990 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-4211 (*1 *1 *1) (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3)) (-4 *3 (-1157 *2)))))
-(-13 (-1157 |#1|) (-10 -8 (-15 -3048 (|#2| |#2|)) (-15 -2113 (|#2|)) (-15 -3856 ($ |#2|)) (-15 -3844 (|#2| $)) (-15 -2258 ($ |#2|)) (-15 -3036 ((-1181 |#1|) $)) (-15 -3023 ($ (-1181 |#1|))) (-15 -3014 ((-1181 |#1|) $)) (-15 -3001 ((-899 $))) (-15 -2990 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -4211 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-1910 ((|#1| $) 13)) (-2485 (((-1046) $) NIL)) (-3059 ((|#2| $) 12)) (-2268 (($ |#1| |#2|) 16)) (-2258 (((-804) $) NIL) (($ (-2 (|:| -1910 |#1|) (|:| -3059 |#2|))) 15) (((-2 (|:| -1910 |#1|) (|:| -3059 |#2|)) $) 14)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 11)))
-(((-662 |#1| |#2| |#3|) (-13 (-795) (-10 -8 (-15 -3059 (|#2| $)) (-15 -1910 (|#1| $)) (-15 -2258 ($ (-2 (|:| -1910 |#1|) (|:| -3059 |#2|)))) (-15 -2258 ((-2 (|:| -1910 |#1|) (|:| -3059 |#2|)) $)) (-15 -2268 ($ |#1| |#2|)))) (-795) (-1027) (-1 (-110) (-2 (|:| -1910 |#1|) (|:| -3059 |#2|)) (-2 (|:| -1910 |#1|) (|:| -3059 |#2|)))) (T -662))
-((-3059 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795)) (-14 *4 (-1 (-110) (-2 (|:| -1910 *3) (|:| -3059 *2)) (-2 (|:| -1910 *3) (|:| -3059 *2)))))) (-1910 (*1 *2 *1) (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *3)) (-2 (|:| -1910 *2) (|:| -3059 *3)))))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1910 *3) (|:| -3059 *4))) (-4 *3 (-795)) (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1910 *3) (|:| -3059 *4))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027)) (-14 *5 (-1 (-110) *2 *2)))) (-2268 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *3)) (-2 (|:| -1910 *2) (|:| -3059 *3)))))))
-(-13 (-795) (-10 -8 (-15 -3059 (|#2| $)) (-15 -1910 (|#1| $)) (-15 -2258 ($ (-2 (|:| -1910 |#1|) (|:| -3059 |#2|)))) (-15 -2258 ((-2 (|:| -1910 |#1|) (|:| -3059 |#2|)) $)) (-15 -2268 ($ |#1| |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 59)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2446 ((|#1| $) NIL) (((-112) $) 39)) (-1673 (((-3 $ "failed") $) 90)) (-2588 ((|#2| (-112) |#2|) 82)) (-3150 (((-110) $) NIL)) (-2577 (($ |#1| (-342 (-112))) 14)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2598 (($ $ (-1 |#2| |#2|)) 58)) (-2607 (($ $ (-1 |#2| |#2|)) 44)) (-1832 ((|#2| $ |#2|) 33)) (-2619 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2258 (((-804) $) 66) (($ (-530)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) 37)) (-2630 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) 48) (($ $ $) NIL)) (-2234 (($ $ $) 73)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
-(((-663 |#1| |#2|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -2619 (|#1| |#1|))) |%noBranch|) (-15 -2607 ($ $ (-1 |#2| |#2|))) (-15 -2598 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -2588 (|#2| (-112) |#2|)) (-15 -2577 ($ |#1| (-342 (-112)))))) (-984) (-599 |#1|)) (T -663))
-((-2630 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2630 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2619 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-663 *4 *5)) (-4 *5 (-599 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)) (-4 *4 (-599 *3)))) (-2588 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2)) (-4 *2 (-599 *4)))) (-2577 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4)) (-4 *4 (-599 *2)))))
-(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -2619 (|#1| |#1|))) |%noBranch|) (-15 -2607 ($ $ (-1 |#2| |#2|))) (-15 -2598 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -2588 (|#2| (-112) |#2|)) (-15 -2577 ($ |#1| (-342 (-112))))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 33)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3856 (($ |#1| |#2|) 25)) (-1673 (((-3 $ "failed") $) 48)) (-3150 (((-110) $) 35)) (-2113 ((|#2| $) 12)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 49)) (-2485 (((-1046) $) NIL)) (-3069 (((-3 $ "failed") $ $) 47)) (-2258 (((-804) $) 24) (($ (-530)) 19) ((|#1| $) 13)) (-1667 (((-719)) 28)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 16 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 38)) (-2245 (($ $) 43) (($ $ $) 37)) (-2234 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 21) (($ $ $) 20)))
-(((-664 |#1| |#2| |#3| |#4| |#5|) (-13 (-984) (-10 -8 (-15 -2113 (|#2| $)) (-15 -2258 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -3069 ((-3 $ "failed") $ $)) (-15 -1673 ((-3 $ "failed") $)) (-15 -2359 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -664))
-((-1673 (*1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2113 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2258 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3069 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-984) (-10 -8 (-15 -2113 (|#2| $)) (-15 -2258 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -3069 ((-3 $ "failed") $ $)) (-15 -1673 ((-3 $ "failed") $)) (-15 -2359 ($ $))))
+((-3217 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-658 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 (|#6| (-1 |#4| |#1|) |#3|))) (-522) (-1157 |#1|) (-1157 (-388 |#2|)) (-522) (-1157 |#4|) (-1157 (-388 |#5|))) (T -658))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-522)) (-4 *7 (-522)) (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-388 *8))) (-5 *1 (-658 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-388 *6))) (-4 *8 (-1157 *7)))))
+(-10 -7 (-15 -3217 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2799 (((-1082) (-804)) 31)) (-2388 (((-1186) (-1082)) 28)) (-3679 (((-1082) (-804)) 24)) (-1237 (((-1082) (-804)) 25)) (-2366 (((-804) $) NIL) (((-1082) (-804)) 23)) (-2248 (((-110) $ $) NIL)))
+(((-659) (-13 (-1027) (-10 -7 (-15 -2366 ((-1082) (-804))) (-15 -3679 ((-1082) (-804))) (-15 -1237 ((-1082) (-804))) (-15 -2799 ((-1082) (-804))) (-15 -2388 ((-1186) (-1082)))))) (T -659))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-659)))))
+(-13 (-1027) (-10 -7 (-15 -2366 ((-1082) (-804))) (-15 -3679 ((-1082) (-804))) (-15 -1237 ((-1082) (-804))) (-15 -2799 ((-1082) (-804))) (-15 -2388 ((-1186) (-1082)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2134 (($ |#1| |#2|) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 ((|#2| $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2943 (((-3 $ "failed") $ $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) ((|#1| $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-660 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -660))
+((-4076 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2134 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-344) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $))))
+((-2352 (((-110) $ $) 78)) (-1813 (((-110) $) 30)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) NIL (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3023 (((-719)) 47 (|has| |#1| (-349)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-1476 ((|#2| |#2|) 44)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 34)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2134 (($ |#2|) 42)) (-2707 (((-3 $ "failed") $) 86)) (-1364 (($) 51 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2075 (((-899 $)) 80)) (-2410 (($ $ |#1| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 77) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-4076 ((|#2|) 45)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2123 ((|#2| $) 41)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) 28)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2914 (($ $) 79 (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 87 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) 32) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-3558 (((-899 $)) 36)) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) 61) (($ (-530)) NIL) (($ |#1|) 58) (($ (-1012)) NIL) (($ |#2|) 68) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) 63) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 20 T CONST)) (-2859 (((-1181 |#1|) $) 75)) (-4080 (($ (-1181 |#1|)) 50)) (-3093 (($) 8 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1706 (((-1181 |#1|) $) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 69)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 72) (($ $ $) NIL)) (-2339 (($ $ $) 33)) (** (($ $ (-862)) NIL) (($ $ (-719)) 81)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 57) (($ $ $) 74) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-661 |#1| |#2|) (-13 (-1157 |#1|) (-10 -8 (-15 -1476 (|#2| |#2|)) (-15 -4076 (|#2|)) (-15 -2134 ($ |#2|)) (-15 -2123 (|#2| $)) (-15 -2366 ($ |#2|)) (-15 -2859 ((-1181 |#1|) $)) (-15 -4080 ($ (-1181 |#1|))) (-15 -1706 ((-1181 |#1|) $)) (-15 -2075 ((-899 $))) (-15 -3558 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -2914 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-984) (-1157 |#1|)) (T -661))
+((-1476 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-4076 (*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-2134 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-2859 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-2075 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-3558 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-2914 (*1 *1 *1) (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3)) (-4 *3 (-1157 *2)))))
+(-13 (-1157 |#1|) (-10 -8 (-15 -1476 (|#2| |#2|)) (-15 -4076 (|#2|)) (-15 -2134 ($ |#2|)) (-15 -2123 (|#2| $)) (-15 -2366 ($ |#2|)) (-15 -2859 ((-1181 |#1|) $)) (-15 -4080 ($ (-1181 |#1|))) (-15 -1706 ((-1181 |#1|) $)) (-15 -2075 ((-899 $))) (-15 -3558 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -2914 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1986 ((|#1| $) 13)) (-2624 (((-1046) $) NIL)) (-3194 ((|#2| $) 12)) (-2377 (($ |#1| |#2|) 16)) (-2366 (((-804) $) NIL) (($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|))) 15) (((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $) 14)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 11)))
+(((-662 |#1| |#2| |#3|) (-13 (-795) (-10 -8 (-15 -3194 (|#2| $)) (-15 -1986 (|#1| $)) (-15 -2366 ($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (-15 -2366 ((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $)) (-15 -2377 ($ |#1| |#2|)))) (-795) (-1027) (-1 (-110) (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (T -662))
+((-3194 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *2)) (-2 (|:| -1986 *3) (|:| -3194 *2)))))) (-1986 (*1 *2 *1) (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3)) (-2 (|:| -1986 *2) (|:| -3194 *3)))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-4 *3 (-795)) (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027)) (-14 *5 (-1 (-110) *2 *2)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3)) (-2 (|:| -1986 *2) (|:| -3194 *3)))))))
+(-13 (-795) (-10 -8 (-15 -3194 (|#2| $)) (-15 -1986 (|#1| $)) (-15 -2366 ($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (-15 -2366 ((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $)) (-15 -2377 ($ |#1| |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 59)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2585 ((|#1| $) NIL) (((-112) $) 39)) (-2707 (((-3 $ "failed") $) 90)) (-1347 ((|#2| (-112) |#2|) 82)) (-2731 (((-110) $) NIL)) (-2868 (($ |#1| (-342 (-112))) 14)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4155 (($ $ (-1 |#2| |#2|)) 58)) (-2755 (($ $ (-1 |#2| |#2|)) 44)) (-1902 ((|#2| $ |#2|) 33)) (-1306 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2366 (((-804) $) 66) (($ (-530)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 37)) (-1803 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-3080 (($) 21 T CONST)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 48) (($ $ $) NIL)) (-2339 (($ $ $) 73)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
+(((-663 |#1| |#2|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#2| |#2|))) (-15 -4155 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#2| (-112) |#2|)) (-15 -2868 ($ |#1| (-342 (-112)))))) (-984) (-599 |#1|)) (T -663))
+((-1803 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-1803 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-1306 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-663 *4 *5)) (-4 *5 (-599 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)) (-4 *4 (-599 *3)))) (-1347 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2)) (-4 *2 (-599 *4)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4)) (-4 *4 (-599 *2)))))
+(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#2| |#2|))) (-15 -4155 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#2| (-112) |#2|)) (-15 -2868 ($ |#1| (-342 (-112))))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ |#1| |#2|) 25)) (-2707 (((-3 $ "failed") $) 48)) (-2731 (((-110) $) 35)) (-4076 ((|#2| $) 12)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 49)) (-2624 (((-1046) $) NIL)) (-2943 (((-3 $ "failed") $ $) 47)) (-2366 (((-804) $) 24) (($ (-530)) 19) ((|#1| $) 13)) (-3300 (((-719)) 28)) (-3080 (($) 16 T CONST)) (-3093 (($) 30 T CONST)) (-2248 (((-110) $ $) 38)) (-2351 (($ $) 43) (($ $ $) 37)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 21) (($ $ $) 20)))
+(((-664 |#1| |#2| |#3| |#4| |#5|) (-13 (-984) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -664))
+((-2707 (*1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4076 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2134 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-984) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $))))
((* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-665 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-666 |#2|) (-162)) (T -665))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-666 |#1|) (-133) (-162)) (T -666))
NIL
(-13 (-109 |t#1| |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-4206 (($ |#1|) 17) (($ $ |#1|) 20)) (-3708 (($ |#1|) 18) (($ $ |#1|) 21)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3150 (((-110) $) NIL)) (-3081 (($ |#1| |#1| |#1| |#1|) 8)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 16)) (-2485 (((-1046) $) NIL)) (-4084 ((|#1| $ |#1|) 24) (((-781 |#1|) $ (-781 |#1|)) 32)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-2258 (((-804) $) 39)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 9 T CONST)) (-2148 (((-110) $ $) 44)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 14)))
-(((-667 |#1|) (-13 (-453) (-10 -8 (-15 -3081 ($ |#1| |#1| |#1| |#1|)) (-15 -4206 ($ |#1|)) (-15 -3708 ($ |#1|)) (-15 -1673 ($)) (-15 -4206 ($ $ |#1|)) (-15 -3708 ($ $ |#1|)) (-15 -1673 ($ $)) (-15 -4084 (|#1| $ |#1|)) (-15 -4084 ((-781 |#1|) $ (-781 |#1|))))) (-344)) (T -667))
-((-3081 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4206 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-3708 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1673 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1673 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4084 (*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4084 (*1 *2 *1 *2) (-12 (-5 *2 (-781 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3)))))
-(-13 (-453) (-10 -8 (-15 -3081 ($ |#1| |#1| |#1| |#1|)) (-15 -4206 ($ |#1|)) (-15 -3708 ($ |#1|)) (-15 -1673 ($)) (-15 -4206 ($ $ |#1|)) (-15 -3708 ($ $ |#1|)) (-15 -1673 ($ $)) (-15 -4084 (|#1| $ |#1|)) (-15 -4084 ((-781 |#1|) $ (-781 |#1|)))))
-((-3128 (($ $ (-862)) 12)) (-3117 (($ $ (-862)) 13)) (** (($ $ (-862)) 10)))
-(((-668 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -3117 (|#1| |#1| (-862))) (-15 -3128 (|#1| |#1| (-862)))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -3117 (|#1| |#1| (-862))) (-15 -3128 (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3128 (($ $ (-862)) 15)) (-3117 (($ $ (-862)) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)) (** (($ $ (-862)) 13)) (* (($ $ $) 16)))
+((-2352 (((-110) $ $) NIL)) (-4207 (($ |#1|) 17) (($ $ |#1|) 20)) (-1573 (($ |#1|) 18) (($ $ |#1|) 21)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2731 (((-110) $) NIL)) (-1340 (($ |#1| |#1| |#1| |#1|) 8)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 16)) (-2624 (((-1046) $) NIL)) (-4098 ((|#1| $ |#1|) 24) (((-781 |#1|) $ (-781 |#1|)) 32)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 39)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) 44)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 14)))
+(((-667 |#1|) (-13 (-453) (-10 -8 (-15 -1340 ($ |#1| |#1| |#1| |#1|)) (-15 -4207 ($ |#1|)) (-15 -1573 ($ |#1|)) (-15 -2707 ($)) (-15 -4207 ($ $ |#1|)) (-15 -1573 ($ $ |#1|)) (-15 -2707 ($ $)) (-15 -4098 (|#1| $ |#1|)) (-15 -4098 ((-781 |#1|) $ (-781 |#1|))))) (-344)) (T -667))
+((-1340 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4207 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1573 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2707 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4098 (*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4098 (*1 *2 *1 *2) (-12 (-5 *2 (-781 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3)))))
+(-13 (-453) (-10 -8 (-15 -1340 ($ |#1| |#1| |#1| |#1|)) (-15 -4207 ($ |#1|)) (-15 -1573 ($ |#1|)) (-15 -2707 ($)) (-15 -4207 ($ $ |#1|)) (-15 -1573 ($ $ |#1|)) (-15 -2707 ($ $)) (-15 -4098 (|#1| $ |#1|)) (-15 -4098 ((-781 |#1|) $ (-781 |#1|)))))
+((-2862 (($ $ (-862)) 12)) (-4138 (($ $ (-862)) 13)) (** (($ $ (-862)) 10)))
+(((-668 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862)))) (-669)) (T -668))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-2862 (($ $ (-862)) 15)) (-4138 (($ $ (-862)) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13)) (* (($ $ $) 16)))
(((-669) (-133)) (T -669))
-((* (*1 *1 *1 *1) (-4 *1 (-669))) (-3128 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 -3128 ($ $ (-862))) (-15 -3117 ($ $ (-862))) (-15 ** ($ $ (-862)))))
+((* (*1 *1 *1 *1) (-4 *1 (-669))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (-4138 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))))
+(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 -2862 ($ $ (-862))) (-15 -4138 ($ $ (-862))) (-15 ** ($ $ (-862)))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3128 (($ $ (-862)) NIL) (($ $ (-719)) 17)) (-3150 (((-110) $) 10)) (-3117 (($ $ (-862)) NIL) (($ $ (-719)) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15)))
-(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -3117 (|#1| |#1| (-719))) (-15 -3128 (|#1| |#1| (-719))) (-15 -3150 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -3117 (|#1| |#1| (-862))) (-15 -3128 (|#1| |#1| (-862)))) (-671)) (T -670))
+((-2862 (($ $ (-862)) NIL) (($ $ (-719)) 17)) (-2731 (((-110) $) 10)) (-4138 (($ $ (-862)) NIL) (($ $ (-719)) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15)))
+(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -4138 (|#1| |#1| (-719))) (-15 -2862 (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862)))) (-671)) (T -670))
NIL
-(-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -3117 (|#1| |#1| (-719))) (-15 -3128 (|#1| |#1| (-719))) (-15 -3150 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -3117 (|#1| |#1| (-862))) (-15 -3128 (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3093 (((-3 $ "failed") $) 17)) (-3128 (($ $ (-862)) 15) (($ $ (-719)) 22)) (-1673 (((-3 $ "failed") $) 19)) (-3150 (((-110) $) 23)) (-3105 (((-3 $ "failed") $) 18)) (-3117 (($ $ (-862)) 14) (($ $ (-719)) 21)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2955 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-862)) 13) (($ $ (-719)) 20)) (* (($ $ $) 16)))
+(-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -4138 (|#1| |#1| (-719))) (-15 -2862 (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-2635 (((-3 $ "failed") $) 17)) (-2862 (($ $ (-862)) 15) (($ $ (-719)) 22)) (-2707 (((-3 $ "failed") $) 19)) (-2731 (((-110) $) 23)) (-1232 (((-3 $ "failed") $) 18)) (-4138 (($ $ (-862)) 14) (($ $ (-719)) 21)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13) (($ $ (-719)) 20)) (* (($ $ $) 16)))
(((-671) (-133)) (T -671))
-((-2955 (*1 *1) (-4 *1 (-671))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110)))) (-3128 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-3117 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-1673 (*1 *1 *1) (|partial| -4 *1 (-671))) (-3105 (*1 *1 *1) (|partial| -4 *1 (-671))) (-3093 (*1 *1 *1) (|partial| -4 *1 (-671))))
-(-13 (-669) (-10 -8 (-15 (-2955) ($) -2562) (-15 -3150 ((-110) $)) (-15 -3128 ($ $ (-719))) (-15 -3117 ($ $ (-719))) (-15 ** ($ $ (-719))) (-15 -1673 ((-3 $ "failed") $)) (-15 -3105 ((-3 $ "failed") $)) (-15 -3093 ((-3 $ "failed") $))))
+((-3093 (*1 *1) (-4 *1 (-671))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-4138 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-2707 (*1 *1 *1) (|partial| -4 *1 (-671))) (-1232 (*1 *1 *1) (|partial| -4 *1 (-671))) (-2635 (*1 *1 *1) (|partial| -4 *1 (-671))))
+(-13 (-669) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2731 ((-110) $)) (-15 -2862 ($ $ (-719))) (-15 -4138 ($ $ (-719))) (-15 ** ($ $ (-719))) (-15 -2707 ((-3 $ "failed") $)) (-15 -1232 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $))))
(((-99) . T) ((-571 (-804)) . T) ((-669) . T) ((-1027) . T))
-((-2879 (((-719)) 34)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 22)) (-3856 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-1673 (((-3 $ "failed") $) 64)) (-1376 (($) 38)) (-1717 ((|#2| $) 20)) (-1898 (($) 17)) (-3211 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-3139 (((-637 |#2|) (-1181 $) (-1 |#2| |#2|)) 59)) (-3173 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1640 ((|#3| $) 32)) (-3853 (((-1181 $)) 29)))
-(((-672 |#1| |#2| |#3|) (-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1376 (|#1|)) (-15 -2879 ((-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3139 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -3856 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3173 (|#1| |#3|)) (-15 -3856 (|#1| |#3|)) (-15 -1898 (|#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 (|#3| |#1|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3853 ((-1181 |#1|))) (-15 -1640 (|#3| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|))) (-673 |#2| |#3|) (-162) (-1157 |#2|)) (T -672))
-((-2879 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-719)) (-5 *1 (-672 *3 *4 *5)) (-4 *3 (-673 *4 *5)))))
-(-10 -8 (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1376 (|#1|)) (-15 -2879 ((-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3139 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -3856 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3173 (|#1| |#3|)) (-15 -3856 (|#1| |#3|)) (-15 -1898 (|#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3173 (|#3| |#1|)) (-15 -3173 (|#1| (-1181 |#2|))) (-15 -3173 ((-1181 |#2|) |#1|)) (-15 -3853 ((-1181 |#1|))) (-15 -1640 (|#3| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1673 ((-3 |#1| "failed") |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 93 (|has| |#1| (-344)))) (-3031 (($ $) 94 (|has| |#1| (-344)))) (-3006 (((-110) $) 96 (|has| |#1| (-344)))) (-3359 (((-637 |#1|) (-1181 $)) 46) (((-637 |#1|)) 61)) (-1380 ((|#1| $) 52)) (-1621 (((-1109 (-862) (-719)) (-530)) 147 (|has| |#1| (-330)))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 113 (|has| |#1| (-344)))) (-3550 (((-399 $) $) 114 (|has| |#1| (-344)))) (-1945 (((-110) $ $) 104 (|has| |#1| (-344)))) (-2879 (((-719)) 87 (|has| |#1| (-349)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 169 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 167 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 166)) (-2446 (((-530) $) 170 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 168 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 165)) (-3477 (($ (-1181 |#1|) (-1181 $)) 48) (($ (-1181 |#1|)) 64)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-330)))) (-3607 (($ $ $) 108 (|has| |#1| (-344)))) (-3348 (((-637 |#1|) $ (-1181 $)) 53) (((-637 |#1|) $) 59)) (-1298 (((-637 (-530)) (-637 $)) 164 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 163 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 162) (((-637 |#1|) (-637 $)) 161)) (-3856 (($ |#2|) 158) (((-3 $ "failed") (-388 |#2|)) 155 (|has| |#1| (-344)))) (-1673 (((-3 $ "failed") $) 34)) (-4113 (((-862)) 54)) (-1376 (($) 90 (|has| |#1| (-349)))) (-3588 (($ $ $) 107 (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 102 (|has| |#1| (-344)))) (-2563 (($) 149 (|has| |#1| (-330)))) (-1674 (((-110) $) 150 (|has| |#1| (-330)))) (-3175 (($ $ (-719)) 141 (|has| |#1| (-330))) (($ $) 140 (|has| |#1| (-330)))) (-2049 (((-110) $) 115 (|has| |#1| (-344)))) (-1334 (((-862) $) 152 (|has| |#1| (-330))) (((-781 (-862)) $) 138 (|has| |#1| (-330)))) (-3150 (((-110) $) 31)) (-1717 ((|#1| $) 51)) (-1560 (((-3 $ "failed") $) 142 (|has| |#1| (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 111 (|has| |#1| (-344)))) (-3873 ((|#2| $) 44 (|has| |#1| (-344)))) (-3830 (((-862) $) 89 (|has| |#1| (-349)))) (-3844 ((|#2| $) 156)) (-2072 (($ (-597 $)) 100 (|has| |#1| (-344))) (($ $ $) 99 (|has| |#1| (-344)))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 116 (|has| |#1| (-344)))) (-3677 (($) 143 (|has| |#1| (-330)) CONST)) (-1910 (($ (-862)) 88 (|has| |#1| (-349)))) (-2485 (((-1046) $) 10)) (-1898 (($) 160)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 101 (|has| |#1| (-344)))) (-2108 (($ (-597 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) 146 (|has| |#1| (-330)))) (-2473 (((-399 $) $) 112 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 109 (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ $) 92 (|has| |#1| (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 103 (|has| |#1| (-344)))) (-1934 (((-719) $) 105 (|has| |#1| (-344)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 106 (|has| |#1| (-344)))) (-2341 ((|#1| (-1181 $)) 47) ((|#1|) 60)) (-3187 (((-719) $) 151 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 139 (|has| |#1| (-330)))) (-3211 (($ $) 137 (-1476 (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 135 (-1476 (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 133 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 132 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 131 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 130 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 123 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-344)))) (-3139 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-344)))) (-4212 ((|#2|) 159)) (-1612 (($) 148 (|has| |#1| (-330)))) (-3351 (((-1181 |#1|) $ (-1181 $)) 50) (((-637 |#1|) (-1181 $) (-1181 $)) 49) (((-1181 |#1|) $) 66) (((-637 |#1|) (-1181 $)) 65)) (-3173 (((-1181 |#1|) $) 63) (($ (-1181 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 145 (|has| |#1| (-330)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-344))) (($ (-388 (-530))) 86 (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-1795 (($ $) 144 (|has| |#1| (-330))) (((-3 $ "failed") $) 43 (|has| |#1| (-138)))) (-1640 ((|#2| $) 45)) (-1667 (((-719)) 29)) (-3853 (((-1181 $)) 67)) (-3020 (((-110) $ $) 95 (|has| |#1| (-344)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 117 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $) 136 (-1476 (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 134 (-1476 (-3340 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 129 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 128 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 127 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 126 (-3340 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 125 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-344)))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 121 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 118 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-388 (-530)) $) 120 (|has| |#1| (-344))) (($ $ (-388 (-530))) 119 (|has| |#1| (-344)))))
+((-3023 (((-719)) 34)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 22)) (-2134 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-2707 (((-3 $ "failed") $) 64)) (-1364 (($) 38)) (-2376 ((|#2| $) 20)) (-1974 (($) 17)) (-3289 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1542 (((-637 |#2|) (-1181 $) (-1 |#2| |#2|)) 59)) (-3260 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1814 ((|#3| $) 32)) (-3220 (((-1181 $)) 29)))
+(((-672 |#1| |#2| |#3|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1364 (|#1|)) (-15 -3023 ((-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -1542 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -2134 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3260 (|#1| |#3|)) (-15 -2134 (|#1| |#3|)) (-15 -1974 (|#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 (|#3| |#1|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -3220 ((-1181 |#1|))) (-15 -1814 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|))) (-673 |#2| |#3|) (-162) (-1157 |#2|)) (T -672))
+((-3023 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-719)) (-5 *1 (-672 *3 *4 *5)) (-4 *3 (-673 *4 *5)))))
+(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1364 (|#1|)) (-15 -3023 ((-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -1542 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -2134 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3260 (|#1| |#3|)) (-15 -2134 (|#1| |#3|)) (-15 -1974 (|#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 (|#3| |#1|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -3220 ((-1181 |#1|))) (-15 -1814 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (|has| |#1| (-344)))) (-3446 (($ $) 92 (|has| |#1| (-344)))) (-1276 (((-110) $) 94 (|has| |#1| (-344)))) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 111 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 112 (|has| |#1| (-344)))) (-1426 (((-110) $ $) 102 (|has| |#1| (-344)))) (-3023 (((-719)) 85 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 163)) (-2585 (((-530) $) 167 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 165 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 162)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3590 (($ $ $) 106 (|has| |#1| (-344)))) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 159) (((-637 |#1|) (-637 $)) 158)) (-2134 (($ |#2|) 155) (((-3 $ "failed") (-388 |#2|)) 152 (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| |#1| (-349)))) (-3571 (($ $ $) 105 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| |#1| (-344)))) (-1677 (($) 146 (|has| |#1| (-330)))) (-2798 (((-110) $) 147 (|has| |#1| (-330)))) (-3948 (($ $ (-719)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-3295 (((-110) $) 113 (|has| |#1| (-344)))) (-2031 (((-862) $) 149 (|has| |#1| (-330))) (((-781 (-862)) $) 135 (|has| |#1| (-330)))) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-2972 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| |#1| (-344)))) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1905 (((-862) $) 87 (|has| |#1| (-349)))) (-2123 ((|#2| $) 153)) (-2170 (($ (-597 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 114 (|has| |#1| (-344)))) (-3657 (($) 140 (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| |#1| (-349)))) (-2624 (((-1046) $) 10)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 96 (|has| |#1| (-344))) (($ $ $) 95 (|has| |#1| (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| |#1| (-330)))) (-2611 (((-399 $) $) 110 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) 90 (|has| |#1| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| |#1| (-344)))) (-2356 (((-719) $) 103 (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| |#1| (-344)))) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-1823 (((-719) $) 148 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 136 (|has| |#1| (-330)))) (-3289 (($ $) 134 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 132 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 130 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 129 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 128 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 127 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 120 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-344)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-1781 ((|#2|) 156)) (-3406 (($) 145 (|has| |#1| (-330)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (|has| |#1| (-330)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-344))) (($ (-388 (-530))) 84 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-3944 (((-110) $ $) 93 (|has| |#1| (-344)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 133 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 131 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 126 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 125 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 124 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 123 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 122 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-344)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 118 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 115 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-530)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-530))) 116 (|has| |#1| (-344)))))
(((-673 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -673))
-((-1898 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1157 *2)))) (-4212 (*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-3856 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-3173 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-3856 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-673 *3 *4)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *5)))))
-(-13 (-390 |t#1| |t#2|) (-162) (-572 |t#2|) (-392 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1898 ($)) (-15 -4212 (|t#2|)) (-15 -3856 ($ |t#2|)) (-15 -3173 ($ |t#2|)) (-15 -3844 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -3856 ((-3 $ "failed") (-388 |t#2|))) (-15 -3139 ((-637 |t#1|) (-1181 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-330)) (-6 (-330)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-99) . T) ((-109 #0# #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1476 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -1476 (|has| |#1| (-330)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-272) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-289) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-344) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1476 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| |#2|) . T) ((-390 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-522) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099)))) ((-861) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1139) -1476 (|has| |#1| (-330)) (|has| |#1| (-344))))
-((-3956 (($) 14)) (-1673 (((-3 $ "failed") $) 16)) (-3150 (((-110) $) 13)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) 9)) (** (($ $ (-862)) NIL) (($ $ (-719)) 20)))
-(((-674 |#1|) (-10 -8 (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -2723 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3150 ((-110) |#1|)) (-15 -3956 (|#1|)) (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862)))) (-675)) (T -674))
-NIL
-(-10 -8 (-15 -1673 ((-3 |#1| "failed") |#1|)) (-15 -2723 (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-719))) (-15 -3150 ((-110) |#1|)) (-15 -3956 (|#1|)) (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3956 (($) 20 T CONST)) (-1673 (((-3 $ "failed") $) 16)) (-3150 (((-110) $) 19)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 13) (($ $ (-719)) 17)) (-2955 (($) 21 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-862)) 14) (($ $ (-719)) 18)) (* (($ $ $) 15)))
+((-1974 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1157 *2)))) (-1781 (*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-2134 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-3260 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-2134 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-673 *3 *4)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *5)))))
+(-13 (-390 |t#1| |t#2|) (-162) (-572 |t#2|) (-392 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1974 ($)) (-15 -1781 (|t#2|)) (-15 -2134 ($ |t#2|)) (-15 -3260 ($ |t#2|)) (-15 -2123 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -2134 ((-3 $ "failed") (-388 |t#2|))) (-15 -1542 ((-637 |t#1|) (-1181 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-330)) (-6 (-330)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-99) . T) ((-109 #0# #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -1461 (|has| |#1| (-330)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-272) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-289) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-344) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1461 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| |#2|) . T) ((-390 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-522) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099)))) ((-861) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1139) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))))
+((-2350 (($) 11)) (-2707 (((-3 $ "failed") $) 13)) (-2731 (((-110) $) 10)) (** (($ $ (-862)) NIL) (($ $ (-719)) 18)))
+(((-674 |#1|) (-10 -8 (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 ** (|#1| |#1| (-862)))) (-675)) (T -674))
+NIL
+(-10 -8 (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 ** (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-2731 (((-110) $) 17)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13) (($ $ (-719)) 16)) (* (($ $ $) 14)))
(((-675) (-133)) (T -675))
-((-2955 (*1 *1) (-4 *1 (-675))) (-3956 (*1 *1) (-4 *1 (-675))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-2723 (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-1673 (*1 *1 *1) (|partial| -4 *1 (-675))))
-(-13 (-1039) (-10 -8 (-15 (-2955) ($) -2562) (-15 -3956 ($) -2562) (-15 -3150 ((-110) $)) (-15 ** ($ $ (-719))) (-15 -2723 ($ $ (-719))) (-15 -1673 ((-3 $ "failed") $))))
+((-3093 (*1 *1) (-4 *1 (-675))) (-2350 (*1 *1) (-4 *1 (-675))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-2707 (*1 *1 *1) (|partial| -4 *1 (-675))))
+(-13 (-1039) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2350 ($) -2708) (-15 -2731 ((-110) $)) (-15 ** ($ $ (-719))) (-15 -2707 ((-3 $ "failed") $))))
(((-99) . T) ((-571 (-804)) . T) ((-1039) . T) ((-1027) . T))
-((-3163 (((-2 (|:| -4176 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1373 (((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3176 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-1482 (((-2 (|:| |poly| |#2|) (|:| -4176 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47)))
-(((-676 |#1| |#2|) (-10 -7 (-15 -1373 ((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3163 ((-2 (|:| -4176 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3176 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -1482 ((-2 (|:| |poly| |#2|) (|:| -4176 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -676))
-((-1482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4176 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4176 (-399 *3)) (|:| |special| (-399 *3)))) (-5 *1 (-676 *5 *3)))) (-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4176 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3)))))
-(-10 -7 (-15 -1373 ((-2 (|:| -4176 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3163 ((-2 (|:| -4176 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3176 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -1482 ((-2 (|:| |poly| |#2|) (|:| -4176 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|))))
-((-3030 ((|#7| (-597 |#5|) |#6|) NIL)) (-3114 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-677 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3114 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3030 (|#7| (-597 |#5|) |#6|))) (-795) (-741) (-741) (-984) (-984) (-890 |#4| |#2| |#1|) (-890 |#5| |#3| |#1|)) (T -677))
-((-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-984)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))))
-(-10 -7 (-15 -3114 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3030 (|#7| (-597 |#5|) |#6|)))
-((-3114 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3114 (|#7| (-1 |#2| |#1|) |#6|))) (-795) (-795) (-741) (-741) (-984) (-890 |#5| |#3| |#1|) (-890 |#5| |#4| |#2|)) (T -678))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741)) (-4 *9 (-984)) (-4 *2 (-890 *9 *8 *6)) (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-741)) (-4 *4 (-890 *9 *7 *5)))))
-(-10 -7 (-15 -3114 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2473 (((-399 |#4|) |#4|) 41)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099))))) (-289) (-890 (-893 |#3|) |#1| |#2|)) (T -679))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-890 (-893 *6) *4 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-806 |#1|)) $) NIL)) (-2439 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3031 (($ $) NIL (|has| |#2| (-522)))) (-3006 (((-110) $) NIL (|has| |#2| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL (|has| |#2| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-2330 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#2| (-850)))) (-2097 (($ $ |#2| (-502 (-806 |#1|)) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#2| (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-806 |#1|)) NIL)) (-3674 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-2107 (($ (-1 (-502 (-806 |#1|)) (-502 (-806 |#1|))) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-1367 (((-3 (-806 |#1|) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#2| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3059 (-719))) "failed") $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#2| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-2341 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3211 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3409 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ $) NIL (|has| |#2| (-522))) (($ (-388 (-530))) NIL (-1476 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530))))))) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#2| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+((-2218 (((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1489 (((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4063 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-3850 (((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47)))
+(((-676 |#1| |#2|) (-10 -7 (-15 -1489 ((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2218 ((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4063 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -676))
+((-3850 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4182 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4182 (-399 *3)) (|:| |special| (-399 *3)))) (-5 *1 (-676 *5 *3)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4182 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3)))))
+(-10 -7 (-15 -1489 ((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2218 ((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4063 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|))))
+((-3153 ((|#7| (-597 |#5|) |#6|) NIL)) (-3217 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-677 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3217 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3153 (|#7| (-597 |#5|) |#6|))) (-795) (-741) (-741) (-984) (-984) (-890 |#4| |#2| |#1|) (-890 |#5| |#3| |#1|)) (T -677))
+((-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-984)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))))
+(-10 -7 (-15 -3217 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3153 (|#7| (-597 |#5|) |#6|)))
+((-3217 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3217 (|#7| (-1 |#2| |#1|) |#6|))) (-795) (-795) (-741) (-741) (-984) (-890 |#5| |#3| |#1|) (-890 |#5| |#4| |#2|)) (T -678))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741)) (-4 *9 (-984)) (-4 *2 (-890 *9 *8 *6)) (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-741)) (-4 *4 (-890 *9 *7 *5)))))
+(-10 -7 (-15 -3217 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2611 (((-399 |#4|) |#4|) 41)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-289) (-890 (-893 |#3|) |#1| |#2|)) (T -679))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-890 (-893 *6) *4 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-502 (-806 |#1|)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-502 (-806 |#1|)) (-502 (-806 |#1|))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ $) NIL (|has| |#2| (-522))) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530))))))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
(((-680 |#1| |#2|) (-890 |#2| (-502 (-806 |#1|)) (-806 |#1|)) (-597 (-1099)) (-984)) (T -680))
NIL
(-890 |#2| (-502 (-806 |#1|)) (-806 |#1|))
-((-3188 (((-2 (|:| -3821 (-893 |#3|)) (|:| -2973 (-893 |#3|))) |#4|) 14)) (-2749 ((|#4| |#4| |#2|) 33)) (-3228 ((|#4| (-388 (-893 |#3|)) |#2|) 64)) (-3215 ((|#4| (-1095 (-893 |#3|)) |#2|) 77)) (-3201 ((|#4| (-1095 |#4|) |#2|) 51)) (-2740 ((|#4| |#4| |#2|) 54)) (-2473 (((-399 |#4|) |#4|) 40)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3188 ((-2 (|:| -3821 (-893 |#3|)) (|:| -2973 (-893 |#3|))) |#4|)) (-15 -2740 (|#4| |#4| |#2|)) (-15 -3201 (|#4| (-1095 |#4|) |#2|)) (-15 -2749 (|#4| |#4| |#2|)) (-15 -3215 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -3228 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2473 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)))) (-522) (-890 (-388 (-893 |#3|)) |#1| |#2|)) (T -681))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))) (-3228 (*1 *2 *3 *4) (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))))) (-2749 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *6 (-522)))) (-2740 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-2 (|:| -3821 (-893 *6)) (|:| -2973 (-893 *6)))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
-(-10 -7 (-15 -3188 ((-2 (|:| -3821 (-893 |#3|)) (|:| -2973 (-893 |#3|))) |#4|)) (-15 -2740 (|#4| |#4| |#2|)) (-15 -3201 (|#4| (-1095 |#4|) |#2|)) (-15 -2749 (|#4| |#4| |#2|)) (-15 -3215 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -3228 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2473 ((-399 |#4|) |#4|)))
-((-2473 (((-399 |#4|) |#4|) 52)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4|))) (-741) (-795) (-13 (-289) (-140)) (-890 (-388 |#3|) |#1| |#2|)) (T -682))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-890 (-388 *6) *4 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4|)))
-((-3114 (((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)) 18)))
-(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)))) (-984) (-984) (-675)) (T -683))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *7 (-675)) (-5 *2 (-684 *6 *7)) (-5 *1 (-683 *5 *6 *7)))))
-(-10 -7 (-15 -3114 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 28)) (-1344 (((-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|))) $) 29)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2446 ((|#2| $) NIL) ((|#1| $) NIL)) (-2425 (($ $) 79 (|has| |#2| (-795)))) (-1673 (((-3 $ "failed") $) 65)) (-1376 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) 55)) (-3683 (((-597 $) $) 39)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| |#2|) 16)) (-3114 (($ (-1 |#1| |#1|) $) 54)) (-3830 (((-862) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2388 ((|#2| $) 78 (|has| |#2| (-795)))) (-2402 ((|#1| $) 77 (|has| |#2| (-795)))) (-3443 (((-1082) $) NIL)) (-1910 (($ (-862)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 76) (($ (-530)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|)))) 11)) (-1669 (((-597 |#1|) $) 41)) (-2782 ((|#1| $ |#2|) 88)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 12 T CONST)) (-2955 (($) 33 T CONST)) (-2148 (((-110) $ $) 80)) (-2245 (($ $) 47) (($ $ $) NIL)) (-2234 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-684 |#1| |#2|) (-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2575 ($ |#1| |#2|)) (-15 -2782 (|#1| $ |#2|)) (-15 -2258 ($ (-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|))))) (-15 -1344 ((-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|))) $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (-15 -3327 ((-110) $)) (-15 -1669 ((-597 |#1|) $)) (-15 -3683 ((-597 $) $)) (-15 -3239 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2388 (|#2| $)) (-15 -2402 (|#1| $)) (-15 -2425 ($ $))) |%noBranch|))) (-984) (-675)) (T -684))
-((-2575 (*1 *1 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675)))) (-2782 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -1981 *3) (|:| -3931 *4)))) (-4 *3 (-984)) (-4 *4 (-675)) (-5 *1 (-684 *3 *4)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -1981 *3) (|:| -3931 *4)))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4)) (-4 *4 (-675)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2)) (-4 *3 (-984)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *3 (-675)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984)) (-4 *3 (-675)))))
-(-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2575 ($ |#1| |#2|)) (-15 -2782 (|#1| $ |#2|)) (-15 -2258 ($ (-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|))))) (-15 -1344 ((-597 (-2 (|:| -1981 |#1|) (|:| -3931 |#2|))) $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (-15 -3327 ((-110) $)) (-15 -1669 ((-597 |#1|) $)) (-15 -3683 ((-597 $) $)) (-15 -3239 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2388 (|#2| $)) (-15 -2402 (|#1| $)) (-15 -2425 ($ $))) |%noBranch|)))
-((-2246 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3396 (($ $ $) 72)) (-3383 (((-110) $ $) 73)) (-4102 (((-110) $ (-719)) 8)) (-1245 (($ (-597 |#1|)) 68) (($) 67)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-3929 (($ $) 62)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) 64)) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22)) (-3418 (($ $ $) 69)) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2485 (((-1046) $) 21)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3919 (((-597 (-2 (|:| -1806 |#1|) (|:| -2494 (-719)))) $) 61)) (-3407 (($ $ |#1|) 71) (($ $ $) 70)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2258 (((-804) $) 18)) (-3341 (($ (-597 |#1|)) 66) (($) 65)) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20)) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-1917 (((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|) 14)) (-3097 ((|#4| |#4| |#2|) 33)) (-1829 ((|#4| (-388 (-893 |#3|)) |#2|) 64)) (-3002 ((|#4| (-1095 (-893 |#3|)) |#2|) 77)) (-3649 ((|#4| (-1095 |#4|) |#2|) 51)) (-2118 ((|#4| |#4| |#2|) 54)) (-2611 (((-399 |#4|) |#4|) 40)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1917 ((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|)) (-15 -2118 (|#4| |#4| |#2|)) (-15 -3649 (|#4| (-1095 |#4|) |#2|)) (-15 -3097 (|#4| |#4| |#2|)) (-15 -3002 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -1829 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)))) (-522) (-890 (-388 (-893 |#3|)) |#1| |#2|)) (T -681))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))) (-1829 (*1 *2 *3 *4) (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))) (-3097 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)))) (-2118 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-2 (|:| -3418 (-893 *6)) (|:| -1726 (-893 *6)))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
+(-10 -7 (-15 -1917 ((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|)) (-15 -2118 (|#4| |#4| |#2|)) (-15 -3649 (|#4| (-1095 |#4|) |#2|)) (-15 -3097 (|#4| |#4| |#2|)) (-15 -3002 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -1829 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2611 ((-399 |#4|) |#4|)))
+((-2611 (((-399 |#4|) |#4|) 52)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-795) (-13 (-289) (-140)) (-890 (-388 |#3|) |#1| |#2|)) (T -682))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-890 (-388 *6) *4 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)))
+((-3217 (((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)) 18)))
+(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)))) (-984) (-984) (-675)) (T -683))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *7 (-675)) (-5 *2 (-684 *6 *7)) (-5 *1 (-683 *5 *6 *7)))))
+(-10 -7 (-15 -3217 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 28)) (-3678 (((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $) 29)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2585 ((|#2| $) NIL) ((|#1| $) NIL)) (-2562 (($ $) 79 (|has| |#2| (-795)))) (-2707 (((-3 $ "failed") $) 65)) (-1364 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 55)) (-2469 (((-597 $) $) 39)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| |#2|) 16)) (-3217 (($ (-1 |#1| |#1|) $) 54)) (-1905 (((-862) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2521 ((|#2| $) 78 (|has| |#2| (-795)))) (-2533 ((|#1| $) 77 (|has| |#2| (-795)))) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 76) (($ (-530)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|)))) 11)) (-3441 (((-597 |#1|) $) 41)) (-4085 ((|#1| $ |#2|) 88)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3080 (($) 12 T CONST)) (-3093 (($) 33 T CONST)) (-2248 (((-110) $ $) 80)) (-2351 (($ $) 47) (($ $ $) NIL)) (-2339 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-684 |#1| |#2|) (-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2725 ($ |#1| |#2|)) (-15 -4085 (|#1| $ |#2|)) (-15 -2366 ($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))))) (-15 -3678 ((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -3668 ((-110) $)) (-15 -3441 ((-597 |#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2521 (|#2| $)) (-15 -2533 (|#1| $)) (-15 -2562 ($ $))) |%noBranch|))) (-984) (-675)) (T -684))
+((-2725 (*1 *1 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-4 *3 (-984)) (-4 *4 (-675)) (-5 *1 (-684 *3 *4)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4)) (-4 *4 (-675)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2521 (*1 *2 *1) (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2)) (-4 *3 (-984)))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *3 (-675)))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984)) (-4 *3 (-675)))))
+(-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2725 ($ |#1| |#2|)) (-15 -4085 (|#1| $ |#2|)) (-15 -2366 ($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))))) (-15 -3678 ((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -3668 ((-110) $)) (-15 -3441 ((-597 |#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2521 (|#2| $)) (-15 -2533 (|#1| $)) (-15 -2562 ($ $))) |%noBranch|)))
+((-2352 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) 8)) (-1243 (($ (-597 |#1|)) 68) (($) 67)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 64)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 69)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1252 (($ $ |#1|) 71) (($ $ $) 70)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18)) (-3381 (($ (-597 |#1|)) 66) (($) 65)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-685 |#1|) (-133) (-1027)) (T -685))
NIL
(-13 (-643 |t#1|) (-1025 |t#1|))
(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3396 (($ $ $) 79)) (-3383 (((-110) $ $) 83)) (-4102 (((-110) $ (-719)) NIL)) (-1245 (($ (-597 |#1|)) 24) (($) 16)) (-2421 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-3929 (($ $) 71)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) 61 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4270))) (($ |#1| $ (-530)) 62) (($ (-1 (-110) |#1|) $ (-530)) 65)) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (($ |#1| $ (-530)) 67) (($ (-1 (-110) |#1|) $ (-530)) 68)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 32 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) 82)) (-3265 (($) 14) (($ |#1|) 26) (($ (-597 |#1|)) 21)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) 38)) (-3455 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 75)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3418 (($ $ $) 77)) (-3275 ((|#1| $) 55)) (-3440 (($ |#1| $) 56) (($ |#1| $ (-719)) 72)) (-2485 (((-1046) $) NIL)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3287 ((|#1| $) 54)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 50)) (-4227 (($) 13)) (-3919 (((-597 (-2 (|:| -1806 |#1|) (|:| -2494 (-719)))) $) 48)) (-3407 (($ $ |#1|) NIL) (($ $ $) 78)) (-3839 (($) 15) (($ (-597 |#1|)) 23)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) 60 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 66)) (-3173 (((-506) $) 36 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 20)) (-2258 (((-804) $) 44)) (-3341 (($ (-597 |#1|)) 25) (($) 17)) (-3298 (($ (-597 |#1|)) 22)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 81)) (-2167 (((-719) $) 59 (|has| $ (-6 -4270)))))
-(((-686 |#1|) (-13 (-685 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -3265 ($)) (-15 -3265 ($ |#1|)) (-15 -3265 ($ (-597 |#1|))) (-15 -3252 ((-597 |#1|) $)) (-15 -2272 ($ |#1| $ (-530))) (-15 -2272 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1283 ($ |#1| $ (-530))) (-15 -1283 ($ (-1 (-110) |#1|) $ (-530))))) (-1027)) (T -686))
-((-3265 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-3265 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-3265 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))) (-2272 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2272 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))) (-1283 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-1283 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))))
-(-13 (-685 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -3265 ($)) (-15 -3265 ($ |#1|)) (-15 -3265 ($ (-597 |#1|))) (-15 -3252 ((-597 |#1|) $)) (-15 -2272 ($ |#1| $ (-530))) (-15 -2272 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1283 ($ |#1| $ (-530))) (-15 -1283 ($ (-1 (-110) |#1|) $ (-530)))))
-((-4140 (((-1186) (-1082)) 8)))
-(((-687) (-10 -7 (-15 -4140 ((-1186) (-1082))))) (T -687))
-((-4140 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-687)))))
-(-10 -7 (-15 -4140 ((-1186) (-1082))))
-((-3277 (((-597 |#1|) (-597 |#1|) (-597 |#1|)) 10)))
-(((-688 |#1|) (-10 -7 (-15 -3277 ((-597 |#1|) (-597 |#1|) (-597 |#1|)))) (-795)) (T -688))
-((-3277 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
-(-10 -7 (-15 -3277 ((-597 |#1|) (-597 |#1|) (-597 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 |#2|) $) 136)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 129 (|has| |#1| (-522)))) (-3031 (($ $) 128 (|has| |#1| (-522)))) (-3006 (((-110) $) 126 (|has| |#1| (-522)))) (-2276 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 68 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-2487 (($ $) 67 (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) 84 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 69 (|has| |#1| (-37 (-388 (-530)))))) (-2297 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 70 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-2425 (($ $) 120)) (-1673 (((-3 $ "failed") $) 34)) (-3496 (((-893 |#1|) $ (-719)) 98) (((-893 |#1|) $ (-719) (-719)) 97)) (-3032 (((-110) $) 137)) (-1877 (($) 95 (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $ |#2|) 100) (((-719) $ |#2| (-719)) 99)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 66 (|has| |#1| (-37 (-388 (-530)))))) (-3327 (((-110) $) 118)) (-2575 (($ $ (-597 |#2|) (-597 (-502 |#2|))) 135) (($ $ |#2| (-502 |#2|)) 134) (($ |#1| (-502 |#2|)) 119) (($ $ |#2| (-719)) 102) (($ $ (-597 |#2|) (-597 (-719))) 101)) (-3114 (($ (-1 |#1| |#1|) $) 117)) (-2070 (($ $) 92 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 115)) (-2402 ((|#1| $) 114)) (-3443 (((-1082) $) 9)) (-1637 (($ $ |#2|) 96 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) 10)) (-1312 (($ $ (-719)) 103)) (-3562 (((-3 $ "failed") $ $) 130 (|has| |#1| (-522)))) (-2693 (($ $) 93 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (($ $ |#2| $) 111) (($ $ (-597 |#2|) (-597 $)) 110) (($ $ (-597 (-276 $))) 109) (($ $ (-276 $)) 108) (($ $ $ $) 107) (($ $ (-597 $) (-597 $)) 106)) (-3211 (($ $ |#2|) 42) (($ $ (-597 |#2|)) 41) (($ $ |#2| (-719)) 40) (($ $ (-597 |#2|) (-597 (-719))) 39)) (-3409 (((-502 |#2|) $) 116)) (-2308 (($ $) 82 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 71 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 80 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 138)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 133 (|has| |#1| (-162))) (($ $) 131 (|has| |#1| (-522))) (($ (-388 (-530))) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2782 ((|#1| $ (-502 |#2|)) 121) (($ $ |#2| (-719)) 105) (($ $ (-597 |#2|) (-597 (-719))) 104)) (-1795 (((-3 $ "failed") $) 132 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-2339 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 127 (|has| |#1| (-522)))) (-2318 (($ $) 90 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 78 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 77 (|has| |#1| (-37 (-388 (-530)))))) (-2910 (($ $) 88 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 76 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 75 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 86 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 74 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ |#2|) 38) (($ $ (-597 |#2|)) 37) (($ $ |#2| (-719)) 36) (($ $ (-597 |#2|) (-597 (-719))) 35)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 122 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ $) 94 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 65 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 125 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 124 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+((-2352 (((-110) $ $) NIL)) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1746 (($ $ $) 79)) (-2431 (((-110) $ $) 83)) (-3186 (((-110) $ (-719)) NIL)) (-1243 (($ (-597 |#1|)) 24) (($) 16)) (-2901 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2287 (($ $) 71)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 61 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4269))) (($ |#1| $ (-530)) 62) (($ (-1 (-110) |#1|) $ (-530)) 65)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $ (-530)) 67) (($ (-1 (-110) |#1|) $ (-530)) 68)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 32 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 82)) (-2113 (($) 14) (($ |#1|) 26) (($ (-597 |#1|)) 21)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) 38)) (-4197 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 75)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 77)) (-1723 ((|#1| $) 55)) (-2441 (($ |#1| $) 56) (($ |#1| $ (-719)) 72)) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2738 ((|#1| $) 54)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 50)) (-3958 (($) 13)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 48)) (-1252 (($ $ |#1|) NIL) (($ $ $) 78)) (-1560 (($) 15) (($ (-597 |#1|)) 23)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 60 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 66)) (-3260 (((-506) $) 36 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 20)) (-2366 (((-804) $) 44)) (-3381 (($ (-597 |#1|)) 25) (($) 17)) (-2242 (($ (-597 |#1|)) 22)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 81)) (-2267 (((-719) $) 59 (|has| $ (-6 -4269)))))
+(((-686 |#1|) (-13 (-685 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2113 ($)) (-15 -2113 ($ |#1|)) (-15 -2113 ($ (-597 |#1|))) (-15 -2395 ((-597 |#1|) $)) (-15 -2383 ($ |#1| $ (-530))) (-15 -2383 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1842 ($ |#1| $ (-530))) (-15 -1842 ($ (-1 (-110) |#1|) $ (-530))))) (-1027)) (T -686))
+((-2113 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2113 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))) (-2383 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2383 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))) (-1842 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-1842 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))))
+(-13 (-685 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2113 ($)) (-15 -2113 ($ |#1|)) (-15 -2113 ($ (-597 |#1|))) (-15 -2395 ((-597 |#1|) $)) (-15 -2383 ($ |#1| $ (-530))) (-15 -2383 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1842 ($ |#1| $ (-530))) (-15 -1842 ($ (-1 (-110) |#1|) $ (-530)))))
+((-4151 (((-1186) (-1082)) 8)))
+(((-687) (-10 -7 (-15 -4151 ((-1186) (-1082))))) (T -687))
+((-4151 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-687)))))
+(-10 -7 (-15 -4151 ((-1186) (-1082))))
+((-3802 (((-597 |#1|) (-597 |#1|) (-597 |#1|)) 10)))
+(((-688 |#1|) (-10 -7 (-15 -3802 ((-597 |#1|) (-597 |#1|) (-597 |#1|)))) (-795)) (T -688))
+((-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
+(-10 -7 (-15 -3802 ((-597 |#1|) (-597 |#1|) (-597 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#2|) $) 134)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 127 (|has| |#1| (-522)))) (-3446 (($ $) 126 (|has| |#1| (-522)))) (-1276 (((-110) $) 124 (|has| |#1| (-522)))) (-2386 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 66 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 65 (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 82 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 67 (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 68 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-2562 (($ $) 118)) (-2707 (((-3 $ "failed") $) 32)) (-1761 (((-893 |#1|) $ (-719)) 96) (((-893 |#1|) $ (-719) (-719)) 95)) (-3555 (((-110) $) 135)) (-1948 (($) 93 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ |#2|) 98) (((-719) $ |#2| (-719)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 64 (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) 116)) (-2725 (($ $ (-597 |#2|) (-597 (-502 |#2|))) 133) (($ $ |#2| (-502 |#2|)) 132) (($ |#1| (-502 |#2|)) 117) (($ $ |#2| (-719)) 100) (($ $ (-597 |#2|) (-597 (-719))) 99)) (-3217 (($ (-1 |#1| |#1|) $) 115)) (-2168 (($ $) 90 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 113)) (-2533 ((|#1| $) 112)) (-1424 (((-1082) $) 9)) (-1545 (($ $ |#2|) 94 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) 10)) (-3168 (($ $ (-719)) 101)) (-3551 (((-3 $ "failed") $ $) 128 (|has| |#1| (-522)))) (-2853 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ |#2| $) 109) (($ $ (-597 |#2|) (-597 $)) 108) (($ $ (-597 (-276 $))) 107) (($ $ (-276 $)) 106) (($ $ $ $) 105) (($ $ (-597 $) (-597 $)) 104)) (-3289 (($ $ |#2|) 40) (($ $ (-597 |#2|)) 39) (($ $ |#2| (-719)) 38) (($ $ (-597 |#2|) (-597 (-719))) 37)) (-1429 (((-502 |#2|) $) 114)) (-2421 (($ $) 80 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 69 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 70 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 78 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 71 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 136)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 131 (|has| |#1| (-162))) (($ $) 129 (|has| |#1| (-522))) (($ (-388 (-530))) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4085 ((|#1| $ (-502 |#2|)) 119) (($ $ |#2| (-719)) 103) (($ $ (-597 |#2|) (-597 (-719))) 102)) (-3251 (((-3 $ "failed") $) 130 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-2459 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 77 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 125 (|has| |#1| (-522)))) (-2434 (($ $) 88 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 76 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 75 (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) 86 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 74 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 84 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#2|) 36) (($ $ (-597 |#2|)) 35) (($ $ |#2| (-719)) 34) (($ $ (-597 |#2|) (-597 (-719))) 33)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 120 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ $) 92 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 63 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 123 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 122 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
(((-689 |#1| |#2|) (-133) (-984) (-795)) (T -689))
-((-2782 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-2782 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984)) (-4 *4 (-795)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-1334 (*1 *2 *1 *3) (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *2 (-719)))) (-1334 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-3496 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)) (-4 *3 (-37 (-388 (-530)))))))
-(-13 (-841 |t#2|) (-913 |t#1| (-502 |t#2|) |t#2|) (-491 |t#2| $) (-291 $) (-10 -8 (-15 -2782 ($ $ |t#2| (-719))) (-15 -2782 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -1312 ($ $ (-719))) (-15 -2575 ($ $ |t#2| (-719))) (-15 -2575 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -1334 ((-719) $ |t#2|)) (-15 -1334 ((-719) $ |t#2| (-719))) (-15 -3496 ((-893 |t#1|) $ (-719))) (-15 -3496 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $ |t#2|)) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-502 |#2|)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-272) |has| |#1| (-522)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 |#2| $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 |#2|) . T) ((-913 |#1| #0# |#2|) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))))
-((-2473 (((-399 (-1095 |#4|)) (-1095 |#4|)) 30) (((-399 |#4|) |#4|) 26)))
-(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 |#4|) |#4|)) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -690))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-690 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -2473 ((-399 |#4|) |#4|)) (-15 -2473 ((-399 (-1095 |#4|)) (-1095 |#4|))))
-((-3312 (((-399 |#4|) |#4| |#2|) 120)) (-3289 (((-399 |#4|) |#4|) NIL)) (-3550 (((-399 (-1095 |#4|)) (-1095 |#4|)) 111) (((-399 |#4|) |#4|) 41)) (-3336 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2473 (-1095 |#4|)) (|:| -3059 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 69)) (-3382 (((-1095 |#3|) (-1095 |#3|) (-530)) 139)) (-3371 (((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719)) 61)) (-3844 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|)) 65)) (-3349 (((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 26)) (-3324 (((-2 (|:| -3770 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530)) 57)) (-3300 (((-530) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530))))) 136)) (-3361 ((|#4| (-530) (-399 |#4|)) 58)) (-1990 (((-110) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530))))) NIL)))
-(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3550 ((-399 |#4|) |#4|)) (-15 -3550 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -3289 ((-399 |#4|) |#4|)) (-15 -3300 ((-530) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))))) (-15 -3312 ((-399 |#4|) |#4| |#2|)) (-15 -3324 ((-2 (|:| -3770 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3336 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2473 (-1095 |#4|)) (|:| -3059 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3349 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3361 (|#4| (-530) (-399 |#4|))) (-15 -1990 ((-110) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))))) (-15 -3844 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3371 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -3382 ((-1095 |#3|) (-1095 |#3|) (-530)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -691))
-((-3382 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))) (-3844 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10)) (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795)) (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10)) (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5)) (-5 *3 (-1095 *5)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-2 (|:| -2473 (-1095 *6)) (|:| -3059 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6)) (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-289)))) (-3349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8)) (|:| |Lfact| (-597 (-2 (|:| -2473 (-1095 *8)) (|:| -3059 (-530))))) (|:| |ctpol| *8))) (-5 *1 (-691 *6 *7 *8 *9)))) (-3336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-597 (-2 (|:| -2473 (-1095 *9)) (|:| -3059 (-530))))))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))) (-3324 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| -3770 (-1095 *9)) (|:| |polval| (-1095 *8)))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))) (-3312 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2473 (-1095 *6)) (|:| -3059 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3289 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
-(-10 -7 (-15 -3550 ((-399 |#4|) |#4|)) (-15 -3550 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -3289 ((-399 |#4|) |#4|)) (-15 -3300 ((-530) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))))) (-15 -3312 ((-399 |#4|) |#4| |#2|)) (-15 -3324 ((-2 (|:| -3770 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3336 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2473 (-1095 |#4|)) (|:| -3059 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3349 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3361 (|#4| (-530) (-399 |#4|))) (-15 -1990 ((-110) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))) (-597 (-2 (|:| -2473 (-1095 |#3|)) (|:| -3059 (-530)))))) (-15 -3844 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3371 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -3382 ((-1095 |#3|) (-1095 |#3|) (-530))))
-((-3395 (($ $ (-862)) 12)))
-(((-692 |#1| |#2|) (-10 -8 (-15 -3395 (|#1| |#1| (-862)))) (-693 |#2|) (-162)) (T -692))
-NIL
-(-10 -8 (-15 -3395 (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3128 (($ $ (-862)) 28)) (-3395 (($ $ (-862)) 33)) (-3117 (($ $ (-862)) 29)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-1527 (($ $ $) 25)) (-2258 (((-804) $) 11)) (-1538 (($ $ $ $) 26)) (-1516 (($ $ $) 24)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4085 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984)) (-4 *4 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *2 (-719)))) (-2031 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-1761 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-1545 (*1 *1 *1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)) (-4 *3 (-37 (-388 (-530)))))))
+(-13 (-841 |t#2|) (-913 |t#1| (-502 |t#2|) |t#2|) (-491 |t#2| $) (-291 $) (-10 -8 (-15 -4085 ($ $ |t#2| (-719))) (-15 -4085 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -3168 ($ $ (-719))) (-15 -2725 ($ $ |t#2| (-719))) (-15 -2725 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -2031 ((-719) $ |t#2|)) (-15 -2031 ((-719) $ |t#2| (-719))) (-15 -1761 ((-893 |t#1|) $ (-719))) (-15 -1761 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |t#2|)) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-502 |#2|)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-272) |has| |#1| (-522)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 |#2| $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 |#2|) . T) ((-913 |#1| #0# |#2|) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))))
+((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|)) 30) (((-399 |#4|) |#4|) 26)))
+(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -690))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-690 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
+(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|))))
+((-3366 (((-399 |#4|) |#4| |#2|) 120)) (-2492 (((-399 |#4|) |#4|) NIL)) (-3272 (((-399 (-1095 |#4|)) (-1095 |#4|)) 111) (((-399 |#4|) |#4|) 41)) (-3268 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 69)) (-2312 (((-1095 |#3|) (-1095 |#3|) (-530)) 139)) (-3597 (((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719)) 61)) (-2123 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|)) 65)) (-2092 (((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 26)) (-4205 (((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530)) 57)) (-1251 (((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) 136)) (-3759 ((|#4| (-530) (-399 |#4|)) 58)) (-3015 (((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) NIL)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-399 |#4|) |#4|)) (-15 -3272 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2492 ((-399 |#4|) |#4|)) (-15 -1251 ((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -3366 ((-399 |#4|) |#4| |#2|)) (-15 -4205 ((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3268 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -2092 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3759 (|#4| (-530) (-399 |#4|))) (-15 -3015 ((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -2123 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3597 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -2312 ((-1095 |#3|) (-1095 |#3|) (-530)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -691))
+((-2312 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))) (-2123 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10)) (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795)) (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10)) (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5)) (-5 *3 (-1095 *5)))) (-3015 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6)) (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-289)))) (-2092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 *8)) (|:| -3194 (-530))))) (|:| |ctpol| *8))) (-5 *1 (-691 *6 *7 *8 *9)))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 *9)) (|:| -3194 (-530))))))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))) (-4205 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| -3109 (-1095 *9)) (|:| |polval| (-1095 *8)))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))) (-3366 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-1251 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2492 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
+(-10 -7 (-15 -3272 ((-399 |#4|) |#4|)) (-15 -3272 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2492 ((-399 |#4|) |#4|)) (-15 -1251 ((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -3366 ((-399 |#4|) |#4| |#2|)) (-15 -4205 ((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3268 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -2092 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3759 (|#4| (-530) (-399 |#4|))) (-15 -3015 ((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -2123 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3597 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -2312 ((-1095 |#3|) (-1095 |#3|) (-530))))
+((-1667 (($ $ (-862)) 12)))
+(((-692 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| (-862)))) (-693 |#2|) (-162)) (T -692))
+NIL
+(-10 -8 (-15 -1667 (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2862 (($ $ (-862)) 28)) (-1667 (($ $ (-862)) 33)) (-4138 (($ $ (-862)) 29)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-693 |#1|) (-133) (-162)) (T -693))
-((-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
-(-13 (-710) (-666 |t#1|) (-10 -8 (-15 -3395 ($ $ (-862)))))
+((-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
+(-13 (-710) (-666 |t#1|) (-10 -8 (-15 -1667 ($ $ (-862)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3417 (((-973) (-637 (-208)) (-530) (-110) (-530)) 25)) (-3406 (((-973) (-637 (-208)) (-530) (-110) (-530)) 24)))
-(((-694) (-10 -7 (-15 -3406 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3417 ((-973) (-637 (-208)) (-530) (-110) (-530))))) (T -694))
-((-3417 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))) (-3406 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))))
-(-10 -7 (-15 -3406 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3417 ((-973) (-637 (-208)) (-530) (-110) (-530))))
-((-3454 (((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-3442 (((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-3429 (((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) 32)))
-(((-695) (-10 -7 (-15 -3429 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3442 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -3454 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -695))
-((-3454 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-3442 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-3429 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973)) (-5 *1 (-695)))))
-(-10 -7 (-15 -3429 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3442 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -3454 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))
-((-3594 (((-973) (-530) (-530) (-637 (-208)) (-530)) 34)) (-3582 (((-973) (-530) (-530) (-637 (-208)) (-530)) 33)) (-3569 (((-973) (-530) (-637 (-208)) (-530)) 32)) (-3557 (((-973) (-530) (-637 (-208)) (-530)) 31)) (-3546 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 30)) (-3533 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-3522 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-3512 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-3501 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-3490 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-3478 (((-973) (-530) (-637 (-208)) (-530)) 22)) (-3465 (((-973) (-530) (-637 (-208)) (-530)) 21)))
-(((-696) (-10 -7 (-15 -3465 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3478 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3490 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3501 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3512 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3522 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3533 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3546 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3557 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3569 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3582 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3594 ((-973) (-530) (-530) (-637 (-208)) (-530))))) (T -696))
-((-3594 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3582 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3569 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3557 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3546 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3533 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3522 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3512 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3501 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3490 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3478 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3465 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
-(-10 -7 (-15 -3465 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3478 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3490 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3501 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3512 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3522 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3533 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3546 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3557 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3569 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3582 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3594 ((-973) (-530) (-530) (-637 (-208)) (-530))))
-((-2454 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2444 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-530)) 51)) (-2432 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2419 (((-973) (-208) (-208) (-530) (-530) (-530) (-530)) 46)) (-2406 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 45)) (-2396 (((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 44)) (-2383 (((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 43)) (-2372 (((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 42)) (-3629 (((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) 38)) (-3620 (((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) 37)) (-3611 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) 33)) (-3603 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) 32)))
-(((-697) (-10 -7 (-15 -3603 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3611 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3620 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3629 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -2372 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2383 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2396 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2406 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2419 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2432 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2444 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2454 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))) (T -697))
-((-2454 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2444 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2432 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2419 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2406 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2396 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2383 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2372 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3629 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3620 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-697)))) (-3611 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3603 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973)) (-5 *1 (-697)))))
-(-10 -7 (-15 -3603 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3611 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3620 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -3629 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345))))) (-15 -2372 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2383 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2396 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2406 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2419 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2432 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2444 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2454 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))
-((-2542 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2532 (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369)) 69) (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2523 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) 57)) (-2512 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 50)) (-2501 (((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2490 (((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2477 (((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 42)) (-2465 (((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-698) (-10 -7 (-15 -2465 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2477 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2490 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2501 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2512 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2523 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -2532 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -2532 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -2542 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -698))
-((-2542 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2532 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2532 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2523 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2512 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2501 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2490 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2477 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2465 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(-10 -7 (-15 -2465 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2477 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2490 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2501 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2512 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2523 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -2532 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -2532 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -2542 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-2570 (((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530)) 45)) (-2560 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) 41)) (-2551 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 23)))
-(((-699) (-10 -7 (-15 -2551 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2560 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -2570 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))) (T -699))
-((-2570 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))) (-2560 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973)) (-5 *1 (-699)))) (-2551 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
-(-10 -7 (-15 -2551 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2560 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -2570 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))
-((-2673 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530)) 35)) (-2664 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530)) 34)) (-2653 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530)) 33)) (-2643 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-2634 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-2622 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530)) 27)) (-2611 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 24)) (-2601 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 23)) (-2591 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 22)) (-2580 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 21)))
-(((-700) (-10 -7 (-15 -2580 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -2591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2601 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2611 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2622 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2634 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2643 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2653 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2664 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2673 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))) (T -700))
-((-2673 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2664 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2653 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2643 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2634 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2622 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2611 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2601 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2591 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-2580 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
-(-10 -7 (-15 -2580 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -2591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2601 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2611 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2622 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2634 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2643 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2653 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2664 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2673 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))
-((-2868 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 45)) (-2860 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530)) 44)) (-2848 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 43)) (-2836 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 42)) (-2823 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530)) 41)) (-2811 (((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 40)) (-2799 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530)) 39)) (-2785 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530))) 38)) (-2775 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 35)) (-2765 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530)) 34)) (-2754 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530)) 33)) (-2744 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 32)) (-2734 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530)) 31)) (-2724 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530)) 30)) (-2713 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 29)) (-2702 (((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530)) 28)) (-2691 (((-973) (-530) (-637 (-208)) (-208) (-530)) 24)) (-2682 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 21)))
-(((-701) (-10 -7 (-15 -2682 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2691 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2702 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -2713 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -2724 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2734 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2744 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2754 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -2765 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -2775 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2785 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -2799 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -2811 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2823 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2836 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2848 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -2860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2868 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))) (T -701))
-((-2868 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2860 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2848 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2836 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2823 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2811 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2799 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2785 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2775 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2765 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2754 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2744 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2734 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2724 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2713 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2702 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2691 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2682 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
-(-10 -7 (-15 -2682 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2691 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2702 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -2713 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -2724 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2734 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2744 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2754 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -2765 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -2775 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2785 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -2799 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -2811 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2823 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2836 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2848 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -2860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2868 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))
-((-2953 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530)) 63)) (-2942 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2932 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-2921 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530)) 51)) (-2909 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2899 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2890 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2881 (((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-702) (-10 -7 (-15 -2881 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2890 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2899 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -2909 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -2921 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -2942 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2953 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))) (T -702))
-((-2953 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2942 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2932 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2921 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2909 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2899 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2890 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2881 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(-10 -7 (-15 -2881 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2890 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2899 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -2909 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -2921 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -2942 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2953 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))
-((-1875 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 47)) (-1865 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530)) 46)) (-1856 (((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 45)) (-1847 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 40)) (-1839 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530)) 39)) (-1830 (((-973) (-530) (-530) (-530) (-637 (-208)) (-530)) 36)) (-1822 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530)) 35)) (-1813 (((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530)) 34)) (-1804 (((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530)) 33)) (-2967 (((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530)) 32)))
-(((-703) (-10 -7 (-15 -2967 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -1804 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -1813 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1822 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -1830 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1839 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1847 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1856 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1865 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1875 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -703))
-((-1875 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1865 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1856 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1847 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1839 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1830 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1822 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-1813 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-1804 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208))) (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2967 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208))) (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-703)))))
-(-10 -7 (-15 -2967 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -1804 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -1813 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1822 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -1830 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1839 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1847 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1856 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1865 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1875 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
-((-2016 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 65)) (-2007 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 60)) (-1999 (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-1989 (((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 37)) (-1979 (((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530)) 33)) (-1970 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 30)) (-1960 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-1951 (((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-1942 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-1932 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530)) 26)) (-1922 (((-973) (-530) (-530) (-637 (-208)) (-530)) 25)) (-1913 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-1903 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-1894 (((-973) (-637 (-208)) (-530) (-530) (-530) (-530)) 22)) (-1885 (((-973) (-530) (-530) (-637 (-208)) (-530)) 21)))
-(((-704) (-10 -7 (-15 -1885 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -1894 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1903 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1913 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1922 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -1932 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1942 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1951 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1960 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1970 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1979 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -1989 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1999 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1999 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2007 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2016 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -704))
-((-2016 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2007 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1999 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1999 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1989 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1979 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1970 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1960 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1951 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1942 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1932 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1922 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1913 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1903 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1894 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1885 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
-(-10 -7 (-15 -1885 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -1894 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1903 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1913 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1922 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -1932 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1942 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1951 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1960 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1970 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1979 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -1989 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1999 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1999 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2007 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2016 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
-((-2128 (((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-2117 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530)) 57)) (-2105 (((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2093 (((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 37)) (-2081 (((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530)) 36)) (-2068 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 33)) (-2060 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208))) 32)) (-2051 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530)) 28)) (-2042 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 27)) (-2032 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 26)) (-2024 (((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 22)))
-(((-705) (-10 -7 (-15 -2024 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2032 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2042 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2051 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -2060 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2081 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2093 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2105 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -2117 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2128 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -705))
-((-2128 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2117 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2105 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2093 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2081 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2068 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2060 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2051 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-2042 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2032 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2024 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-705)))))
-(-10 -7 (-15 -2024 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2032 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2042 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -2051 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -2060 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2081 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2093 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2105 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -2117 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2128 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))
-((-2175 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208))) 29)) (-2161 (((-973) (-1082) (-530) (-530) (-637 (-208))) 28)) (-2151 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208))) 27)) (-2140 (((-973) (-530) (-530) (-530) (-637 (-208))) 21)))
-(((-706) (-10 -7 (-15 -2140 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -2151 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2161 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2175 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))) (T -706))
-((-2175 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2161 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2151 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))) (-2140 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))))
-(-10 -7 (-15 -2140 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -2151 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2161 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2175 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))
-((-1448 (((-973) (-208) (-208) (-208) (-208) (-530)) 62)) (-1437 (((-973) (-208) (-208) (-208) (-530)) 61)) (-1427 (((-973) (-208) (-208) (-208) (-530)) 60)) (-1417 (((-973) (-208) (-208) (-530)) 59)) (-1406 (((-973) (-208) (-530)) 58)) (-1395 (((-973) (-208) (-530)) 57)) (-1385 (((-973) (-208) (-530)) 56)) (-1372 (((-973) (-208) (-530)) 55)) (-1362 (((-973) (-208) (-530)) 54)) (-1349 (((-973) (-208) (-530)) 53)) (-1337 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 52)) (-1327 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 51)) (-1315 (((-973) (-208) (-530)) 50)) (-1304 (((-973) (-208) (-530)) 49)) (-1293 (((-973) (-208) (-530)) 48)) (-1282 (((-973) (-208) (-530)) 47)) (-1272 (((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530)) 46)) (-1261 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 45)) (-1251 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 44)) (-1240 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 43)) (-1229 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 42)) (-2354 (((-973) (-208) (-530)) 39)) (-2343 (((-973) (-208) (-530)) 38)) (-2333 (((-973) (-208) (-530)) 37)) (-2325 (((-973) (-208) (-530)) 36)) (-2314 (((-973) (-208) (-530)) 35)) (-2303 (((-973) (-208) (-530)) 34)) (-2292 (((-973) (-208) (-530)) 33)) (-2282 (((-973) (-208) (-530)) 32)) (-2270 (((-973) (-208) (-530)) 31)) (-2260 (((-973) (-208) (-530)) 30)) (-2248 (((-973) (-208) (-208) (-208) (-530)) 29)) (-2236 (((-973) (-208) (-530)) 28)) (-2226 (((-973) (-208) (-530)) 27)) (-2217 (((-973) (-208) (-530)) 26)) (-2208 (((-973) (-208) (-530)) 25)) (-2198 (((-973) (-208) (-530)) 24)) (-2188 (((-973) (-159 (-208)) (-530)) 21)))
-(((-707) (-10 -7 (-15 -2188 ((-973) (-159 (-208)) (-530))) (-15 -2198 ((-973) (-208) (-530))) (-15 -2208 ((-973) (-208) (-530))) (-15 -2217 ((-973) (-208) (-530))) (-15 -2226 ((-973) (-208) (-530))) (-15 -2236 ((-973) (-208) (-530))) (-15 -2248 ((-973) (-208) (-208) (-208) (-530))) (-15 -2260 ((-973) (-208) (-530))) (-15 -2270 ((-973) (-208) (-530))) (-15 -2282 ((-973) (-208) (-530))) (-15 -2292 ((-973) (-208) (-530))) (-15 -2303 ((-973) (-208) (-530))) (-15 -2314 ((-973) (-208) (-530))) (-15 -2325 ((-973) (-208) (-530))) (-15 -2333 ((-973) (-208) (-530))) (-15 -2343 ((-973) (-208) (-530))) (-15 -2354 ((-973) (-208) (-530))) (-15 -1229 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1240 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1251 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -1261 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -1272 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1282 ((-973) (-208) (-530))) (-15 -1293 ((-973) (-208) (-530))) (-15 -1304 ((-973) (-208) (-530))) (-15 -1315 ((-973) (-208) (-530))) (-15 -1327 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1337 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1349 ((-973) (-208) (-530))) (-15 -1362 ((-973) (-208) (-530))) (-15 -1372 ((-973) (-208) (-530))) (-15 -1385 ((-973) (-208) (-530))) (-15 -1395 ((-973) (-208) (-530))) (-15 -1406 ((-973) (-208) (-530))) (-15 -1417 ((-973) (-208) (-208) (-530))) (-15 -1427 ((-973) (-208) (-208) (-208) (-530))) (-15 -1437 ((-973) (-208) (-208) (-208) (-530))) (-15 -1448 ((-973) (-208) (-208) (-208) (-208) (-530))))) (T -707))
-((-1448 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1437 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1427 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1417 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1406 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1337 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1327 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1293 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1282 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1272 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1261 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1251 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1240 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1229 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2248 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2236 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2198 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(-10 -7 (-15 -2188 ((-973) (-159 (-208)) (-530))) (-15 -2198 ((-973) (-208) (-530))) (-15 -2208 ((-973) (-208) (-530))) (-15 -2217 ((-973) (-208) (-530))) (-15 -2226 ((-973) (-208) (-530))) (-15 -2236 ((-973) (-208) (-530))) (-15 -2248 ((-973) (-208) (-208) (-208) (-530))) (-15 -2260 ((-973) (-208) (-530))) (-15 -2270 ((-973) (-208) (-530))) (-15 -2282 ((-973) (-208) (-530))) (-15 -2292 ((-973) (-208) (-530))) (-15 -2303 ((-973) (-208) (-530))) (-15 -2314 ((-973) (-208) (-530))) (-15 -2325 ((-973) (-208) (-530))) (-15 -2333 ((-973) (-208) (-530))) (-15 -2343 ((-973) (-208) (-530))) (-15 -2354 ((-973) (-208) (-530))) (-15 -1229 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1240 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1251 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -1261 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -1272 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1282 ((-973) (-208) (-530))) (-15 -1293 ((-973) (-208) (-530))) (-15 -1304 ((-973) (-208) (-530))) (-15 -1315 ((-973) (-208) (-530))) (-15 -1327 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1337 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1349 ((-973) (-208) (-530))) (-15 -1362 ((-973) (-208) (-530))) (-15 -1372 ((-973) (-208) (-530))) (-15 -1385 ((-973) (-208) (-530))) (-15 -1395 ((-973) (-208) (-530))) (-15 -1406 ((-973) (-208) (-530))) (-15 -1417 ((-973) (-208) (-208) (-530))) (-15 -1427 ((-973) (-208) (-208) (-208) (-530))) (-15 -1437 ((-973) (-208) (-208) (-208) (-530))) (-15 -1448 ((-973) (-208) (-208) (-208) (-208) (-530))))
-((-1506 (((-1186)) 18)) (-1470 (((-1082)) 22)) (-1458 (((-1082)) 21)) (-1494 (((-1031) (-1099) (-637 (-530))) 37) (((-1031) (-1099) (-637 (-208))) 32)) (-2284 (((-110)) 16)) (-1481 (((-1082) (-1082)) 25)))
-(((-708) (-10 -7 (-15 -1458 ((-1082))) (-15 -1470 ((-1082))) (-15 -1481 ((-1082) (-1082))) (-15 -1494 ((-1031) (-1099) (-637 (-208)))) (-15 -1494 ((-1031) (-1099) (-637 (-530)))) (-15 -2284 ((-110))) (-15 -1506 ((-1186))))) (T -708))
-((-1506 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))) (-2284 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-1470 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-1458 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(-10 -7 (-15 -1458 ((-1082))) (-15 -1470 ((-1082))) (-15 -1481 ((-1082) (-1082))) (-15 -1494 ((-1031) (-1099) (-637 (-208)))) (-15 -1494 ((-1031) (-1099) (-637 (-530)))) (-15 -2284 ((-110))) (-15 -1506 ((-1186))))
-((-1527 (($ $ $) 10)) (-1538 (($ $ $ $) 9)) (-1516 (($ $ $) 12)))
-(((-709 |#1|) (-10 -8 (-15 -1516 (|#1| |#1| |#1|)) (-15 -1527 (|#1| |#1| |#1|)) (-15 -1538 (|#1| |#1| |#1| |#1|))) (-710)) (T -709))
-NIL
-(-10 -8 (-15 -1516 (|#1| |#1| |#1|)) (-15 -1527 (|#1| |#1| |#1|)) (-15 -1538 (|#1| |#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3128 (($ $ (-862)) 28)) (-3117 (($ $ (-862)) 29)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-1527 (($ $ $) 25)) (-2258 (((-804) $) 11)) (-1538 (($ $ $ $) 26)) (-1516 (($ $ $) 24)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
+((-3939 (((-973) (-637 (-208)) (-530) (-110) (-530)) 25)) (-1268 (((-973) (-637 (-208)) (-530) (-110) (-530)) 24)))
+(((-694) (-10 -7 (-15 -1268 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3939 ((-973) (-637 (-208)) (-530) (-110) (-530))))) (T -694))
+((-3939 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))) (-1268 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))))
+(-10 -7 (-15 -1268 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3939 ((-973) (-637 (-208)) (-530) (-110) (-530))))
+((-4089 (((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-1338 (((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-2729 (((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 32)))
+(((-695) (-10 -7 (-15 -2729 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -1338 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -4089 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -695))
+((-4089 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-1338 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-2729 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-695)))))
+(-10 -7 (-15 -2729 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -1338 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -4089 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))
+((-2068 (((-973) (-530) (-530) (-637 (-208)) (-530)) 34)) (-2592 (((-973) (-530) (-530) (-637 (-208)) (-530)) 33)) (-3809 (((-973) (-530) (-637 (-208)) (-530)) 32)) (-2762 (((-973) (-530) (-637 (-208)) (-530)) 31)) (-4108 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 30)) (-1215 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-2723 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-4048 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-3144 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-3407 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-1691 (((-973) (-530) (-637 (-208)) (-530)) 22)) (-2959 (((-973) (-530) (-637 (-208)) (-530)) 21)))
+(((-696) (-10 -7 (-15 -2959 ((-973) (-530) (-637 (-208)) (-530))) (-15 -1691 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3407 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3144 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4048 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2723 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1215 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4108 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2762 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3809 ((-973) (-530) (-637 (-208)) (-530))) (-15 -2592 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-530))))) (T -696))
+((-2068 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2592 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3809 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2762 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-4108 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-1215 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2723 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-4048 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3144 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3407 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-1691 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2959 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
+(-10 -7 (-15 -2959 ((-973) (-530) (-637 (-208)) (-530))) (-15 -1691 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3407 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3144 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4048 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2723 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1215 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4108 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2762 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3809 ((-973) (-530) (-637 (-208)) (-530))) (-15 -2592 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-530))))
+((-2905 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3188 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-530)) 51)) (-2240 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2751 (((-973) (-208) (-208) (-530) (-530) (-530) (-530)) 46)) (-4186 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 45)) (-1716 (((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 44)) (-1914 (((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 43)) (-3454 (((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 42)) (-3989 (((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 38)) (-2114 (((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 37)) (-3412 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 33)) (-3698 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 32)))
+(((-697) (-10 -7 (-15 -3698 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3412 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -2114 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3989 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3454 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1914 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1716 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4186 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2751 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2240 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -3188 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2905 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))) (T -697))
+((-2905 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3188 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2240 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2751 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-4186 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-1716 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-1914 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3454 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3989 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2114 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-697)))) (-3412 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3698 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))))
+(-10 -7 (-15 -3698 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3412 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -2114 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3989 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3454 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1914 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1716 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4186 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2751 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2240 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -3188 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2905 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))
+((-4042 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4229 (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369)) 69) (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2689 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) 57)) (-2779 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 50)) (-1227 (((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2775 (((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 45)) (-4117 (((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 42)) (-1288 (((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-698) (-10 -7 (-15 -1288 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4117 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2775 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -1227 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2689 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -4042 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -698))
+((-4042 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4229 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4229 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2689 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2779 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-1227 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2775 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4117 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-1288 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(-10 -7 (-15 -1288 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4117 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2775 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -1227 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2689 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -4042 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-3330 (((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530)) 45)) (-1411 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) 41)) (-2919 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 23)))
+(((-699) (-10 -7 (-15 -2919 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1411 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3330 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))) (T -699))
+((-3330 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))) (-1411 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973)) (-5 *1 (-699)))) (-2919 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
+(-10 -7 (-15 -2919 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1411 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3330 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))
+((-2095 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530)) 35)) (-2554 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530)) 34)) (-4075 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530)) 33)) (-1460 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-3858 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-1591 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530)) 27)) (-3124 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 24)) (-3310 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 23)) (-1701 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 22)) (-1934 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 21)))
+(((-700) (-10 -7 (-15 -1934 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -1701 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3310 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3124 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -1591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -3858 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1460 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4075 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2554 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2095 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))) (T -700))
+((-2095 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2554 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-4075 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))) (-1460 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-3858 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1591 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-3124 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-3310 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1701 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1934 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
+(-10 -7 (-15 -1934 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -1701 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3310 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3124 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -1591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -3858 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1460 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4075 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2554 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2095 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))
+((-2063 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 45)) (-3447 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530)) 44)) (-3576 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 43)) (-1930 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 42)) (-2676 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530)) 41)) (-3729 (((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 40)) (-3012 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530)) 39)) (-3170 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530))) 38)) (-1572 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 35)) (-1913 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530)) 34)) (-3408 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530)) 33)) (-2454 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 32)) (-2893 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530)) 31)) (-1217 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530)) 30)) (-1539 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 29)) (-2906 (((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530)) 28)) (-4148 (((-973) (-530) (-637 (-208)) (-208) (-530)) 24)) (-1665 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 21)))
+(((-701) (-10 -7 (-15 -1665 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4148 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2906 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -1539 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1217 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2893 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2454 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3408 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -1913 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -1572 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3170 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -3012 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -3729 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2676 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1930 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3576 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -3447 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2063 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))) (T -701))
+((-2063 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-3447 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3576 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-1930 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2676 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3729 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3012 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3170 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1572 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-1913 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3408 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2454 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2893 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1217 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1539 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2906 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-4148 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1665 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
+(-10 -7 (-15 -1665 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4148 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2906 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -1539 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1217 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2893 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2454 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3408 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -1913 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -1572 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3170 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -3012 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -3729 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2676 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1930 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3576 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -3447 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2063 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))
+((-1860 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530)) 63)) (-1470 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2035 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-3512 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530)) 51)) (-3785 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2221 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2575 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3607 (((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-702) (-10 -7 (-15 -3607 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2575 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2221 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3785 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -3512 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2035 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1470 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -1860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))) (T -702))
+((-1860 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-1470 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2035 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-3512 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-702)))) (-3785 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2221 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2575 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-3607 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(-10 -7 (-15 -3607 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2575 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2221 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3785 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -3512 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2035 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1470 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -1860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))
+((-3695 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 47)) (-1880 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530)) 46)) (-3281 (((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 45)) (-1645 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 40)) (-1941 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530)) 39)) (-2800 (((-973) (-530) (-530) (-530) (-637 (-208)) (-530)) 36)) (-1517 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530)) 35)) (-3797 (((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530)) 34)) (-2942 (((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530)) 33)) (-1270 (((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530)) 32)))
+(((-703) (-10 -7 (-15 -1270 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -2942 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -3797 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1517 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -2800 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1941 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1645 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3281 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1880 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -3695 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -703))
+((-3695 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1880 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-3281 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1645 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1941 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2800 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1517 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-3797 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2942 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208))) (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))) (-1270 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208))) (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(-10 -7 (-15 -1270 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -2942 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -3797 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1517 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -2800 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1941 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1645 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3281 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1880 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -3695 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
+((-4236 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 65)) (-1578 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 60)) (-2393 (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-2932 (((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 37)) (-3344 (((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530)) 33)) (-3804 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 30)) (-1289 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-3740 (((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-2543 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-2148 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530)) 26)) (-2628 (((-973) (-530) (-530) (-637 (-208)) (-530)) 25)) (-4131 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-1431 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-3066 (((-973) (-637 (-208)) (-530) (-530) (-530) (-530)) 22)) (-3314 (((-973) (-530) (-530) (-637 (-208)) (-530)) 21)))
+(((-704) (-10 -7 (-15 -3314 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3066 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1431 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4131 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2628 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2148 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -2543 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3740 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1289 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3804 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -3344 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -1578 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4236 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -704))
+((-4236 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1578 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2393 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2393 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2932 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3344 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3804 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1289 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-3740 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2543 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2148 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2628 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-4131 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1431 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-3066 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3314 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
+(-10 -7 (-15 -3314 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3066 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1431 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4131 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2628 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2148 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -2543 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3740 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1289 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3804 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -3344 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -1578 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4236 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
+((-2821 (((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-3228 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530)) 57)) (-1771 (((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2080 (((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 37)) (-3480 (((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530)) 36)) (-3864 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 33)) (-3105 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208))) 32)) (-3450 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530)) 28)) (-3851 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 27)) (-2447 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 26)) (-2803 (((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 22)))
+(((-705) (-10 -7 (-15 -2803 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2447 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3851 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3450 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -3105 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -3864 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3480 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2080 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -1771 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3228 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2821 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -705))
+((-2821 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3228 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-1771 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2080 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3480 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3864 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-3105 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3450 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3851 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2447 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2803 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-705)))))
+(-10 -7 (-15 -2803 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2447 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3851 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3450 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -3105 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -3864 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3480 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2080 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -1771 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3228 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2821 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))
+((-2119 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208))) 29)) (-2506 (((-973) (-1082) (-530) (-530) (-637 (-208))) 28)) (-1812 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208))) 27)) (-3736 (((-973) (-530) (-530) (-530) (-637 (-208))) 21)))
+(((-706) (-10 -7 (-15 -3736 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -1812 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2506 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2119 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))) (T -706))
+((-2119 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-1812 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))) (-3736 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))))
+(-10 -7 (-15 -3736 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -1812 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2506 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2119 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))
+((-3854 (((-973) (-208) (-208) (-208) (-208) (-530)) 62)) (-2135 (((-973) (-208) (-208) (-208) (-530)) 61)) (-4222 (((-973) (-208) (-208) (-208) (-530)) 60)) (-1390 (((-973) (-208) (-208) (-530)) 59)) (-2680 (((-973) (-208) (-530)) 58)) (-3823 (((-973) (-208) (-530)) 57)) (-2156 (((-973) (-208) (-530)) 56)) (-1369 (((-973) (-208) (-530)) 55)) (-2770 (((-973) (-208) (-530)) 54)) (-4008 (((-973) (-208) (-530)) 53)) (-3484 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 52)) (-2527 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 51)) (-3798 (((-973) (-208) (-530)) 50)) (-2175 (((-973) (-208) (-530)) 49)) (-1518 (((-973) (-208) (-530)) 48)) (-1729 (((-973) (-208) (-530)) 47)) (-3099 (((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530)) 46)) (-3173 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 45)) (-2870 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 44)) (-3226 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 43)) (-1544 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 42)) (-1506 (((-973) (-208) (-530)) 39)) (-1978 (((-973) (-208) (-530)) 38)) (-3603 (((-973) (-208) (-530)) 37)) (-4200 (((-973) (-208) (-530)) 36)) (-1513 (((-973) (-208) (-530)) 35)) (-3890 (((-973) (-208) (-530)) 34)) (-1305 (((-973) (-208) (-530)) 33)) (-2215 (((-973) (-208) (-530)) 32)) (-2687 (((-973) (-208) (-530)) 31)) (-4203 (((-973) (-208) (-530)) 30)) (-1620 (((-973) (-208) (-208) (-208) (-530)) 29)) (-1995 (((-973) (-208) (-530)) 28)) (-3455 (((-973) (-208) (-530)) 27)) (-3833 (((-973) (-208) (-530)) 26)) (-2052 (((-973) (-208) (-530)) 25)) (-3467 (((-973) (-208) (-530)) 24)) (-3651 (((-973) (-159 (-208)) (-530)) 21)))
+(((-707) (-10 -7 (-15 -3651 ((-973) (-159 (-208)) (-530))) (-15 -3467 ((-973) (-208) (-530))) (-15 -2052 ((-973) (-208) (-530))) (-15 -3833 ((-973) (-208) (-530))) (-15 -3455 ((-973) (-208) (-530))) (-15 -1995 ((-973) (-208) (-530))) (-15 -1620 ((-973) (-208) (-208) (-208) (-530))) (-15 -4203 ((-973) (-208) (-530))) (-15 -2687 ((-973) (-208) (-530))) (-15 -2215 ((-973) (-208) (-530))) (-15 -1305 ((-973) (-208) (-530))) (-15 -3890 ((-973) (-208) (-530))) (-15 -1513 ((-973) (-208) (-530))) (-15 -4200 ((-973) (-208) (-530))) (-15 -3603 ((-973) (-208) (-530))) (-15 -1978 ((-973) (-208) (-530))) (-15 -1506 ((-973) (-208) (-530))) (-15 -1544 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3226 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -2870 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3173 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3099 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1729 ((-973) (-208) (-530))) (-15 -1518 ((-973) (-208) (-530))) (-15 -2175 ((-973) (-208) (-530))) (-15 -3798 ((-973) (-208) (-530))) (-15 -2527 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3484 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -4008 ((-973) (-208) (-530))) (-15 -2770 ((-973) (-208) (-530))) (-15 -1369 ((-973) (-208) (-530))) (-15 -2156 ((-973) (-208) (-530))) (-15 -3823 ((-973) (-208) (-530))) (-15 -2680 ((-973) (-208) (-530))) (-15 -1390 ((-973) (-208) (-208) (-530))) (-15 -4222 ((-973) (-208) (-208) (-208) (-530))) (-15 -2135 ((-973) (-208) (-208) (-208) (-530))) (-15 -3854 ((-973) (-208) (-208) (-208) (-208) (-530))))) (T -707))
+((-3854 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2135 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4222 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1390 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3484 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2527 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3099 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3173 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2870 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3226 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1544 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1620 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(-10 -7 (-15 -3651 ((-973) (-159 (-208)) (-530))) (-15 -3467 ((-973) (-208) (-530))) (-15 -2052 ((-973) (-208) (-530))) (-15 -3833 ((-973) (-208) (-530))) (-15 -3455 ((-973) (-208) (-530))) (-15 -1995 ((-973) (-208) (-530))) (-15 -1620 ((-973) (-208) (-208) (-208) (-530))) (-15 -4203 ((-973) (-208) (-530))) (-15 -2687 ((-973) (-208) (-530))) (-15 -2215 ((-973) (-208) (-530))) (-15 -1305 ((-973) (-208) (-530))) (-15 -3890 ((-973) (-208) (-530))) (-15 -1513 ((-973) (-208) (-530))) (-15 -4200 ((-973) (-208) (-530))) (-15 -3603 ((-973) (-208) (-530))) (-15 -1978 ((-973) (-208) (-530))) (-15 -1506 ((-973) (-208) (-530))) (-15 -1544 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3226 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -2870 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3173 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3099 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1729 ((-973) (-208) (-530))) (-15 -1518 ((-973) (-208) (-530))) (-15 -2175 ((-973) (-208) (-530))) (-15 -3798 ((-973) (-208) (-530))) (-15 -2527 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3484 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -4008 ((-973) (-208) (-530))) (-15 -2770 ((-973) (-208) (-530))) (-15 -1369 ((-973) (-208) (-530))) (-15 -2156 ((-973) (-208) (-530))) (-15 -3823 ((-973) (-208) (-530))) (-15 -2680 ((-973) (-208) (-530))) (-15 -1390 ((-973) (-208) (-208) (-530))) (-15 -4222 ((-973) (-208) (-208) (-208) (-530))) (-15 -2135 ((-973) (-208) (-208) (-208) (-530))) (-15 -3854 ((-973) (-208) (-208) (-208) (-208) (-530))))
+((-1626 (((-1186)) 18)) (-2160 (((-1082)) 22)) (-3553 (((-1082)) 21)) (-3537 (((-1031) (-1099) (-637 (-530))) 37) (((-1031) (-1099) (-637 (-208))) 32)) (-2396 (((-110)) 16)) (-3744 (((-1082) (-1082)) 25)))
+(((-708) (-10 -7 (-15 -3553 ((-1082))) (-15 -2160 ((-1082))) (-15 -3744 ((-1082) (-1082))) (-15 -3537 ((-1031) (-1099) (-637 (-208)))) (-15 -3537 ((-1031) (-1099) (-637 (-530)))) (-15 -2396 ((-110))) (-15 -1626 ((-1186))))) (T -708))
+((-1626 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))) (-2396 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-2160 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-3553 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+(-10 -7 (-15 -3553 ((-1082))) (-15 -2160 ((-1082))) (-15 -3744 ((-1082) (-1082))) (-15 -3537 ((-1031) (-1099) (-637 (-208)))) (-15 -3537 ((-1031) (-1099) (-637 (-530)))) (-15 -2396 ((-110))) (-15 -1626 ((-1186))))
+((-2607 (($ $ $) 10)) (-2346 (($ $ $ $) 9)) (-3980 (($ $ $) 12)))
+(((-709 |#1|) (-10 -8 (-15 -3980 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| |#1| |#1|))) (-710)) (T -709))
+NIL
+(-10 -8 (-15 -3980 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2862 (($ $ (-862)) 28)) (-4138 (($ $ (-862)) 29)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
(((-710) (-133)) (T -710))
-((-1538 (*1 *1 *1 *1 *1) (-4 *1 (-710))) (-1527 (*1 *1 *1 *1) (-4 *1 (-710))) (-1516 (*1 *1 *1 *1) (-4 *1 (-710))))
-(-13 (-21) (-669) (-10 -8 (-15 -1538 ($ $ $ $)) (-15 -1527 ($ $ $)) (-15 -1516 ($ $ $))))
+((-2346 (*1 *1 *1 *1 *1) (-4 *1 (-710))) (-2607 (*1 *1 *1 *1) (-4 *1 (-710))) (-3980 (*1 *1 *1 *1) (-4 *1 (-710))))
+(-13 (-21) (-669) (-10 -8 (-15 -2346 ($ $ $ $)) (-15 -2607 ($ $ $)) (-15 -3980 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-669) . T) ((-1027) . T))
-((-2258 (((-804) $) NIL) (($ (-530)) 10)))
-(((-711 |#1|) (-10 -8 (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-712)) (T -711))
+((-2366 (((-804) $) NIL) (($ (-530)) 10)))
+(((-711 |#1|) (-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-712)) (T -711))
NIL
-(-10 -8 (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3093 (((-3 $ "failed") $) 40)) (-3128 (($ $ (-862)) 28) (($ $ (-719)) 35)) (-1673 (((-3 $ "failed") $) 38)) (-3150 (((-110) $) 34)) (-3105 (((-3 $ "failed") $) 39)) (-3117 (($ $ (-862)) 29) (($ $ (-719)) 36)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-1527 (($ $ $) 25)) (-2258 (((-804) $) 11) (($ (-530)) 31)) (-1667 (((-719)) 32)) (-1538 (($ $ $ $) 26)) (-1516 (($ $ $) 24)) (-2943 (($) 18 T CONST)) (-2955 (($) 33 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 30) (($ $ (-719)) 37)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
+(-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2635 (((-3 $ "failed") $) 40)) (-2862 (($ $ (-862)) 28) (($ $ (-719)) 35)) (-2707 (((-3 $ "failed") $) 38)) (-2731 (((-110) $) 34)) (-1232 (((-3 $ "failed") $) 39)) (-4138 (($ $ (-862)) 29) (($ $ (-719)) 36)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11) (($ (-530)) 31)) (-3300 (((-719)) 32)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-3093 (($) 33 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30) (($ $ (-719)) 37)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
(((-712) (-133)) (T -712))
-((-1667 (*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-712)))))
-(-13 (-710) (-671) (-10 -8 (-15 -1667 ((-719))) (-15 -2258 ($ (-530)))))
+((-3300 (*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-712)))))
+(-13 (-710) (-671) (-10 -8 (-15 -3300 ((-719))) (-15 -2366 ($ (-530)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-669) . T) ((-671) . T) ((-710) . T) ((-1027) . T))
-((-1559 (((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|) 33)) (-1548 (((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|) 23)) (-1640 (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099)) 20) (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530))))) 19)))
-(((-713 |#1|) (-10 -7 (-15 -1640 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1640 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -1548 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -1559 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|))) (-13 (-344) (-793))) (T -713))
-((-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 *4))))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-1548 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099)) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5)) (-4 *5 (-13 (-344) (-793))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1640 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1640 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -1548 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -1559 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|)))
-((-2136 (((-163 (-530)) |#1|) 25)))
-(((-714 |#1|) (-10 -7 (-15 -2136 ((-163 (-530)) |#1|))) (-385)) (T -714))
-((-2136 (*1 *2 *3) (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385)))))
-(-10 -7 (-15 -2136 ((-163 (-530)) |#1|)))
-((-2843 ((|#1| |#1| |#1|) 24)) (-2855 ((|#1| |#1| |#1|) 23)) (-2731 ((|#1| |#1| |#1|) 32)) (-2819 ((|#1| |#1| |#1|) 28)) (-2831 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2887 (((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|) 22)))
-(((-715 |#1| |#2|) (-10 -7 (-15 -2887 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2731 (|#1| |#1| |#1|))) (-657 |#2|) (-344)) (T -715))
-((-2731 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2819 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2831 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2843 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2855 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4)))))
-(-10 -7 (-15 -2887 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2731 (|#1| |#1| |#1|)))
-((-3154 (((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)) 59)) (-3142 (((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) 57)) (-2341 (((-530)) 71)))
-(((-716 |#1| |#2|) (-10 -7 (-15 -2341 ((-530))) (-15 -3142 ((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -3154 ((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)))) (-1157 (-530)) (-390 (-530) |#1|)) (T -716))
-((-3154 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3142 (*1 *2) (-12 (-4 *3 (-1157 (-530))) (-5 *2 (-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3)))) (-2341 (*1 *2) (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 *2 *3)))))
-(-10 -7 (-15 -2341 ((-530))) (-15 -3142 ((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -3154 ((-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530))))
-((-2246 (((-110) $ $) NIL)) (-2446 (((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 20) (($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-2148 (((-110) $ $) NIL)))
-(((-717) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -717))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-717)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))
-((-4123 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 18) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 17)) (-3066 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 20) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 19)))
-(((-718 |#1|) (-10 -7 (-15 -4123 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -4123 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))))) (-522)) (T -718))
-((-3066 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))))
-(-10 -7 (-15 -4123 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -4123 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3821 (($ $ $) 6)) (-3618 (((-3 $ "failed") $ $) 9)) (-4206 (($ $ (-530)) 7)) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($ $) NIL)) (-3588 (($ $ $) NIL)) (-3150 (((-110) $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2108 (($ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2258 (((-804) $) NIL)) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ $ $) NIL)))
-(((-719) (-13 (-741) (-675) (-10 -8 (-15 -3588 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -3017 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -3562 ((-3 $ "failed") $ $)) (-15 -4206 ($ $ (-530))) (-15 -1376 ($ $)) (-6 (-4272 "*"))))) (T -719))
-((-3588 (*1 *1 *1 *1) (-5 *1 (-719))) (-3607 (*1 *1 *1 *1) (-5 *1 (-719))) (-2108 (*1 *1 *1 *1) (-5 *1 (-719))) (-3017 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3624 (-719)) (|:| -3088 (-719)))) (-5 *1 (-719)))) (-3562 (*1 *1 *1 *1) (|partial| -5 *1 (-719))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-719)))) (-1376 (*1 *1 *1) (-5 *1 (-719))))
-(-13 (-741) (-675) (-10 -8 (-15 -3588 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -3017 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -3562 ((-3 $ "failed") $ $)) (-15 -4206 ($ $ (-530))) (-15 -1376 ($ $)) (-6 (-4272 "*"))))
-((-3066 (((-3 |#2| "failed") |#2| |#2| (-112) (-1099)) 35)))
-(((-720 |#1| |#2|) (-10 -7 (-15 -3066 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -720))
-((-3066 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900))))))
-(-10 -7 (-15 -3066 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099))))
-((-2258 (((-722) |#1|) 8)))
-(((-721 |#1|) (-10 -7 (-15 -2258 ((-722) |#1|))) (-1135)) (T -721))
-((-2258 (*1 *2 *3) (-12 (-5 *2 (-722)) (-5 *1 (-721 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2258 ((-722) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 7)) (-2148 (((-110) $ $) 9)))
+((-2860 (((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|) 33)) (-3982 (((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|) 23)) (-1814 (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099)) 20) (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530))))) 19)))
+(((-713 |#1|) (-10 -7 (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -3982 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -2860 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|))) (-13 (-344) (-793))) (T -713))
+((-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 *4))))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099)) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5)) (-4 *5 (-13 (-344) (-793))))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -3982 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -2860 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|)))
+((-2054 (((-163 (-530)) |#1|) 25)))
+(((-714 |#1|) (-10 -7 (-15 -2054 ((-163 (-530)) |#1|))) (-385)) (T -714))
+((-2054 (*1 *2 *3) (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385)))))
+(-10 -7 (-15 -2054 ((-163 (-530)) |#1|)))
+((-1396 ((|#1| |#1| |#1|) 24)) (-3140 ((|#1| |#1| |#1|) 23)) (-2615 ((|#1| |#1| |#1|) 32)) (-4132 ((|#1| |#1| |#1|) 28)) (-2876 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3383 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 22)))
+(((-715 |#1| |#2|) (-10 -7 (-15 -3383 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2615 (|#1| |#1| |#1|))) (-657 |#2|) (-344)) (T -715))
+((-2615 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-4132 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2876 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-1396 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-3140 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-3383 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -3383 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2615 (|#1| |#1| |#1|)))
+((-2596 (((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)) 59)) (-3696 (((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) 57)) (-3060 (((-530)) 71)))
+(((-716 |#1| |#2|) (-10 -7 (-15 -3060 ((-530))) (-15 -3696 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -2596 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)))) (-1157 (-530)) (-390 (-530) |#1|)) (T -716))
+((-2596 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3696 (*1 *2) (-12 (-4 *3 (-1157 (-530))) (-5 *2 (-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3)))) (-3060 (*1 *2) (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 *2 *3)))))
+(-10 -7 (-15 -3060 ((-530))) (-15 -3696 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -2596 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530))))
+((-2352 (((-110) $ $) NIL)) (-2585 (((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20) (($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-2248 (((-110) $ $) NIL)))
+(((-717) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -717))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))
+((-2322 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 18) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 17)) (-2688 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 20) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 19)))
+(((-718 |#1|) (-10 -7 (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))))) (-522)) (T -718))
+((-2688 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))))
+(-10 -7 (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) 6)) (-1889 (((-3 $ "failed") $ $) 9)) (-4207 (($ $ (-530)) 7)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2204 (($ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ $ $) NIL)))
+(((-719) (-13 (-741) (-675) (-10 -8 (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4207 ($ $ (-530))) (-15 -1364 ($ $)) (-6 (-4271 "*"))))) (T -719))
+((-3571 (*1 *1 *1 *1) (-5 *1 (-719))) (-3590 (*1 *1 *1 *1) (-5 *1 (-719))) (-2204 (*1 *1 *1 *1) (-5 *1 (-719))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1324 (-719)) (|:| -3304 (-719)))) (-5 *1 (-719)))) (-3551 (*1 *1 *1 *1) (|partial| -5 *1 (-719))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-719)))) (-1364 (*1 *1 *1) (-5 *1 (-719))))
+(-13 (-741) (-675) (-10 -8 (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4207 ($ $ (-530))) (-15 -1364 ($ $)) (-6 (-4271 "*"))))
+((-2688 (((-3 |#2| "failed") |#2| |#2| (-112) (-1099)) 35)))
+(((-720 |#1| |#2|) (-10 -7 (-15 -2688 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -720))
+((-2688 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900))))))
+(-10 -7 (-15 -2688 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099))))
+((-2366 (((-722) |#1|) 8)))
+(((-721 |#1|) (-10 -7 (-15 -2366 ((-722) |#1|))) (-1135)) (T -721))
+((-2366 (*1 *2 *3) (-12 (-5 *2 (-722)) (-5 *1 (-721 *3)) (-4 *3 (-1135)))))
+(-10 -7 (-15 -2366 ((-722) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 9)))
(((-722) (-1027)) (T -722))
NIL
(-1027)
-((-1717 ((|#2| |#4|) 35)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1717 (|#2| |#4|))) (-432) (-1157 |#1|) (-673 |#1| |#2|) (-1157 |#3|)) (T -723))
-((-1717 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -1717 (|#2| |#4|)))
-((-1673 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1589 (((-1186) (-1082) (-1082) |#4| |#5|) 33)) (-1570 ((|#4| |#4| |#5|) 73)) (-1579 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|) 77)) (-1599 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|) 16)))
-(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1673 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1570 (|#4| |#4| |#5|)) (-15 -1579 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -1589 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1599 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -724))
-((-1599 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1589 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))) (-1579 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3)) (-4 *3 (-1003 *4 *5 *6 *2)))) (-1673 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1673 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1570 (|#4| |#4| |#5|)) (-15 -1579 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -1589 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1599 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)))
-((-3012 (((-3 (-1095 (-1095 |#1|)) "failed") |#4|) 43)) (-1610 (((-597 |#4|) |#4|) 15)) (-3231 ((|#4| |#4|) 11)))
-(((-725 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1610 ((-597 |#4|) |#4|)) (-15 -3012 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3231 (|#4| |#4|))) (-330) (-310 |#1|) (-1157 |#2|) (-1157 |#3|) (-862)) (T -725))
-((-3231 (*1 *2 *2) (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862)))) (-3012 (*1 *2 *3) (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))))
-(-10 -7 (-15 -1610 ((-597 |#4|) |#4|)) (-15 -3012 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3231 (|#4| |#4|)))
-((-1619 (((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|)) 54)) (-1628 (((-597 (-719)) |#1|) 13)))
-(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1619 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -1628 ((-597 (-719)) |#1|))) (-1157 |#4|) (-741) (-795) (-289) (-890 |#4| |#2| |#3|)) (T -726))
-((-1628 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))) (-1619 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289)) (-4 *10 (-890 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-597 (-1095 *10))) (|:| |dterm| (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| *10))))) (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10)))) (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6)) (-5 *5 (-597 *10)))))
-(-10 -7 (-15 -1619 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -1628 ((-597 (-719)) |#1|)))
-((-1661 (((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|) 31)) (-1650 (((-597 |#1|) (-637 (-388 (-530))) |#1|) 21)) (-1640 (((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099)) 18) (((-893 (-388 (-530))) (-637 (-388 (-530)))) 17)))
-(((-727 |#1|) (-10 -7 (-15 -1640 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1640 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1650 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -1661 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|))) (-13 (-344) (-793))) (T -727))
-((-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 (-2 (|:| |outval| *4) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *4)))))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099)) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5)) (-4 *5 (-13 (-344) (-793))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1640 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1640 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1650 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -1661 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 34)) (-2596 (((-597 |#2|) $) NIL)) (-2439 (((-1095 $) $ |#2|) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 |#2|)) NIL)) (-2040 (($ $) 28)) (-4020 (((-110) $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2322 (($ $ $) 93 (|has| |#1| (-522)))) (-3859 (((-597 $) $ $) 106 (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) NIL (-1476 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) NIL (-1476 (-12 (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-932 (-530))))))) (((-3 (-1051 |#1| |#2|) "failed") $) 18)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1476 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (-1476 (-12 (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-932 (-530))))))) (((-1051 |#1| |#2|) $) NIL)) (-2330 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-522)))) (-2425 (($ $) NIL) (($ $ |#2|) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2976 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-4081 (((-110) $) NIL)) (-2291 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 70)) (-3815 (($ $) 119 (|has| |#1| (-432)))) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-3920 (($ $) NIL (|has| |#1| (-522)))) (-3930 (($ $) NIL (|has| |#1| (-522)))) (-4009 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4000 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2097 (($ $ |#1| (-502 |#2|) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2987 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-3826 (($ $ $ $ $) 90 (|has| |#1| (-522)))) (-4167 ((|#2| $) 19)) (-2586 (($ (-1095 |#1|) |#2|) NIL) (($ (-1095 $) |#2|) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 36) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3949 (($ $ $) 60)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#2|) NIL)) (-4095 (((-110) $) NIL)) (-3674 (((-502 |#2|) $) NIL) (((-719) $ |#2|) NIL) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-4157 (((-719) $) 20)) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1367 (((-3 |#2| "failed") $) NIL)) (-3787 (($ $) NIL (|has| |#1| (-432)))) (-3796 (($ $) NIL (|has| |#1| (-432)))) (-4040 (((-597 $) $) NIL)) (-4071 (($ $) 37)) (-3805 (($ $) NIL (|has| |#1| (-432)))) (-4050 (((-597 $) $) 41)) (-4062 (($ $) 39)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3940 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1791 (-719))) $ $) 82)) (-3961 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $) 67) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $ |#2|) NIL)) (-3971 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $) NIL) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $ |#2|) NIL)) (-3989 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3980 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3443 (((-1082) $) NIL)) (-3037 (($ $ $) 108 (|has| |#1| (-522)))) (-4118 (((-597 $) $) 30)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| |#2|) (|:| -3059 (-719))) "failed") $) NIL)) (-2938 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2888 (($ $ $) NIL)) (-3677 (($ $) 21)) (-1845 (((-110) $ $) NIL)) (-2951 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2898 (($ $ $) NIL)) (-4144 (($ $) 23)) (-2485 (((-1046) $) NIL)) (-3869 (((-2 (|:| -2108 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-522)))) (-3878 (((-2 (|:| -2108 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-522)))) (-2366 (((-110) $) 52)) (-2375 ((|#1| $) 55)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3889 (((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-522)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-3898 (($ $ |#1|) 112 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-3909 (($ $ |#1|) 111 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-597 |#2|) (-597 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-597 |#2|) (-597 $)) NIL)) (-2341 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3211 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3409 (((-502 |#2|) $) NIL) (((-719) $ |#2|) 43) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-4130 (($ $) NIL)) (-4105 (($ $) 33)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506))))) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1476 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3694 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (|has| |#2| (-572 (-1099)))) (((-1082) $) NIL (-12 (|has| |#1| (-975 (-530))) (|has| |#2| (-572 (-1099))))) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099))))) (-3658 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099)))) (((-1051 |#1| |#2|) $) 15) (($ (-1051 |#1| |#2|)) 16) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) 44) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 13 T CONST)) (-4029 (((-3 (-110) "failed") $ $) NIL)) (-2955 (($) 35 T CONST)) (-3836 (($ $ $ $ (-719)) 88 (|has| |#1| (-522)))) (-3848 (($ $ $ (-719)) 87 (|has| |#1| (-522)))) (-3286 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) 64)) (-2234 (($ $ $) 74)) (** (($ $ (-862)) NIL) (($ $ (-719)) 61)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 59) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-2376 ((|#2| |#4|) 35)))
+(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2376 (|#2| |#4|))) (-432) (-1157 |#1|) (-673 |#1| |#2|) (-1157 |#3|)) (T -723))
+((-2376 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5)))))
+(-10 -7 (-15 -2376 (|#2| |#4|)))
+((-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3118 (((-1186) (-1082) (-1082) |#4| |#5|) 33)) (-1766 ((|#4| |#4| |#5|) 73)) (-3258 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 77)) (-1608 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 16)))
+(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1766 (|#4| |#4| |#5|)) (-15 -3258 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3118 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1608 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -724))
+((-1608 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3118 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))) (-3258 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1766 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3)) (-4 *3 (-1003 *4 *5 *6 *2)))) (-2707 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1766 (|#4| |#4| |#5|)) (-15 -3258 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3118 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1608 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)))
+((-3139 (((-3 (-1095 (-1095 |#1|)) "failed") |#4|) 43)) (-3247 (((-597 |#4|) |#4|) 15)) (-3962 ((|#4| |#4|) 11)))
+(((-725 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-597 |#4|) |#4|)) (-15 -3139 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|))) (-330) (-310 |#1|) (-1157 |#2|) (-1157 |#3|) (-862)) (T -725))
+((-3962 (*1 *2 *2) (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862)))) (-3139 (*1 *2 *3) (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))))
+(-10 -7 (-15 -3247 ((-597 |#4|) |#4|)) (-15 -3139 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|)))
+((-2975 (((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|)) 54)) (-2216 (((-597 (-719)) |#1|) 13)))
+(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2975 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -2216 ((-597 (-719)) |#1|))) (-1157 |#4|) (-741) (-795) (-289) (-890 |#4| |#2| |#3|)) (T -726))
+((-2216 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))) (-2975 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289)) (-4 *10 (-890 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-597 (-1095 *10))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *10))))) (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10)))) (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6)) (-5 *5 (-597 *10)))))
+(-10 -7 (-15 -2975 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -2216 ((-597 (-719)) |#1|)))
+((-4013 (((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|) 31)) (-1310 (((-597 |#1|) (-637 (-388 (-530))) |#1|) 21)) (-1814 (((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099)) 18) (((-893 (-388 (-530))) (-637 (-388 (-530)))) 17)))
+(((-727 |#1|) (-10 -7 (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1310 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -4013 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|))) (-13 (-344) (-793))) (T -727))
+((-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 (-2 (|:| |outval| *4) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *4)))))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099)) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5)) (-4 *5 (-13 (-344) (-793))))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
+(-10 -7 (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1310 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -4013 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 34)) (-2746 (((-597 |#2|) $) NIL)) (-2577 (((-1095 $) $ |#2|) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#2|)) NIL)) (-2133 (($ $) 28)) (-3627 (((-110) $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) 93 (|has| |#1| (-522)))) (-2540 (((-597 $) $ $) 106 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) NIL (-1461 (-12 (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-932 (-530))))))) (((-3 (-1051 |#1| |#2|) "failed") $) 18)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (-1461 (-12 (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-932 (-530))))))) (((-1051 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-522)))) (-2562 (($ $) NIL) (($ $ |#2|) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3784 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1943 (((-110) $) NIL)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 70)) (-4122 (($ $) 119 (|has| |#1| (-432)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2651 (($ $) NIL (|has| |#1| (-522)))) (-4224 (($ $) NIL (|has| |#1| (-522)))) (-4170 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3535 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2410 (($ $ |#1| (-502 |#2|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-3397 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2793 (($ $ $ $ $) 90 (|has| |#1| (-522)))) (-3122 ((|#2| $) 19)) (-2735 (($ (-1095 |#1|) |#2|) NIL) (($ (-1095 $) |#2|) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 36) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2938 (($ $ $) 60)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-1841 (((-110) $) NIL)) (-2944 (((-502 |#2|) $) NIL) (((-719) $ |#2|) NIL) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1419 (((-719) $) 20)) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2040 (((-3 |#2| "failed") $) NIL)) (-3975 (($ $) NIL (|has| |#1| (-432)))) (-3630 (($ $) NIL (|has| |#1| (-432)))) (-2922 (((-597 $) $) NIL)) (-3384 (($ $) 37)) (-2036 (($ $) NIL (|has| |#1| (-432)))) (-2467 (((-597 $) $) 41)) (-3777 (($ $) 39)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 82)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 67) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) NIL) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#2|) NIL)) (-2456 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2824 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1424 (((-1082) $) NIL)) (-2991 (($ $ $) 108 (|has| |#1| (-522)))) (-3162 (((-597 $) $) 30)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-719))) "failed") $) NIL)) (-2559 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-3482 (($ $ $) NIL)) (-3657 (($ $) 21)) (-1406 (((-110) $ $) NIL)) (-1663 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2122 (($ $ $) NIL)) (-2846 (($ $) 23)) (-2624 (((-1046) $) NIL)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-522)))) (-2494 (((-110) $) 52)) (-2505 ((|#1| $) 55)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-2150 (($ $ |#1|) 112 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-3792 (($ $ |#1|) 111 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-597 |#2|) (-597 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-597 |#2|) (-597 $)) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) NIL) (((-719) $ |#2|) 43) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-1581 (($ $) NIL)) (-3434 (($ $) 33)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506))))) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (|has| |#2| (-572 (-1099)))) (((-1082) $) NIL (-12 (|has| |#1| (-975 (-530))) (|has| |#2| (-572 (-1099))))) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099))))) (-3829 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099)))) (((-1051 |#1| |#2|) $) 15) (($ (-1051 |#1| |#2|)) 16) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) 44) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 13 T CONST)) (-3264 (((-3 (-110) "failed") $ $) NIL)) (-3093 (($) 35 T CONST)) (-1271 (($ $ $ $ (-719)) 88 (|has| |#1| (-522)))) (-3984 (($ $ $ (-719)) 87 (|has| |#1| (-522)))) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 54)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 64)) (-2339 (($ $ $) 74)) (** (($ $ (-862)) NIL) (($ $ (-719)) 61)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 59) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-728 |#1| |#2|) (-13 (-998 |#1| (-502 |#2|) |#2|) (-571 (-1051 |#1| |#2|)) (-975 (-1051 |#1| |#2|))) (-984) (-795)) (T -728))
NIL
(-13 (-998 |#1| (-502 |#2|) |#2|) (-571 (-1051 |#1| |#2|)) (-975 (-1051 |#1| |#2|)))
-((-3114 (((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)) 13)))
-(((-729 |#1| |#2|) (-10 -7 (-15 -3114 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)))) (-984) (-984)) (T -729))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-730 *6)) (-5 *1 (-729 *5 *6)))))
-(-10 -7 (-15 -3114 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 12)) (-1301 (((-1181 |#1|) $ (-719)) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-1279 (($ (-1095 |#1|)) NIL)) (-2439 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1698 (((-597 $) $ $) 39 (|has| |#1| (-522)))) (-2322 (($ $ $) 35 (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2370 (($ $ (-719)) NIL)) (-2363 (($ $ (-719)) NIL)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL) (((-3 (-1095 |#1|) "failed") $) 10)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL) (((-1095 |#1|) $) NIL)) (-2330 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2352 (($ $ $) NIL)) (-2301 (($ $ $) 71 (|has| |#1| (-522)))) (-2291 (((-2 (|:| -1981 |#1|) (|:| -3624 $) (|:| -3088 $)) $ $) 70 (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-719) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ $) NIL (|has| |#1| (-522)))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2586 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-1382 (($ $ (-719)) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3949 (($ $ $) 20)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1012)) NIL) (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3674 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-719) (-719)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1289 (((-1095 |#1|) $) NIL)) (-1367 (((-3 (-1012) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3940 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1791 (-719))) $ $) 26)) (-1713 (($ $ $) 29)) (-1706 (($ $ $) 32)) (-3961 (((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $) 31)) (-3443 (((-1082) $) NIL)) (-3037 (($ $ $) 41 (|has| |#1| (-522)))) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1012)) (|:| -3059 (-719))) "failed") $) NIL)) (-1637 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) NIL (|has| |#1| (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3869 (((-2 (|:| -2108 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-522)))) (-3878 (((-2 (|:| -2108 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-522)))) (-1672 (((-2 (|:| -2330 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-522)))) (-1680 (((-2 (|:| -2330 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-522)))) (-2366 (((-110) $) 13)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2137 (($ $ (-719) |#1| $) 19)) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3889 (((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-522)))) (-1688 (((-2 (|:| -2330 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-522)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-1269 (((-3 $ "failed") $ (-719)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-2341 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3211 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3409 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2312 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1012)) NIL) (((-1095 |#1|) $) 7) (($ (-1095 |#1|)) 8) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 24 T CONST)) (-3286 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) 28) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-730 |#1|) (-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -2137 ($ $ (-719) |#1| $)) (-15 -3949 ($ $ $)) (-15 -3940 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1791 (-719))) $ $)) (-15 -1713 ($ $ $)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -1706 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -1698 ((-597 $) $ $)) (-15 -3037 ($ $ $)) (-15 -3889 ((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3878 ((-2 (|:| -2108 $) (|:| |coef1| $)) $ $)) (-15 -3869 ((-2 (|:| -2108 $) (|:| |coef2| $)) $ $)) (-15 -1688 ((-2 (|:| -2330 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1680 ((-2 (|:| -2330 |#1|) (|:| |coef1| $)) $ $)) (-15 -1672 ((-2 (|:| -2330 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-984)) (T -730))
-((-2137 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-3949 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-3940 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -1791 (-719)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-1713 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-3961 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1981 *3) (|:| |gap| (-719)) (|:| -3624 (-730 *3)) (|:| -3088 (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-1706 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-1698 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984)))) (-3889 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2108 (-730 *3)) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-3878 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2108 (-730 *3)) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-3869 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2108 (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-1688 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2330 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-1680 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2330 *3) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-1672 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2330 *3) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -2137 ($ $ (-719) |#1| $)) (-15 -3949 ($ $ $)) (-15 -3940 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1791 (-719))) $ $)) (-15 -1713 ($ $ $)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -1706 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -1698 ((-597 $) $ $)) (-15 -3037 ($ $ $)) (-15 -3889 ((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3878 ((-2 (|:| -2108 $) (|:| |coef1| $)) $ $)) (-15 -3869 ((-2 (|:| -2108 $) (|:| |coef2| $)) $ $)) (-15 -1688 ((-2 (|:| -2330 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1680 ((-2 (|:| -2330 |#1|) (|:| |coef1| $)) $ $)) (-15 -1672 ((-2 (|:| -2330 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1730 ((|#1| (-719) |#1|) 32 (|has| |#1| (-37 (-388 (-530)))))) (-3492 ((|#1| (-719) |#1|) 22)) (-1721 ((|#1| (-719) |#1|) 34 (|has| |#1| (-37 (-388 (-530)))))))
-(((-731 |#1|) (-10 -7 (-15 -3492 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1721 (|#1| (-719) |#1|)) (-15 -1730 (|#1| (-719) |#1|))) |%noBranch|)) (-162)) (T -731))
-((-1730 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-1721 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-3492 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -3492 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1721 (|#1| (-719) |#1|)) (-15 -1730 (|#1| (-719) |#1|))) |%noBranch|))
-((-2246 (((-110) $ $) 7)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) 85)) (-2844 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) 101) (((-110) $) 97)) (-2906 ((|#4| |#4| $) 92)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 126)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 79)) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2918 (((-3 $ "failed") $) 82)) (-2878 ((|#4| |#4| $) 89)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2856 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) 105)) (-3118 (((-110) |#4| $) 136)) (-3094 (((-110) |#4| $) 133)) (-3129 (((-110) |#4| $) 137) (((-110) $) 134)) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) 104) (((-110) $) 103)) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 127)) (-2294 (((-3 |#4| "failed") $) 83)) (-3060 (((-597 $) |#4| $) 129)) (-3082 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3418 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-1528 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-3011 (((-597 |#4|) $) 107)) (-2938 (((-110) |#4| $) 99) (((-110) $) 95)) (-2888 ((|#4| |#4| $) 90)) (-1845 (((-110) $ $) 110)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) 100) (((-110) $) 96)) (-2898 ((|#4| |#4| $) 91)) (-2485 (((-1046) $) 10)) (-2907 (((-3 |#4| "failed") $) 84)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2807 (((-3 $ "failed") $ |#4|) 78)) (-1312 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-3409 (((-719) $) 106)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-2866 (($ $) 88)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2795 (((-719) $) 76 (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3025 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) 81)) (-3106 (((-110) |#4| $) 135)) (-3292 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+((-3217 (((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)) 13)))
+(((-729 |#1| |#2|) (-10 -7 (-15 -3217 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)))) (-984) (-984)) (T -729))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-730 *6)) (-5 *1 (-729 *5 *6)))))
+(-10 -7 (-15 -3217 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 12)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3877 (((-597 $) $ $) 39 (|has| |#1| (-522)))) (-3950 (($ $ $) 35 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL) (((-3 (-1095 |#1|) "failed") $) 10)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL) (((-1095 |#1|) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) 71 (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) 70 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2938 (($ $ $) 20)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $) 26)) (-1906 (($ $ $) 29)) (-3524 (($ $ $) 32)) (-1420 (((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 31)) (-1424 (((-1082) $) NIL)) (-2991 (($ $ $) 41 (|has| |#1| (-522)))) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-522)))) (-2593 (((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-522)))) (-2053 (((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-522)))) (-2494 (((-110) $) 13)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1641 (($ $ (-719) |#1| $) 19)) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-522)))) (-2466 (((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1012)) NIL) (((-1095 |#1|) $) 7) (($ (-1095 |#1|)) 8) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 21 T CONST)) (-3093 (($) 24 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 28) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-730 |#1|) (-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -1641 ($ $ (-719) |#1| $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $)) (-15 -1906 ($ $ $)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3524 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -3877 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2053 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -2593 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-984)) (T -730))
+((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-4237 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -4003 (-719)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-1906 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-1420 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2065 *3) (|:| |gap| (-719)) (|:| -1324 (-730 *3)) (|:| -3304 (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-3524 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-3877 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2991 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984)))) (-2408 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-3936 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2177 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2466 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2053 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2593 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+(-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -1641 ($ $ (-719) |#1| $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $)) (-15 -1906 ($ $ $)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3524 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -3877 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2053 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -2593 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4174 ((|#1| (-719) |#1|) 32 (|has| |#1| (-37 (-388 (-530)))))) (-3570 ((|#1| (-719) |#1|) 22)) (-1563 ((|#1| (-719) |#1|) 34 (|has| |#1| (-37 (-388 (-530)))))))
+(((-731 |#1|) (-10 -7 (-15 -3570 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1563 (|#1| (-719) |#1|)) (-15 -4174 (|#1| (-719) |#1|))) |%noBranch|)) (-162)) (T -731))
+((-4174 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-3570 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -3570 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1563 (|#1| (-719) |#1|)) (-15 -4174 (|#1| (-719) |#1|))) |%noBranch|))
+((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-732 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -732))
NIL
(-13 (-1003 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-1738 (((-3 (-360) "failed") (-297 |#1|) (-862)) 62 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-297 |#1|)) 54 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-388 (-893 |#1|)) (-862)) 41 (|has| |#1| (-522))) (((-3 (-360) "failed") (-388 (-893 |#1|))) 40 (|has| |#1| (-522))) (((-3 (-360) "failed") (-893 |#1|) (-862)) 31 (|has| |#1| (-984))) (((-3 (-360) "failed") (-893 |#1|)) 30 (|has| |#1| (-984)))) (-3661 (((-360) (-297 |#1|) (-862)) 99 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-297 |#1|)) 94 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-388 (-893 |#1|)) (-862)) 91 (|has| |#1| (-522))) (((-360) (-388 (-893 |#1|))) 90 (|has| |#1| (-522))) (((-360) (-893 |#1|) (-862)) 86 (|has| |#1| (-984))) (((-360) (-893 |#1|)) 85 (|has| |#1| (-984))) (((-360) |#1| (-862)) 76) (((-360) |#1|) 22)) (-1746 (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)) 71 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|))) 70 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|) (-862)) 63 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|)) 61 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862)) 46 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|)))) 45 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862)) 39 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|))) 38 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)) 28 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 |#1|)) 26 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)) 18 (|has| |#1| (-162))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2403 (((-159 (-360)) (-297 (-159 |#1|)) (-862)) 102 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 (-159 |#1|))) 101 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|) (-862)) 100 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|)) 98 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862)) 93 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 (-159 |#1|)))) 92 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|)) (-862)) 89 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|))) 88 (|has| |#1| (-522))) (((-159 (-360)) (-893 |#1|) (-862)) 84 (|has| |#1| (-984))) (((-159 (-360)) (-893 |#1|)) 83 (|has| |#1| (-984))) (((-159 (-360)) (-893 (-159 |#1|)) (-862)) 78 (|has| |#1| (-162))) (((-159 (-360)) (-893 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|) (-862)) 80 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-360)) |#1| (-862)) 27) (((-159 (-360)) |#1|) 25)))
-(((-733 |#1|) (-10 -7 (-15 -3661 ((-360) |#1|)) (-15 -3661 ((-360) |#1| (-862))) (-15 -2403 ((-159 (-360)) |#1|)) (-15 -2403 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2403 ((-159 (-360)) (-159 |#1|))) (-15 -2403 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2403 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3661 ((-360) (-893 |#1|))) (-15 -3661 ((-360) (-893 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-893 |#1|))) (-15 -2403 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3661 ((-360) (-388 (-893 |#1|)))) (-15 -3661 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2403 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2403 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2403 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2403 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3661 ((-360) (-297 |#1|))) (-15 -3661 ((-360) (-297 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-297 |#1|))) (-15 -2403 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2403 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-893 |#1|))) (-15 -1738 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -1738 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-297 |#1|))) (-15 -1738 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|)) (-572 (-360))) (T -733))
-((-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1738 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1746 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1746 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-2403 (*1 *2 *3) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))))
-(-10 -7 (-15 -3661 ((-360) |#1|)) (-15 -3661 ((-360) |#1| (-862))) (-15 -2403 ((-159 (-360)) |#1|)) (-15 -2403 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2403 ((-159 (-360)) (-159 |#1|))) (-15 -2403 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2403 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3661 ((-360) (-893 |#1|))) (-15 -3661 ((-360) (-893 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-893 |#1|))) (-15 -2403 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3661 ((-360) (-388 (-893 |#1|)))) (-15 -3661 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2403 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2403 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2403 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2403 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3661 ((-360) (-297 |#1|))) (-15 -3661 ((-360) (-297 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-297 |#1|))) (-15 -2403 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2403 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2403 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-893 |#1|))) (-15 -1738 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -1738 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1738 ((-3 (-360) "failed") (-297 |#1|))) (-15 -1738 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1746 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|))
-((-1780 (((-862) (-1082)) 66)) (-3678 (((-3 (-360) "failed") (-1082)) 33)) (-1790 (((-360) (-1082)) 31)) (-1764 (((-862) (-1082)) 54)) (-1770 (((-1082) (-862)) 56)) (-1754 (((-1082) (-862)) 53)))
-(((-734) (-10 -7 (-15 -1754 ((-1082) (-862))) (-15 -1764 ((-862) (-1082))) (-15 -1770 ((-1082) (-862))) (-15 -1780 ((-862) (-1082))) (-15 -1790 ((-360) (-1082))) (-15 -3678 ((-3 (-360) "failed") (-1082))))) (T -734))
-((-3678 (*1 *2 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
-(-10 -7 (-15 -1754 ((-1082) (-862))) (-15 -1764 ((-862) (-1082))) (-15 -1770 ((-1082) (-862))) (-15 -1780 ((-862) (-1082))) (-15 -1790 ((-360) (-1082))) (-15 -3678 ((-3 (-360) "failed") (-1082))))
-((-2246 (((-110) $ $) 7)) (-3686 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 15) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 13)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-3648 (((-3 (-360) "failed") (-297 |#1|) (-862)) 62 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-297 |#1|)) 54 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-388 (-893 |#1|)) (-862)) 41 (|has| |#1| (-522))) (((-3 (-360) "failed") (-388 (-893 |#1|))) 40 (|has| |#1| (-522))) (((-3 (-360) "failed") (-893 |#1|) (-862)) 31 (|has| |#1| (-984))) (((-3 (-360) "failed") (-893 |#1|)) 30 (|has| |#1| (-984)))) (-1925 (((-360) (-297 |#1|) (-862)) 99 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-297 |#1|)) 94 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-388 (-893 |#1|)) (-862)) 91 (|has| |#1| (-522))) (((-360) (-388 (-893 |#1|))) 90 (|has| |#1| (-522))) (((-360) (-893 |#1|) (-862)) 86 (|has| |#1| (-984))) (((-360) (-893 |#1|)) 85 (|has| |#1| (-984))) (((-360) |#1| (-862)) 76) (((-360) |#1|) 22)) (-1401 (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)) 71 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|))) 70 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|) (-862)) 63 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|)) 61 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862)) 46 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|)))) 45 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862)) 39 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|))) 38 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)) 28 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 |#1|)) 26 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)) 18 (|has| |#1| (-162))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2537 (((-159 (-360)) (-297 (-159 |#1|)) (-862)) 102 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 (-159 |#1|))) 101 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|) (-862)) 100 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|)) 98 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862)) 93 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 (-159 |#1|)))) 92 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|)) (-862)) 89 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|))) 88 (|has| |#1| (-522))) (((-159 (-360)) (-893 |#1|) (-862)) 84 (|has| |#1| (-984))) (((-159 (-360)) (-893 |#1|)) 83 (|has| |#1| (-984))) (((-159 (-360)) (-893 (-159 |#1|)) (-862)) 78 (|has| |#1| (-162))) (((-159 (-360)) (-893 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|) (-862)) 80 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-360)) |#1| (-862)) 27) (((-159 (-360)) |#1|) 25)))
+(((-733 |#1|) (-10 -7 (-15 -1925 ((-360) |#1|)) (-15 -1925 ((-360) |#1| (-862))) (-15 -2537 ((-159 (-360)) |#1|)) (-15 -2537 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2537 ((-159 (-360)) (-159 |#1|))) (-15 -2537 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1925 ((-360) (-893 |#1|))) (-15 -1925 ((-360) (-893 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 |#1|))) (-15 -2537 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1925 ((-360) (-388 (-893 |#1|)))) (-15 -1925 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1925 ((-360) (-297 |#1|))) (-15 -1925 ((-360) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 |#1|))) (-15 -2537 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-893 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-297 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|)) (-572 (-360))) (T -733))
+((-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-2537 (*1 *2 *3) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))) (-1925 (*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))))
+(-10 -7 (-15 -1925 ((-360) |#1|)) (-15 -1925 ((-360) |#1| (-862))) (-15 -2537 ((-159 (-360)) |#1|)) (-15 -2537 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2537 ((-159 (-360)) (-159 |#1|))) (-15 -2537 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1925 ((-360) (-893 |#1|))) (-15 -1925 ((-360) (-893 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 |#1|))) (-15 -2537 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1925 ((-360) (-388 (-893 |#1|)))) (-15 -1925 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1925 ((-360) (-297 |#1|))) (-15 -1925 ((-360) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 |#1|))) (-15 -2537 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-893 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-297 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|))
+((-1280 (((-862) (-1082)) 66)) (-1970 (((-3 (-360) "failed") (-1082)) 33)) (-3892 (((-360) (-1082)) 31)) (-3505 (((-862) (-1082)) 54)) (-2989 (((-1082) (-862)) 56)) (-3965 (((-1082) (-862)) 53)))
+(((-734) (-10 -7 (-15 -3965 ((-1082) (-862))) (-15 -3505 ((-862) (-1082))) (-15 -2989 ((-1082) (-862))) (-15 -1280 ((-862) (-1082))) (-15 -3892 ((-360) (-1082))) (-15 -1970 ((-3 (-360) "failed") (-1082))))) (T -734))
+((-1970 (*1 *2 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
+(-10 -7 (-15 -3965 ((-1082) (-862))) (-15 -3505 ((-862) (-1082))) (-15 -2989 ((-1082) (-862))) (-15 -1280 ((-862) (-1082))) (-15 -3892 ((-360) (-1082))) (-15 -1970 ((-3 (-360) "failed") (-1082))))
+((-2352 (((-110) $ $) 7)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 15) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 13)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-735) (-133)) (T -735))
-((-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-3686 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-3686 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
-(-13 (-1027) (-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3686 ((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3686 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)))))
+((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-1508 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-1508 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1508 ((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1508 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3711 (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 44) (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 43)) (-3723 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 50)) (-3702 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 41)) (-3695 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 52) (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 51)))
-(((-736) (-10 -7 (-15 -3695 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3695 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3702 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3711 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3711 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3723 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))) (T -736))
-((-3723 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3711 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3711 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3702 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3695 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3695 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))))
-(-10 -7 (-15 -3695 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3695 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3702 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3711 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3711 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3723 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))
-((-3811 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 53)) (-3783 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 31)) (-3801 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 52)) (-3771 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 29)) (-3792 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 51)) (-3761 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 19)) (-3751 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 32)) (-3741 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 30)) (-3732 (((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 28)))
-(((-737) (-10 -7 (-15 -3732 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3741 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3751 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3761 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3771 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3783 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3792 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3801 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3811 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))) (T -737))
-((-3811 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3801 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3792 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3783 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3771 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3761 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3751 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3741 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3732 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))))
-(-10 -7 (-15 -3732 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3741 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3751 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3761 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3771 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3783 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3792 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3801 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3811 ((-2 (|:| -3387 (-360)) (|:| -3906 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))
-((-1901 (((-1131 |#1|) |#1| (-208) (-530)) 46)))
-(((-738 |#1|) (-10 -7 (-15 -1901 ((-1131 |#1|) |#1| (-208) (-530)))) (-914)) (T -738))
-((-1901 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3)) (-5 *1 (-738 *3)) (-4 *3 (-914)))))
-(-10 -7 (-15 -1901 ((-1131 |#1|) |#1| (-208) (-530))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 24)) (-3618 (((-3 $ "failed") $ $) 26)) (-3956 (($) 23 T CONST)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 22 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2245 (($ $ $) 28) (($ $) 27)) (-2234 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29)))
+((-3653 (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 44) (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 43)) (-3292 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 50)) (-4198 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 41)) (-1790 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 52) (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 51)))
+(((-736) (-10 -7 (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -4198 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3292 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))) (T -736))
+((-3292 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3653 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3653 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-4198 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-1790 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-1790 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))))
+(-10 -7 (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -4198 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3292 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))
+((-2468 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 53)) (-1773 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 31)) (-2965 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 52)) (-1985 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 29)) (-3303 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 51)) (-3419 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 19)) (-1846 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 32)) (-1238 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 30)) (-2952 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 28)))
+(((-737) (-10 -7 (-15 -2952 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1238 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1846 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3419 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1985 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1773 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3303 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2965 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2468 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))) (T -737))
+((-2468 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-2965 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3303 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1773 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1985 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3419 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1846 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1238 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-2952 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))))
+(-10 -7 (-15 -2952 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1238 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1846 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3419 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1985 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1773 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3303 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2965 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2468 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))
+((-2487 (((-1131 |#1|) |#1| (-208) (-530)) 46)))
+(((-738 |#1|) (-10 -7 (-15 -2487 ((-1131 |#1|) |#1| (-208) (-530)))) (-914)) (T -738))
+((-2487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3)) (-5 *1 (-738 *3)) (-4 *3 (-914)))))
+(-10 -7 (-15 -2487 ((-1131 |#1|) |#1| (-208) (-530))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2351 (($ $ $) 28) (($ $) 27)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29)))
(((-739) (-133)) (T -739))
NIL
(-13 (-743) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 24)) (-3956 (($) 23 T CONST)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 22 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2234 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
(((-740) (-133)) (T -740))
NIL
(-13 (-742) (-23))
(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 24)) (-3821 (($ $ $) 27)) (-3618 (((-3 $ "failed") $ $) 26)) (-3956 (($) 23 T CONST)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 22 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2234 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-3418 (($ $ $) 27)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
(((-741) (-133)) (T -741))
-((-3821 (*1 *1 *1 *1) (-4 *1 (-741))))
-(-13 (-743) (-10 -8 (-15 -3821 ($ $ $))))
+((-3418 (*1 *1 *1 *1) (-4 *1 (-741))))
+(-13 (-743) (-10 -8 (-15 -3418 ($ $ $))))
(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2234 (($ $ $) 20)) (* (($ (-862) $) 21)))
+((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21)))
(((-742) (-133)) (T -742))
NIL
(-13 (-795) (-25))
(((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 24)) (-3618 (((-3 $ "failed") $ $) 26)) (-3956 (($) 23 T CONST)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 22 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2234 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
(((-743) (-133)) (T -743))
NIL
(-13 (-740) (-128))
(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
-((-3015 (((-110) $) 41)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 42)) (-1936 (((-3 (-388 (-530)) "failed") $) 78)) (-1928 (((-110) $) 72)) (-1917 (((-388 (-530)) $) 76)) (-1717 ((|#2| $) 26)) (-3114 (($ (-1 |#2| |#2|) $) 23)) (-2359 (($ $) 61)) (-3173 (((-506) $) 67)) (-1800 (($ $) 21)) (-2258 (((-804) $) 56) (($ (-530)) 39) (($ |#2|) 37) (($ (-388 (-530))) NIL)) (-1667 (((-719)) 10)) (-2218 ((|#2| $) 71)) (-2148 (((-110) $ $) 29)) (-2172 (((-110) $ $) 69)) (-2245 (($ $) 31) (($ $ $) NIL)) (-2234 (($ $ $) 30)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-744 |#1| |#2|) (-10 -8 (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-745 |#2|) (-162)) (T -744))
-((-1667 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4)) (-4 *3 (-745 *4)))))
-(-10 -8 (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-2879 (((-719)) 53 (|has| |#1| (-349)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 94 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 92 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 90)) (-2446 (((-530) $) 95 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 93 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 89)) (-1673 (((-3 $ "failed") $) 34)) (-2499 ((|#1| $) 79)) (-1936 (((-3 (-388 (-530)) "failed") $) 66 (|has| |#1| (-515)))) (-1928 (((-110) $) 68 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 67 (|has| |#1| (-515)))) (-1376 (($) 56 (|has| |#1| (-349)))) (-3150 (((-110) $) 31)) (-3874 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1717 ((|#1| $) 71)) (-4194 (($ $ $) 62 (|has| |#1| (-795)))) (-1757 (($ $ $) 61 (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) 81)) (-3830 (((-862) $) 55 (|has| |#1| (-349)))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 65 (|has| |#1| (-344)))) (-1910 (($ (-862)) 54 (|has| |#1| (-349)))) (-3841 ((|#1| $) 76)) (-3854 ((|#1| $) 77)) (-3864 ((|#1| $) 78)) (-1775 ((|#1| $) 72)) (-1784 ((|#1| $) 73)) (-1794 ((|#1| $) 74)) (-3831 ((|#1| $) 75)) (-2485 (((-1046) $) 10)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) 87 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 84 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 83 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 82 (|has| |#1| (-491 (-1099) |#1|)))) (-1832 (($ $ |#1|) 88 (|has| |#1| (-268 |#1| |#1|)))) (-3173 (((-506) $) 63 (|has| |#1| (-572 (-506))))) (-1800 (($ $) 80)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37) (($ (-388 (-530))) 91 (|has| |#1| (-975 (-388 (-530)))))) (-1795 (((-3 $ "failed") $) 64 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-2218 ((|#1| $) 69 (|has| |#1| (-993)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 59 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 58 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 60 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 57 (|has| |#1| (-795)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-1813 (((-110) $) 41)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 42)) (-2180 (((-3 (-388 (-530)) "failed") $) 78)) (-3016 (((-110) $) 72)) (-3370 (((-388 (-530)) $) 76)) (-2376 ((|#2| $) 26)) (-3217 (($ (-1 |#2| |#2|) $) 23)) (-2483 (($ $) 61)) (-3260 (((-506) $) 67)) (-2555 (($ $) 21)) (-2366 (((-804) $) 56) (($ (-530)) 39) (($ |#2|) 37) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 10)) (-3934 ((|#2| $) 71)) (-2248 (((-110) $ $) 29)) (-2272 (((-110) $ $) 69)) (-2351 (($ $) 31) (($ $ $) NIL)) (-2339 (($ $ $) 30)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-744 |#1| |#2|) (-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-745 |#2|) (-162)) (T -744))
+((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4)) (-4 *3 (-745 *4)))))
+(-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-3023 (((-719)) 51 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 92 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 90 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 88)) (-2585 (((-530) $) 93 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 91 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 87)) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 77)) (-2180 (((-3 (-388 (-530)) "failed") $) 64 (|has| |#1| (-515)))) (-3016 (((-110) $) 66 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 65 (|has| |#1| (-515)))) (-1364 (($) 54 (|has| |#1| (-349)))) (-2731 (((-110) $) 30)) (-1481 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2376 ((|#1| $) 69)) (-2508 (($ $ $) 60 (|has| |#1| (-795)))) (-1817 (($ $ $) 59 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 79)) (-1905 (((-862) $) 53 (|has| |#1| (-349)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 63 (|has| |#1| (-344)))) (-1986 (($ (-862)) 52 (|has| |#1| (-349)))) (-1782 ((|#1| $) 74)) (-3316 ((|#1| $) 75)) (-3025 ((|#1| $) 76)) (-2110 ((|#1| $) 70)) (-1702 ((|#1| $) 71)) (-3178 ((|#1| $) 72)) (-1994 ((|#1| $) 73)) (-2624 (((-1046) $) 10)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 83 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 82 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 81 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 80 (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) 86 (|has| |#1| (-268 |#1| |#1|)))) (-3260 (((-506) $) 61 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 78)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 89 (|has| |#1| (-975 (-388 (-530)))))) (-3251 (((-3 $ "failed") $) 62 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3934 ((|#1| $) 67 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 57 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 56 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 58 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 55 (|has| |#1| (-795)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-745 |#1|) (-133) (-162)) (T -745))
-((-1800 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3874 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-1936 (*1 *2 *1) (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2359 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(-13 (-37 |t#1|) (-392 |t#1|) (-319 |t#1|) (-10 -8 (-15 -1800 ($ $)) (-15 -2499 (|t#1| $)) (-15 -3864 (|t#1| $)) (-15 -3854 (|t#1| $)) (-15 -3841 (|t#1| $)) (-15 -3831 (|t#1| $)) (-15 -1794 (|t#1| $)) (-15 -1784 (|t#1| $)) (-15 -1775 (|t#1| $)) (-15 -1717 (|t#1| $)) (-15 -3874 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -2218 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2359 ($ $)) |%noBranch|)))
+((-2555 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1481 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-37 |t#1|) (-392 |t#1|) (-319 |t#1|) (-10 -8 (-15 -2555 ($ $)) (-15 -2637 (|t#1| $)) (-15 -3025 (|t#1| $)) (-15 -3316 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1994 (|t#1| $)) (-15 -3178 (|t#1| $)) (-15 -1702 (|t#1| $)) (-15 -2110 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -1481 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2483 ($ $)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-349) |has| |#1| (-349)) ((-319 |#1|) . T) ((-392 |#1|) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3114 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|))) (-745 |#2|) (-162) (-745 |#4|) (-162)) (T -746))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-745 *6)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *4 (-745 *5)))))
-(-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-938 |#1|) "failed") $) 35) (((-3 (-530) "failed") $) NIL (-1476 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL (-1476 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2446 ((|#1| $) NIL) (((-938 |#1|) $) 33) (((-530) $) NIL (-1476 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-388 (-530)) $) NIL (-1476 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-1673 (((-3 $ "failed") $) NIL)) (-2499 ((|#1| $) 16)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-1928 (((-110) $) NIL (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-1376 (($) NIL (|has| |#1| (-349)))) (-3150 (((-110) $) NIL)) (-3874 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-938 |#1|) (-938 |#1|)) 29)) (-1717 ((|#1| $) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-3841 ((|#1| $) 22)) (-3854 ((|#1| $) 20)) (-3864 ((|#1| $) 18)) (-1775 ((|#1| $) 26)) (-1784 ((|#1| $) 25)) (-1794 ((|#1| $) 24)) (-3831 ((|#1| $) 23)) (-2485 (((-1046) $) NIL)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1832 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-1800 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-938 |#1|)) 30) (($ (-388 (-530))) NIL (-1476 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2218 ((|#1| $) NIL (|has| |#1| (-993)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 8 T CONST)) (-2955 (($) 12 T CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-747 |#1|) (-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -3874 ($ (-938 |#1|) (-938 |#1|))))) (-162)) (T -747))
-((-3874 (*1 *1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
-(-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -3874 ($ (-938 |#1|) (-938 |#1|)))))
-((-2246 (((-110) $ $) 7)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-3884 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-2148 (((-110) $ $) 6)))
+((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-745 |#2|) (-162) (-745 |#4|) (-162)) (T -746))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-745 *6)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *4 (-745 *5)))))
+(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-938 |#1|) "failed") $) 35) (((-3 (-530) "failed") $) NIL (-1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 ((|#1| $) NIL) (((-938 |#1|) $) 33) (((-530) $) NIL (-1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-388 (-530)) $) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 16)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-1364 (($) NIL (|has| |#1| (-349)))) (-2731 (((-110) $) NIL)) (-1481 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-938 |#1|) (-938 |#1|)) 29)) (-2376 ((|#1| $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1782 ((|#1| $) 22)) (-3316 ((|#1| $) 20)) (-3025 ((|#1| $) 18)) (-2110 ((|#1| $) 26)) (-1702 ((|#1| $) 25)) (-3178 ((|#1| $) 24)) (-1994 ((|#1| $) 23)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-938 |#1|)) 30) (($ (-388 (-530))) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3934 ((|#1| $) NIL (|has| |#1| (-993)))) (-3080 (($) 8 T CONST)) (-3093 (($) 12 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-747 |#1|) (-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -1481 ($ (-938 |#1|) (-938 |#1|))))) (-162)) (T -747))
+((-1481 (*1 *1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
+(-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -1481 ($ (-938 |#1|) (-938 |#1|)))))
+((-2352 (((-110) $ $) 7)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-2248 (((-110) $ $) 6)))
(((-748) (-133)) (T -748))
-((-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-748)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)))))) (-3884 (*1 *2 *3) (-12 (-4 *1 (-748)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3884 ((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-748)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-2238 (*1 *2 *3) (-12 (-4 *1 (-748)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2238 ((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3894 (((-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#3| |#2| (-1099)) 19)))
-(((-749 |#1| |#2| |#3|) (-10 -7 (-15 -3894 ((-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#3| |#2| (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -749))
-((-3894 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3853 (-597 *4)))) (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -3894 ((-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#3| |#2| (-1099))))
-((-3066 (((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)) 28) (((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099)) 18) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099)) 24) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099)) 26) (((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099)) 37) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099)) 35)))
-(((-750 |#1| |#2|) (-10 -7 (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -3066 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -3066 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3066 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -750))
-((-3066 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-750 *6 *2)))) (-3066 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))))) (-3066 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3853 (-597 *3))) *3 "failed")) (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900))))) (-3066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3853 (-597 *7))) *7 "failed")) (-5 *1 (-750 *6 *7)))) (-3066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-3066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-3066 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099)) (-4 *6 (-13 (-29 *5) (-1121) (-900))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6)))) (-3066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7)))))
-(-10 -7 (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -3066 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3853 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -3066 ((-3 (-2 (|:| |particular| |#2|) (|:| -3853 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -3066 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3066 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|))))
-((-3904 (($) 9)) (-3936 (((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-3202 (((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-3440 (($ (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) 25)) (-3926 (($ (-597 (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) 23)) (-3915 (((-1186)) 12)))
-(((-751) (-10 -8 (-15 -3904 ($)) (-15 -3915 ((-1186))) (-15 -3202 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -3926 ($ (-597 (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3440 ($ (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3936 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -751))
-((-3936 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *1 (-751)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) (-5 *1 (-751)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-5 *1 (-751)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-751)))) (-3915 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))) (-3904 (*1 *1) (-5 *1 (-751))))
-(-10 -8 (-15 -3904 ($)) (-15 -3915 ((-1186))) (-15 -3202 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -3926 ($ (-597 (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3440 ($ (-2 (|:| -2940 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1806 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3936 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-1699 ((|#2| |#2| (-1099)) 16)) (-3945 ((|#2| |#2| (-1099)) 51)) (-3955 (((-1 |#2| |#2|) (-1099)) 11)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -1699 (|#2| |#2| (-1099))) (-15 -3945 (|#2| |#2| (-1099))) (-15 -3955 ((-1 |#2| |#2|) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -752))
-((-3955 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5)) (-4 *5 (-13 (-29 *4) (-1121) (-900))))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))) (-1699 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
-(-10 -7 (-15 -1699 (|#2| |#2| (-1099))) (-15 -3945 (|#2| |#2| (-1099))) (-15 -3955 ((-1 |#2| |#2|) (-1099))))
-((-3066 (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360)) 116) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360)) 117) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360)) 119) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360)) 120) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360)) 121) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360))) 122) (((-973) (-756) (-996)) 108) (((-973) (-756)) 109)) (-1523 (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996)) 75) (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756)) 77)))
-(((-753) (-10 -7 (-15 -3066 ((-973) (-756))) (-15 -3066 ((-973) (-756) (-996))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))) (T -753))
-((-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753)))))
-(-10 -7 (-15 -3066 ((-973) (-756))) (-15 -3066 ((-973) (-756) (-996))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -3066 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))
-((-3966 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3853 (-597 |#4|))) (-604 |#4|) |#4|) 35)))
-(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3966 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3853 (-597 |#4|))) (-604 |#4|) |#4|))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -754))
-((-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-754 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3966 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3853 (-597 |#4|))) (-604 |#4|) |#4|)))
-((-2173 (((-2 (|:| -2623 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))) 52)) (-3985 (((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4| |#2|) 60) (((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4|) 59) (((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3| |#2|) 20) (((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3|) 21)) (-3995 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3976 ((|#2| |#3| (-597 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90)))
-(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3976 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3976 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3| |#2|)) (-15 -3995 (|#2| |#3| |#1|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4| |#2|)) (-15 -3995 (|#2| |#4| |#1|)) (-15 -2173 ((-2 (|:| -2623 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -755))
-((-2173 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -2623 *7) (|:| |rh| (-597 (-388 *6))))) (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6))) (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6))))) (-3995 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2)) (-4 *3 (-607 (-388 *2))))) (-3985 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3721 *4) (|:| -1663 *4)))) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4)) (-4 *3 (-607 (-388 *4))))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3721 *5) (|:| -1663 *5)))) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 (-388 *5))))) (-3995 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))) (-3985 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3721 *4) (|:| -1663 *4)))) (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4)) (-4 *6 (-607 (-388 *4))))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3721 *5) (|:| -1663 *5)))) (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 (-388 *2))))) (-3976 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 *4)))))
-(-10 -7 (-15 -3976 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3976 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#3| |#2|)) (-15 -3995 (|#2| |#3| |#1|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4|)) (-15 -3985 ((-597 (-2 (|:| -3721 |#2|) (|:| -1663 |#2|))) |#4| |#2|)) (-15 -3995 (|#2| |#4| |#1|)) (-15 -2173 ((-2 (|:| -2623 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|)))))
-((-2246 (((-110) $ $) NIL)) (-2446 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-2148 (((-110) $ $) NIL)))
-(((-756) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -756))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-756)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))
-((-4076 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|)) 118)) (-4089 (((-597 (-2 (|:| |poly| |#2|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 46)) (-4014 (((-597 (-2 (|:| |deg| (-719)) (|:| -2623 |#2|))) |#3|) 95)) (-4005 ((|#2| |#3|) 37)) (-4025 (((-597 (-2 (|:| -2562 |#1|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 82)) (-4035 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4005 (|#2| |#3|)) (-15 -4014 ((-597 (-2 (|:| |deg| (-719)) (|:| -2623 |#2|))) |#3|)) (-15 -4025 ((-597 (-2 (|:| -2562 |#1|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -4089 ((-597 (-2 (|:| |poly| |#2|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -4076 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4035 (|#3| |#3| |#2|)) (-15 -4035 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -757))
-((-4035 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))) (-4035 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3)) (-4 *5 (-607 (-388 *3))))) (-4076 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2623 *3)))) (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7)) (-4 *8 (-607 (-388 *7))))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2623 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-4025 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -2562 *5) (|:| -2623 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2623 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-4005 (*1 *2 *3) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))))
-(-10 -7 (-15 -4005 (|#2| |#3|)) (-15 -4014 ((-597 (-2 (|:| |deg| (-719)) (|:| -2623 |#2|))) |#3|)) (-15 -4025 ((-597 (-2 (|:| -2562 |#1|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -4089 ((-597 (-2 (|:| |poly| |#2|) (|:| -2623 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -4076 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4035 (|#3| |#3| |#2|)) (-15 -4035 (|#3| |#3| (-388 |#2|))))
-((-4045 (((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|)) 113)) (-4056 ((|#2| (-605 |#2| (-388 |#2|))) 80) ((|#2| (-604 (-388 |#2|))) 83)))
-(((-758 |#1| |#2|) (-10 -7 (-15 -4045 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -4045 ((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -4045 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -4045 ((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -4056 (|#2| (-604 (-388 |#2|)))) (-15 -4056 (|#2| (-605 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -758))
-((-4056 (*1 *2 *3) (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3853 (-597 (-388 *6))) (|:| -1896 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-758 *5 *6)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3853 (-597 (-388 *6))) (|:| -1896 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-758 *5 *6)))))
-(-10 -7 (-15 -4045 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -4045 ((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -4045 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3853 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -4045 ((-2 (|:| -3853 (-597 (-388 |#2|))) (|:| -1896 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -4056 (|#2| (-604 (-388 |#2|)))) (-15 -4056 (|#2| (-605 |#2| (-388 |#2|)))))
-((-4067 (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|) 48)))
-(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4067 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|))) (-344) (-607 |#1|) (-1157 |#1|) (-673 |#1| |#3|) (-607 |#4|)) (T -759))
-((-4067 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7)) (-5 *2 (-2 (|:| -1896 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -4067 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|)))
-((-4076 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 47)) (-4099 (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 38) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 39) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 36) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 37)) (-4089 (((-597 (-2 (|:| |poly| |#2|) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 83)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4076 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4089 ((-597 (-2 (|:| |poly| |#2|) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -760))
-((-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2623 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2623 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-4099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
-(-10 -7 (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4076 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4089 ((-597 (-2 (|:| |poly| |#2|) (|:| -2623 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4099 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4099 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|))
-((-4111 (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|)) 85) (((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2623 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|)) 15)) (-4123 (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3853 (-597 |#1|))) |#2| |#1|)) 92)) (-3066 (((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3853 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-761 |#1| |#2|) (-10 -7 (-15 -4111 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2623 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -4111 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3853 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -4123 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3853 (-597 |#1|))) |#2| |#1|)))) (-344) (-607 |#1|)) (T -761))
-((-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3853 (-597 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *6) "failed")) (|:| -3853 (-597 (-1181 *6))))) (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))) (-3066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3853 (-597 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3853 (-637 *6)))) (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-607 *5)) (-5 *2 (-2 (|:| -1896 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-637 *5)) (|:| |eqs| (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2623 *6) (|:| |rh| *5)))))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *6 (-607 *5)))))
-(-10 -7 (-15 -4111 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2623 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -4111 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -3066 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3853 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3853 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -4123 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3853 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3853 (-597 |#1|))) |#2| |#1|))))
-((-4138 (((-637 |#1|) (-597 |#1|) (-719)) 13) (((-637 |#1|) (-597 |#1|)) 14)) (-4151 (((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|)) 34)) (-1840 (((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)) 42)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -4138 ((-637 |#1|) (-597 |#1|))) (-15 -4138 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -4151 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -1840 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -762))
-((-1840 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2)))) (-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4)) (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)) (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4)))))
-(-10 -7 (-15 -4138 ((-637 |#1|) (-597 |#1|))) (-15 -4138 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -4151 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -1840 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-3015 (((-110) $) NIL (|has| |#2| (-128)))) (-1909 (($ (-862)) NIL (|has| |#2| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) NIL (|has| |#2| (-741)))) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#2| (-349)))) (-3592 (((-530) $) NIL (|has| |#2| (-793)))) (-2416 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2446 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-1298 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-1673 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1376 (($) NIL (|has| |#2| (-349)))) (-2858 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ (-530)) NIL)) (-2991 (((-110) $) NIL (|has| |#2| (-793)))) (-2456 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (|has| |#2| (-675)))) (-3002 (((-110) $) NIL (|has| |#2| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3252 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#2| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#2| (-1027)))) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#2| (-349)))) (-2485 (((-1046) $) NIL (|has| |#2| (-1027)))) (-2907 ((|#2| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-1796 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2515 (($ (-1181 |#2|)) NIL)) (-1248 (((-130)) NIL (|has| |#2| (-344)))) (-3211 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2494 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1476 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-1667 (((-719)) NIL (|has| |#2| (-984)))) (-1515 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#2| (-793)))) (-2723 (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (-2943 (($) NIL (|has| |#2| (-128)) CONST)) (-2955 (($) NIL (|has| |#2| (-675)) CONST)) (-3286 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2195 (((-110) $ $) NIL (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2172 (((-110) $ $) 11 (-1476 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2234 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2966 (((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099)) 19)))
+(((-749 |#1| |#2| |#3|) (-10 -7 (-15 -2966 ((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -749))
+((-2966 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4)))) (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
+(-10 -7 (-15 -2966 ((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099))))
+((-2688 (((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)) 28) (((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099)) 18) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099)) 24) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099)) 26) (((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099)) 37) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099)) 35)))
+(((-750 |#1| |#2|) (-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -2688 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -2688 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -2688 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -750))
+((-2688 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-750 *6 *2)))) (-2688 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3220 (-597 *3))) *3 "failed")) (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3220 (-597 *7))) *7 "failed")) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099)) (-4 *6 (-13 (-29 *5) (-1121) (-900))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7)))))
+(-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -2688 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -2688 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -2688 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|))))
+((-1498 (($) 9)) (-1742 (((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-3282 (((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-2441 (($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) 25)) (-1967 (($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) 23)) (-3234 (((-1186)) 12)))
+(((-751) (-10 -8 (-15 -1498 ($)) (-15 -3234 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -1967 ($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -1742 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -751))
+((-1742 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *1 (-751)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) (-5 *1 (-751)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-5 *1 (-751)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-751)))) (-3234 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))) (-1498 (*1 *1) (-5 *1 (-751))))
+(-10 -8 (-15 -1498 ($)) (-15 -3234 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -1967 ($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -1742 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-3967 ((|#2| |#2| (-1099)) 16)) (-3584 ((|#2| |#2| (-1099)) 51)) (-2235 (((-1 |#2| |#2|) (-1099)) 11)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -3967 (|#2| |#2| (-1099))) (-15 -3584 (|#2| |#2| (-1099))) (-15 -2235 ((-1 |#2| |#2|) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -752))
+((-2235 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5)) (-4 *5 (-13 (-29 *4) (-1121) (-900))))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))) (-3967 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
+(-10 -7 (-15 -3967 (|#2| |#2| (-1099))) (-15 -3584 (|#2| |#2| (-1099))) (-15 -2235 ((-1 |#2| |#2|) (-1099))))
+((-2688 (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360)) 116) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360)) 117) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360)) 119) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360)) 120) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360)) 121) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360))) 122) (((-973) (-756) (-996)) 108) (((-973) (-756)) 109)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996)) 75) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756)) 77)))
+(((-753) (-10 -7 (-15 -2688 ((-973) (-756))) (-15 -2688 ((-973) (-756) (-996))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))) (T -753))
+((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2688 ((-973) (-756))) (-15 -2688 ((-973) (-756) (-996))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))
+((-3796 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|) 35)))
+(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -754))
+((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-754 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3796 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|)))
+((-1912 (((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))) 52)) (-2046 (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|) 60) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|) 59) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|) 20) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|) 21)) (-1682 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3529 ((|#2| |#3| (-597 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90)))
+(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3529 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|)) (-15 -1682 (|#2| |#3| |#1|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|)) (-15 -1682 (|#2| |#4| |#1|)) (-15 -1912 ((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -755))
+((-1912 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -2776 *7) (|:| |rh| (-597 (-388 *6))))) (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6))) (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2)) (-4 *3 (-607 (-388 *2))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4)))) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4)) (-4 *3 (-607 (-388 *4))))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5)))) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 (-388 *5))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4)))) (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4)) (-4 *6 (-607 (-388 *4))))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5)))) (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 (-388 *2))))) (-3529 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 *4)))))
+(-10 -7 (-15 -3529 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3529 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|)) (-15 -1682 (|#2| |#3| |#1|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|)) (-15 -1682 (|#2| |#4| |#1|)) (-15 -1912 ((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|)))))
+((-2352 (((-110) $ $) NIL)) (-2585 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-2248 (((-110) $ $) NIL)))
+(((-756) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -756))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-756)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))
+((-2782 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|)) 118)) (-1263 (((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 46)) (-1438 (((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|) 95)) (-3813 ((|#2| |#3|) 37)) (-4055 (((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 82)) (-2499 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3813 (|#2| |#3|)) (-15 -1438 ((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|)) (-15 -4055 ((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -757))
+((-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))) (-2499 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3)) (-4 *5 (-607 (-388 *3))))) (-2782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2776 *3)))) (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7)) (-4 *8 (-607 (-388 *7))))) (-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-4055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -2708 *5) (|:| -2776 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2776 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-3813 (*1 *2 *3) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))))
+(-10 -7 (-15 -3813 (|#2| |#3|)) (-15 -1438 ((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|)) (-15 -4055 ((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-388 |#2|))))
+((-2085 (((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|)) 113)) (-1639 ((|#2| (-605 |#2| (-388 |#2|))) 80) ((|#2| (-604 (-388 |#2|))) 83)))
+(((-758 |#1| |#2|) (-10 -7 (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -1639 (|#2| (-604 (-388 |#2|)))) (-15 -1639 (|#2| (-605 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -758))
+((-1639 (*1 *2 *3) (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-758 *5 *6)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-758 *5 *6)))))
+(-10 -7 (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -1639 (|#2| (-604 (-388 |#2|)))) (-15 -1639 (|#2| (-605 |#2| (-388 |#2|)))))
+((-4102 (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|) 48)))
+(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4102 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|))) (-344) (-607 |#1|) (-1157 |#1|) (-673 |#1| |#3|) (-607 |#4|)) (T -759))
+((-4102 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7)) (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
+(-10 -7 (-15 -4102 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|)))
+((-2782 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 47)) (-4014 (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 38) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 39) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 36) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 37)) (-1263 (((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 83)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -760))
+((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2776 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-4014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
+(-10 -7 (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|))
+((-2778 (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|)) 85) (((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|)) 15)) (-2322 (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|)) 92)) (-2688 (((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-761 |#1| |#2|) (-10 -7 (-15 -2778 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -2778 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -2322 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|)))) (-344) (-607 |#1|)) (T -761))
+((-2322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3220 (-597 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *6) "failed")) (|:| -3220 (-597 (-1181 *6))))) (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3220 (-597 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3220 (-637 *6)))) (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-607 *5)) (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-637 *5)) (|:| |eqs| (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2776 *6) (|:| |rh| *5)))))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *6 (-607 *5)))))
+(-10 -7 (-15 -2778 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -2778 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -2322 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|))))
+((-3453 (((-637 |#1|) (-597 |#1|) (-719)) 13) (((-637 |#1|) (-597 |#1|)) 14)) (-2049 (((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|)) 34)) (-2057 (((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)) 42)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -3453 ((-637 |#1|) (-597 |#1|))) (-15 -3453 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -2049 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -2057 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -762))
+((-2057 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2)))) (-2049 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4)) (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)) (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4)))))
+(-10 -7 (-15 -3453 ((-637 |#1|) (-597 |#1|))) (-15 -3453 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -2049 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -2057 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) NIL (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) NIL)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) NIL (|has| |#2| (-128)) CONST)) (-3093 (($) NIL (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 11 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-763 |#1| |#2| |#3|) (-221 |#1| |#2|) (-719) (-741) (-1 (-110) (-1181 |#2|) (-1181 |#2|))) (T -763))
NIL
(-221 |#1| |#2|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3964 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-3073 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2596 (((-597 (-766 (-1099))) $) NIL)) (-2439 (((-1095 $) $ (-766 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-766 (-1099)))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3943 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-766 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-766 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-2330 (($ $ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-502 (-766 (-1099))) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#1|) (-766 (-1099))) NIL) (($ (-1095 $) (-766 (-1099))) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-766 (-1099))) NIL)) (-3674 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 (-766 (-1099))) (-502 (-766 (-1099)))) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3085 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-1367 (((-3 (-766 (-1099)) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2790 (((-766 (-1099)) $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-3952 (((-110) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-766 (-1099))) (|:| -3059 (-719))) "failed") $) NIL)) (-2273 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-766 (-1099)) |#1|) NIL) (($ $ (-597 (-766 (-1099))) (-597 |#1|)) NIL) (($ $ (-766 (-1099)) $) NIL) (($ $ (-597 (-766 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-2341 (($ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-3211 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3974 (((-597 (-1099)) $) NIL)) (-3409 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-766 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-2001 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2746 (((-597 (-766 (-1099))) $) NIL)) (-2577 (((-1095 $) $ (-766 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-766 (-1099)))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-766 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-766 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-3388 (($ $ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-766 (-1099))) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-766 (-1099))) NIL) (($ (-1095 $) (-766 (-1099))) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-766 (-1099))) NIL)) (-2944 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-766 (-1099))) (-502 (-766 (-1099)))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 (-766 (-1099)) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 (((-766 (-1099)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-766 (-1099))) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-766 (-1099)) |#1|) NIL) (($ $ (-597 (-766 (-1099))) (-597 |#1|)) NIL) (($ $ (-766 (-1099)) $) NIL) (($ $ (-597 (-766 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 (-1099)) $) NIL)) (-1429 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-766 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-764 |#1|) (-13 (-235 |#1| (-1099) (-766 (-1099)) (-502 (-766 (-1099)))) (-975 (-1051 |#1| (-1099)))) (-984)) (T -764))
NIL
(-13 (-235 |#1| (-1099) (-766 (-1099)) (-502 (-766 (-1099)))) (-975 (-1051 |#1| (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-3031 (($ $) NIL (|has| |#2| (-344)))) (-3006 (((-110) $) NIL (|has| |#2| (-344)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#2| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-344)))) (-1945 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL (|has| |#2| (-344)))) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#2| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-2049 (((-110) $) NIL (|has| |#2| (-344)))) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2072 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 20 (|has| |#2| (-344)))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#2| (-344)))) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-1934 (((-719) $) NIL (|has| |#2| (-344)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-344)))) (-3211 (($ $ (-719)) NIL) (($ $) 13)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-530))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL (|has| |#2| (-344)))) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ (-530)) NIL (|has| |#2| (-344)))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) 15 (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ (-530)) 18 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-530))) NIL (|has| |#2| (-344)))))
-(((-765 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2258 ($ |#2|)) (-15 -2258 (|#2| $)))) (-1027) (-841 |#1|) |#1|) (T -765))
-((-2258 (*1 *1 *2) (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4)) (-4 *2 (-841 *3)))) (-2258 (*1 *2 *1) (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027)) (-14 *4 *3))))
-(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2258 ($ |#2|)) (-15 -2258 (|#2| $))))
-((-2246 (((-110) $ $) NIL)) (-3073 (((-719) $) NIL)) (-3994 ((|#1| $) 10)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-1334 (((-719) $) 11)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3085 (($ |#1| (-719)) 9)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3211 (($ $) NIL) (($ $ (-719)) NIL)) (-2258 (((-804) $) NIL) (($ |#1|) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-3446 (($ $) NIL (|has| |#2| (-344)))) (-1276 (((-110) $) NIL (|has| |#2| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#2| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-344)))) (-1426 (((-110) $ $) NIL (|has| |#2| (-344)))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#2| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-3295 (((-110) $) NIL (|has| |#2| (-344)))) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2170 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 20 (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2356 (((-719) $) NIL (|has| |#2| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3289 (($ $ (-719)) NIL) (($ $) 13)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-530))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) 15 (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ (-530)) 18 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-530))) NIL (|has| |#2| (-344)))))
+(((-765 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2366 ($ |#2|)) (-15 -2366 (|#2| $)))) (-1027) (-841 |#1|) |#1|) (T -765))
+((-2366 (*1 *1 *2) (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4)) (-4 *2 (-841 *3)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027)) (-14 *4 *3))))
+(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2366 ($ |#2|)) (-15 -2366 (|#2| $))))
+((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) NIL)) (-4007 ((|#1| $) 10)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2031 (((-719) $) 11)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3135 (($ |#1| (-719)) 9)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)))
(((-766 |#1|) (-248 |#1|) (-795)) (T -766))
NIL
(-248 |#1|)
-((-2246 (((-110) $ $) NIL)) (-3717 (((-597 |#1|) $) 29)) (-2879 (((-719) $) NIL)) (-3956 (($) NIL T CONST)) (-3339 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-2918 (($ $) 31)) (-1673 (((-3 $ "failed") $) NIL)) (-4195 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3150 (((-110) $) NIL)) (-4173 ((|#1| $ (-530)) NIL)) (-4183 (((-719) $ (-530)) NIL)) (-3315 (($ $) 36)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3352 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4226 (((-110) $ $) 34)) (-2171 (((-719) $) 25)) (-3443 (((-1082) $) NIL)) (-4207 (($ $ $) NIL)) (-4217 (($ $ $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 ((|#1| $) 30)) (-4162 (((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $) NIL)) (-3575 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2258 (((-804) $) NIL) (($ |#1|) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2955 (($) 15 T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 35)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-767 |#1|) (-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2907 (|#1| $)) (-15 -2918 ($ $)) (-15 -3315 ($ $)) (-15 -4226 ((-110) $ $)) (-15 -4217 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -3352 ((-3 $ "failed") $ $)) (-15 -3339 ((-3 $ "failed") $ $)) (-15 -3352 ((-3 $ "failed") $ |#1|)) (-15 -3339 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4195 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2879 ((-719) $)) (-15 -4183 ((-719) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $)) (-15 -2171 ((-719) $)) (-15 -3717 ((-597 |#1|) $)))) (-795)) (T -767))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2907 (*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2918 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4226 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4217 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4207 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3352 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3339 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3352 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3339 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3575 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4195 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-719))))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2907 (|#1| $)) (-15 -2918 ($ $)) (-15 -3315 ($ $)) (-15 -4226 ((-110) $ $)) (-15 -4217 ($ $ $)) (-15 -4207 ($ $ $)) (-15 -3352 ((-3 $ "failed") $ $)) (-15 -3339 ((-3 $ "failed") $ $)) (-15 -3352 ((-3 $ "failed") $ |#1|)) (-15 -3339 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4195 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2879 ((-719) $)) (-15 -4183 ((-719) $ (-530))) (-15 -4173 (|#1| $ (-530))) (-15 -4162 ((-597 (-2 (|:| |gen| |#1|) (|:| -2693 (-719)))) $)) (-15 -2171 ((-719) $)) (-15 -3717 ((-597 |#1|) $))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3592 (((-530) $) 53)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-2991 (((-110) $) 51)) (-3150 (((-110) $) 31)) (-3002 (((-110) $) 52)) (-4194 (($ $ $) 50)) (-1757 (($ $ $) 49)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ $) 42)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2218 (($ $) 54)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 47)) (-2182 (((-110) $ $) 46)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 48)) (-2172 (((-110) $ $) 45)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 29)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3575 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3057 (($ $) 31)) (-2707 (((-3 $ "failed") $) NIL)) (-3686 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2731 (((-110) $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-719) $ (-530)) NIL)) (-2627 (($ $) 36)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3847 (((-110) $ $) 34)) (-4109 (((-719) $) 25)) (-1424 (((-1082) $) NIL)) (-2458 (($ $ $) NIL)) (-2325 (($ $ $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) 30)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) NIL)) (-3561 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-3093 (($) 15 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-767 |#1|) (-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -3048 (|#1| $)) (-15 -3057 ($ $)) (-15 -2627 ($ $)) (-15 -3847 ((-110) $ $)) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 $ "failed") $ |#1|)) (-15 -3561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -4109 ((-719) $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -767))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2325 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2448 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3575 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3561 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3686 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719))))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -3048 (|#1| $)) (-15 -3057 ($ $)) (-15 -2627 ($ $)) (-15 -3847 ((-110) $ $)) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 $ "failed") $ |#1|)) (-15 -3561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -4109 ((-719) $)) (-15 -3702 ((-597 |#1|) $))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-1867 (((-530) $) 51)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2514 (((-110) $) 49)) (-2731 (((-110) $) 30)) (-2166 (((-110) $) 50)) (-2508 (($ $ $) 48)) (-1817 (($ $ $) 47)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 52)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 45)) (-2284 (((-110) $ $) 44)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 46)) (-2272 (((-110) $ $) 43)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-768) (-133)) (T -768))
NIL
(-13 (-522) (-793))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-4237 (($ (-1046)) 7)) (-3054 (((-110) $ (-1082) (-1046)) 15)) (-3043 (((-770) $) 12)) (-3033 (((-770) $) 11)) (-4249 (((-1186) $) 9)) (-3065 (((-110) $ (-1046)) 16)))
-(((-769) (-10 -8 (-15 -4237 ($ (-1046))) (-15 -4249 ((-1186) $)) (-15 -3033 ((-770) $)) (-15 -3043 ((-770) $)) (-15 -3054 ((-110) $ (-1082) (-1046))) (-15 -3065 ((-110) $ (-1046))))) (T -769))
-((-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-3054 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
-(-10 -8 (-15 -4237 ($ (-1046))) (-15 -4249 ((-1186) $)) (-15 -3033 ((-770) $)) (-15 -3043 ((-770) $)) (-15 -3054 ((-110) $ (-1082) (-1046))) (-15 -3065 ((-110) $ (-1046))))
-((-3112 (((-1186) $ (-771)) 12)) (-3319 (((-1186) $ (-1099)) 32)) (-3345 (((-1186) $ (-1082) (-1082)) 34)) (-3332 (((-1186) $ (-1082)) 33)) (-3195 (((-1186) $) 19)) (-3296 (((-1186) $ (-530)) 28)) (-3307 (((-1186) $ (-208)) 30)) (-3184 (((-1186) $) 18)) (-3283 (((-1186) $) 26)) (-3271 (((-1186) $) 25)) (-3247 (((-1186) $) 23)) (-3260 (((-1186) $) 24)) (-3235 (((-1186) $) 22)) (-3223 (((-1186) $) 21)) (-3208 (((-1186) $) 20)) (-3159 (((-1186) $) 16)) (-3171 (((-1186) $) 17)) (-3146 (((-1186) $) 15)) (-3135 (((-1186) $) 14)) (-3124 (((-1186) $) 13)) (-3089 (($ (-1082) (-771)) 9)) (-3077 (($ (-1082) (-1082) (-771)) 8)) (-3541 (((-1099) $) 51)) (-3578 (((-1099) $) 55)) (-3565 (((-2 (|:| |cd| (-1082)) (|:| -3901 (-1082))) $) 54)) (-3554 (((-1082) $) 52)) (-3426 (((-1186) $) 41)) (-3519 (((-530) $) 49)) (-3528 (((-208) $) 50)) (-3414 (((-1186) $) 40)) (-3508 (((-1186) $) 48)) (-3498 (((-1186) $) 47)) (-3474 (((-1186) $) 45)) (-3486 (((-1186) $) 46)) (-3462 (((-1186) $) 44)) (-3451 (((-1186) $) 43)) (-3439 (((-1186) $) 42)) (-3391 (((-1186) $) 38)) (-3403 (((-1186) $) 39)) (-3378 (((-1186) $) 37)) (-3368 (((-1186) $) 36)) (-3357 (((-1186) $) 35)) (-3100 (((-1186) $) 11)))
-(((-770) (-10 -8 (-15 -3077 ($ (-1082) (-1082) (-771))) (-15 -3089 ($ (-1082) (-771))) (-15 -3100 ((-1186) $)) (-15 -3112 ((-1186) $ (-771))) (-15 -3124 ((-1186) $)) (-15 -3135 ((-1186) $)) (-15 -3146 ((-1186) $)) (-15 -3159 ((-1186) $)) (-15 -3171 ((-1186) $)) (-15 -3184 ((-1186) $)) (-15 -3195 ((-1186) $)) (-15 -3208 ((-1186) $)) (-15 -3223 ((-1186) $)) (-15 -3235 ((-1186) $)) (-15 -3247 ((-1186) $)) (-15 -3260 ((-1186) $)) (-15 -3271 ((-1186) $)) (-15 -3283 ((-1186) $)) (-15 -3296 ((-1186) $ (-530))) (-15 -3307 ((-1186) $ (-208))) (-15 -3319 ((-1186) $ (-1099))) (-15 -3332 ((-1186) $ (-1082))) (-15 -3345 ((-1186) $ (-1082) (-1082))) (-15 -3357 ((-1186) $)) (-15 -3368 ((-1186) $)) (-15 -3378 ((-1186) $)) (-15 -3391 ((-1186) $)) (-15 -3403 ((-1186) $)) (-15 -3414 ((-1186) $)) (-15 -3426 ((-1186) $)) (-15 -3439 ((-1186) $)) (-15 -3451 ((-1186) $)) (-15 -3462 ((-1186) $)) (-15 -3474 ((-1186) $)) (-15 -3486 ((-1186) $)) (-15 -3498 ((-1186) $)) (-15 -3508 ((-1186) $)) (-15 -3519 ((-530) $)) (-15 -3528 ((-208) $)) (-15 -3541 ((-1099) $)) (-15 -3554 ((-1082) $)) (-15 -3565 ((-2 (|:| |cd| (-1082)) (|:| -3901 (-1082))) $)) (-15 -3578 ((-1099) $)))) (T -770))
-((-3578 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3901 (-1082)))) (-5 *1 (-770)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3345 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3332 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3319 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3307 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3296 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))) (-3077 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(-10 -8 (-15 -3077 ($ (-1082) (-1082) (-771))) (-15 -3089 ($ (-1082) (-771))) (-15 -3100 ((-1186) $)) (-15 -3112 ((-1186) $ (-771))) (-15 -3124 ((-1186) $)) (-15 -3135 ((-1186) $)) (-15 -3146 ((-1186) $)) (-15 -3159 ((-1186) $)) (-15 -3171 ((-1186) $)) (-15 -3184 ((-1186) $)) (-15 -3195 ((-1186) $)) (-15 -3208 ((-1186) $)) (-15 -3223 ((-1186) $)) (-15 -3235 ((-1186) $)) (-15 -3247 ((-1186) $)) (-15 -3260 ((-1186) $)) (-15 -3271 ((-1186) $)) (-15 -3283 ((-1186) $)) (-15 -3296 ((-1186) $ (-530))) (-15 -3307 ((-1186) $ (-208))) (-15 -3319 ((-1186) $ (-1099))) (-15 -3332 ((-1186) $ (-1082))) (-15 -3345 ((-1186) $ (-1082) (-1082))) (-15 -3357 ((-1186) $)) (-15 -3368 ((-1186) $)) (-15 -3378 ((-1186) $)) (-15 -3391 ((-1186) $)) (-15 -3403 ((-1186) $)) (-15 -3414 ((-1186) $)) (-15 -3426 ((-1186) $)) (-15 -3439 ((-1186) $)) (-15 -3451 ((-1186) $)) (-15 -3462 ((-1186) $)) (-15 -3474 ((-1186) $)) (-15 -3486 ((-1186) $)) (-15 -3498 ((-1186) $)) (-15 -3508 ((-1186) $)) (-15 -3519 ((-530) $)) (-15 -3528 ((-208) $)) (-15 -3541 ((-1099) $)) (-15 -3554 ((-1082) $)) (-15 -3565 ((-2 (|:| |cd| (-1082)) (|:| -3901 (-1082))) $)) (-15 -3578 ((-1099) $)))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 12)) (-3608 (($) 15)) (-3616 (($) 13)) (-3600 (($) 16)) (-3591 (($) 14)) (-2148 (((-110) $ $) 8)))
-(((-771) (-13 (-1027) (-10 -8 (-15 -3616 ($)) (-15 -3608 ($)) (-15 -3600 ($)) (-15 -3591 ($))))) (T -771))
-((-3616 (*1 *1) (-5 *1 (-771))) (-3608 (*1 *1) (-5 *1 (-771))) (-3600 (*1 *1) (-5 *1 (-771))) (-3591 (*1 *1) (-5 *1 (-771))))
-(-13 (-1027) (-10 -8 (-15 -3616 ($)) (-15 -3608 ($)) (-15 -3600 ($)) (-15 -3591 ($))))
-((-2246 (((-110) $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 21) (($ (-1099)) 17)) (-3662 (((-110) $) 10)) (-2413 (((-110) $) 9)) (-3652 (((-110) $) 11)) (-2427 (((-110) $) 8)) (-2148 (((-110) $ $) 19)))
-(((-772) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-1099))) (-15 -2427 ((-110) $)) (-15 -2413 ((-110) $)) (-15 -3662 ((-110) $)) (-15 -3652 ((-110) $))))) (T -772))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-772)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-1099))) (-15 -2427 ((-110) $)) (-15 -2413 ((-110) $)) (-15 -3662 ((-110) $)) (-15 -3652 ((-110) $))))
-((-2246 (((-110) $ $) NIL)) (-3625 (($ (-772) (-597 (-1099))) 24)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3642 (((-772) $) 25)) (-3635 (((-597 (-1099)) $) 26)) (-2258 (((-804) $) 23)) (-2148 (((-110) $ $) NIL)))
-(((-773) (-13 (-1027) (-10 -8 (-15 -3642 ((-772) $)) (-15 -3635 ((-597 (-1099)) $)) (-15 -3625 ($ (-772) (-597 (-1099))))))) (T -773))
-((-3642 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))) (-3625 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
-(-13 (-1027) (-10 -8 (-15 -3642 ((-772) $)) (-15 -3635 ((-597 (-1099)) $)) (-15 -3625 ($ (-772) (-597 (-1099))))))
-((-2437 (((-1186) (-770) (-297 |#1|) (-110)) 23) (((-1186) (-770) (-297 |#1|)) 79) (((-1082) (-297 |#1|) (-110)) 78) (((-1082) (-297 |#1|)) 77)))
-(((-774 |#1|) (-10 -7 (-15 -2437 ((-1082) (-297 |#1|))) (-15 -2437 ((-1082) (-297 |#1|) (-110))) (-15 -2437 ((-1186) (-770) (-297 |#1|))) (-15 -2437 ((-1186) (-770) (-297 |#1|) (-110)))) (-13 (-776) (-795) (-984))) (T -774))
-((-2437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *6)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-297 *5)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *5)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *5)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *4)))))
-(-10 -7 (-15 -2437 ((-1082) (-297 |#1|))) (-15 -2437 ((-1082) (-297 |#1|) (-110))) (-15 -2437 ((-1186) (-770) (-297 |#1|))) (-15 -2437 ((-1186) (-770) (-297 |#1|) (-110))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2450 ((|#1| $) 10)) (-4135 (($ |#1|) 9)) (-3150 (((-110) $) NIL)) (-2575 (($ |#2| (-719)) NIL)) (-3674 (((-719) $) NIL)) (-2402 ((|#2| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3211 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-3409 (((-719) $) NIL)) (-2258 (((-804) $) 17) (($ (-530)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-2782 ((|#2| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-775 |#1| |#2|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4135 ($ |#1|)) (-15 -2450 (|#1| $)))) (-657 |#2|) (-984)) (T -775))
-((-4135 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-775 *2 *3)) (-4 *2 (-657 *3)))) (-2450 (*1 *2 *1) (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
-(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4135 ($ |#1|)) (-15 -2450 (|#1| $))))
-((-2437 (((-1186) (-770) $ (-110)) 9) (((-1186) (-770) $) 8) (((-1082) $ (-110)) 7) (((-1082) $) 6)))
+((-2830 (($ (-1046)) 7)) (-3929 (((-110) $ (-1082) (-1046)) 15)) (-2296 (((-770) $) 12)) (-2550 (((-770) $) 11)) (-1432 (((-1186) $) 9)) (-3674 (((-110) $ (-1046)) 16)))
+(((-769) (-10 -8 (-15 -2830 ($ (-1046))) (-15 -1432 ((-1186) $)) (-15 -2550 ((-770) $)) (-15 -2296 ((-770) $)) (-15 -3929 ((-110) $ (-1082) (-1046))) (-15 -3674 ((-110) $ (-1046))))) (T -769))
+((-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-3929 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
+(-10 -8 (-15 -2830 ($ (-1046))) (-15 -1432 ((-1186) $)) (-15 -2550 ((-770) $)) (-15 -2296 ((-770) $)) (-15 -3929 ((-110) $ (-1082) (-1046))) (-15 -3674 ((-110) $ (-1046))))
+((-3732 (((-1186) $ (-771)) 12)) (-1845 (((-1186) $ (-1099)) 32)) (-2907 (((-1186) $ (-1082) (-1082)) 34)) (-4026 (((-1186) $ (-1082)) 33)) (-1348 (((-1186) $) 19)) (-2015 (((-1186) $ (-530)) 28)) (-3880 (((-1186) $ (-208)) 30)) (-2706 (((-1186) $) 18)) (-3681 (((-1186) $) 26)) (-3750 (((-1186) $) 25)) (-3132 (((-1186) $) 23)) (-2405 (((-1186) $) 24)) (-3238 (((-1186) $) 22)) (-2523 (((-1186) $) 21)) (-3438 (((-1186) $) 20)) (-1769 (((-1186) $) 16)) (-3625 (((-1186) $) 17)) (-3689 (((-1186) $) 15)) (-2394 (((-1186) $) 14)) (-3604 (((-1186) $) 13)) (-3382 (($ (-1082) (-771)) 9)) (-2265 (($ (-1082) (-1082) (-771)) 8)) (-3700 (((-1099) $) 51)) (-2791 (((-1099) $) 55)) (-2239 (((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $) 54)) (-3586 (((-1082) $) 52)) (-3539 (((-1186) $) 41)) (-3514 (((-530) $) 49)) (-2038 (((-208) $) 50)) (-3682 (((-1186) $) 40)) (-3831 (((-1186) $) 48)) (-2924 (((-1186) $) 47)) (-1346 (((-1186) $) 45)) (-1234 (((-1186) $) 46)) (-2648 (((-1186) $) 44)) (-3762 (((-1186) $) 43)) (-2342 (((-1186) $) 42)) (-1317 (((-1186) $) 38)) (-4061 (((-1186) $) 39)) (-3151 (((-1186) $) 37)) (-3346 (((-1186) $) 36)) (-1629 (((-1186) $) 35)) (-2058 (((-1186) $) 11)))
+(((-770) (-10 -8 (-15 -2265 ($ (-1082) (-1082) (-771))) (-15 -3382 ($ (-1082) (-771))) (-15 -2058 ((-1186) $)) (-15 -3732 ((-1186) $ (-771))) (-15 -3604 ((-1186) $)) (-15 -2394 ((-1186) $)) (-15 -3689 ((-1186) $)) (-15 -1769 ((-1186) $)) (-15 -3625 ((-1186) $)) (-15 -2706 ((-1186) $)) (-15 -1348 ((-1186) $)) (-15 -3438 ((-1186) $)) (-15 -2523 ((-1186) $)) (-15 -3238 ((-1186) $)) (-15 -3132 ((-1186) $)) (-15 -2405 ((-1186) $)) (-15 -3750 ((-1186) $)) (-15 -3681 ((-1186) $)) (-15 -2015 ((-1186) $ (-530))) (-15 -3880 ((-1186) $ (-208))) (-15 -1845 ((-1186) $ (-1099))) (-15 -4026 ((-1186) $ (-1082))) (-15 -2907 ((-1186) $ (-1082) (-1082))) (-15 -1629 ((-1186) $)) (-15 -3346 ((-1186) $)) (-15 -3151 ((-1186) $)) (-15 -1317 ((-1186) $)) (-15 -4061 ((-1186) $)) (-15 -3682 ((-1186) $)) (-15 -3539 ((-1186) $)) (-15 -2342 ((-1186) $)) (-15 -3762 ((-1186) $)) (-15 -2648 ((-1186) $)) (-15 -1346 ((-1186) $)) (-15 -1234 ((-1186) $)) (-15 -2924 ((-1186) $)) (-15 -3831 ((-1186) $)) (-15 -3514 ((-530) $)) (-15 -2038 ((-208) $)) (-15 -3700 ((-1099) $)) (-15 -3586 ((-1082) $)) (-15 -2239 ((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $)) (-15 -2791 ((-1099) $)))) (T -770))
+((-2791 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3907 (-1082)))) (-5 *1 (-770)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2907 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-1845 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))) (-2265 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
+(-10 -8 (-15 -2265 ($ (-1082) (-1082) (-771))) (-15 -3382 ($ (-1082) (-771))) (-15 -2058 ((-1186) $)) (-15 -3732 ((-1186) $ (-771))) (-15 -3604 ((-1186) $)) (-15 -2394 ((-1186) $)) (-15 -3689 ((-1186) $)) (-15 -1769 ((-1186) $)) (-15 -3625 ((-1186) $)) (-15 -2706 ((-1186) $)) (-15 -1348 ((-1186) $)) (-15 -3438 ((-1186) $)) (-15 -2523 ((-1186) $)) (-15 -3238 ((-1186) $)) (-15 -3132 ((-1186) $)) (-15 -2405 ((-1186) $)) (-15 -3750 ((-1186) $)) (-15 -3681 ((-1186) $)) (-15 -2015 ((-1186) $ (-530))) (-15 -3880 ((-1186) $ (-208))) (-15 -1845 ((-1186) $ (-1099))) (-15 -4026 ((-1186) $ (-1082))) (-15 -2907 ((-1186) $ (-1082) (-1082))) (-15 -1629 ((-1186) $)) (-15 -3346 ((-1186) $)) (-15 -3151 ((-1186) $)) (-15 -1317 ((-1186) $)) (-15 -4061 ((-1186) $)) (-15 -3682 ((-1186) $)) (-15 -3539 ((-1186) $)) (-15 -2342 ((-1186) $)) (-15 -3762 ((-1186) $)) (-15 -2648 ((-1186) $)) (-15 -1346 ((-1186) $)) (-15 -1234 ((-1186) $)) (-15 -2924 ((-1186) $)) (-15 -3831 ((-1186) $)) (-15 -3514 ((-530) $)) (-15 -2038 ((-208) $)) (-15 -3700 ((-1099) $)) (-15 -3586 ((-1082) $)) (-15 -2239 ((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $)) (-15 -2791 ((-1099) $)))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 12)) (-3049 (($) 15)) (-2930 (($) 13)) (-1548 (($) 16)) (-1758 (($) 14)) (-2248 (((-110) $ $) 8)))
+(((-771) (-13 (-1027) (-10 -8 (-15 -2930 ($)) (-15 -3049 ($)) (-15 -1548 ($)) (-15 -1758 ($))))) (T -771))
+((-2930 (*1 *1) (-5 *1 (-771))) (-3049 (*1 *1) (-5 *1 (-771))) (-1548 (*1 *1) (-5 *1 (-771))) (-1758 (*1 *1) (-5 *1 (-771))))
+(-13 (-1027) (-10 -8 (-15 -2930 ($)) (-15 -3049 ($)) (-15 -1548 ($)) (-15 -1758 ($))))
+((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21) (($ (-1099)) 17)) (-4143 (((-110) $) 10)) (-3488 (((-110) $) 9)) (-1441 (((-110) $) 11)) (-3152 (((-110) $) 8)) (-2248 (((-110) $ $) 19)))
+(((-772) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3152 ((-110) $)) (-15 -3488 ((-110) $)) (-15 -4143 ((-110) $)) (-15 -1441 ((-110) $))))) (T -772))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-772)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3152 ((-110) $)) (-15 -3488 ((-110) $)) (-15 -4143 ((-110) $)) (-15 -1441 ((-110) $))))
+((-2352 (((-110) $ $) NIL)) (-1422 (($ (-772) (-597 (-1099))) 24)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3088 (((-772) $) 25)) (-3410 (((-597 (-1099)) $) 26)) (-2366 (((-804) $) 23)) (-2248 (((-110) $ $) NIL)))
+(((-773) (-13 (-1027) (-10 -8 (-15 -3088 ((-772) $)) (-15 -3410 ((-597 (-1099)) $)) (-15 -1422 ($ (-772) (-597 (-1099))))))) (T -773))
+((-3088 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
+(-13 (-1027) (-10 -8 (-15 -3088 ((-772) $)) (-15 -3410 ((-597 (-1099)) $)) (-15 -1422 ($ (-772) (-597 (-1099))))))
+((-3987 (((-1186) (-770) (-297 |#1|) (-110)) 23) (((-1186) (-770) (-297 |#1|)) 79) (((-1082) (-297 |#1|) (-110)) 78) (((-1082) (-297 |#1|)) 77)))
+(((-774 |#1|) (-10 -7 (-15 -3987 ((-1082) (-297 |#1|))) (-15 -3987 ((-1082) (-297 |#1|) (-110))) (-15 -3987 ((-1186) (-770) (-297 |#1|))) (-15 -3987 ((-1186) (-770) (-297 |#1|) (-110)))) (-13 (-776) (-795) (-984))) (T -774))
+((-3987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *6)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-297 *5)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *5)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *4)))))
+(-10 -7 (-15 -3987 ((-1082) (-297 |#1|))) (-15 -3987 ((-1082) (-297 |#1|) (-110))) (-15 -3987 ((-1186) (-770) (-297 |#1|))) (-15 -3987 ((-1186) (-770) (-297 |#1|) (-110))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2471 ((|#1| $) 10)) (-4145 (($ |#1|) 9)) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) NIL)) (-2944 (((-719) $) NIL)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-1429 (((-719) $) NIL)) (-2366 (((-804) $) 17) (($ (-530)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-4085 ((|#2| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-775 |#1| |#2|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4145 ($ |#1|)) (-15 -2471 (|#1| $)))) (-657 |#2|) (-984)) (T -775))
+((-4145 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-775 *2 *3)) (-4 *2 (-657 *3)))) (-2471 (*1 *2 *1) (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
+(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4145 ($ |#1|)) (-15 -2471 (|#1| $))))
+((-3987 (((-1186) (-770) $ (-110)) 9) (((-1186) (-770) $) 8) (((-1082) $ (-110)) 7) (((-1082) $) 6)))
(((-776) (-133)) (T -776))
-((-2437 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))) (-2437 (*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186)))) (-2437 (*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082)))))
-(-13 (-10 -8 (-15 -2437 ((-1082) $)) (-15 -2437 ((-1082) $ (-110))) (-15 -2437 ((-1186) (-770) $)) (-15 -2437 ((-1186) (-770) $ (-110)))))
-((-2539 (((-293) (-1082) (-1082)) 12)) (-2529 (((-110) (-1082) (-1082)) 34)) (-2520 (((-110) (-1082)) 33)) (-2484 (((-51) (-1082)) 25)) (-2471 (((-51) (-1082)) 23)) (-2462 (((-51) (-770)) 17)) (-2508 (((-597 (-1082)) (-1082)) 28)) (-2497 (((-597 (-1082))) 27)))
-(((-777) (-10 -7 (-15 -2462 ((-51) (-770))) (-15 -2471 ((-51) (-1082))) (-15 -2484 ((-51) (-1082))) (-15 -2497 ((-597 (-1082)))) (-15 -2508 ((-597 (-1082)) (-1082))) (-15 -2520 ((-110) (-1082))) (-15 -2529 ((-110) (-1082) (-1082))) (-15 -2539 ((-293) (-1082) (-1082))))) (T -777))
-((-2539 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2508 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))) (-2497 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(-10 -7 (-15 -2462 ((-51) (-770))) (-15 -2471 ((-51) (-1082))) (-15 -2484 ((-51) (-1082))) (-15 -2497 ((-597 (-1082)))) (-15 -2508 ((-597 (-1082)) (-1082))) (-15 -2520 ((-110) (-1082))) (-15 -2529 ((-110) (-1082) (-1082))) (-15 -2539 ((-293) (-1082) (-1082))))
-((-2246 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3396 (($ $ $) 72)) (-3383 (((-110) $ $) 73)) (-4102 (((-110) $ (-719)) 8)) (-1245 (($ (-597 |#1|)) 68) (($) 67)) (-2421 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-3929 (($ $) 62)) (-2939 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ |#1| $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) 64)) (-2014 (((-110) $ (-719)) 9)) (-4194 ((|#1| $) 78)) (-2767 (($ $ $) 81)) (-3842 (($ $ $) 80)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1757 ((|#1| $) 79)) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22)) (-3418 (($ $ $) 69)) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2485 (((-1046) $) 21)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-3919 (((-597 (-2 (|:| -1806 |#1|) (|:| -2494 (-719)))) $) 61)) (-3407 (($ $ |#1|) 71) (($ $ $) 70)) (-3839 (($) 49) (($ (-597 |#1|)) 48)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 50)) (-2258 (((-804) $) 18)) (-3341 (($ (-597 |#1|)) 66) (($) 65)) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20)) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3987 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))) (-3987 (*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186)))) (-3987 (*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082)))))
+(-13 (-10 -8 (-15 -3987 ((-1082) $)) (-15 -3987 ((-1082) $ (-110))) (-15 -3987 ((-1186) (-770) $)) (-15 -3987 ((-1186) (-770) $ (-110)))))
+((-3710 (((-293) (-1082) (-1082)) 12)) (-2079 (((-110) (-1082) (-1082)) 34)) (-2812 (((-110) (-1082)) 33)) (-3502 (((-51) (-1082)) 25)) (-3712 (((-51) (-1082)) 23)) (-2245 (((-51) (-770)) 17)) (-3868 (((-597 (-1082)) (-1082)) 28)) (-2115 (((-597 (-1082))) 27)))
+(((-777) (-10 -7 (-15 -2245 ((-51) (-770))) (-15 -3712 ((-51) (-1082))) (-15 -3502 ((-51) (-1082))) (-15 -2115 ((-597 (-1082)))) (-15 -3868 ((-597 (-1082)) (-1082))) (-15 -2812 ((-110) (-1082))) (-15 -2079 ((-110) (-1082) (-1082))) (-15 -3710 ((-293) (-1082) (-1082))))) (T -777))
+((-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))) (-2115 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
+(-10 -7 (-15 -2245 ((-51) (-770))) (-15 -3712 ((-51) (-1082))) (-15 -3502 ((-51) (-1082))) (-15 -2115 ((-597 (-1082)))) (-15 -3868 ((-597 (-1082)) (-1082))) (-15 -2812 ((-110) (-1082))) (-15 -2079 ((-110) (-1082) (-1082))) (-15 -3710 ((-293) (-1082) (-1082))))
+((-2352 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) 8)) (-1243 (($ (-597 |#1|)) 68) (($) 67)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 64)) (-4027 (((-110) $ (-719)) 9)) (-2508 ((|#1| $) 78)) (-2090 (($ $ $) 81)) (-3683 (($ $ $) 80)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 79)) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 69)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1252 (($ $ |#1|) 71) (($ $ $) 70)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18)) (-3381 (($ (-597 |#1|)) 66) (($) 65)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-778 |#1|) (-133) (-795)) (T -778))
-((-4194 (*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795)))))
-(-13 (-685 |t#1|) (-909 |t#1|) (-10 -8 (-15 -4194 (|t#1| $))))
+((-2508 (*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795)))))
+(-13 (-685 |t#1|) (-909 |t#1|) (-10 -8 (-15 -2508 (|t#1| $))))
(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-685 |#1|) . T) ((-909 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-2567 (((-1186) (-1046) (-1046)) 47)) (-2557 (((-1186) (-769) (-51)) 44)) (-2548 (((-51) (-769)) 16)))
-(((-779) (-10 -7 (-15 -2548 ((-51) (-769))) (-15 -2557 ((-1186) (-769) (-51))) (-15 -2567 ((-1186) (-1046) (-1046))))) (T -779))
-((-2567 (*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
-(-10 -7 (-15 -2548 ((-51) (-769))) (-15 -2557 ((-1186) (-769) (-51))) (-15 -2567 ((-1186) (-1046) (-1046))))
-((-3114 (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)) 12) (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)) 13)))
-(((-780 |#1| |#2|) (-10 -7 (-15 -3114 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3114 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)))) (-1027) (-1027)) (T -780))
-((-3114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-780 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6)))))
-(-10 -7 (-15 -3114 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3114 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL (|has| |#1| (-21)))) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3592 (((-530) $) NIL (|has| |#1| (-793)))) (-3956 (($) NIL (|has| |#1| (-21)) CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 15)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-1673 (((-3 $ "failed") $) 40 (|has| |#1| (-793)))) (-1936 (((-3 (-388 (-530)) "failed") $) 49 (|has| |#1| (-515)))) (-1928 (((-110) $) 43 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 46 (|has| |#1| (-515)))) (-2991 (((-110) $) NIL (|has| |#1| (-793)))) (-3150 (((-110) $) NIL (|has| |#1| (-793)))) (-3002 (((-110) $) NIL (|has| |#1| (-793)))) (-4194 (($ $ $) NIL (|has| |#1| (-793)))) (-1757 (($ $ $) NIL (|has| |#1| (-793)))) (-3443 (((-1082) $) NIL)) (-1886 (($) 13)) (-2679 (((-110) $) 12)) (-2485 (((-1046) $) NIL)) (-2688 (((-110) $) 11)) (-2258 (((-804) $) 18) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1476 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-1667 (((-719)) 34 (|has| |#1| (-793)))) (-2218 (($ $) NIL (|has| |#1| (-793)))) (-2723 (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (-2943 (($) 22 (|has| |#1| (-21)) CONST)) (-2955 (($) 31 (|has| |#1| (-793)) CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2172 (((-110) $ $) 42 (|has| |#1| (-793)))) (-2245 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2234 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 37 (|has| |#1| (-793))) (($ (-530) $) 25 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
-(((-781 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1886 ($)) (-15 -2688 ((-110) $)) (-15 -2679 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -781))
-((-1886 (*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1027)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-1936 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
-(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1886 ($)) (-15 -2688 ((-110) $)) (-15 -2679 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-112) $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2588 ((|#1| (-112) |#1|) NIL)) (-3150 (((-110) $) NIL)) (-2577 (($ |#1| (-342 (-112))) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2598 (($ $ (-1 |#1| |#1|)) NIL)) (-2607 (($ $ (-1 |#1| |#1|)) NIL)) (-1832 ((|#1| $ |#1|) NIL)) (-2619 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2630 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-782 |#1|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -2619 (|#1| |#1|))) |%noBranch|) (-15 -2607 ($ $ (-1 |#1| |#1|))) (-15 -2598 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -2588 (|#1| (-112) |#1|)) (-15 -2577 ($ |#1| (-342 (-112)))))) (-984)) (T -782))
-((-2630 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2630 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2619 (*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-5 *1 (-782 *4)) (-4 *4 (-984)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-782 *3)) (-4 *3 (-984)))) (-2588 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))) (-2577 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -2619 (|#1| |#1|))) |%noBranch|) (-15 -2607 ($ $ (-1 |#1| |#1|))) (-15 -2598 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -2588 (|#1| (-112) |#1|)) (-15 -2577 ($ |#1| (-342 (-112))))))
-((-2640 (((-198 (-480)) (-1082)) 9)))
-(((-783) (-10 -7 (-15 -2640 ((-198 (-480)) (-1082))))) (T -783))
-((-2640 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
-(-10 -7 (-15 -2640 ((-198 (-480)) (-1082))))
-((-2246 (((-110) $ $) 7)) (-2650 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 14) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 13)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 16) (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 15)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-4158 (((-1186) (-1046) (-1046)) 47)) (-2340 (((-1186) (-769) (-51)) 44)) (-2512 (((-51) (-769)) 16)))
+(((-779) (-10 -7 (-15 -2512 ((-51) (-769))) (-15 -2340 ((-1186) (-769) (-51))) (-15 -4158 ((-1186) (-1046) (-1046))))) (T -779))
+((-4158 (*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
+(-10 -7 (-15 -2512 ((-51) (-769))) (-15 -2340 ((-1186) (-769) (-51))) (-15 -4158 ((-1186) (-1046) (-1046))))
+((-3217 (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)) 12) (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)) 13)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)))) (-1027) (-1027)) (T -780))
+((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-780 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6)))))
+(-10 -7 (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL (|has| |#1| (-21)) CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 15)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-2707 (((-3 $ "failed") $) 40 (|has| |#1| (-793)))) (-2180 (((-3 (-388 (-530)) "failed") $) 49 (|has| |#1| (-515)))) (-3016 (((-110) $) 43 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 46 (|has| |#1| (-515)))) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-2731 (((-110) $) NIL (|has| |#1| (-793)))) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-1960 (($) 13)) (-1393 (((-110) $) 12)) (-2624 (((-1046) $) NIL)) (-3855 (((-110) $) 11)) (-2366 (((-804) $) 18) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1461 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-3300 (((-719)) 34 (|has| |#1| (-793)))) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) 22 (|has| |#1| (-21)) CONST)) (-3093 (($) 31 (|has| |#1| (-793)) CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) 42 (|has| |#1| (-793)))) (-2351 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2339 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 37 (|has| |#1| (-793))) (($ (-530) $) 25 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
+(((-781 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1960 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -781))
+((-1960 (*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1027)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
+(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1960 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-112) $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1347 ((|#1| (-112) |#1|) NIL)) (-2731 (((-110) $) NIL)) (-2868 (($ |#1| (-342 (-112))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4155 (($ $ (-1 |#1| |#1|)) NIL)) (-2755 (($ $ (-1 |#1| |#1|)) NIL)) (-1902 ((|#1| $ |#1|) NIL)) (-1306 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-1803 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-782 |#1|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#1| |#1|))) (-15 -4155 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#1| (-112) |#1|)) (-15 -2868 ($ |#1| (-342 (-112)))))) (-984)) (T -782))
+((-1803 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-1803 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-1306 (*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-5 *1 (-782 *4)) (-4 *4 (-984)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-782 *3)) (-4 *3 (-984)))) (-1347 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#1| |#1|))) (-15 -4155 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#1| (-112) |#1|)) (-15 -2868 ($ |#1| (-342 (-112))))))
+((-1223 (((-198 (-480)) (-1082)) 9)))
+(((-783) (-10 -7 (-15 -1223 ((-198 (-480)) (-1082))))) (T -783))
+((-1223 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
+(-10 -7 (-15 -1223 ((-198 (-480)) (-1082))))
+((-2352 (((-110) $ $) 7)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 14) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 13)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 16) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 15)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-784) (-133)) (T -784))
-((-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)))))) (-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)))))) (-2650 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) (-5 *2 (-973)))) (-2650 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -2650 ((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -2650 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))))))
+((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-3827 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-973)))) (-3827 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3827 ((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3827 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3923 (((-973) (-597 (-297 (-360))) (-597 (-360))) 147) (((-973) (-297 (-360)) (-597 (-360))) 145) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360)))) 144) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360)))) 143) (((-973) (-786)) 117) (((-973) (-786) (-996)) 116)) (-1523 (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996)) 82) (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786)) 84)) (-2661 (((-973) (-597 (-297 (-360))) (-597 (-360))) 148) (((-973) (-786)) 133)))
-(((-785) (-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3923 ((-973) (-786) (-996))) (-15 -3923 ((-973) (-786))) (-15 -2661 ((-973) (-786))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3923 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -2661 ((-973) (-597 (-297 (-360))) (-597 (-360)))))) (T -785))
-((-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *6 (-597 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-785)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))))
-(-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3923 ((-973) (-786) (-996))) (-15 -3923 ((-973) (-786))) (-15 -2661 ((-973) (-786))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3923 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3923 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -2661 ((-973) (-597 (-297 (-360))) (-597 (-360)))))
-((-2246 (((-110) $ $) NIL)) (-2446 (((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) $) 21)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 20) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 14) (($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))))) 18)) (-2148 (((-110) $ $) NIL)))
-(((-786) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2258 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -2258 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) $))))) (T -786))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-786)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-786)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))) (-5 *1 (-786)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))))) (-5 *1 (-786)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208))))))) (-5 *1 (-786)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2258 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) (-15 -2258 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))) $))))
-((-3114 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)) 13) (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 14)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -3114 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3114 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)))) (-1027) (-1027)) (T -787))
-((-3114 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-788 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-787 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
-(-10 -7 (-15 -3114 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3114 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL (|has| |#1| (-21)))) (-2670 (((-1046) $) 24)) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3592 (((-530) $) NIL (|has| |#1| (-793)))) (-3956 (($) NIL (|has| |#1| (-21)) CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 16)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-1673 (((-3 $ "failed") $) 47 (|has| |#1| (-793)))) (-1936 (((-3 (-388 (-530)) "failed") $) 54 (|has| |#1| (-515)))) (-1928 (((-110) $) 49 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 52 (|has| |#1| (-515)))) (-2991 (((-110) $) NIL (|has| |#1| (-793)))) (-1490 (($) 13)) (-3150 (((-110) $) NIL (|has| |#1| (-793)))) (-3002 (((-110) $) NIL (|has| |#1| (-793)))) (-1502 (($) 14)) (-4194 (($ $ $) NIL (|has| |#1| (-793)))) (-1757 (($ $ $) NIL (|has| |#1| (-793)))) (-3443 (((-1082) $) NIL)) (-2679 (((-110) $) 12)) (-2485 (((-1046) $) NIL)) (-2688 (((-110) $) 11)) (-2258 (((-804) $) 22) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1476 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-1667 (((-719)) 41 (|has| |#1| (-793)))) (-2218 (($ $) NIL (|has| |#1| (-793)))) (-2723 (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (-2943 (($) 29 (|has| |#1| (-21)) CONST)) (-2955 (($) 38 (|has| |#1| (-793)) CONST)) (-2204 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2172 (((-110) $ $) 48 (|has| |#1| (-793)))) (-2245 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2234 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 44 (|has| |#1| (-793))) (($ (-530) $) 32 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
-(((-788 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1490 ($)) (-15 -1502 ($)) (-15 -2688 ((-110) $)) (-15 -2679 ((-110) $)) (-15 -2670 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -788))
-((-1490 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-1502 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-1936 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
-(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1490 ($)) (-15 -1502 ($)) (-15 -2688 ((-110) $)) (-15 -2679 ((-110) $)) (-15 -2670 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-((-2246 (((-110) $ $) 7)) (-2879 (((-719)) 20)) (-1376 (($) 23)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3830 (((-862) $) 22)) (-3443 (((-1082) $) 9)) (-1910 (($ (-862)) 21)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)))
+((-3931 (((-973) (-597 (-297 (-360))) (-597 (-360))) 147) (((-973) (-297 (-360)) (-597 (-360))) 145) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360)))) 144) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360)))) 143) (((-973) (-786)) 117) (((-973) (-786) (-996)) 116)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996)) 82) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786)) 84)) (-3431 (((-973) (-597 (-297 (-360))) (-597 (-360))) 148) (((-973) (-786)) 133)))
+(((-785) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3931 ((-973) (-786) (-996))) (-15 -3931 ((-973) (-786))) (-15 -3431 ((-973) (-786))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3931 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -3431 ((-973) (-597 (-297 (-360))) (-597 (-360)))))) (T -785))
+((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *6 (-597 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-785)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))))
+(-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3931 ((-973) (-786) (-996))) (-15 -3931 ((-973) (-786))) (-15 -3431 ((-973) (-786))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3931 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -3431 ((-973) (-597 (-297 (-360))) (-597 (-360)))))
+((-2352 (((-110) $ $) NIL)) (-2585 (((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 14) (($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) 18)) (-2248 (((-110) $ $) NIL)))
+(((-786) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2366 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2366 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $))))) (T -786))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *1 (-786)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *1 (-786)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2366 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2366 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $))))
+((-3217 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)) 13) (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 14)))
+(((-787 |#1| |#2|) (-10 -7 (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)))) (-1027) (-1027)) (T -787))
+((-3217 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-788 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-787 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
+(-10 -7 (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1872 (((-1046) $) 24)) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL (|has| |#1| (-21)) CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 16)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-793)))) (-2180 (((-3 (-388 (-530)) "failed") $) 54 (|has| |#1| (-515)))) (-3016 (((-110) $) 49 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 52 (|has| |#1| (-515)))) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-1477 (($) 13)) (-2731 (((-110) $) NIL (|has| |#1| (-793)))) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-1490 (($) 14)) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-1393 (((-110) $) 12)) (-2624 (((-1046) $) NIL)) (-3855 (((-110) $) 11)) (-2366 (((-804) $) 22) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1461 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-3300 (((-719)) 41 (|has| |#1| (-793)))) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) 29 (|has| |#1| (-21)) CONST)) (-3093 (($) 38 (|has| |#1| (-793)) CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) 27)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) 48 (|has| |#1| (-793)))) (-2351 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2339 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 44 (|has| |#1| (-793))) (($ (-530) $) 32 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
+(((-788 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1477 ($)) (-15 -1490 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (-15 -1872 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -788))
+((-1477 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-1490 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
+(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1477 ($)) (-15 -1490 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (-15 -1872 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
+((-2352 (((-110) $ $) 7)) (-3023 (((-719)) 20)) (-1364 (($) 23)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1905 (((-862) $) 22)) (-1424 (((-1082) $) 9)) (-1986 (($ (-862)) 21)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
(((-789) (-133)) (T -789))
NIL
(-13 (-795) (-349))
(((-99) . T) ((-571 (-804)) . T) ((-349) . T) ((-795) . T) ((-1027) . T))
-((-2709 (((-110) (-1181 |#2|) (-1181 |#2|)) 17)) (-2720 (((-110) (-1181 |#2|) (-1181 |#2|)) 18)) (-2698 (((-110) (-1181 |#2|) (-1181 |#2|)) 14)))
-(((-790 |#1| |#2|) (-10 -7 (-15 -2698 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2709 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2720 ((-110) (-1181 |#2|) (-1181 |#2|)))) (-719) (-740)) (T -790))
-((-2720 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2709 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2698 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(-10 -7 (-15 -2698 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2709 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2720 ((-110) (-1181 |#2|) (-1181 |#2|))))
-((-2246 (((-110) $ $) 7)) (-3956 (($) 24 T CONST)) (-1673 (((-3 $ "failed") $) 28)) (-3150 (((-110) $) 25)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 22) (($ $ (-719)) 27)) (-2955 (($) 23 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (** (($ $ (-862)) 21) (($ $ (-719)) 26)) (* (($ $ $) 20)))
+((-2349 (((-110) (-1181 |#2|) (-1181 |#2|)) 17)) (-3961 (((-110) (-1181 |#2|) (-1181 |#2|)) 18)) (-3601 (((-110) (-1181 |#2|) (-1181 |#2|)) 14)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -3601 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2349 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -3961 ((-110) (-1181 |#2|) (-1181 |#2|)))) (-719) (-740)) (T -790))
+((-3961 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2349 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-3601 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+(-10 -7 (-15 -3601 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2349 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -3961 ((-110) (-1181 |#2|) (-1181 |#2|))))
+((-2352 (((-110) $ $) 7)) (-2350 (($) 23 T CONST)) (-2707 (((-3 $ "failed") $) 26)) (-2731 (((-110) $) 24)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (** (($ $ (-862)) 21) (($ $ (-719)) 25)) (* (($ $ $) 20)))
(((-791) (-133)) (T -791))
NIL
(-13 (-802) (-675))
(((-99) . T) ((-571 (-804)) . T) ((-675) . T) ((-802) . T) ((-795) . T) ((-1039) . T) ((-1027) . T))
-((-3592 (((-530) $) 17)) (-2991 (((-110) $) 10)) (-3002 (((-110) $) 11)) (-2218 (($ $) 19)))
-(((-792 |#1|) (-10 -8 (-15 -2218 (|#1| |#1|)) (-15 -3592 ((-530) |#1|)) (-15 -3002 ((-110) |#1|)) (-15 -2991 ((-110) |#1|))) (-793)) (T -792))
+((-1867 (((-530) $) 17)) (-2514 (((-110) $) 10)) (-2166 (((-110) $) 11)) (-3934 (($ $) 19)))
+(((-792 |#1|) (-10 -8 (-15 -3934 (|#1| |#1|)) (-15 -1867 ((-530) |#1|)) (-15 -2166 ((-110) |#1|)) (-15 -2514 ((-110) |#1|))) (-793)) (T -792))
NIL
-(-10 -8 (-15 -2218 (|#1| |#1|)) (-15 -3592 ((-530) |#1|)) (-15 -3002 ((-110) |#1|)) (-15 -2991 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 24)) (-3618 (((-3 $ "failed") $ $) 26)) (-3592 (((-530) $) 33)) (-3956 (($) 23 T CONST)) (-1673 (((-3 $ "failed") $) 39)) (-2991 (((-110) $) 35)) (-3150 (((-110) $) 42)) (-3002 (((-110) $) 34)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 45)) (-1667 (((-719)) 44)) (-2218 (($ $) 32)) (-2723 (($ $ (-719)) 40) (($ $ (-862)) 36)) (-2943 (($) 22 T CONST)) (-2955 (($) 43 T CONST)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (-2245 (($ $ $) 28) (($ $) 27)) (-2234 (($ $ $) 20)) (** (($ $ (-719)) 41) (($ $ (-862)) 37)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -3934 (|#1| |#1|)) (-15 -1867 ((-530) |#1|)) (-15 -2166 ((-110) |#1|)) (-15 -2514 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-1867 (((-530) $) 33)) (-2350 (($) 23 T CONST)) (-2707 (((-3 $ "failed") $) 38)) (-2514 (((-110) $) 35)) (-2731 (((-110) $) 40)) (-2166 (((-110) $) 34)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 43)) (-3300 (((-719)) 42)) (-3934 (($ $) 32)) (-3080 (($) 22 T CONST)) (-3093 (($) 41 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2351 (($ $ $) 28) (($ $) 27)) (-2339 (($ $ $) 20)) (** (($ $ (-719)) 39) (($ $ (-862)) 36)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29) (($ $ $) 37)))
(((-793) (-133)) (T -793))
-((-2991 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530)))) (-2218 (*1 *1 *1) (-4 *1 (-793))))
-(-13 (-739) (-984) (-675) (-10 -8 (-15 -2991 ((-110) $)) (-15 -3002 ((-110) $)) (-15 -3592 ((-530) $)) (-15 -2218 ($ $))))
+((-2514 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530)))) (-3934 (*1 *1 *1) (-4 *1 (-793))))
+(-13 (-739) (-984) (-675) (-10 -8 (-15 -2514 ((-110) $)) (-15 -2166 ((-110) $)) (-15 -1867 ((-530) $)) (-15 -3934 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-4194 (($ $ $) 10)) (-1757 (($ $ $) 9)) (-2204 (((-110) $ $) 13)) (-2182 (((-110) $ $) 11)) (-2195 (((-110) $ $) 14)))
-(((-794 |#1|) (-10 -8 (-15 -4194 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2204 ((-110) |#1| |#1|)) (-15 -2182 ((-110) |#1| |#1|))) (-795)) (T -794))
+((-2508 (($ $ $) 10)) (-1817 (($ $ $) 9)) (-2306 (((-110) $ $) 13)) (-2284 (((-110) $ $) 11)) (-2297 (((-110) $ $) 14)))
+(((-794 |#1|) (-10 -8 (-15 -2508 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1|)) (-15 -2297 ((-110) |#1| |#1|)) (-15 -2306 ((-110) |#1| |#1|)) (-15 -2284 ((-110) |#1| |#1|))) (-795)) (T -794))
NIL
-(-10 -8 (-15 -4194 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2204 ((-110) |#1| |#1|)) (-15 -2182 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)))
+(-10 -8 (-15 -2508 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1|)) (-15 -2297 ((-110) |#1| |#1|)) (-15 -2306 ((-110) |#1| |#1|)) (-15 -2284 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
(((-795) (-133)) (T -795))
-((-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2182 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2204 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2195 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-1757 (*1 *1 *1 *1) (-4 *1 (-795))) (-4194 (*1 *1 *1 *1) (-4 *1 (-795))))
-(-13 (-1027) (-10 -8 (-15 -2172 ((-110) $ $)) (-15 -2182 ((-110) $ $)) (-15 -2204 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -1757 ($ $ $)) (-15 -4194 ($ $ $))))
+((-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2284 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2306 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2297 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-1817 (*1 *1 *1 *1) (-4 *1 (-795))) (-2508 (*1 *1 *1 *1) (-4 *1 (-795))))
+(-13 (-1027) (-10 -8 (-15 -2272 ((-110) $ $)) (-15 -2284 ((-110) $ $)) (-15 -2306 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -1817 ($ $ $)) (-15 -2508 ($ $ $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2771 (($ $ $) 45)) (-2781 (($ $ $) 44)) (-2794 (($ $ $) 42)) (-2750 (($ $ $) 51)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 46)) (-2760 (((-3 $ "failed") $ $) 49)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3703 (($ $) 35)) (-2843 (($ $ $) 39)) (-2855 (($ $ $) 38)) (-2731 (($ $ $) 47)) (-2819 (($ $ $) 53)) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 41)) (-2831 (((-3 $ "failed") $ $) 48)) (-3562 (((-3 $ "failed") $ |#2|) 28)) (-3658 ((|#2| $) 32)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#2|) 12)) (-1669 (((-597 |#2|) $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-796 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| |#1|)) (-15 -2741 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -2750 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -2806 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1669 ((-597 |#2|) |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2258 ((-804) |#1|))) (-797 |#2|) (-984)) (T -796))
+((-1261 (($ $ $) 45)) (-3973 (($ $ $) 44)) (-2640 (($ $ $) 42)) (-3174 (($ $ $) 51)) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 46)) (-2877 (((-3 $ "failed") $ $) 49)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1239 (($ $) 35)) (-1396 (($ $ $) 39)) (-3140 (($ $ $) 38)) (-2615 (($ $ $) 47)) (-4132 (($ $ $) 53)) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 41)) (-2876 (((-3 $ "failed") $ $) 48)) (-3551 (((-3 $ "failed") $ |#2|) 28)) (-3829 ((|#2| $) 32)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#2|) 12)) (-3441 (((-597 |#2|) $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-796 |#1| |#2|) (-10 -8 (-15 -2615 (|#1| |#1| |#1|)) (-15 -2191 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1261 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| |#1|)) (-15 -1285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2366 ((-804) |#1|))) (-797 |#2|) (-984)) (T -796))
NIL
-(-10 -8 (-15 -2731 (|#1| |#1| |#1|)) (-15 -2741 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -2750 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2771 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -2806 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1898 |#1|)) |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)) (-15 -2831 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3562 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1669 ((-597 |#2|) |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2771 (($ $ $) 45 (|has| |#1| (-344)))) (-2781 (($ $ $) 46 (|has| |#1| (-344)))) (-2794 (($ $ $) 48 (|has| |#1| (-344)))) (-2750 (($ $ $) 43 (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 42 (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) 44 (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 47 (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) 74 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 72 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 69)) (-2446 (((-530) $) 75 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 73 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 68)) (-2425 (($ $) 64)) (-1673 (((-3 $ "failed") $) 34)) (-3703 (($ $) 55 (|has| |#1| (-432)))) (-3150 (((-110) $) 31)) (-2575 (($ |#1| (-719)) 62)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57 (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 58 (|has| |#1| (-522)))) (-3674 (((-719) $) 66)) (-2843 (($ $ $) 52 (|has| |#1| (-344)))) (-2855 (($ $ $) 53 (|has| |#1| (-344)))) (-2731 (($ $ $) 41 (|has| |#1| (-344)))) (-2819 (($ $ $) 50 (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 49 (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) 51 (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 54 (|has| |#1| (-344)))) (-2402 ((|#1| $) 65)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-522)))) (-3409 (((-719) $) 67)) (-3658 ((|#1| $) 56 (|has| |#1| (-432)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 71 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 70)) (-1669 (((-597 |#1|) $) 61)) (-2782 ((|#1| $ (-719)) 63)) (-1667 (((-719)) 29)) (-2857 ((|#1| $ |#1| |#1|) 60)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(-10 -8 (-15 -2615 (|#1| |#1| |#1|)) (-15 -2191 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1261 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| |#1|)) (-15 -1285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1261 (($ $ $) 43 (|has| |#1| (-344)))) (-3973 (($ $ $) 44 (|has| |#1| (-344)))) (-2640 (($ $ $) 46 (|has| |#1| (-344)))) (-3174 (($ $ $) 41 (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 40 (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 45 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) 72 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 67)) (-2585 (((-530) $) 73 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 71 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 66)) (-2562 (($ $) 62)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 53 (|has| |#1| (-432)))) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 60)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 56 (|has| |#1| (-522)))) (-2944 (((-719) $) 64)) (-1396 (($ $ $) 50 (|has| |#1| (-344)))) (-3140 (($ $ $) 51 (|has| |#1| (-344)))) (-2615 (($ $ $) 39 (|has| |#1| (-344)))) (-4132 (($ $ $) 48 (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 47 (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 52 (|has| |#1| (-344)))) (-2533 ((|#1| $) 63)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-522)))) (-1429 (((-719) $) 65)) (-3829 ((|#1| $) 54 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 69 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 68)) (-3441 (((-597 |#1|) $) 59)) (-4085 ((|#1| $ (-719)) 61)) (-3300 (((-719)) 28)) (-3003 ((|#1| $ |#1| |#1|) 58)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
(((-797 |#1|) (-133) (-984)) (T -797))
-((-3409 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3)))) (-2857 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3)))) (-2877 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-2887 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3)))) (-2855 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2843 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2831 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2819 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2806 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1))) (-4 *1 (-797 *3)))) (-2794 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3)))) (-2781 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2771 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2760 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2750 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2741 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1))) (-4 *1 (-797 *3)))) (-2731 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-392 |t#1|) (-10 -8 (-15 -3409 ((-719) $)) (-15 -3674 ((-719) $)) (-15 -2402 (|t#1| $)) (-15 -2425 ($ $)) (-15 -2782 (|t#1| $ (-719))) (-15 -2575 ($ |t#1| (-719))) (-15 -1669 ((-597 |t#1|) $)) (-15 -2857 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -3562 ((-3 $ "failed") $ |t#1|)) (-15 -2865 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -2877 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3658 (|t#1| $)) (-15 -3703 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -2887 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -2855 ($ $ $)) (-15 -2843 ($ $ $)) (-15 -2831 ((-3 $ "failed") $ $)) (-15 -2819 ($ $ $)) (-15 -2806 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $)) (-15 -2794 ($ $ $)) (-15 -2897 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -2781 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -2750 ($ $ $)) (-15 -2741 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $)) (-15 -2731 ($ $ $))) |%noBranch|)))
+((-1429 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3)))) (-3003 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-3004 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-1504 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3140 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1396 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2876 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1285 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-797 *3)))) (-2640 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2017 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3973 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1261 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2877 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-3174 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2191 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-797 *3)))) (-2615 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-392 |t#1|) (-10 -8 (-15 -1429 ((-719) $)) (-15 -2944 ((-719) $)) (-15 -2533 (|t#1| $)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ (-719))) (-15 -2725 ($ |t#1| (-719))) (-15 -3441 ((-597 |t#1|) $)) (-15 -3003 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -3551 ((-3 $ "failed") $ |t#1|)) (-15 -3004 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -1504 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3829 (|t#1| $)) (-15 -1239 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3140 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -2876 ((-3 $ "failed") $ $)) (-15 -4132 ($ $ $)) (-15 -1285 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2640 ($ $ $)) (-15 -2017 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3973 ($ $ $)) (-15 -1261 ($ $ $)) (-15 -2877 ((-3 $ "failed") $ $)) (-15 -3174 ($ $ $)) (-15 -2191 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2615 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-392 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3888 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2897 (((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-2877 (((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-522)))) (-2887 (((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-2857 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
-(((-798 |#1| |#2|) (-10 -7 (-15 -3888 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2857 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -2865 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2877 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2887 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2897 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-984) (-797 |#1|)) (T -798))
-((-2897 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2887 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2877 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-2857 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984)) (-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))) (-3888 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984)) (-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
-(-10 -7 (-15 -3888 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2857 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -2865 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2877 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2887 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2897 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2771 (($ $ $) NIL (|has| |#1| (-344)))) (-2781 (($ $ $) NIL (|has| |#1| (-344)))) (-2794 (($ $ $) NIL (|has| |#1| (-344)))) (-2750 (($ $ $) NIL (|has| |#1| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 25 (|has| |#1| (-344)))) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-3946 (((-804) $ (-804)) NIL)) (-3150 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) NIL)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 21 (|has| |#1| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 19 (|has| |#1| (-522)))) (-3674 (((-719) $) NIL)) (-2843 (($ $ $) NIL (|has| |#1| (-344)))) (-2855 (($ $ $) NIL (|has| |#1| (-344)))) (-2731 (($ $ $) NIL (|has| |#1| (-344)))) (-2819 (($ $ $) NIL (|has| |#1| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-2831 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 23 (|has| |#1| (-344)))) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-3409 (((-719) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2857 ((|#1| $ |#1| |#1|) 15)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-799 |#1| |#2| |#3|) (-13 (-797 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-804))))) (-984) (-96 |#1|) (-1 |#1| |#1|)) (T -799))
-((-3946 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-797 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-804)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2771 (($ $ $) NIL (|has| |#2| (-344)))) (-2781 (($ $ $) NIL (|has| |#2| (-344)))) (-2794 (($ $ $) NIL (|has| |#2| (-344)))) (-2750 (($ $ $) NIL (|has| |#2| (-344)))) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#2| (-344)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2897 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-344)))) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#2| (-432)))) (-3150 (((-110) $) NIL)) (-2575 (($ |#2| (-719)) 16)) (-2877 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-522)))) (-2865 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-522)))) (-3674 (((-719) $) NIL)) (-2843 (($ $ $) NIL (|has| |#2| (-344)))) (-2855 (($ $ $) NIL (|has| |#2| (-344)))) (-2731 (($ $ $) NIL (|has| |#2| (-344)))) (-2819 (($ $ $) NIL (|has| |#2| (-344)))) (-2806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#2| (-344)))) (-2831 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2887 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-344)))) (-2402 ((|#2| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-3409 (((-719) $) NIL)) (-3658 ((|#2| $) NIL (|has| |#2| (-432)))) (-2258 (((-804) $) 23) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (($ (-1177 |#1|)) 18)) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-719)) NIL)) (-1667 (((-719)) NIL)) (-2857 ((|#2| $ |#2| |#2|) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-800 |#1| |#2| |#3| |#4|) (-13 (-797 |#2|) (-10 -8 (-15 -2258 ($ (-1177 |#1|))))) (-1099) (-984) (-96 |#2|) (-1 |#2| |#2|)) (T -800))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-797 |#2|) (-10 -8 (-15 -2258 ($ (-1177 |#1|)))))
-((-2928 ((|#1| (-719) |#1|) 35 (|has| |#1| (-37 (-388 (-530)))))) (-2916 ((|#1| (-719) (-719) |#1|) 27) ((|#1| (-719) |#1|) 20)) (-2905 ((|#1| (-719) |#1|) 31)) (-3480 ((|#1| (-719) |#1|) 29)) (-3467 ((|#1| (-719) |#1|) 28)))
-(((-801 |#1|) (-10 -7 (-15 -3467 (|#1| (-719) |#1|)) (-15 -3480 (|#1| (-719) |#1|)) (-15 -2905 (|#1| (-719) |#1|)) (-15 -2916 (|#1| (-719) |#1|)) (-15 -2916 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2928 (|#1| (-719) |#1|)) |%noBranch|)) (-162)) (T -801))
-((-2928 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-2916 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-2905 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3480 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -3467 (|#1| (-719) |#1|)) (-15 -3480 (|#1| (-719) |#1|)) (-15 -2905 (|#1| (-719) |#1|)) (-15 -2916 (|#1| (-719) |#1|)) (-15 -2916 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2928 (|#1| (-719) |#1|)) |%noBranch|))
-((-2246 (((-110) $ $) 7)) (-4194 (($ $ $) 13)) (-1757 (($ $ $) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 22)) (-2204 (((-110) $ $) 16)) (-2182 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2172 (((-110) $ $) 18)) (** (($ $ (-862)) 21)) (* (($ $ $) 20)))
+((-3893 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2017 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-1504 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-522)))) (-3383 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-3003 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
+(((-798 |#1| |#2|) (-10 -7 (-15 -3893 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -3003 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -3004 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1504 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2017 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-984) (-797 |#1|)) (T -798))
+((-2017 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3383 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-1504 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3004 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3003 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984)) (-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))) (-3893 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984)) (-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
+(-10 -7 (-15 -3893 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -3003 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -3004 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1504 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2017 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 25 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2589 (((-804) $ (-804)) NIL)) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 21 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 19 (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 23 (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) 15)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-799 |#1| |#2| |#3|) (-13 (-797 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))))) (-984) (-96 |#1|) (-1 |#1| |#1|)) (T -799))
+((-2589 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-797 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#2| (-344)))) (-3973 (($ $ $) NIL (|has| |#2| (-344)))) (-2640 (($ $ $) NIL (|has| |#2| (-344)))) (-3174 (($ $ $) NIL (|has| |#2| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) 16)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#2| (-344)))) (-3140 (($ $ $) NIL (|has| |#2| (-344)))) (-2615 (($ $ $) NIL (|has| |#2| (-344)))) (-4132 (($ $ $) NIL (|has| |#2| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1429 (((-719) $) NIL)) (-3829 ((|#2| $) NIL (|has| |#2| (-432)))) (-2366 (((-804) $) 23) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (($ (-1177 |#1|)) 18)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#2| $ |#2| |#2|) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) 13 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-800 |#1| |#2| |#3| |#4|) (-13 (-797 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))))) (-1099) (-984) (-96 |#2|) (-1 |#2| |#2|)) (T -800))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-797 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|)))))
+((-2997 ((|#1| (-719) |#1|) 35 (|has| |#1| (-37 (-388 (-530)))))) (-3273 ((|#1| (-719) (-719) |#1|) 27) ((|#1| (-719) |#1|) 20)) (-1648 ((|#1| (-719) |#1|) 31)) (-3699 ((|#1| (-719) |#1|) 29)) (-1923 ((|#1| (-719) |#1|) 28)))
+(((-801 |#1|) (-10 -7 (-15 -1923 (|#1| (-719) |#1|)) (-15 -3699 (|#1| (-719) |#1|)) (-15 -1648 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2997 (|#1| (-719) |#1|)) |%noBranch|)) (-162)) (T -801))
+((-2997 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-3273 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3273 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3699 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -1923 (|#1| (-719) |#1|)) (-15 -3699 (|#1| (-719) |#1|)) (-15 -1648 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2997 (|#1| (-719) |#1|)) |%noBranch|))
+((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (** (($ $ (-862)) 21)) (* (($ $ $) 20)))
(((-802) (-133)) (T -802))
NIL
(-13 (-795) (-1039))
(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3387 (((-530) $) 12)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 18) (($ (-530)) 11)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 8)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 9)))
-(((-803) (-13 (-795) (-10 -8 (-15 -2258 ($ (-530))) (-15 -3387 ((-530) $))))) (T -803))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-803)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-803)))))
-(-13 (-795) (-10 -8 (-15 -2258 ($ (-530))) (-15 -3387 ((-530) $))))
-((-2246 (((-110) $ $) NIL) (($ $ $) 77)) (-1956 (($ $ $) 115)) (-1461 (((-530) $) 30) (((-530)) 35)) (-2013 (($ (-530)) 44)) (-1986 (($ $ $) 45) (($ (-597 $)) 76)) (-1871 (($ $ (-597 $)) 74)) (-2029 (((-530) $) 33)) (-1900 (($ $ $) 63)) (-3400 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2038 (((-530) $) 32)) (-1908 (($ $ $) 62)) (-3045 (($ $) 105)) (-1937 (($ $ $) 119)) (-2950 (($ (-597 $)) 52)) (-2184 (($ $ (-597 $)) 69)) (-2004 (($ (-530) (-530)) 46)) (-2077 (($ $) 116) (($ $ $) 117)) (-3657 (($ $ (-530)) 40) (($ $) 43)) (-3607 (($ $ $) 89)) (-1918 (($ $ $) 122)) (-1862 (($ $) 106)) (-3588 (($ $ $) 90)) (-3007 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1603 (((-1186) $) 8)) (-1853 (($ $) 109) (($ $ (-719)) 112)) (-1881 (($ $ $) 65)) (-1891 (($ $ $) 64)) (-3852 (($ $ (-597 $)) 100)) (-1967 (($ $ $) 104)) (-2975 (($ (-597 $)) 50)) (-2986 (($ $) 60) (($ (-597 $)) 61)) (-1836 (($ $ $) 113)) (-1844 (($ $) 107)) (-1948 (($ $ $) 118)) (-3946 (($ (-530)) 20) (($ (-1099)) 22) (($ (-1082)) 29) (($ (-208)) 24)) (-2656 (($ $ $) 93)) (-3694 (($ $) 94)) (-2046 (((-1186) (-1082)) 14)) (-2086 (($ (-1082)) 13)) (-2162 (($ (-597 (-597 $))) 49)) (-3648 (($ $ (-530)) 39) (($ $) 42)) (-3443 (((-1082) $) NIL)) (-3009 (($ $ $) 121)) (-1699 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2954 (((-110) $) 98)) (-1976 (($ $ (-597 $)) 102) (($ $ $ $) 103)) (-2021 (($ (-530)) 36)) (-4150 (((-530) $) 31) (((-530)) 34)) (-1996 (($ $ $) 37) (($ (-597 $)) 75)) (-2485 (((-1046) $) NIL)) (-3562 (($ $ $) 91)) (-4227 (($) 12)) (-1832 (($ $ (-597 $)) 99)) (-1796 (($ $) 108) (($ $ (-719)) 111)) (-3575 (($ $ $) 88)) (-3211 (($ $ (-719)) 127)) (-2962 (($ (-597 $)) 51)) (-2258 (((-804) $) 18)) (-3721 (($ $ (-530)) 38) (($ $) 41)) (-2998 (($ $) 58) (($ (-597 $)) 59)) (-3341 (($ $) 56) (($ (-597 $)) 57)) (-3998 (($ $) 114)) (-2937 (($ (-597 $)) 55)) (-1464 (($ $ $) 97)) (-1929 (($ $ $) 120)) (-3340 (($ $ $) 92)) (-3846 (($ $ $) 95) (($ $) 96)) (-2204 (($ $ $) 81)) (-2182 (($ $ $) 79)) (-2148 (((-110) $ $) 15) (($ $ $) 16)) (-2195 (($ $ $) 80)) (-2172 (($ $ $) 78)) (-2257 (($ $ $) 86)) (-2245 (($ $ $) 83) (($ $) 84)) (-2234 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-804) (-13 (-1027) (-10 -8 (-15 -1603 ((-1186) $)) (-15 -2086 ($ (-1082))) (-15 -2046 ((-1186) (-1082))) (-15 -3946 ($ (-530))) (-15 -3946 ($ (-1099))) (-15 -3946 ($ (-1082))) (-15 -3946 ($ (-208))) (-15 -4227 ($)) (-15 -1461 ((-530) $)) (-15 -4150 ((-530) $)) (-15 -1461 ((-530))) (-15 -4150 ((-530))) (-15 -2038 ((-530) $)) (-15 -2029 ((-530) $)) (-15 -2021 ($ (-530))) (-15 -2013 ($ (-530))) (-15 -2004 ($ (-530) (-530))) (-15 -3648 ($ $ (-530))) (-15 -3657 ($ $ (-530))) (-15 -3721 ($ $ (-530))) (-15 -3648 ($ $)) (-15 -3657 ($ $)) (-15 -3721 ($ $)) (-15 -1996 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -1996 ($ (-597 $))) (-15 -1986 ($ (-597 $))) (-15 -3852 ($ $ (-597 $))) (-15 -1976 ($ $ (-597 $))) (-15 -1976 ($ $ $ $)) (-15 -1967 ($ $ $)) (-15 -2954 ((-110) $)) (-15 -1832 ($ $ (-597 $))) (-15 -3045 ($ $)) (-15 -3009 ($ $ $)) (-15 -3998 ($ $)) (-15 -2162 ($ (-597 (-597 $)))) (-15 -1956 ($ $ $)) (-15 -2077 ($ $)) (-15 -2077 ($ $ $)) (-15 -1948 ($ $ $)) (-15 -1937 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3211 ($ $ (-719))) (-15 -1464 ($ $ $)) (-15 -1908 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1891 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2184 ($ $ (-597 $))) (-15 -1871 ($ $ (-597 $))) (-15 -1862 ($ $)) (-15 -1796 ($ $)) (-15 -1796 ($ $ (-719))) (-15 -1853 ($ $)) (-15 -1853 ($ $ (-719))) (-15 -1844 ($ $)) (-15 -1836 ($ $ $)) (-15 -3400 ($ $)) (-15 -3400 ($ $ $)) (-15 -3400 ($ $ $ $)) (-15 -3007 ($ $)) (-15 -3007 ($ $ $)) (-15 -3007 ($ $ $ $)) (-15 -1699 ($ $)) (-15 -1699 ($ $ $)) (-15 -1699 ($ $ $ $)) (-15 -3341 ($ $)) (-15 -3341 ($ (-597 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-597 $))) (-15 -2986 ($ $)) (-15 -2986 ($ (-597 $))) (-15 -2975 ($ (-597 $))) (-15 -2962 ($ (-597 $))) (-15 -2950 ($ (-597 $))) (-15 -2937 ($ (-597 $))) (-15 -2148 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -2172 ($ $ $)) (-15 -2182 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2245 ($ $)) (-15 * ($ $ $)) (-15 -2257 ($ $ $)) (-15 ** ($ $ $)) (-15 -3575 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -3588 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -3340 ($ $ $)) (-15 -2656 ($ $ $)) (-15 -3694 ($ $)) (-15 -3846 ($ $ $)) (-15 -3846 ($ $))))) (T -804))
-((-1603 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804)))) (-4227 (*1 *1) (-5 *1 (-804))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1461 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4150 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2004 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3648 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3657 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3648 (*1 *1 *1) (-5 *1 (-804))) (-3657 (*1 *1 *1) (-5 *1 (-804))) (-3721 (*1 *1 *1) (-5 *1 (-804))) (-1996 (*1 *1 *1 *1) (-5 *1 (-804))) (-1986 (*1 *1 *1 *1) (-5 *1 (-804))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3852 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1976 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1967 (*1 *1 *1 *1) (-5 *1 (-804))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-804)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3045 (*1 *1 *1) (-5 *1 (-804))) (-3009 (*1 *1 *1 *1) (-5 *1 (-804))) (-3998 (*1 *1 *1) (-5 *1 (-804))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-804)))) (-1956 (*1 *1 *1 *1) (-5 *1 (-804))) (-2077 (*1 *1 *1) (-5 *1 (-804))) (-2077 (*1 *1 *1 *1) (-5 *1 (-804))) (-1948 (*1 *1 *1 *1) (-5 *1 (-804))) (-1937 (*1 *1 *1 *1) (-5 *1 (-804))) (-1929 (*1 *1 *1 *1) (-5 *1 (-804))) (-1918 (*1 *1 *1 *1) (-5 *1 (-804))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-1464 (*1 *1 *1 *1) (-5 *1 (-804))) (-1908 (*1 *1 *1 *1) (-5 *1 (-804))) (-1900 (*1 *1 *1 *1) (-5 *1 (-804))) (-1891 (*1 *1 *1 *1) (-5 *1 (-804))) (-1881 (*1 *1 *1 *1) (-5 *1 (-804))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1871 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1862 (*1 *1 *1) (-5 *1 (-804))) (-1796 (*1 *1 *1) (-5 *1 (-804))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-1853 (*1 *1 *1) (-5 *1 (-804))) (-1853 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-1844 (*1 *1 *1) (-5 *1 (-804))) (-1836 (*1 *1 *1 *1) (-5 *1 (-804))) (-3400 (*1 *1 *1) (-5 *1 (-804))) (-3400 (*1 *1 *1 *1) (-5 *1 (-804))) (-3400 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3007 (*1 *1 *1) (-5 *1 (-804))) (-3007 (*1 *1 *1 *1) (-5 *1 (-804))) (-3007 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1699 (*1 *1 *1) (-5 *1 (-804))) (-1699 (*1 *1 *1 *1) (-5 *1 (-804))) (-1699 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3341 (*1 *1 *1) (-5 *1 (-804))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2998 (*1 *1 *1) (-5 *1 (-804))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2986 (*1 *1 *1) (-5 *1 (-804))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2937 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2148 (*1 *1 *1 *1) (-5 *1 (-804))) (-2246 (*1 *1 *1 *1) (-5 *1 (-804))) (-2172 (*1 *1 *1 *1) (-5 *1 (-804))) (-2182 (*1 *1 *1 *1) (-5 *1 (-804))) (-2195 (*1 *1 *1 *1) (-5 *1 (-804))) (-2204 (*1 *1 *1 *1) (-5 *1 (-804))) (-2234 (*1 *1 *1 *1) (-5 *1 (-804))) (-2245 (*1 *1 *1 *1) (-5 *1 (-804))) (-2245 (*1 *1 *1) (-5 *1 (-804))) (* (*1 *1 *1 *1) (-5 *1 (-804))) (-2257 (*1 *1 *1 *1) (-5 *1 (-804))) (** (*1 *1 *1 *1) (-5 *1 (-804))) (-3575 (*1 *1 *1 *1) (-5 *1 (-804))) (-3607 (*1 *1 *1 *1) (-5 *1 (-804))) (-3588 (*1 *1 *1 *1) (-5 *1 (-804))) (-3562 (*1 *1 *1 *1) (-5 *1 (-804))) (-3340 (*1 *1 *1 *1) (-5 *1 (-804))) (-2656 (*1 *1 *1 *1) (-5 *1 (-804))) (-3694 (*1 *1 *1) (-5 *1 (-804))) (-3846 (*1 *1 *1 *1) (-5 *1 (-804))) (-3846 (*1 *1 *1) (-5 *1 (-804))))
-(-13 (-1027) (-10 -8 (-15 -1603 ((-1186) $)) (-15 -2086 ($ (-1082))) (-15 -2046 ((-1186) (-1082))) (-15 -3946 ($ (-530))) (-15 -3946 ($ (-1099))) (-15 -3946 ($ (-1082))) (-15 -3946 ($ (-208))) (-15 -4227 ($)) (-15 -1461 ((-530) $)) (-15 -4150 ((-530) $)) (-15 -1461 ((-530))) (-15 -4150 ((-530))) (-15 -2038 ((-530) $)) (-15 -2029 ((-530) $)) (-15 -2021 ($ (-530))) (-15 -2013 ($ (-530))) (-15 -2004 ($ (-530) (-530))) (-15 -3648 ($ $ (-530))) (-15 -3657 ($ $ (-530))) (-15 -3721 ($ $ (-530))) (-15 -3648 ($ $)) (-15 -3657 ($ $)) (-15 -3721 ($ $)) (-15 -1996 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -1996 ($ (-597 $))) (-15 -1986 ($ (-597 $))) (-15 -3852 ($ $ (-597 $))) (-15 -1976 ($ $ (-597 $))) (-15 -1976 ($ $ $ $)) (-15 -1967 ($ $ $)) (-15 -2954 ((-110) $)) (-15 -1832 ($ $ (-597 $))) (-15 -3045 ($ $)) (-15 -3009 ($ $ $)) (-15 -3998 ($ $)) (-15 -2162 ($ (-597 (-597 $)))) (-15 -1956 ($ $ $)) (-15 -2077 ($ $)) (-15 -2077 ($ $ $)) (-15 -1948 ($ $ $)) (-15 -1937 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3211 ($ $ (-719))) (-15 -1464 ($ $ $)) (-15 -1908 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1891 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2184 ($ $ (-597 $))) (-15 -1871 ($ $ (-597 $))) (-15 -1862 ($ $)) (-15 -1796 ($ $)) (-15 -1796 ($ $ (-719))) (-15 -1853 ($ $)) (-15 -1853 ($ $ (-719))) (-15 -1844 ($ $)) (-15 -1836 ($ $ $)) (-15 -3400 ($ $)) (-15 -3400 ($ $ $)) (-15 -3400 ($ $ $ $)) (-15 -3007 ($ $)) (-15 -3007 ($ $ $)) (-15 -3007 ($ $ $ $)) (-15 -1699 ($ $)) (-15 -1699 ($ $ $)) (-15 -1699 ($ $ $ $)) (-15 -3341 ($ $)) (-15 -3341 ($ (-597 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-597 $))) (-15 -2986 ($ $)) (-15 -2986 ($ (-597 $))) (-15 -2975 ($ (-597 $))) (-15 -2962 ($ (-597 $))) (-15 -2950 ($ (-597 $))) (-15 -2937 ($ (-597 $))) (-15 -2148 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -2172 ($ $ $)) (-15 -2182 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2245 ($ $)) (-15 * ($ $ $)) (-15 -2257 ($ $ $)) (-15 ** ($ $ $)) (-15 -3575 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -3588 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -3340 ($ $ $)) (-15 -2656 ($ $ $)) (-15 -3694 ($ $)) (-15 -3846 ($ $ $)) (-15 -3846 ($ $))))
-((-2102 (((-1186) (-597 (-51))) 24)) (-2092 (((-1186) (-1082) (-804)) 14) (((-1186) (-804)) 9) (((-1186) (-1082)) 11)))
-(((-805) (-10 -7 (-15 -2092 ((-1186) (-1082))) (-15 -2092 ((-1186) (-804))) (-15 -2092 ((-1186) (-1082) (-804))) (-15 -2102 ((-1186) (-597 (-51)))))) (T -805))
-((-2102 (*1 *2 *3) (-12 (-5 *3 (-597 (-51))) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-805)))))
-(-10 -7 (-15 -2092 ((-1186) (-1082))) (-15 -2092 ((-1186) (-804))) (-15 -2092 ((-1186) (-1082) (-804))) (-15 -2102 ((-1186) (-597 (-51)))))
-((-2246 (((-110) $ $) NIL)) (-3994 (((-3 $ "failed") (-1099)) 33)) (-2879 (((-719)) 31)) (-1376 (($) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3830 (((-862) $) 29)) (-3443 (((-1082) $) 39)) (-1910 (($ (-862)) 28)) (-2485 (((-1046) $) NIL)) (-3173 (((-1099) $) 13) (((-506) $) 19) (((-833 (-360)) $) 26) (((-833 (-530)) $) 22)) (-2258 (((-804) $) 16)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 36)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 35)))
-(((-806 |#1|) (-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -3994 ((-3 $ "failed") (-1099))))) (-597 (-1099))) (T -806))
-((-3994 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-806 *3)) (-14 *3 (-597 *2)))))
-(-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -3994 ((-3 $ "failed") (-1099)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (((-893 |#1|) $) NIL) (($ (-893 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-1667 (((-719)) NIL)) (-3167 (((-1186) (-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-807 |#1| |#2| |#3| |#4|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2258 ((-893 |#1|) $)) (-15 -2258 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2257 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3167 ((-1186) (-719))))) (-984) (-597 (-1099)) (-597 (-719)) (-719)) (T -807))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-893 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-719))) (-14 *5 (-719)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7)) (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3)) (-14 *7 *3))))
-(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2258 ((-893 |#1|) $)) (-15 -2258 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2257 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3167 ((-1186) (-719)))))
-((-2056 (((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|) 31)) (-2065 (((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|) 24)))
-(((-808 |#1| |#2| |#3|) (-10 -7 (-15 -2065 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2056 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|))) (-344) (-1172 |#1|) (-1157 |#1|)) (T -808))
-((-2056 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))) (-2065 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
-(-10 -7 (-15 -2065 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2056 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|)))
-((-2065 (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 26)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -2065 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -2065 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)))) (-344) (-1099) |#1|) (T -809))
-((-2065 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))) (-2065 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))))
-(-10 -7 (-15 -2065 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -2065 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-2487 (($ $ (-530)) 62)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-2077 (($ (-1095 (-530)) (-530)) 61)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-2088 (($ $) 64)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-1334 (((-719) $) 69)) (-3150 (((-110) $) 31)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2113 (((-530)) 66)) (-2100 (((-530) $) 65)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1312 (($ $ (-530)) 68)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-2124 (((-1080 (-530)) $) 70)) (-3021 (($ $) 67)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-4125 (((-530) $ (-530)) 63)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) NIL)) (-3417 (((-530) $) 12)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 18) (($ (-530)) 11)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 8)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 9)))
+(((-803) (-13 (-795) (-10 -8 (-15 -2366 ($ (-530))) (-15 -3417 ((-530) $))))) (T -803))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-803)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-803)))))
+(-13 (-795) (-10 -8 (-15 -2366 ($ (-530))) (-15 -3417 ((-530) $))))
+((-2352 (((-110) $ $) NIL) (($ $ $) 77)) (-4180 (($ $ $) 115)) (-1447 (((-530) $) 30) (((-530)) 35)) (-3921 (($ (-530)) 44)) (-2664 (($ $ $) 45) (($ (-597 $)) 76)) (-1653 (($ $ (-597 $)) 74)) (-2083 (((-530) $) 33)) (-2362 (($ $ $) 63)) (-3426 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1762 (((-530) $) 32)) (-3807 (($ $ $) 62)) (-3166 (($ $) 105)) (-2278 (($ $ $) 119)) (-2452 (($ (-597 $)) 52)) (-4119 (($ $ (-597 $)) 69)) (-1266 (($ (-530) (-530)) 46)) (-3165 (($ $) 116) (($ $ $) 117)) (-3638 (($ $ (-530)) 40) (($ $) 43)) (-3590 (($ $ $) 89)) (-3461 (($ $ $) 122)) (-2808 (($ $) 106)) (-3571 (($ $ $) 90)) (-1360 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1606 (((-1186) $) 8)) (-4020 (($ $) 109) (($ $ (-719)) 112)) (-4149 (($ $ $) 65)) (-2736 (($ $ $) 64)) (-3853 (($ $ (-597 $)) 100)) (-1749 (($ $ $) 104)) (-3690 (($ (-597 $)) 50)) (-3324 (($ $) 60) (($ (-597 $)) 61)) (-2885 (($ $ $) 113)) (-1287 (($ $) 107)) (-1683 (($ $ $) 118)) (-2589 (($ (-530)) 20) (($ (-1099)) 22) (($ (-1082)) 29) (($ (-208)) 24)) (-2813 (($ $ $) 93)) (-3676 (($ $) 94)) (-4233 (((-1186) (-1082)) 14)) (-2184 (($ (-1082)) 13)) (-2263 (($ (-597 (-597 $))) 49)) (-3628 (($ $ (-530)) 39) (($ $) 42)) (-1424 (((-1082) $) NIL)) (-3138 (($ $ $) 121)) (-3967 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3092 (((-110) $) 98)) (-3130 (($ $ (-597 $)) 102) (($ $ $ $) 103)) (-3593 (($ (-530)) 36)) (-4156 (((-530) $) 31) (((-530)) 34)) (-2105 (($ $ $) 37) (($ (-597 $)) 75)) (-2624 (((-1046) $) NIL)) (-3551 (($ $ $) 91)) (-3958 (($) 12)) (-1902 (($ $ (-597 $)) 99)) (-3334 (($ $) 108) (($ $ (-719)) 111)) (-3561 (($ $ $) 88)) (-3289 (($ $ (-719)) 127)) (-4160 (($ (-597 $)) 51)) (-2366 (((-804) $) 18)) (-3705 (($ $ (-530)) 38) (($ $) 41)) (-3070 (($ $) 58) (($ (-597 $)) 59)) (-3381 (($ $) 56) (($ (-597 $)) 57)) (-1678 (($ $) 114)) (-2444 (($ (-597 $)) 55)) (-2947 (($ $ $) 97)) (-3106 (($ $ $) 120)) (-3380 (($ $ $) 92)) (-3848 (($ $ $) 95) (($ $) 96)) (-2306 (($ $ $) 81)) (-2284 (($ $ $) 79)) (-2248 (((-110) $ $) 15) (($ $ $) 16)) (-2297 (($ $ $) 80)) (-2272 (($ $ $) 78)) (-2364 (($ $ $) 86)) (-2351 (($ $ $) 83) (($ $) 84)) (-2339 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-804) (-13 (-1027) (-10 -8 (-15 -1606 ((-1186) $)) (-15 -2184 ($ (-1082))) (-15 -4233 ((-1186) (-1082))) (-15 -2589 ($ (-530))) (-15 -2589 ($ (-1099))) (-15 -2589 ($ (-1082))) (-15 -2589 ($ (-208))) (-15 -3958 ($)) (-15 -1447 ((-530) $)) (-15 -4156 ((-530) $)) (-15 -1447 ((-530))) (-15 -4156 ((-530))) (-15 -1762 ((-530) $)) (-15 -2083 ((-530) $)) (-15 -3593 ($ (-530))) (-15 -3921 ($ (-530))) (-15 -1266 ($ (-530) (-530))) (-15 -3628 ($ $ (-530))) (-15 -3638 ($ $ (-530))) (-15 -3705 ($ $ (-530))) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -3705 ($ $)) (-15 -2105 ($ $ $)) (-15 -2664 ($ $ $)) (-15 -2105 ($ (-597 $))) (-15 -2664 ($ (-597 $))) (-15 -3853 ($ $ (-597 $))) (-15 -3130 ($ $ (-597 $))) (-15 -3130 ($ $ $ $)) (-15 -1749 ($ $ $)) (-15 -3092 ((-110) $)) (-15 -1902 ($ $ (-597 $))) (-15 -3166 ($ $)) (-15 -3138 ($ $ $)) (-15 -1678 ($ $)) (-15 -2263 ($ (-597 (-597 $)))) (-15 -4180 ($ $ $)) (-15 -3165 ($ $)) (-15 -3165 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3289 ($ $ (-719))) (-15 -2947 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4149 ($ $ $)) (-15 -4119 ($ $ (-597 $))) (-15 -1653 ($ $ (-597 $))) (-15 -2808 ($ $)) (-15 -3334 ($ $)) (-15 -3334 ($ $ (-719))) (-15 -4020 ($ $)) (-15 -4020 ($ $ (-719))) (-15 -1287 ($ $)) (-15 -2885 ($ $ $)) (-15 -3426 ($ $)) (-15 -3426 ($ $ $)) (-15 -3426 ($ $ $ $)) (-15 -1360 ($ $)) (-15 -1360 ($ $ $)) (-15 -1360 ($ $ $ $)) (-15 -3967 ($ $)) (-15 -3967 ($ $ $)) (-15 -3967 ($ $ $ $)) (-15 -3381 ($ $)) (-15 -3381 ($ (-597 $))) (-15 -3070 ($ $)) (-15 -3070 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3690 ($ (-597 $))) (-15 -4160 ($ (-597 $))) (-15 -2452 ($ (-597 $))) (-15 -2444 ($ (-597 $))) (-15 -2248 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2297 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ $)) (-15 -3561 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3676 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))) (T -804))
+((-1606 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804)))) (-3958 (*1 *1) (-5 *1 (-804))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1447 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4156 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1266 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3628 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3638 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3628 (*1 *1 *1) (-5 *1 (-804))) (-3638 (*1 *1 *1) (-5 *1 (-804))) (-3705 (*1 *1 *1) (-5 *1 (-804))) (-2105 (*1 *1 *1 *1) (-5 *1 (-804))) (-2664 (*1 *1 *1 *1) (-5 *1 (-804))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3130 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1749 (*1 *1 *1 *1) (-5 *1 (-804))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-804)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3166 (*1 *1 *1) (-5 *1 (-804))) (-3138 (*1 *1 *1 *1) (-5 *1 (-804))) (-1678 (*1 *1 *1) (-5 *1 (-804))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-804)))) (-4180 (*1 *1 *1 *1) (-5 *1 (-804))) (-3165 (*1 *1 *1) (-5 *1 (-804))) (-3165 (*1 *1 *1 *1) (-5 *1 (-804))) (-1683 (*1 *1 *1 *1) (-5 *1 (-804))) (-2278 (*1 *1 *1 *1) (-5 *1 (-804))) (-3106 (*1 *1 *1 *1) (-5 *1 (-804))) (-3461 (*1 *1 *1 *1) (-5 *1 (-804))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-2947 (*1 *1 *1 *1) (-5 *1 (-804))) (-3807 (*1 *1 *1 *1) (-5 *1 (-804))) (-2362 (*1 *1 *1 *1) (-5 *1 (-804))) (-2736 (*1 *1 *1 *1) (-5 *1 (-804))) (-4149 (*1 *1 *1 *1) (-5 *1 (-804))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2808 (*1 *1 *1) (-5 *1 (-804))) (-3334 (*1 *1 *1) (-5 *1 (-804))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-4020 (*1 *1 *1) (-5 *1 (-804))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-1287 (*1 *1 *1) (-5 *1 (-804))) (-2885 (*1 *1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3381 (*1 *1 *1) (-5 *1 (-804))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3070 (*1 *1 *1) (-5 *1 (-804))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3324 (*1 *1 *1) (-5 *1 (-804))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2248 (*1 *1 *1 *1) (-5 *1 (-804))) (-2352 (*1 *1 *1 *1) (-5 *1 (-804))) (-2272 (*1 *1 *1 *1) (-5 *1 (-804))) (-2284 (*1 *1 *1 *1) (-5 *1 (-804))) (-2297 (*1 *1 *1 *1) (-5 *1 (-804))) (-2306 (*1 *1 *1 *1) (-5 *1 (-804))) (-2339 (*1 *1 *1 *1) (-5 *1 (-804))) (-2351 (*1 *1 *1 *1) (-5 *1 (-804))) (-2351 (*1 *1 *1) (-5 *1 (-804))) (* (*1 *1 *1 *1) (-5 *1 (-804))) (-2364 (*1 *1 *1 *1) (-5 *1 (-804))) (** (*1 *1 *1 *1) (-5 *1 (-804))) (-3561 (*1 *1 *1 *1) (-5 *1 (-804))) (-3590 (*1 *1 *1 *1) (-5 *1 (-804))) (-3571 (*1 *1 *1 *1) (-5 *1 (-804))) (-3551 (*1 *1 *1 *1) (-5 *1 (-804))) (-3380 (*1 *1 *1 *1) (-5 *1 (-804))) (-2813 (*1 *1 *1 *1) (-5 *1 (-804))) (-3676 (*1 *1 *1) (-5 *1 (-804))) (-3848 (*1 *1 *1 *1) (-5 *1 (-804))) (-3848 (*1 *1 *1) (-5 *1 (-804))))
+(-13 (-1027) (-10 -8 (-15 -1606 ((-1186) $)) (-15 -2184 ($ (-1082))) (-15 -4233 ((-1186) (-1082))) (-15 -2589 ($ (-530))) (-15 -2589 ($ (-1099))) (-15 -2589 ($ (-1082))) (-15 -2589 ($ (-208))) (-15 -3958 ($)) (-15 -1447 ((-530) $)) (-15 -4156 ((-530) $)) (-15 -1447 ((-530))) (-15 -4156 ((-530))) (-15 -1762 ((-530) $)) (-15 -2083 ((-530) $)) (-15 -3593 ($ (-530))) (-15 -3921 ($ (-530))) (-15 -1266 ($ (-530) (-530))) (-15 -3628 ($ $ (-530))) (-15 -3638 ($ $ (-530))) (-15 -3705 ($ $ (-530))) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -3705 ($ $)) (-15 -2105 ($ $ $)) (-15 -2664 ($ $ $)) (-15 -2105 ($ (-597 $))) (-15 -2664 ($ (-597 $))) (-15 -3853 ($ $ (-597 $))) (-15 -3130 ($ $ (-597 $))) (-15 -3130 ($ $ $ $)) (-15 -1749 ($ $ $)) (-15 -3092 ((-110) $)) (-15 -1902 ($ $ (-597 $))) (-15 -3166 ($ $)) (-15 -3138 ($ $ $)) (-15 -1678 ($ $)) (-15 -2263 ($ (-597 (-597 $)))) (-15 -4180 ($ $ $)) (-15 -3165 ($ $)) (-15 -3165 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3289 ($ $ (-719))) (-15 -2947 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4149 ($ $ $)) (-15 -4119 ($ $ (-597 $))) (-15 -1653 ($ $ (-597 $))) (-15 -2808 ($ $)) (-15 -3334 ($ $)) (-15 -3334 ($ $ (-719))) (-15 -4020 ($ $)) (-15 -4020 ($ $ (-719))) (-15 -1287 ($ $)) (-15 -2885 ($ $ $)) (-15 -3426 ($ $)) (-15 -3426 ($ $ $)) (-15 -3426 ($ $ $ $)) (-15 -1360 ($ $)) (-15 -1360 ($ $ $)) (-15 -1360 ($ $ $ $)) (-15 -3967 ($ $)) (-15 -3967 ($ $ $)) (-15 -3967 ($ $ $ $)) (-15 -3381 ($ $)) (-15 -3381 ($ (-597 $))) (-15 -3070 ($ $)) (-15 -3070 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3690 ($ (-597 $))) (-15 -4160 ($ (-597 $))) (-15 -2452 ($ (-597 $))) (-15 -2444 ($ (-597 $))) (-15 -2248 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2297 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ $)) (-15 -3561 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3676 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))
+((-2197 (((-1186) (-597 (-51))) 24)) (-2187 (((-1186) (-1082) (-804)) 14) (((-1186) (-804)) 9) (((-1186) (-1082)) 11)))
+(((-805) (-10 -7 (-15 -2187 ((-1186) (-1082))) (-15 -2187 ((-1186) (-804))) (-15 -2187 ((-1186) (-1082) (-804))) (-15 -2197 ((-1186) (-597 (-51)))))) (T -805))
+((-2197 (*1 *2 *3) (-12 (-5 *3 (-597 (-51))) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-805)))))
+(-10 -7 (-15 -2187 ((-1186) (-1082))) (-15 -2187 ((-1186) (-804))) (-15 -2187 ((-1186) (-1082) (-804))) (-15 -2197 ((-1186) (-597 (-51)))))
+((-2352 (((-110) $ $) NIL)) (-4007 (((-3 $ "failed") (-1099)) 33)) (-3023 (((-719)) 31)) (-1364 (($) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1905 (((-862) $) 29)) (-1424 (((-1082) $) 39)) (-1986 (($ (-862)) 28)) (-2624 (((-1046) $) NIL)) (-3260 (((-1099) $) 13) (((-506) $) 19) (((-833 (-360)) $) 26) (((-833 (-530)) $) 22)) (-2366 (((-804) $) 16)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 36)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)))
+(((-806 |#1|) (-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -4007 ((-3 $ "failed") (-1099))))) (-597 (-1099))) (T -806))
+((-4007 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-806 *3)) (-14 *3 (-597 *2)))))
+(-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -4007 ((-3 $ "failed") (-1099)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (((-893 |#1|) $) NIL) (($ (-893 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-3300 (((-719)) NIL)) (-1329 (((-1186) (-719)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-807 |#1| |#2| |#3| |#4|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 ((-893 |#1|) $)) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1329 ((-1186) (-719))))) (-984) (-597 (-1099)) (-597 (-719)) (-719)) (T -807))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-893 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2364 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-719))) (-14 *5 (-719)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7)) (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3)) (-14 *7 *3))))
+(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 ((-893 |#1|) $)) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1329 ((-1186) (-719)))))
+((-2789 (((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|) 31)) (-3599 (((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|) 24)))
+(((-808 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2789 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|))) (-344) (-1172 |#1|) (-1157 |#1|)) (T -808))
+((-2789 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))) (-3599 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
+(-10 -7 (-15 -3599 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2789 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|)))
+((-3599 (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 26)))
+(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)))) (-344) (-1099) |#1|) (T -809))
+((-3599 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))) (-3599 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))))
+(-10 -7 (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $ (-530)) 60)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3165 (($ (-1095 (-530)) (-530)) 59)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-2957 (($ $) 62)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2031 (((-719) $) 67)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-4076 (((-530)) 64)) (-1439 (((-530) $) 63)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3168 (($ $ (-530)) 66)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2513 (((-1080 (-530)) $) 68)) (-4050 (($ $) 65)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-4136 (((-530) $ (-530)) 61)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-810 |#1|) (-133) (-530)) (T -810))
-((-2124 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719)))) (-1312 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-3021 (*1 *1 *1) (-4 *1 (-810 *2))) (-2113 (*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2088 (*1 *1 *1) (-4 *1 (-810 *2))) (-4125 (*1 *2 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2487 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2077 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
-(-13 (-289) (-140) (-10 -8 (-15 -2124 ((-1080 (-530)) $)) (-15 -1334 ((-719) $)) (-15 -1312 ($ $ (-530))) (-15 -3021 ($ $)) (-15 -2113 ((-530))) (-15 -2100 ((-530) $)) (-15 -2088 ($ $)) (-15 -4125 ((-530) $ (-530))) (-15 -2487 ($ $ (-530))) (-15 -2077 ($ (-1095 (-530)) (-530)))))
+((-2513 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-4050 (*1 *1 *1) (-4 *1 (-810 *2))) (-4076 (*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2957 (*1 *1 *1) (-4 *1 (-810 *2))) (-4136 (*1 *2 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2625 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
+(-13 (-289) (-140) (-10 -8 (-15 -2513 ((-1080 (-530)) $)) (-15 -2031 ((-719) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $)) (-15 -4076 ((-530))) (-15 -1439 ((-530) $)) (-15 -2957 ($ $)) (-15 -4136 ((-530) $ (-530))) (-15 -2625 ($ $ (-530))) (-15 -3165 ($ (-1095 (-530)) (-530)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $ (-530)) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-2077 (($ (-1095 (-530)) (-530)) NIL)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2088 (($ $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-1334 (((-719) $) NIL)) (-3150 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2113 (((-530)) NIL)) (-2100 (((-530) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1312 (($ $ (-530)) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2124 (((-1080 (-530)) $) NIL)) (-3021 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-4125 (((-530) $ (-530)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2957 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) NIL)) (-1439 (((-530) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-1080 (-530)) $) NIL)) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
(((-811 |#1|) (-810 |#1|) (-530)) (T -811))
NIL
(-810 |#1|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-811 |#1|) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-811 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-2446 (((-811 |#1|) $) NIL) (((-1099) $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-2078 (($ $) NIL) (($ (-530) $) NIL)) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-811 |#1|))) (|:| |vec| (-1181 (-811 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-811 |#1|)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-811 |#1|) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-811 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-811 |#1|) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-811 |#1|) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| (-811 |#1|) (-1075)))) (-3002 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-1757 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-3114 (($ (-1 (-811 |#1|) (-811 |#1|)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-811 |#1|) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-811 |#1|) (-289)))) (-1702 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-811 |#1|)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-811 |#1|) (-811 |#1|)) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-276 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-276 (-811 |#1|)))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-1099)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|)))) (($ $ (-1099) (-811 |#1|)) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-811 |#1|)) NIL (|has| (-811 |#1|) (-268 (-811 |#1|) (-811 |#1|))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-811 |#1|) $) NIL)) (-3173 (((-833 (-530)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-811 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-811 |#1|) (-960))) (((-208) $) NIL (|has| (-811 |#1|) (-960)))) (-2136 (((-163 (-388 (-530))) $) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-811 |#1|)) NIL) (($ (-1099)) NIL (|has| (-811 |#1|) (-975 (-1099))))) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))) (|has| (-811 |#1|) (-138))))) (-1667 (((-719)) NIL)) (-1709 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-3020 (((-110) $ $) NIL)) (-4125 (((-388 (-530)) $ (-530)) NIL)) (-2218 (($ $) NIL (|has| (-811 |#1|) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2257 (($ $ $) NIL) (($ (-811 |#1|) (-811 |#1|)) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-811 |#1|) $) NIL) (($ $ (-811 |#1|)) NIL)))
-(((-812 |#1|) (-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $)))) (-530)) (T -812))
-((-4125 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-812 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2))))
-(-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 ((|#2| $) NIL (|has| |#2| (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| |#2| (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| |#2| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530))))) (-2446 ((|#2| $) NIL) (((-1099) $) NIL (|has| |#2| (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-530)))) (((-530) $) NIL (|has| |#2| (-975 (-530))))) (-2078 (($ $) 31) (($ (-530) $) 32)) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) 53)) (-1376 (($) NIL (|has| |#2| (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) NIL (|has| |#2| (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#2| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#2| (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 ((|#2| $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-3002 (((-110) $) NIL (|has| |#2| (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 49)) (-3677 (($) NIL (|has| |#2| (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| |#2| (-289)))) (-1702 ((|#2| $) NIL (|has| |#2| (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 |#2|) (-597 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-276 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-276 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (|has| |#2| (-491 (-1099) |#2|))) (($ $ (-1099) |#2|) NIL (|has| |#2| (-491 (-1099) |#2|)))) (-1934 (((-719) $) NIL)) (-1832 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2842 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-3173 (((-833 (-530)) $) NIL (|has| |#2| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#2| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#2| (-572 (-506)))) (((-360) $) NIL (|has| |#2| (-960))) (((-208) $) NIL (|has| |#2| (-960)))) (-2136 (((-163 (-388 (-530))) $) 68)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2258 (((-804) $) 87) (($ (-530)) 19) (($ $) NIL) (($ (-388 (-530))) 24) (($ |#2|) 18) (($ (-1099)) NIL (|has| |#2| (-975 (-1099))))) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-1709 ((|#2| $) NIL (|has| |#2| (-515)))) (-3020 (((-110) $ $) NIL)) (-4125 (((-388 (-530)) $ (-530)) 60)) (-2218 (($ $) NIL (|has| |#2| (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 14 T CONST)) (-2955 (($) 16 T CONST)) (-3286 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) 35)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2245 (($ $) 39) (($ $ $) 41)) (-2234 (($ $ $) 37)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 50)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 42) (($ $ $) 44) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-813 |#1| |#2|) (-13 (-932 |#2|) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $)))) (-530) (-810 |#1|)) (T -813))
-((-4125 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-530))) (-5 *1 (-813 *4 *5)) (-5 *3 (-530)) (-4 *5 (-810 *4)))) (-2136 (*1 *2 *1) (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))) (-2078 (*1 *1 *1) (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
-(-13 (-932 |#2|) (-10 -8 (-15 -4125 ((-388 (-530)) $ (-530))) (-15 -2136 ((-163 (-388 (-530))) $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $))))
-((-2246 (((-110) $ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3152 ((|#2| $) 12)) (-1939 (($ |#1| |#2|) 9)) (-3443 (((-1082) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-2485 (((-1046) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#1| $) 11)) (-2268 (($ |#1| |#2|) 10)) (-2258 (((-804) $) 18 (-1476 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))) (-2148 (((-110) $ $) 22 (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))))
-(((-814 |#1| |#2|) (-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -1939 ($ |#1| |#2|)) (-15 -2268 ($ |#1| |#2|)) (-15 -2907 (|#1| $)) (-15 -3152 (|#2| $)))) (-1135) (-1135)) (T -814))
-((-1939 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-2268 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-2907 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1135)))) (-3152 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -1939 ($ |#1| |#2|)) (-15 -2268 ($ |#1| |#2|)) (-15 -2907 (|#1| $)) (-15 -3152 (|#2| $))))
-((-2246 (((-110) $ $) NIL)) (-2449 (((-530) $) 15)) (-2158 (($ (-148)) 11)) (-2145 (($ (-148)) 12)) (-3443 (((-1082) $) NIL)) (-2436 (((-148) $) 13)) (-2485 (((-1046) $) NIL)) (-3024 (($ (-148)) 9)) (-2170 (($ (-148)) 8)) (-2258 (((-804) $) 23) (($ (-148)) 16)) (-1728 (($ (-148)) 10)) (-2148 (((-110) $ $) NIL)))
-(((-815) (-13 (-1027) (-10 -8 (-15 -2170 ($ (-148))) (-15 -3024 ($ (-148))) (-15 -1728 ($ (-148))) (-15 -2158 ($ (-148))) (-15 -2145 ($ (-148))) (-15 -2436 ((-148) $)) (-15 -2449 ((-530) $)) (-15 -2258 ($ (-148)))))) (T -815))
-((-2170 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2145 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(-13 (-1027) (-10 -8 (-15 -2170 ($ (-148))) (-15 -3024 ($ (-148))) (-15 -1728 ($ (-148))) (-15 -2158 ($ (-148))) (-15 -2145 ($ (-148))) (-15 -2436 ((-148) $)) (-15 -2449 ((-530) $)) (-15 -2258 ($ (-148)))))
-((-2258 (((-297 (-530)) (-388 (-893 (-47)))) 23) (((-297 (-530)) (-893 (-47))) 18)))
-(((-816) (-10 -7 (-15 -2258 ((-297 (-530)) (-893 (-47)))) (-15 -2258 ((-297 (-530)) (-388 (-893 (-47))))))) (T -816))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-47)))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-893 (-47))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))))
-(-10 -7 (-15 -2258 ((-297 (-530)) (-893 (-47)))) (-15 -2258 ((-297 (-530)) (-388 (-893 (-47))))))
-((-3114 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -3114 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)))) (-1135) (-1135)) (T -817))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))))
-(-10 -7 (-15 -3114 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))))
-((-2106 (($ |#1| |#1|) 8)) (-2205 ((|#1| $ (-719)) 10)))
-(((-818 |#1|) (-10 -8 (-15 -2106 ($ |#1| |#1|)) (-15 -2205 (|#1| $ (-719)))) (-1135)) (T -818))
-((-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135)))) (-2106 (*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -2106 ($ |#1| |#1|)) (-15 -2205 (|#1| $ (-719))))
-((-3114 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -3114 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1135) (-1135)) (T -819))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
-(-10 -7 (-15 -3114 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
-((-2106 (($ |#1| |#1| |#1|) 8)) (-2205 ((|#1| $ (-719)) 10)))
-(((-820 |#1|) (-10 -8 (-15 -2106 ($ |#1| |#1| |#1|)) (-15 -2205 (|#1| $ (-719)))) (-1135)) (T -820))
-((-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135)))) (-2106 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -2106 ($ |#1| |#1| |#1|)) (-15 -2205 (|#1| $ (-719))))
-((-2183 (((-597 (-1104)) (-1082)) 9)))
-(((-821) (-10 -7 (-15 -2183 ((-597 (-1104)) (-1082))))) (T -821))
-((-2183 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
-(-10 -7 (-15 -2183 ((-597 (-1104)) (-1082))))
-((-3114 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -3114 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1135) (-1135)) (T -822))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))))
-(-10 -7 (-15 -3114 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))))
-((-2194 (($ |#1| |#1| |#1|) 8)) (-2205 ((|#1| $ (-719)) 10)))
-(((-823 |#1|) (-10 -8 (-15 -2194 ($ |#1| |#1| |#1|)) (-15 -2205 (|#1| $ (-719)))) (-1135)) (T -823))
-((-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))) (-2194 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -2194 ($ |#1| |#1| |#1|)) (-15 -2205 (|#1| $ (-719))))
-((-2243 (((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530)))) 32)) (-2232 (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 28)) (-2254 (((-1080 (-597 (-530))) (-597 (-530))) 41) (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 40)) (-2266 (((-1080 (-597 (-530))) (-530)) 42)) (-2214 (((-1080 (-597 (-530))) (-530) (-530)) 22) (((-1080 (-597 (-530))) (-530)) 16) (((-1080 (-597 (-530))) (-530) (-530) (-530)) 12)) (-2223 (((-1080 (-597 (-530))) (-1080 (-597 (-530)))) 26)) (-1800 (((-597 (-530)) (-597 (-530))) 25)))
-(((-824) (-10 -7 (-15 -2214 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -2214 ((-1080 (-597 (-530))) (-530))) (-15 -2214 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -1800 ((-597 (-530)) (-597 (-530)))) (-15 -2223 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2232 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -2243 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -2254 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -2254 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -2266 ((-1080 (-597 (-530))) (-530))))) (T -824))
-((-2266 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-2254 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-2243 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530))) (-5 *1 (-824)))) (-2232 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824)))) (-2214 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-2214 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-2214 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
-(-10 -7 (-15 -2214 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -2214 ((-1080 (-597 (-530))) (-530))) (-15 -2214 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -1800 ((-597 (-530)) (-597 (-530)))) (-15 -2223 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2232 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -2243 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -2254 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -2254 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -2266 ((-1080 (-597 (-530))) (-530))))
-((-3173 (((-833 (-360)) $) 9 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 8 (|has| |#1| (-572 (-833 (-530)))))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-811 |#1|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-811 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-2585 (((-811 |#1|) $) NIL) (((-1099) $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-811 |#1|))) (|:| |vec| (-1181 (-811 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-811 |#1|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-811 |#1|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-811 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-811 |#1|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-811 |#1|) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-811 |#1|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-1817 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-3217 (($ (-1 (-811 |#1|) (-811 |#1|)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-811 |#1|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-811 |#1|) (-289)))) (-3175 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-811 |#1|)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-811 |#1|) (-811 |#1|)) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-276 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-276 (-811 |#1|)))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-1099)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|)))) (($ $ (-1099) (-811 |#1|)) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-811 |#1|)) NIL (|has| (-811 |#1|) (-268 (-811 |#1|) (-811 |#1|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-811 |#1|) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-811 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-811 |#1|) (-960))) (((-208) $) NIL (|has| (-811 |#1|) (-960)))) (-2054 (((-163 (-388 (-530))) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-811 |#1|)) NIL) (($ (-1099)) NIL (|has| (-811 |#1|) (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))) (|has| (-811 |#1|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) NIL)) (-3934 (($ $) NIL (|has| (-811 |#1|) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2364 (($ $ $) NIL) (($ (-811 |#1|) (-811 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-811 |#1|) $) NIL) (($ $ (-811 |#1|)) NIL)))
+(((-812 |#1|) (-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530)) (T -812))
+((-4136 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-812 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2))))
+(-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#2| $) NIL (|has| |#2| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#2| (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| |#2| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530))))) (-2585 ((|#2| $) NIL) (((-1099) $) NIL (|has| |#2| (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-530)))) (((-530) $) NIL (|has| |#2| (-975 (-530))))) (-3239 (($ $) 31) (($ (-530) $) 32)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 53)) (-1364 (($) NIL (|has| |#2| (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| |#2| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#2| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#2| (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 ((|#2| $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-2166 (((-110) $) NIL (|has| |#2| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 49)) (-3657 (($) NIL (|has| |#2| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| |#2| (-289)))) (-3175 ((|#2| $) NIL (|has| |#2| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 |#2|) (-597 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-276 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-276 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (|has| |#2| (-491 (-1099) |#2|))) (($ $ (-1099) |#2|) NIL (|has| |#2| (-491 (-1099) |#2|)))) (-2356 (((-719) $) NIL)) (-1902 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1269 (($ $) NIL)) (-1928 ((|#2| $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| |#2| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#2| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#2| (-572 (-506)))) (((-360) $) NIL (|has| |#2| (-960))) (((-208) $) NIL (|has| |#2| (-960)))) (-2054 (((-163 (-388 (-530))) $) 68)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) 87) (($ (-530)) 19) (($ $) NIL) (($ (-388 (-530))) 24) (($ |#2|) 18) (($ (-1099)) NIL (|has| |#2| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2748 ((|#2| $) NIL (|has| |#2| (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) 60)) (-3934 (($ $) NIL (|has| |#2| (-768)))) (-3080 (($) 14 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) 35)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2351 (($ $) 39) (($ $ $) 41)) (-2339 (($ $ $) 37)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 50)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 42) (($ $ $) 44) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-813 |#1| |#2|) (-13 (-932 |#2|) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530) (-810 |#1|)) (T -813))
+((-4136 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-530))) (-5 *1 (-813 *4 *5)) (-5 *3 (-530)) (-4 *5 (-810 *4)))) (-2054 (*1 *2 *1) (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))) (-3239 (*1 *1 *1) (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
+(-13 (-932 |#2|) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
+((-2352 (((-110) $ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3245 ((|#2| $) 12)) (-2019 (($ |#1| |#2|) 9)) (-1424 (((-1082) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-2624 (((-1046) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#1| $) 11)) (-2377 (($ |#1| |#2|) 10)) (-2366 (((-804) $) 18 (-1461 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))) (-2248 (((-110) $ $) 22 (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))))
+(((-814 |#1| |#2|) (-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2019 ($ |#1| |#2|)) (-15 -2377 ($ |#1| |#2|)) (-15 -3048 (|#1| $)) (-15 -3245 (|#2| $)))) (-1135) (-1135)) (T -814))
+((-2019 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-3048 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1135)))) (-3245 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1135)))))
+(-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2019 ($ |#1| |#2|)) (-15 -2377 ($ |#1| |#2|)) (-15 -3048 (|#1| $)) (-15 -3245 (|#2| $))))
+((-2352 (((-110) $ $) NIL)) (-3522 (((-530) $) 15)) (-2643 (($ (-148)) 11)) (-3709 (($ (-148)) 12)) (-1424 (((-1082) $) NIL)) (-3886 (((-148) $) 13)) (-2624 (((-1046) $) NIL)) (-3148 (($ (-148)) 9)) (-1816 (($ (-148)) 8)) (-2366 (((-804) $) 23) (($ (-148)) 16)) (-1774 (($ (-148)) 10)) (-2248 (((-110) $ $) NIL)))
+(((-815) (-13 (-1027) (-10 -8 (-15 -1816 ($ (-148))) (-15 -3148 ($ (-148))) (-15 -1774 ($ (-148))) (-15 -2643 ($ (-148))) (-15 -3709 ($ (-148))) (-15 -3886 ((-148) $)) (-15 -3522 ((-530) $)) (-15 -2366 ($ (-148)))))) (T -815))
+((-1816 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(-13 (-1027) (-10 -8 (-15 -1816 ($ (-148))) (-15 -3148 ($ (-148))) (-15 -1774 ($ (-148))) (-15 -2643 ($ (-148))) (-15 -3709 ($ (-148))) (-15 -3886 ((-148) $)) (-15 -3522 ((-530) $)) (-15 -2366 ($ (-148)))))
+((-2366 (((-297 (-530)) (-388 (-893 (-47)))) 23) (((-297 (-530)) (-893 (-47))) 18)))
+(((-816) (-10 -7 (-15 -2366 ((-297 (-530)) (-893 (-47)))) (-15 -2366 ((-297 (-530)) (-388 (-893 (-47))))))) (T -816))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-47)))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-893 (-47))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))))
+(-10 -7 (-15 -2366 ((-297 (-530)) (-893 (-47)))) (-15 -2366 ((-297 (-530)) (-388 (-893 (-47))))))
+((-3217 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14)))
+(((-817 |#1| |#2|) (-10 -7 (-15 -3217 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)))) (-1135) (-1135)) (T -817))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))))
+(-10 -7 (-15 -3217 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))))
+((-3663 (($ |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
+(((-818 |#1|) (-10 -8 (-15 -3663 ($ |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -818))
+((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135)))) (-3663 (*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135)))))
+(-10 -8 (-15 -3663 ($ |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
+((-3217 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -3217 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1135) (-1135)) (T -819))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
+(-10 -7 (-15 -3217 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
+((-3663 (($ |#1| |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
+(((-820 |#1|) (-10 -8 (-15 -3663 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -820))
+((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135)))) (-3663 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135)))))
+(-10 -8 (-15 -3663 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
+((-1472 (((-597 (-1104)) (-1082)) 9)))
+(((-821) (-10 -7 (-15 -1472 ((-597 (-1104)) (-1082))))) (T -821))
+((-1472 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
+(-10 -7 (-15 -1472 ((-597 (-1104)) (-1082))))
+((-3217 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -3217 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1135) (-1135)) (T -822))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))))
+(-10 -7 (-15 -3217 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))))
+((-3120 (($ |#1| |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
+(((-823 |#1|) (-10 -8 (-15 -3120 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -823))
+((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))) (-3120 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
+(-10 -8 (-15 -3120 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
+((-1291 (((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530)))) 32)) (-2916 (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 28)) (-3873 (((-1080 (-597 (-530))) (-597 (-530))) 41) (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 40)) (-3520 (((-1080 (-597 (-530))) (-530)) 42)) (-1777 (((-1080 (-597 (-530))) (-530) (-530)) 22) (((-1080 (-597 (-530))) (-530)) 16) (((-1080 (-597 (-530))) (-530) (-530) (-530)) 12)) (-3207 (((-1080 (-597 (-530))) (-1080 (-597 (-530)))) 26)) (-2555 (((-597 (-530)) (-597 (-530))) 25)))
+(((-824) (-10 -7 (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -2555 ((-597 (-530)) (-597 (-530)))) (-15 -3207 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2916 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -1291 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -3520 ((-1080 (-597 (-530))) (-530))))) (T -824))
+((-3520 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-3873 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-3873 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-1291 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530))) (-5 *1 (-824)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824)))) (-1777 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-1777 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-1777 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
+(-10 -7 (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -2555 ((-597 (-530)) (-597 (-530)))) (-15 -3207 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2916 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -1291 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -3520 ((-1080 (-597 (-530))) (-530))))
+((-3260 (((-833 (-360)) $) 9 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 8 (|has| |#1| (-572 (-833 (-530)))))))
(((-825 |#1|) (-133) (-1135)) (T -825))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-572 (-833 (-530)))) (-6 (-572 (-833 (-530)))) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-360)))) (-6 (-572 (-833 (-360)))) |%noBranch|)))
(((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
-((-2246 (((-110) $ $) NIL)) (-3547 (($) 14)) (-2290 (($ (-830 |#1| |#2|) (-830 |#1| |#3|)) 27)) (-4185 (((-830 |#1| |#3|) $) 16)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2362 (((-110) $) 22)) (-4018 (($) 19)) (-2258 (((-804) $) 30)) (-2279 (((-830 |#1| |#2|) $) 15)) (-2148 (((-110) $ $) 25)))
-(((-826 |#1| |#2| |#3|) (-13 (-1027) (-10 -8 (-15 -2362 ((-110) $)) (-15 -4018 ($)) (-15 -3547 ($)) (-15 -2290 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -2279 ((-830 |#1| |#2|) $)) (-15 -4185 ((-830 |#1| |#3|) $)))) (-1027) (-1027) (-617 |#2|)) (T -826))
-((-2362 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-4018 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-3547 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-2290 (*1 *1 *2 *3) (-12 (-5 *2 (-830 *4 *5)) (-5 *3 (-830 *4 *6)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))) (-2279 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-4185 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
-(-13 (-1027) (-10 -8 (-15 -2362 ((-110) $)) (-15 -4018 ($)) (-15 -3547 ($)) (-15 -2290 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -2279 ((-830 |#1| |#2|) $)) (-15 -4185 ((-830 |#1| |#3|) $))))
-((-2246 (((-110) $ $) 7)) (-3431 (((-830 |#1| $) $ (-833 |#1|) (-830 |#1| $)) 13)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) NIL)) (-3538 (($) 14)) (-2404 (($ (-830 |#1| |#2|) (-830 |#1| |#3|)) 27)) (-2497 (((-830 |#1| |#3|) $) 16)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3658 (((-110) $) 22)) (-4031 (($) 19)) (-2366 (((-804) $) 30)) (-3161 (((-830 |#1| |#2|) $) 15)) (-2248 (((-110) $ $) 25)))
+(((-826 |#1| |#2| |#3|) (-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -2404 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -3161 ((-830 |#1| |#2|) $)) (-15 -2497 ((-830 |#1| |#3|) $)))) (-1027) (-1027) (-617 |#2|)) (T -826))
+((-3658 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-4031 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-3538 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-2404 (*1 *1 *2 *3) (-12 (-5 *2 (-830 *4 *5)) (-5 *3 (-830 *4 *6)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))) (-3161 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -2404 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -3161 ((-830 |#1| |#2|) $)) (-15 -2497 ((-830 |#1| |#3|) $))))
+((-2352 (((-110) $ $) 7)) (-2890 (((-830 |#1| $) $ (-833 |#1|) (-830 |#1| $)) 13)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-827 |#1|) (-133) (-1027)) (T -827))
-((-3431 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4)) (-4 *4 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -3431 ((-830 |t#1| $) $ (-833 |t#1|) (-830 |t#1| $)))))
+((-2890 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4)) (-4 *4 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2890 ((-830 |t#1| $) $ (-833 |t#1|) (-830 |t#1| $)))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2300 (((-110) (-597 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-2311 (((-830 |#1| |#2|) |#2| |#3|) 43 (-12 (-3694 (|has| |#2| (-975 (-1099)))) (-3694 (|has| |#2| (-984))))) (((-597 (-276 (-893 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-984)) (-3694 (|has| |#2| (-975 (-1099)))))) (((-597 (-276 |#2|)) |#2| |#3|) 35 (|has| |#2| (-975 (-1099)))) (((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|) 21)))
-(((-828 |#1| |#2| |#3|) (-10 -7 (-15 -2300 ((-110) |#2| |#3|)) (-15 -2300 ((-110) (-597 |#2|) |#3|)) (-15 -2311 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -2311 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -2311 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -2311 ((-830 |#1| |#2|) |#2| |#3|))))) (-1027) (-827 |#1|) (-572 (-833 |#1|))) (T -828))
-((-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4)) (-3694 (-4 *3 (-975 (-1099)))) (-3694 (-4 *3 (-984))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3)))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984)) (-3694 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6))) (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5))))) (-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))) (-2300 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
-(-10 -7 (-15 -2300 ((-110) |#2| |#3|)) (-15 -2300 ((-110) (-597 |#2|) |#3|)) (-15 -2311 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -2311 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -2311 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -2311 ((-830 |#1| |#2|) |#2| |#3|)))))
-((-3114 (((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)) 22)))
-(((-829 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)))) (-1027) (-1027) (-1027)) (T -829))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-830 *5 *6)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-830 *5 *7)) (-5 *1 (-829 *5 *6 *7)))))
-(-10 -7 (-15 -3114 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|))))
-((-2246 (((-110) $ $) NIL)) (-4204 (($ $ $) 39)) (-1433 (((-3 (-110) "failed") $ (-833 |#1|)) 36)) (-3547 (($) 12)) (-3443 (((-1082) $) NIL)) (-2329 (($ (-833 |#1|) |#2| $) 20)) (-2485 (((-1046) $) NIL)) (-2351 (((-3 |#2| "failed") (-833 |#1|) $) 50)) (-2362 (((-110) $) 15)) (-4018 (($) 13)) (-2537 (((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|))) $) 25)) (-2268 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|)))) 23)) (-2258 (((-804) $) 44)) (-2321 (($ (-833 |#1|) |#2| $ |#2|) 48)) (-2340 (($ (-833 |#1|) |#2| $) 47)) (-2148 (((-110) $ $) 41)))
-(((-830 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2362 ((-110) $)) (-15 -4018 ($)) (-15 -3547 ($)) (-15 -4204 ($ $ $)) (-15 -2351 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2340 ($ (-833 |#1|) |#2| $)) (-15 -2329 ($ (-833 |#1|) |#2| $)) (-15 -2321 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2537 ((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|))) $)) (-15 -2268 ($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|))))) (-15 -1433 ((-3 (-110) "failed") $ (-833 |#1|))))) (-1027) (-1027)) (T -830))
-((-2362 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-4018 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3547 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-4204 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2351 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-5 *1 (-830 *4 *2)))) (-2340 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-2329 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-2321 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 *4)))) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 *4)))) (-4 *4 (-1027)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)))) (-1433 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-830 *4 *5)) (-4 *5 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2362 ((-110) $)) (-15 -4018 ($)) (-15 -3547 ($)) (-15 -4204 ($ $ $)) (-15 -2351 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2340 ($ (-833 |#1|) |#2| $)) (-15 -2329 ($ (-833 |#1|) |#2| $)) (-15 -2321 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2537 ((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|))) $)) (-15 -2268 ($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 |#2|))))) (-15 -1433 ((-3 (-110) "failed") $ (-833 |#1|)))))
-((-2461 (((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|))) 32) (((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|))) 43) (((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|)) 35)) (-1433 (((-110) (-597 |#2|) (-833 |#1|)) 40) (((-110) |#2| (-833 |#1|)) 36)) (-1963 (((-1 (-110) |#2|) (-833 |#1|)) 16)) (-1454 (((-597 |#2|) (-833 |#1|)) 24)) (-1444 (((-833 |#1|) (-833 |#1|) |#2|) 20)))
-(((-831 |#1| |#2|) (-10 -7 (-15 -2461 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2461 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2461 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -1963 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -1433 ((-110) |#2| (-833 |#1|))) (-15 -1433 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1444 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -1454 ((-597 |#2|) (-833 |#1|)))) (-1027) (-1135)) (T -831))
-((-1454 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3)) (-4 *3 (-1135)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-831 *5 *3)) (-4 *3 (-1135)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-2461 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-833 *5)) (-5 *3 (-597 (-1099))) (-5 *4 (-1 (-110) (-597 *6))) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-831 *5 *6)))) (-2461 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-597 (-1 (-110) *5))) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))) (-2461 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))))
-(-10 -7 (-15 -2461 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2461 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2461 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -1963 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -1433 ((-110) |#2| (-833 |#1|))) (-15 -1433 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1444 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -1454 ((-597 |#2|) (-833 |#1|))))
-((-3114 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 19)))
-(((-832 |#1| |#2|) (-10 -7 (-15 -3114 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)))) (-1027) (-1027)) (T -832))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6)))))
-(-10 -7 (-15 -3114 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))))
-((-2246 (((-110) $ $) NIL)) (-1311 (($ $ (-597 (-51))) 64)) (-2596 (((-597 $) $) 118)) (-1278 (((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $) 24)) (-3548 (((-110) $) 30)) (-1288 (($ $ (-597 (-1099)) (-51)) 25)) (-1322 (($ $ (-597 (-51))) 63)) (-3012 (((-3 |#1| "failed") $) 61) (((-3 (-1099) "failed") $) 140)) (-2446 ((|#1| $) 58) (((-1099) $) NIL)) (-2391 (($ $) 108)) (-1391 (((-110) $) 47)) (-1333 (((-597 (-51)) $) 45)) (-1300 (($ (-1099) (-110) (-110) (-110)) 65)) (-2369 (((-3 (-597 $) "failed") (-597 $)) 72)) (-1358 (((-110) $) 50)) (-1368 (((-110) $) 49)) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) 36)) (-4088 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-2479 (((-3 (-2 (|:| |val| $) (|:| -3059 $)) "failed") $) 83)) (-3691 (((-3 (-597 $) "failed") $) 33)) (-1423 (((-3 (-597 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4135 (-112)) (|:| |arg| (-597 $))) "failed") $) 95)) (-1412 (((-3 (-597 $) "failed") $) 37)) (-2467 (((-3 (-2 (|:| |val| $) (|:| -3059 (-719))) "failed") $) 40)) (-1401 (((-110) $) 29)) (-2485 (((-1046) $) NIL)) (-1268 (((-110) $) 21)) (-1343 (((-110) $) 46)) (-2379 (((-597 (-51)) $) 111)) (-1381 (((-110) $) 48)) (-1832 (($ (-112) (-597 $)) 92)) (-4219 (((-719) $) 28)) (-2441 (($ $) 62)) (-3173 (($ (-597 $)) 59)) (-3445 (((-110) $) 26)) (-2258 (((-804) $) 53) (($ |#1|) 18) (($ (-1099)) 66)) (-1444 (($ $ (-51)) 110)) (-2943 (($) 91 T CONST)) (-2955 (($) 73 T CONST)) (-2148 (((-110) $ $) 79)) (-2257 (($ $ $) 100)) (-2234 (($ $ $) 104)) (** (($ $ (-719)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-833 |#1|) (-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 0 ($) -2562) (-15 1 ($) -2562) (-15 -3691 ((-3 (-597 $) "failed") $)) (-15 -2457 ((-3 (-597 $) "failed") $)) (-15 -1423 ((-3 (-597 $) "failed") $ (-112))) (-15 -1423 ((-3 (-2 (|:| -4135 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -2467 ((-3 (-2 (|:| |val| $) (|:| -3059 (-719))) "failed") $)) (-15 -4088 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1412 ((-3 (-597 $) "failed") $)) (-15 -2479 ((-3 (-2 (|:| |val| $) (|:| -3059 $)) "failed") $)) (-15 -1832 ($ (-112) (-597 $))) (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2257 ($ $ $)) (-15 -4219 ((-719) $)) (-15 -3173 ($ (-597 $))) (-15 -2441 ($ $)) (-15 -1401 ((-110) $)) (-15 -1391 ((-110) $)) (-15 -3548 ((-110) $)) (-15 -3445 ((-110) $)) (-15 -1381 ((-110) $)) (-15 -1368 ((-110) $)) (-15 -1358 ((-110) $)) (-15 -1343 ((-110) $)) (-15 -1333 ((-597 (-51)) $)) (-15 -1322 ($ $ (-597 (-51)))) (-15 -1311 ($ $ (-597 (-51)))) (-15 -1300 ($ (-1099) (-110) (-110) (-110))) (-15 -1288 ($ $ (-597 (-1099)) (-51))) (-15 -1278 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -1268 ((-110) $)) (-15 -2391 ($ $)) (-15 -1444 ($ $ (-51))) (-15 -2379 ((-597 (-51)) $)) (-15 -2596 ((-597 $) $)) (-15 -2369 ((-3 (-597 $) "failed") (-597 $))))) (-1027)) (T -833))
-((-2943 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-2955 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-3691 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2457 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1423 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-1423 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4135 (-112)) (|:| |arg| (-597 (-833 *3))))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2467 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3059 (-719)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4088 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-833 *3)) (|:| |den| (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1412 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2479 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3059 (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-2234 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-2257 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1300 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-1288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-1278 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2369 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 (-2943) ($) -2562) (-15 (-2955) ($) -2562) (-15 -3691 ((-3 (-597 $) "failed") $)) (-15 -2457 ((-3 (-597 $) "failed") $)) (-15 -1423 ((-3 (-597 $) "failed") $ (-112))) (-15 -1423 ((-3 (-2 (|:| -4135 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -2467 ((-3 (-2 (|:| |val| $) (|:| -3059 (-719))) "failed") $)) (-15 -4088 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1412 ((-3 (-597 $) "failed") $)) (-15 -2479 ((-3 (-2 (|:| |val| $) (|:| -3059 $)) "failed") $)) (-15 -1832 ($ (-112) (-597 $))) (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2257 ($ $ $)) (-15 -4219 ((-719) $)) (-15 -3173 ($ (-597 $))) (-15 -2441 ($ $)) (-15 -1401 ((-110) $)) (-15 -1391 ((-110) $)) (-15 -3548 ((-110) $)) (-15 -3445 ((-110) $)) (-15 -1381 ((-110) $)) (-15 -1368 ((-110) $)) (-15 -1358 ((-110) $)) (-15 -1343 ((-110) $)) (-15 -1333 ((-597 (-51)) $)) (-15 -1322 ($ $ (-597 (-51)))) (-15 -1311 ($ $ (-597 (-51)))) (-15 -1300 ($ (-1099) (-110) (-110) (-110))) (-15 -1288 ($ $ (-597 (-1099)) (-51))) (-15 -1278 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -1268 ((-110) $)) (-15 -2391 ($ $)) (-15 -1444 ($ $ (-51))) (-15 -2379 ((-597 (-51)) $)) (-15 -2596 ((-597 $) $)) (-15 -2369 ((-3 (-597 $) "failed") (-597 $)))))
-((-2246 (((-110) $ $) NIL)) (-3717 (((-597 |#1|) $) 16)) (-1466 (((-110) $) 38)) (-3012 (((-3 (-622 |#1|) "failed") $) 43)) (-2446 (((-622 |#1|) $) 41)) (-2918 (($ $) 18)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2171 (((-719) $) 46)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-622 |#1|) $) 17)) (-2258 (((-804) $) 37) (($ (-622 |#1|)) 21) (((-767 |#1|) $) 27) (($ |#1|) 20)) (-2955 (($) 8 T CONST)) (-1477 (((-597 (-622 |#1|)) $) 23)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 11)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 49)))
-(((-834 |#1|) (-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 1 ($) -2562) (-15 -2258 ((-767 |#1|) $)) (-15 -2258 ($ |#1|)) (-15 -2907 ((-622 |#1|) $)) (-15 -2171 ((-719) $)) (-15 -1477 ((-597 (-622 |#1|)) $)) (-15 -2918 ($ $)) (-15 -1466 ((-110) $)) (-15 -3717 ((-597 |#1|) $)))) (-795)) (T -834))
-((-2955 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2258 (*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2918 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 (-2955) ($) -2562) (-15 -2258 ((-767 |#1|) $)) (-15 -2258 ($ |#1|)) (-15 -2907 ((-622 |#1|) $)) (-15 -2171 ((-719) $)) (-15 -1477 ((-597 (-622 |#1|)) $)) (-15 -2918 ($ $)) (-15 -1466 ((-110) $)) (-15 -3717 ((-597 |#1|) $))))
-((-1731 ((|#1| |#1| |#1|) 19)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -1731 (|#1| |#1| |#1|))) (-1157 |#2|) (-984)) (T -835))
-((-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -1731 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-1523 (((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 14)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-1488 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 13)) (-2148 (((-110) $ $) 6)))
+((-1826 (((-110) (-597 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-1242 (((-830 |#1| |#2|) |#2| |#3|) 43 (-12 (-3676 (|has| |#2| (-975 (-1099)))) (-3676 (|has| |#2| (-984))))) (((-597 (-276 (-893 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-984)) (-3676 (|has| |#2| (-975 (-1099)))))) (((-597 (-276 |#2|)) |#2| |#3|) 35 (|has| |#2| (-975 (-1099)))) (((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|) 21)))
+(((-828 |#1| |#2| |#3|) (-10 -7 (-15 -1826 ((-110) |#2| |#3|)) (-15 -1826 ((-110) (-597 |#2|) |#3|)) (-15 -1242 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -1242 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -1242 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -1242 ((-830 |#1| |#2|) |#2| |#3|))))) (-1027) (-827 |#1|) (-572 (-833 |#1|))) (T -828))
+((-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4)) (-3676 (-4 *3 (-975 (-1099)))) (-3676 (-4 *3 (-984))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3)))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984)) (-3676 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6))) (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5))))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))) (-1826 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
+(-10 -7 (-15 -1826 ((-110) |#2| |#3|)) (-15 -1826 ((-110) (-597 |#2|) |#3|)) (-15 -1242 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -1242 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -1242 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -1242 ((-830 |#1| |#2|) |#2| |#3|)))))
+((-3217 (((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)) 22)))
+(((-829 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)))) (-1027) (-1027) (-1027)) (T -829))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-830 *5 *6)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-830 *5 *7)) (-5 *1 (-829 *5 *6 *7)))))
+(-10 -7 (-15 -3217 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|))))
+((-2352 (((-110) $ $) NIL)) (-4204 (($ $ $) 39)) (-3605 (((-3 (-110) "failed") $ (-833 |#1|)) 36)) (-3538 (($) 12)) (-1424 (((-1082) $) NIL)) (-3317 (($ (-833 |#1|) |#2| $) 20)) (-2624 (((-1046) $) NIL)) (-1267 (((-3 |#2| "failed") (-833 |#1|) $) 50)) (-3658 (((-110) $) 15)) (-4031 (($) 13)) (-2681 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $) 25)) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|)))) 23)) (-2366 (((-804) $) 44)) (-3861 (($ (-833 |#1|) |#2| $ |#2|) 48)) (-2973 (($ (-833 |#1|) |#2| $) 47)) (-2248 (((-110) $ $) 41)))
+(((-830 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -4204 ($ $ $)) (-15 -1267 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2973 ($ (-833 |#1|) |#2| $)) (-15 -3317 ($ (-833 |#1|) |#2| $)) (-15 -3861 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2681 ((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))))) (-15 -3605 ((-3 (-110) "failed") $ (-833 |#1|))))) (-1027) (-1027)) (T -830))
+((-3658 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-4031 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3538 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-4204 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1267 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-5 *1 (-830 *4 *2)))) (-2973 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-3317 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-3861 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4)))) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4)))) (-4 *4 (-1027)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)))) (-3605 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-830 *4 *5)) (-4 *5 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -4204 ($ $ $)) (-15 -1267 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2973 ($ (-833 |#1|) |#2| $)) (-15 -3317 ($ (-833 |#1|) |#2| $)) (-15 -3861 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2681 ((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))))) (-15 -3605 ((-3 (-110) "failed") $ (-833 |#1|)))))
+((-2598 (((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|))) 32) (((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|))) 43) (((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|)) 35)) (-3605 (((-110) (-597 |#2|) (-833 |#1|)) 40) (((-110) |#2| (-833 |#1|)) 36)) (-3341 (((-1 (-110) |#2|) (-833 |#1|)) 16)) (-3231 (((-597 |#2|) (-833 |#1|)) 24)) (-1705 (((-833 |#1|) (-833 |#1|) |#2|) 20)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -2598 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -3341 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -3605 ((-110) |#2| (-833 |#1|))) (-15 -3605 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1705 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -3231 ((-597 |#2|) (-833 |#1|)))) (-1027) (-1135)) (T -831))
+((-3231 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-1705 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3)) (-4 *3 (-1135)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-831 *5 *3)) (-4 *3 (-1135)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-2598 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-833 *5)) (-5 *3 (-597 (-1099))) (-5 *4 (-1 (-110) (-597 *6))) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-831 *5 *6)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-597 (-1 (-110) *5))) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))))
+(-10 -7 (-15 -2598 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -3341 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -3605 ((-110) |#2| (-833 |#1|))) (-15 -3605 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1705 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -3231 ((-597 |#2|) (-833 |#1|))))
+((-3217 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 19)))
+(((-832 |#1| |#2|) (-10 -7 (-15 -3217 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)))) (-1027) (-1027)) (T -832))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6)))))
+(-10 -7 (-15 -3217 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))))
+((-2352 (((-110) $ $) NIL)) (-3680 (($ $ (-597 (-51))) 64)) (-2746 (((-597 $) $) 118)) (-1264 (((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $) 24)) (-4201 (((-110) $) 30)) (-4175 (($ $ (-597 (-1099)) (-51)) 25)) (-3541 (($ $ (-597 (-51))) 63)) (-3139 (((-3 |#1| "failed") $) 61) (((-3 (-1099) "failed") $) 140)) (-2585 ((|#1| $) 58) (((-1099) $) NIL)) (-2509 (($ $) 108)) (-1568 (((-110) $) 47)) (-4022 (((-597 (-51)) $) 45)) (-1694 (($ (-1099) (-110) (-110) (-110)) 65)) (-3182 (((-3 (-597 $) "failed") (-597 $)) 72)) (-3464 (((-110) $) 50)) (-2152 (((-110) $) 49)) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) 36)) (-4101 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $) 83)) (-1534 (((-3 (-597 $) "failed") $) 33)) (-3840 (((-3 (-597 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $) 95)) (-2071 (((-3 (-597 $) "failed") $) 37)) (-1487 (((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $) 40)) (-3306 (((-110) $) 29)) (-2624 (((-1046) $) NIL)) (-2661 (((-110) $) 21)) (-1778 (((-110) $) 46)) (-2869 (((-597 (-51)) $) 111)) (-2993 (((-110) $) 48)) (-1902 (($ (-112) (-597 $)) 92)) (-4218 (((-719) $) 28)) (-2579 (($ $) 62)) (-3260 (($ (-597 $)) 59)) (-1613 (((-110) $) 26)) (-2366 (((-804) $) 53) (($ |#1|) 18) (($ (-1099)) 66)) (-1705 (($ $ (-51)) 110)) (-3080 (($) 91 T CONST)) (-3093 (($) 73 T CONST)) (-2248 (((-110) $ $) 79)) (-2364 (($ $ $) 100)) (-2339 (($ $ $) 104)) (** (($ $ (-719)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-833 |#1|) (-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 0 ($) -2708) (-15 1 ($) -2708) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -3840 ((-3 (-597 $) "failed") $ (-112))) (-15 -3840 ((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2071 ((-3 (-597 $) "failed") $)) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -4218 ((-719) $)) (-15 -3260 ($ (-597 $))) (-15 -2579 ($ $)) (-15 -3306 ((-110) $)) (-15 -1568 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1613 ((-110) $)) (-15 -2993 ((-110) $)) (-15 -2152 ((-110) $)) (-15 -3464 ((-110) $)) (-15 -1778 ((-110) $)) (-15 -4022 ((-597 (-51)) $)) (-15 -3541 ($ $ (-597 (-51)))) (-15 -3680 ($ $ (-597 (-51)))) (-15 -1694 ($ (-1099) (-110) (-110) (-110))) (-15 -4175 ($ $ (-597 (-1099)) (-51))) (-15 -1264 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -2661 ((-110) $)) (-15 -2509 ($ $)) (-15 -1705 ($ $ (-51))) (-15 -2869 ((-597 (-51)) $)) (-15 -2746 ((-597 $) $)) (-15 -3182 ((-3 (-597 $) "failed") (-597 $))))) (-1027)) (T -833))
+((-3080 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-3093 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1534 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1862 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3840 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-3840 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 (-833 *3))))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1487 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-719)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4101 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-833 *3)) (|:| |den| (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2071 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3193 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-2364 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3680 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1694 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-4175 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3182 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 (-3080) ($) -2708) (-15 (-3093) ($) -2708) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -3840 ((-3 (-597 $) "failed") $ (-112))) (-15 -3840 ((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2071 ((-3 (-597 $) "failed") $)) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -4218 ((-719) $)) (-15 -3260 ($ (-597 $))) (-15 -2579 ($ $)) (-15 -3306 ((-110) $)) (-15 -1568 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1613 ((-110) $)) (-15 -2993 ((-110) $)) (-15 -2152 ((-110) $)) (-15 -3464 ((-110) $)) (-15 -1778 ((-110) $)) (-15 -4022 ((-597 (-51)) $)) (-15 -3541 ($ $ (-597 (-51)))) (-15 -3680 ($ $ (-597 (-51)))) (-15 -1694 ($ (-1099) (-110) (-110) (-110))) (-15 -4175 ($ $ (-597 (-1099)) (-51))) (-15 -1264 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -2661 ((-110) $)) (-15 -2509 ($ $)) (-15 -1705 ($ $ (-51))) (-15 -2869 ((-597 (-51)) $)) (-15 -2746 ((-597 $) $)) (-15 -3182 ((-3 (-597 $) "failed") (-597 $)))))
+((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 16)) (-3038 (((-110) $) 38)) (-3139 (((-3 (-622 |#1|) "failed") $) 43)) (-2585 (((-622 |#1|) $) 41)) (-3057 (($ $) 18)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-4109 (((-719) $) 46)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-622 |#1|) $) 17)) (-2366 (((-804) $) 37) (($ (-622 |#1|)) 21) (((-767 |#1|) $) 27) (($ |#1|) 20)) (-3093 (($) 8 T CONST)) (-1537 (((-597 (-622 |#1|)) $) 23)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 11)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 49)))
+(((-834 |#1|) (-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 1 ($) -2708) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ($ |#1|)) (-15 -3048 ((-622 |#1|) $)) (-15 -4109 ((-719) $)) (-15 -1537 ((-597 (-622 |#1|)) $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -834))
+((-3093 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ($ |#1|)) (-15 -3048 ((-622 |#1|) $)) (-15 -4109 ((-719) $)) (-15 -1537 ((-597 (-622 |#1|)) $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3702 ((-597 |#1|) $))))
+((-1225 ((|#1| |#1| |#1|) 19)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -1225 (|#1| |#1| |#1|))) (-1157 |#2|) (-984)) (T -835))
+((-1225 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -1225 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 13)) (-2248 (((-110) $ $) 6)))
(((-836) (-133)) (T -836))
-((-1523 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082)))))) (-1488 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -1488 ((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))))))
+((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-3236 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-973)))))
+(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -3236 ((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1512 ((|#1| |#1| (-719)) 24)) (-1500 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1482 (((-3 (-2 (|:| -3648 |#1|) (|:| -3657 |#1|)) "failed") |#1| (-719) (-719)) 27) (((-597 |#1|) |#1|) 29)))
-(((-837 |#1| |#2|) (-10 -7 (-15 -1482 ((-597 |#1|) |#1|)) (-15 -1482 ((-3 (-2 (|:| -3648 |#1|) (|:| -3657 |#1|)) "failed") |#1| (-719) (-719))) (-15 -1500 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1512 (|#1| |#1| (-719)))) (-1157 |#2|) (-344)) (T -837))
-((-1512 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4)) (-4 *2 (-1157 *4)))) (-1500 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1157 *3)))) (-1482 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3648 *3) (|:| -3657 *3))) (-5 *1 (-837 *3 *5)) (-4 *3 (-1157 *5)))) (-1482 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -1482 ((-597 |#1|) |#1|)) (-15 -1482 ((-3 (-2 (|:| -3648 |#1|) (|:| -3657 |#1|)) "failed") |#1| (-719) (-719))) (-15 -1500 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1512 (|#1| |#1| (-719))))
-((-3066 (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082)) 96) (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208)) 91) (((-973) (-839) (-996)) 83) (((-973) (-839)) 84)) (-1523 (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996)) 59) (((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839)) 61)))
-(((-838) (-10 -7 (-15 -3066 ((-973) (-839))) (-15 -3066 ((-973) (-839) (-996))) (-15 -3066 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -3066 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))) (T -838))
-((-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-3066 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3066 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838)))))
-(-10 -7 (-15 -3066 ((-973) (-839))) (-15 -3066 ((-973) (-839) (-996))) (-15 -3066 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -3066 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -1523 ((-2 (|:| -1523 (-360)) (|:| -3901 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))
-((-2246 (((-110) $ $) NIL)) (-2446 (((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $) 19)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 21) (($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 18)) (-2148 (((-110) $ $) NIL)))
-(((-839) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))) (T -839))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-839)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2258 ((-804) $)) (-15 -2446 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))
-((-3211 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) 10) (($ $ |#2| (-719)) 12) (($ $ (-597 |#2|) (-597 (-719))) 15)) (-3286 (($ $ |#2|) 16) (($ $ (-597 |#2|)) 18) (($ $ |#2| (-719)) 19) (($ $ (-597 |#2|) (-597 (-719))) 21)))
-(((-840 |#1| |#2|) (-10 -8 (-15 -3286 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3286 (|#1| |#1| |#2| (-719))) (-15 -3286 (|#1| |#1| (-597 |#2|))) (-15 -3286 (|#1| |#1| |#2|)) (-15 -3211 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3211 (|#1| |#1| |#2| (-719))) (-15 -3211 (|#1| |#1| (-597 |#2|))) (-15 -3211 (|#1| |#1| |#2|))) (-841 |#2|) (-1027)) (T -840))
-NIL
-(-10 -8 (-15 -3286 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3286 (|#1| |#1| |#2| (-719))) (-15 -3286 (|#1| |#1| (-597 |#2|))) (-15 -3286 (|#1| |#1| |#2|)) (-15 -3211 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3211 (|#1| |#1| |#2| (-719))) (-15 -3211 (|#1| |#1| (-597 |#2|))) (-15 -3211 (|#1| |#1| |#2|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3211 (($ $ |#1|) 42) (($ $ (-597 |#1|)) 41) (($ $ |#1| (-719)) 40) (($ $ (-597 |#1|) (-597 (-719))) 39)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ |#1|) 38) (($ $ (-597 |#1|)) 37) (($ $ |#1| (-719)) 36) (($ $ (-597 |#1|) (-597 (-719))) 35)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1741 ((|#1| |#1| (-719)) 24)) (-2503 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3850 (((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719)) 27) (((-597 |#1|) |#1|) 29)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -3850 ((-597 |#1|) |#1|)) (-15 -3850 ((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2503 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1741 (|#1| |#1| (-719)))) (-1157 |#2|) (-344)) (T -837))
+((-1741 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4)) (-4 *2 (-1157 *4)))) (-2503 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1157 *3)))) (-3850 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-837 *3 *5)) (-4 *3 (-1157 *5)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -3850 ((-597 |#1|) |#1|)) (-15 -3850 ((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2503 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1741 (|#1| |#1| (-719))))
+((-2688 (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082)) 96) (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208)) 91) (((-973) (-839) (-996)) 83) (((-973) (-839)) 84)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996)) 59) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839)) 61)))
+(((-838) (-10 -7 (-15 -2688 ((-973) (-839))) (-15 -2688 ((-973) (-839) (-996))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))) (T -838))
+((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838)))))
+(-10 -7 (-15 -2688 ((-973) (-839))) (-15 -2688 ((-973) (-839) (-996))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))
+((-2352 (((-110) $ $) NIL)) (-2585 (((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $) 19)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21) (($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 18)) (-2248 (((-110) $ $) NIL)))
+(((-839) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))) (T -839))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-839)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))
+((-3289 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) 10) (($ $ |#2| (-719)) 12) (($ $ (-597 |#2|) (-597 (-719))) 15)) (-3340 (($ $ |#2|) 16) (($ $ (-597 |#2|)) 18) (($ $ |#2| (-719)) 19) (($ $ (-597 |#2|) (-597 (-719))) 21)))
+(((-840 |#1| |#2|) (-10 -8 (-15 -3340 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3340 (|#1| |#1| |#2| (-719))) (-15 -3340 (|#1| |#1| (-597 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#2| (-719))) (-15 -3289 (|#1| |#1| (-597 |#2|))) (-15 -3289 (|#1| |#1| |#2|))) (-841 |#2|) (-1027)) (T -840))
+NIL
+(-10 -8 (-15 -3340 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3340 (|#1| |#1| |#2| (-719))) (-15 -3340 (|#1| |#1| (-597 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#2| (-719))) (-15 -3289 (|#1| |#1| (-597 |#2|))) (-15 -3289 (|#1| |#1| |#2|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $ |#1|) 40) (($ $ (-597 |#1|)) 39) (($ $ |#1| (-719)) 38) (($ $ (-597 |#1|) (-597 (-719))) 37)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#1|) 36) (($ $ (-597 |#1|)) 35) (($ $ |#1| (-719)) 34) (($ $ (-597 |#1|) (-597 (-719))) 33)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-841 |#1|) (-133) (-1027)) (T -841))
-((-3211 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))) (-3286 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3286 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))))
-(-13 (-984) (-10 -8 (-15 -3211 ($ $ |t#1|)) (-15 -3211 ($ $ (-597 |t#1|))) (-15 -3211 ($ $ |t#1| (-719))) (-15 -3211 ($ $ (-597 |t#1|) (-597 (-719)))) (-15 -3286 ($ $ |t#1|)) (-15 -3286 ($ $ (-597 |t#1|))) (-15 -3286 ($ $ |t#1| (-719))) (-15 -3286 ($ $ (-597 |t#1|) (-597 (-719))))))
+((-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))))
+(-13 (-984) (-10 -8 (-15 -3289 ($ $ |t#1|)) (-15 -3289 ($ $ (-597 |t#1|))) (-15 -3289 ($ $ |t#1| (-719))) (-15 -3289 ($ $ (-597 |t#1|) (-597 (-719)))) (-15 -3340 ($ $ |t#1|)) (-15 -3340 ($ $ (-597 |t#1|))) (-15 -3340 ($ $ |t#1| (-719))) (-15 -3340 ($ $ (-597 |t#1|) (-597 (-719))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) 26)) (-4102 (((-110) $ (-719)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-3249 (($ $ $) NIL (|has| $ (-6 -4271)))) (-3262 (($ $ $) NIL (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) (($ $ "left" $) NIL (|has| $ (-6 -4271))) (($ $ "right" $) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3657 (($ $) 25)) (-2764 (($ |#1|) 12) (($ $ $) 17)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3648 (($ $) 23)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) 20)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1122 |#1|) $) 9) (((-804) $) 29 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 21 (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-842 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2764 ($ |#1|)) (-15 -2764 ($ $ $)) (-15 -2258 ((-1122 |#1|) $)))) (-1027)) (T -842))
-((-2764 (*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2764 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027)))))
-(-13 (-117 |#1|) (-10 -8 (-15 -2764 ($ |#1|)) (-15 -2764 ($ $ $)) (-15 -2258 ((-1122 |#1|) $))))
-((-1624 ((|#2| (-1066 |#1| |#2|)) 40)))
-(((-843 |#1| |#2|) (-10 -7 (-15 -1624 (|#2| (-1066 |#1| |#2|)))) (-862) (-13 (-984) (-10 -7 (-6 (-4272 "*"))))) (T -843))
-((-1624 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862)) (-4 *2 (-13 (-984) (-10 -7 (-6 (-4272 "*"))))) (-5 *1 (-843 *4 *2)))))
-(-10 -7 (-15 -1624 (|#2| (-1066 |#1| |#2|))))
-((-2246 (((-110) $ $) 7)) (-3956 (($) 20 T CONST)) (-1673 (((-3 $ "failed") $) 16)) (-1703 (((-1029 |#1|) $ |#1|) 35)) (-3150 (((-110) $) 19)) (-4194 (($ $ $) 33 (-1476 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-1757 (($ $ $) 32 (-1476 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 27)) (-2485 (((-1046) $) 10)) (-4084 ((|#1| $ |#1|) 37)) (-1832 ((|#1| $ |#1|) 36)) (-1636 (($ (-597 (-597 |#1|))) 38)) (-1646 (($ (-597 |#1|)) 39)) (-1800 (($ $ $) 23)) (-1527 (($ $ $) 22)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 13) (($ $ (-719)) 17) (($ $ (-530)) 24)) (-2955 (($) 21 T CONST)) (-2204 (((-110) $ $) 30 (-1476 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2182 (((-110) $ $) 29 (-1476 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 31 (-1476 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2172 (((-110) $ $) 34)) (-2257 (($ $ $) 26)) (** (($ $ (-862)) 14) (($ $ (-719)) 18) (($ $ (-530)) 25)) (* (($ $ $) 15)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 26)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2096 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4232 (($ $ $) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 25)) (-2920 (($ |#1|) 12) (($ $ $) 17)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 23)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 20)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1122 |#1|) $) 9) (((-804) $) 29 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 21 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-842 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2920 ($ |#1|)) (-15 -2920 ($ $ $)) (-15 -2366 ((-1122 |#1|) $)))) (-1027)) (T -842))
+((-2920 (*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2920 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027)))))
+(-13 (-117 |#1|) (-10 -8 (-15 -2920 ($ |#1|)) (-15 -2920 ($ $ $)) (-15 -2366 ((-1122 |#1|) $))))
+((-3133 ((|#2| (-1066 |#1| |#2|)) 40)))
+(((-843 |#1| |#2|) (-10 -7 (-15 -3133 (|#2| (-1066 |#1| |#2|)))) (-862) (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (T -843))
+((-3133 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862)) (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-843 *4 *2)))))
+(-10 -7 (-15 -3133 (|#2| (-1066 |#1| |#2|))))
+((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-3259 (((-1029 |#1|) $ |#1|) 32)) (-2731 (((-110) $) 17)) (-2508 (($ $ $) 30 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-1817 (($ $ $) 29 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 24)) (-2624 (((-1046) $) 10)) (-4098 ((|#1| $ |#1|) 34)) (-1902 ((|#1| $ |#1|) 33)) (-1445 (($ (-597 (-597 |#1|))) 35)) (-4137 (($ (-597 |#1|)) 36)) (-2555 (($ $ $) 21)) (-2607 (($ $ $) 20)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2306 (((-110) $ $) 27 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2284 (((-110) $ $) 26 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 28 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2272 (((-110) $ $) 31)) (-2364 (($ $ $) 23)) (** (($ $ (-862)) 13) (($ $ (-719)) 16) (($ $ (-530)) 22)) (* (($ $ $) 14)))
(((-844 |#1|) (-133) (-1027)) (T -844))
-((-1646 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-4084 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-1832 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-1703 (*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3)))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(-13 (-453) (-10 -8 (-15 -1646 ($ (-597 |t#1|))) (-15 -1636 ($ (-597 (-597 |t#1|)))) (-15 -4084 (|t#1| $ |t#1|)) (-15 -1832 (|t#1| $ |t#1|)) (-15 -1703 ((-1029 |t#1|) $ |t#1|)) (-15 -2172 ((-110) $ $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-795)) |%noBranch|)))
-(((-99) . T) ((-571 (-804)) . T) ((-453) . T) ((-675) . T) ((-795) -1476 (|has| |#1| (-795)) (|has| |#1| (-349))) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-1718 (((-597 (-597 (-719))) $) 108)) (-1685 (((-597 (-719)) (-846 |#1|) $) 130)) (-1677 (((-597 (-719)) (-846 |#1|) $) 131)) (-1726 (((-597 (-846 |#1|)) $) 98)) (-1376 (((-846 |#1|) $ (-530)) 103) (((-846 |#1|) $) 104)) (-1710 (($ (-597 (-846 |#1|))) 110)) (-1334 (((-719) $) 105)) (-1695 (((-1029 (-1029 |#1|)) $) 128)) (-1703 (((-1029 |#1|) $ |#1|) 121) (((-1029 (-1029 |#1|)) $ (-1029 |#1|)) 139) (((-1029 (-597 |#1|)) $ (-597 |#1|)) 142)) (-1668 (((-1029 |#1|) $) 101)) (-3455 (((-110) (-846 |#1|) $) 92)) (-3443 (((-1082) $) NIL)) (-1656 (((-1186) $) 95) (((-1186) $ (-530) (-530)) 143)) (-2485 (((-1046) $) NIL)) (-1736 (((-597 (-846 |#1|)) $) 96)) (-1832 (((-846 |#1|) $ (-719)) 99)) (-3409 (((-719) $) 106)) (-2258 (((-804) $) 119) (((-597 (-846 |#1|)) $) 23) (($ (-597 (-846 |#1|))) 109)) (-3256 (((-597 |#1|) $) 107)) (-2148 (((-110) $ $) 136)) (-2195 (((-110) $ $) 134)) (-2172 (((-110) $ $) 133)))
-(((-845 |#1|) (-13 (-1027) (-10 -8 (-15 -2258 ((-597 (-846 |#1|)) $)) (-15 -1736 ((-597 (-846 |#1|)) $)) (-15 -1832 ((-846 |#1|) $ (-719))) (-15 -1376 ((-846 |#1|) $ (-530))) (-15 -1376 ((-846 |#1|) $)) (-15 -1334 ((-719) $)) (-15 -3409 ((-719) $)) (-15 -3256 ((-597 |#1|) $)) (-15 -1726 ((-597 (-846 |#1|)) $)) (-15 -1718 ((-597 (-597 (-719))) $)) (-15 -2258 ($ (-597 (-846 |#1|)))) (-15 -1710 ($ (-597 (-846 |#1|)))) (-15 -1703 ((-1029 |#1|) $ |#1|)) (-15 -1695 ((-1029 (-1029 |#1|)) $)) (-15 -1703 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -1703 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -3455 ((-110) (-846 |#1|) $)) (-15 -1685 ((-597 (-719)) (-846 |#1|) $)) (-15 -1677 ((-597 (-719)) (-846 |#1|) $)) (-15 -1668 ((-1029 |#1|) $)) (-15 -2172 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -1656 ((-1186) $)) (-15 -1656 ((-1186) $ (-530) (-530))))) (-1027)) (T -845))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1376 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-846 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-1703 (*1 *2 *1 *3) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1029 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1703 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4)) (-5 *3 (-1029 *4)))) (-1703 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4)) (-5 *3 (-597 *4)))) (-3455 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-845 *4)))) (-1685 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-1677 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2172 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2195 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ((-597 (-846 |#1|)) $)) (-15 -1736 ((-597 (-846 |#1|)) $)) (-15 -1832 ((-846 |#1|) $ (-719))) (-15 -1376 ((-846 |#1|) $ (-530))) (-15 -1376 ((-846 |#1|) $)) (-15 -1334 ((-719) $)) (-15 -3409 ((-719) $)) (-15 -3256 ((-597 |#1|) $)) (-15 -1726 ((-597 (-846 |#1|)) $)) (-15 -1718 ((-597 (-597 (-719))) $)) (-15 -2258 ($ (-597 (-846 |#1|)))) (-15 -1710 ($ (-597 (-846 |#1|)))) (-15 -1703 ((-1029 |#1|) $ |#1|)) (-15 -1695 ((-1029 (-1029 |#1|)) $)) (-15 -1703 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -1703 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -3455 ((-110) (-846 |#1|) $)) (-15 -1685 ((-597 (-719)) (-846 |#1|) $)) (-15 -1677 ((-597 (-719)) (-846 |#1|) $)) (-15 -1668 ((-1029 |#1|) $)) (-15 -2172 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -1656 ((-1186) $)) (-15 -1656 ((-1186) $ (-530) (-530)))))
-((-2246 (((-110) $ $) NIL)) (-1317 (((-597 $) (-597 $)) 77)) (-3592 (((-530) $) 60)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-1334 (((-719) $) 58)) (-1703 (((-1029 |#1|) $ |#1|) 49)) (-3150 (((-110) $) NIL)) (-1555 (((-110) $) 63)) (-1575 (((-719) $) 61)) (-1668 (((-1029 |#1|) $) 42)) (-4194 (($ $ $) NIL (-1476 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-1757 (($ $ $) NIL (-1476 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-1615 (((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $) 37)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 93)) (-2485 (((-1046) $) NIL)) (-1544 (((-1029 |#1|) $) 100 (|has| |#1| (-349)))) (-1565 (((-110) $) 59)) (-4084 ((|#1| $ |#1|) 47)) (-1832 ((|#1| $ |#1|) 94)) (-3409 (((-719) $) 44)) (-1636 (($ (-597 (-597 |#1|))) 85)) (-1585 (((-911) $) 53)) (-1646 (($ (-597 |#1|)) 21)) (-1800 (($ $ $) NIL)) (-1527 (($ $ $) NIL)) (-1605 (($ (-597 (-597 |#1|))) 39)) (-1594 (($ (-597 (-597 |#1|))) 88)) (-1533 (($ (-597 |#1|)) 96)) (-2258 (((-804) $) 84) (($ (-597 (-597 |#1|))) 66) (($ (-597 |#1|)) 67)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2955 (($) 16 T CONST)) (-2204 (((-110) $ $) NIL (-1476 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2148 (((-110) $ $) 45)) (-2195 (((-110) $ $) NIL (-1476 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2172 (((-110) $ $) 65)) (-2257 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 22)))
-(((-846 |#1|) (-13 (-844 |#1|) (-10 -8 (-15 -1615 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -1605 ($ (-597 (-597 |#1|)))) (-15 -2258 ($ (-597 (-597 |#1|)))) (-15 -2258 ($ (-597 |#1|))) (-15 -1594 ($ (-597 (-597 |#1|)))) (-15 -3409 ((-719) $)) (-15 -1668 ((-1029 |#1|) $)) (-15 -1585 ((-911) $)) (-15 -1334 ((-719) $)) (-15 -1575 ((-719) $)) (-15 -3592 ((-530) $)) (-15 -1565 ((-110) $)) (-15 -1555 ((-110) $)) (-15 -1317 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1544 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1533 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1533 ($ (-597 |#1|))) |%noBranch|)))) (-1027)) (T -846))
-((-1615 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3)))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349)) (-4 *3 (-1027)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
-(-13 (-844 |#1|) (-10 -8 (-15 -1615 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -1605 ($ (-597 (-597 |#1|)))) (-15 -2258 ($ (-597 (-597 |#1|)))) (-15 -2258 ($ (-597 |#1|))) (-15 -1594 ($ (-597 (-597 |#1|)))) (-15 -3409 ((-719) $)) (-15 -1668 ((-1029 |#1|) $)) (-15 -1585 ((-911) $)) (-15 -1334 ((-719) $)) (-15 -1575 ((-719) $)) (-15 -3592 ((-530) $)) (-15 -1565 ((-110) $)) (-15 -1555 ((-110) $)) (-15 -1317 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1544 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1533 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1533 ($ (-597 |#1|))) |%noBranch|))))
-((-1751 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|)) 128)) (-1776 ((|#1|) 77)) (-1767 (((-399 (-1095 |#4|)) (-1095 |#4|)) 137)) (-1787 (((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)) 69)) (-1761 (((-399 (-1095 |#4|)) (-1095 |#4|)) 147)) (-1743 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|) 92)))
-(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1751 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -1761 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -1767 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -1776 (|#1|)) (-15 -1743 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1787 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)))) (-850) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -847))
-((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8)))) (-1743 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))) (-1776 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-1751 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1751 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -1761 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -1767 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -1776 (|#1|)) (-15 -1743 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1787 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|))))
-((-1751 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 36)) (-1776 ((|#1|) 54)) (-1767 (((-399 (-1095 |#2|)) (-1095 |#2|)) 102)) (-1787 (((-399 (-1095 |#2|)) (-1095 |#2|)) 90)) (-1761 (((-399 (-1095 |#2|)) (-1095 |#2|)) 113)))
-(((-848 |#1| |#2|) (-10 -7 (-15 -1751 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -1761 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -1767 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -1776 (|#1|)) (-15 -1787 ((-399 (-1095 |#2|)) (-1095 |#2|)))) (-850) (-1157 |#1|)) (T -848))
-((-1787 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-1776 (*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-1751 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
-(-10 -7 (-15 -1751 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -1761 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -1767 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -1776 (|#1|)) (-15 -1787 ((-399 (-1095 |#2|)) (-1095 |#2|))))
-((-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 41)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 18)) (-1795 (((-3 $ "failed") $) 35)))
-(((-849 |#1|) (-10 -8 (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-850)) (T -849))
-NIL
-(-10 -8 (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 60)) (-1359 (($ $) 51)) (-3550 (((-399 $) $) 52)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 57)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-2049 (((-110) $) 53)) (-3150 (((-110) $) 31)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1818 (((-399 (-1095 $)) (-1095 $)) 58)) (-3707 (((-399 (-1095 $)) (-1095 $)) 59)) (-2473 (((-399 $) $) 50)) (-3562 (((-3 $ "failed") $ $) 42)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 56 (|has| $ (-138)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1795 (((-3 $ "failed") $) 55 (|has| $ (-138)))) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-4137 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-1445 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-4098 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-1902 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3)))) (-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(-13 (-453) (-10 -8 (-15 -4137 ($ (-597 |t#1|))) (-15 -1445 ($ (-597 (-597 |t#1|)))) (-15 -4098 (|t#1| $ |t#1|)) (-15 -1902 (|t#1| $ |t#1|)) (-15 -3259 ((-1029 |t#1|) $ |t#1|)) (-15 -2272 ((-110) $ $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-795)) |%noBranch|)))
+(((-99) . T) ((-571 (-804)) . T) ((-453) . T) ((-675) . T) ((-795) -1461 (|has| |#1| (-795)) (|has| |#1| (-349))) ((-1039) . T) ((-1027) . T))
+((-2352 (((-110) $ $) NIL)) (-2496 (((-597 (-597 (-719))) $) 108)) (-2086 (((-597 (-719)) (-846 |#1|) $) 130)) (-3042 (((-597 (-719)) (-846 |#1|) $) 131)) (-3883 (((-597 (-846 |#1|)) $) 98)) (-1364 (((-846 |#1|) $ (-530)) 103) (((-846 |#1|) $) 104)) (-2847 (($ (-597 (-846 |#1|))) 110)) (-2031 (((-719) $) 105)) (-1731 (((-1029 (-1029 |#1|)) $) 128)) (-3259 (((-1029 |#1|) $ |#1|) 121) (((-1029 (-1029 |#1|)) $ (-1029 |#1|)) 139) (((-1029 (-597 |#1|)) $ (-597 |#1|)) 142)) (-3368 (((-1029 |#1|) $) 101)) (-4197 (((-110) (-846 |#1|) $) 92)) (-1424 (((-1082) $) NIL)) (-3662 (((-1186) $) 95) (((-1186) $ (-530) (-530)) 143)) (-2624 (((-1046) $) NIL)) (-3478 (((-597 (-846 |#1|)) $) 96)) (-1902 (((-846 |#1|) $ (-719)) 99)) (-1429 (((-719) $) 106)) (-2366 (((-804) $) 119) (((-597 (-846 |#1|)) $) 23) (($ (-597 (-846 |#1|))) 109)) (-1510 (((-597 |#1|) $) 107)) (-2248 (((-110) $ $) 136)) (-2297 (((-110) $ $) 134)) (-2272 (((-110) $ $) 133)))
+(((-845 |#1|) (-13 (-1027) (-10 -8 (-15 -2366 ((-597 (-846 |#1|)) $)) (-15 -3478 ((-597 (-846 |#1|)) $)) (-15 -1902 ((-846 |#1|) $ (-719))) (-15 -1364 ((-846 |#1|) $ (-530))) (-15 -1364 ((-846 |#1|) $)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $)) (-15 -1510 ((-597 |#1|) $)) (-15 -3883 ((-597 (-846 |#1|)) $)) (-15 -2496 ((-597 (-597 (-719))) $)) (-15 -2366 ($ (-597 (-846 |#1|)))) (-15 -2847 ($ (-597 (-846 |#1|)))) (-15 -3259 ((-1029 |#1|) $ |#1|)) (-15 -1731 ((-1029 (-1029 |#1|)) $)) (-15 -3259 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -3259 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -4197 ((-110) (-846 |#1|) $)) (-15 -2086 ((-597 (-719)) (-846 |#1|) $)) (-15 -3042 ((-597 (-719)) (-846 |#1|) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2272 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -3662 ((-1186) $)) (-15 -3662 ((-1186) $ (-530) (-530))))) (-1027)) (T -845))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-846 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1029 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4)) (-5 *3 (-1029 *4)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4)) (-5 *3 (-597 *4)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-845 *4)))) (-2086 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-3042 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2272 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2297 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3662 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ((-597 (-846 |#1|)) $)) (-15 -3478 ((-597 (-846 |#1|)) $)) (-15 -1902 ((-846 |#1|) $ (-719))) (-15 -1364 ((-846 |#1|) $ (-530))) (-15 -1364 ((-846 |#1|) $)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $)) (-15 -1510 ((-597 |#1|) $)) (-15 -3883 ((-597 (-846 |#1|)) $)) (-15 -2496 ((-597 (-597 (-719))) $)) (-15 -2366 ($ (-597 (-846 |#1|)))) (-15 -2847 ($ (-597 (-846 |#1|)))) (-15 -3259 ((-1029 |#1|) $ |#1|)) (-15 -1731 ((-1029 (-1029 |#1|)) $)) (-15 -3259 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -3259 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -4197 ((-110) (-846 |#1|) $)) (-15 -2086 ((-597 (-719)) (-846 |#1|) $)) (-15 -3042 ((-597 (-719)) (-846 |#1|) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2272 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -3662 ((-1186) $)) (-15 -3662 ((-1186) $ (-530) (-530)))))
+((-2352 (((-110) $ $) NIL)) (-1307 (((-597 $) (-597 $)) 77)) (-1867 (((-530) $) 60)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2031 (((-719) $) 58)) (-3259 (((-1029 |#1|) $ |#1|) 49)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) 63)) (-4009 (((-719) $) 61)) (-3368 (((-1029 |#1|) $) 42)) (-2508 (($ $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-1817 (($ $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-3665 (((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $) 37)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 93)) (-2624 (((-1046) $) NIL)) (-1712 (((-1029 |#1|) $) 100 (|has| |#1| (-349)))) (-1403 (((-110) $) 59)) (-4098 ((|#1| $ |#1|) 47)) (-1902 ((|#1| $ |#1|) 94)) (-1429 (((-719) $) 44)) (-1445 (($ (-597 (-597 |#1|))) 85)) (-2682 (((-911) $) 53)) (-4137 (($ (-597 |#1|)) 21)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-3974 (($ (-597 (-597 |#1|))) 39)) (-2424 (($ (-597 (-597 |#1|))) 88)) (-1904 (($ (-597 |#1|)) 96)) (-2366 (((-804) $) 84) (($ (-597 (-597 |#1|))) 66) (($ (-597 |#1|)) 67)) (-3093 (($) 16 T CONST)) (-2306 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2248 (((-110) $ $) 45)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2272 (((-110) $ $) 65)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 22)))
+(((-846 |#1|) (-13 (-844 |#1|) (-10 -8 (-15 -3665 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -3974 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 |#1|))) (-15 -2424 ($ (-597 (-597 |#1|)))) (-15 -1429 ((-719) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2682 ((-911) $)) (-15 -2031 ((-719) $)) (-15 -4009 ((-719) $)) (-15 -1867 ((-530) $)) (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $)) (-15 -1307 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1712 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1904 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1904 ($ (-597 |#1|))) |%noBranch|)))) (-1027)) (T -846))
+((-3665 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3)))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349)) (-4 *3 (-1027)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+(-13 (-844 |#1|) (-10 -8 (-15 -3665 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -3974 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 |#1|))) (-15 -2424 ($ (-597 (-597 |#1|)))) (-15 -1429 ((-719) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2682 ((-911) $)) (-15 -2031 ((-719) $)) (-15 -4009 ((-719) $)) (-15 -1867 ((-530) $)) (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $)) (-15 -1307 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1712 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1904 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1904 ($ (-597 |#1|))) |%noBranch|))))
+((-3706 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|)) 128)) (-2220 ((|#1|) 77)) (-2701 (((-399 (-1095 |#4|)) (-1095 |#4|)) 137)) (-1805 (((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)) 69)) (-3277 (((-399 (-1095 |#4|)) (-1095 |#4|)) 147)) (-2309 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|) 92)))
+(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -3277 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2701 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2220 (|#1|)) (-15 -2309 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1805 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)))) (-850) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -847))
+((-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8)))) (-2309 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))) (-2220 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -3277 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2701 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2220 (|#1|)) (-15 -2309 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1805 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|))))
+((-3706 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 36)) (-2220 ((|#1|) 54)) (-2701 (((-399 (-1095 |#2|)) (-1095 |#2|)) 102)) (-1805 (((-399 (-1095 |#2|)) (-1095 |#2|)) 90)) (-3277 (((-399 (-1095 |#2|)) (-1095 |#2|)) 113)))
+(((-848 |#1| |#2|) (-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -3277 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2701 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2220 (|#1|)) (-15 -1805 ((-399 (-1095 |#2|)) (-1095 |#2|)))) (-850) (-1157 |#1|)) (T -848))
+((-1805 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-2220 (*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
+(-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -3277 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2701 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2220 (|#1|)) (-15 -1805 ((-399 (-1095 |#2|)) (-1095 |#2|))))
+((-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 41)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 18)) (-3251 (((-3 $ "failed") $) 35)))
+(((-849 |#1|) (-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-850)) (T -849))
+NIL
+(-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 58)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 55)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3295 (((-110) $) 51)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3845 (((-399 (-1095 $)) (-1095 $)) 56)) (-1473 (((-399 (-1095 $)) (-1095 $)) 57)) (-2611 (((-399 $) $) 48)) (-3551 (((-3 $ "failed") $ $) 40)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 54 (|has| $ (-138)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3251 (((-3 $ "failed") $) 53 (|has| $ (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-850) (-133)) (T -850))
-((-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))) (-3715 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-3707 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1818 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1810 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1)) (-4 *1 (-850)))) (-1801 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850)) (-5 *2 (-1181 *1)))) (-1795 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
-(-13 (-1139) (-10 -8 (-15 -3715 ((-399 (-1095 $)) (-1095 $))) (-15 -3707 ((-399 (-1095 $)) (-1095 $))) (-15 -1818 ((-399 (-1095 $)) (-1095 $))) (-15 -3728 ((-1095 $) (-1095 $) (-1095 $))) (-15 -1810 ((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $))) (IF (|has| $ (-138)) (PROGN (-15 -1801 ((-3 (-1181 $) "failed") (-637 $))) (-15 -1795 ((-3 $ "failed") $))) |%noBranch|)))
+((-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))) (-4002 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1473 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-3845 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1)) (-4 *1 (-850)))) (-2665 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850)) (-5 *2 (-1181 *1)))) (-3251 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
+(-13 (-1139) (-10 -8 (-15 -4002 ((-399 (-1095 $)) (-1095 $))) (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -3845 ((-399 (-1095 $)) (-1095 $))) (-15 -2569 ((-1095 $) (-1095 $) (-1095 $))) (-15 -1708 ((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $))) (IF (|has| $ (-138)) (PROGN (-15 -2665 ((-3 (-1181 $) "failed") (-637 $))) (-15 -3251 ((-3 $ "failed") $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3280 (((-110) $) NIL)) (-3242 (((-719)) NIL)) (-1380 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-1621 (((-1109 (-862) (-719)) (-530)) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-2879 (((-719)) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 $ "failed") $) NIL)) (-2446 (($ $) NIL)) (-3477 (($ (-1181 $)) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2563 (($) NIL)) (-1674 (((-110) $) NIL)) (-3175 (($ $) NIL) (($ $ (-719)) NIL)) (-2049 (((-110) $) NIL)) (-1334 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-3150 (((-110) $) NIL)) (-3863 (($) NIL (|has| $ (-349)))) (-3840 (((-110) $) NIL (|has| $ (-349)))) (-1717 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-1560 (((-3 $ "failed") $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3873 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) NIL)) (-3830 (((-862) $) NIL)) (-2130 (((-1095 $) $) NIL (|has| $ (-349)))) (-2120 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-2142 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL T CONST)) (-1910 (($ (-862)) NIL)) (-3268 (((-110) $) NIL)) (-2485 (((-1046) $) NIL)) (-1898 (($) NIL (|has| $ (-349)))) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL)) (-2473 (((-399 $) $) NIL)) (-3255 (((-862)) NIL) (((-781 (-862))) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3187 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-1248 (((-130)) NIL)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-3409 (((-862) $) NIL) (((-781 (-862)) $) NIL)) (-4212 (((-1095 $)) NIL)) (-1612 (($) NIL)) (-2153 (($) NIL (|has| $ (-349)))) (-3351 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) NIL)) (-3173 (((-530) $) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL)) (-1795 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1667 (((-719)) NIL)) (-3853 (((-1181 $) (-862)) NIL) (((-1181 $)) NIL)) (-3020 (((-110) $ $) NIL)) (-3292 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3231 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $) NIL)) (-2585 (($ $) NIL)) (-1574 (($ (-1181 $)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL)) (-2798 (((-110) $) NIL)) (-3948 (($ $) NIL) (($ $ (-719)) NIL)) (-3295 (((-110) $) NIL)) (-2031 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| $ (-349)))) (-1672 (((-110) $) NIL (|has| $ (-349)))) (-2376 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) NIL)) (-1905 (((-862) $) NIL)) (-3005 (((-1095 $) $) NIL (|has| $ (-349)))) (-3396 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-1658 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL T CONST)) (-1986 (($ (-862)) NIL)) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| $ (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL)) (-2611 (((-399 $) $) NIL)) (-1415 (((-862)) NIL) (((-781 (-862))) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-2488 (((-130)) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1429 (((-862) $) NIL) (((-781 (-862)) $) NIL)) (-1781 (((-1095 $)) NIL)) (-3406 (($) NIL)) (-1698 (($) NIL (|has| $ (-349)))) (-2328 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) NIL)) (-3260 (((-530) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $) (-862)) NIL) (((-1181 $)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
(((-851 |#1|) (-13 (-330) (-310 $) (-572 (-530))) (-862)) (T -851))
NIL
(-13 (-330) (-310 $) (-572 (-530)))
-((-3746 (((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)) 79)) (-3737 (((-110) (-317 |#2| |#3| |#4| |#5|)) 17)) (-1334 (((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|)) 15)))
-(((-852 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1334 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -3737 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -3746 ((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -852))
-((-3746 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-2 (|:| -1334 (-719)) (|:| -1962 *8))) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1334 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -3737 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -3746 ((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|))))
-((-3746 (((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 56)) (-3737 (((-110) (-317 (-388 (-530)) |#1| |#2| |#3|)) 16)) (-1334 (((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 14)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -1334 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -3737 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -3746 ((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)))) (-1157 (-388 (-530))) (-1157 (-388 |#1|)) (-323 (-388 (-530)) |#1| |#2|)) (T -853))
-((-3746 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-2 (|:| -1334 (-719)) (|:| -1962 *6))) (-5 *1 (-853 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-853 *4 *5 *6)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719)) (-5 *1 (-853 *4 *5 *6)))))
-(-10 -7 (-15 -1334 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -3737 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -3746 ((-3 (-2 (|:| -1334 (-719)) (|:| -1962 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))))
-((-3797 ((|#2| |#2|) 26)) (-3775 (((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) 15)) (-3755 (((-862) (-530)) 35)) (-3788 (((-530) |#2|) 42)) (-3767 (((-530) |#2|) 21) (((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|) 20)))
-(((-854 |#1| |#2|) (-10 -7 (-15 -3755 ((-862) (-530))) (-15 -3767 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -3767 ((-530) |#2|)) (-15 -3775 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -3788 ((-530) |#2|)) (-15 -3797 (|#2| |#2|))) (-1157 (-388 (-530))) (-1157 (-388 |#1|))) (T -854))
-((-3797 (*1 *2 *2) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2)) (-4 *2 (-1157 (-388 *3))))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))) (-3767 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-3767 (*1 *2 *3) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))) (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3))))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
-(-10 -7 (-15 -3755 ((-862) (-530))) (-15 -3767 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -3767 ((-530) |#2|)) (-15 -3775 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -3788 ((-530) |#2|)) (-15 -3797 (|#2| |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 ((|#1| $) 81)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-3607 (($ $ $) NIL)) (-1673 (((-3 $ "failed") $) 75)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-3879 (($ |#1| (-399 |#1|)) 73)) (-3816 (((-1095 |#1|) |#1| |#1|) 41)) (-3807 (($ $) 49)) (-3150 (((-110) $) NIL)) (-3827 (((-530) $) 78)) (-3837 (($ $ (-530)) 80)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3849 ((|#1| $) 77)) (-3860 (((-399 |#1|) $) 76)) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) 74)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3870 (($ $) 39)) (-2258 (((-804) $) 99) (($ (-530)) 54) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-399 |#1|))) 67)) (-1667 (((-719)) 52)) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 23 T CONST)) (-2955 (($) 12 T CONST)) (-2148 (((-110) $ $) 68)) (-2257 (($ $ $) NIL)) (-2245 (($ $) 88) (($ $ $) NIL)) (-2234 (($ $ $) 38)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 90) (($ $ $) 37) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-855 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -2258 ((-388 |#1|) $)) (-15 -2258 ($ (-388 (-399 |#1|)))) (-15 -3870 ($ $)) (-15 -3860 ((-399 |#1|) $)) (-15 -3849 (|#1| $)) (-15 -3837 ($ $ (-530))) (-15 -3827 ((-530) $)) (-15 -3816 ((-1095 |#1|) |#1| |#1|)) (-15 -3807 ($ $)) (-15 -3879 ($ |#1| (-399 |#1|))) (-15 -1694 (|#1| $)))) (-289)) (T -855))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3849 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3816 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2)))) (-1694 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(-13 (-344) (-37 |#1|) (-10 -8 (-15 -2258 ((-388 |#1|) $)) (-15 -2258 ($ (-388 (-399 |#1|)))) (-15 -3870 ($ $)) (-15 -3860 ((-399 |#1|) $)) (-15 -3849 (|#1| $)) (-15 -3837 ($ $ (-530))) (-15 -3827 ((-530) $)) (-15 -3816 ((-1095 |#1|) |#1| |#1|)) (-15 -3807 ($ $)) (-15 -3879 ($ |#1| (-399 |#1|))) (-15 -1694 (|#1| $))))
-((-3879 (((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)) 17) (((-51) (-388 (-893 |#1|)) (-1099)) 18)))
-(((-856 |#1|) (-10 -7 (-15 -3879 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -3879 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)))) (-13 (-289) (-140))) (T -856))
-((-3879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5)))))
-(-10 -7 (-15 -3879 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -3879 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099))))
-((-3890 ((|#4| (-597 |#4|)) 121) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2108 (((-1095 |#4|) (-597 (-1095 |#4|))) 114) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 50) ((|#4| (-597 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-857 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2108 (|#4| |#4| |#4|)) (-15 -2108 (|#4| (-597 |#4|))) (-15 -2108 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2108 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -3890 (|#4| |#4| |#4|)) (-15 -3890 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -3890 (|#4| (-597 |#4|)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -857))
-((-3890 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-3890 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-597 (-1095 *7))) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-1095 *7)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2108 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))))
-(-10 -7 (-15 -2108 (|#4| |#4| |#4|)) (-15 -2108 (|#4| (-597 |#4|))) (-15 -2108 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2108 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -3890 (|#4| |#4| |#4|)) (-15 -3890 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -3890 (|#4| (-597 |#4|))))
-((-4021 (((-845 (-530)) (-911)) 23) (((-845 (-530)) (-597 (-530))) 20)) (-3899 (((-845 (-530)) (-597 (-530))) 48) (((-845 (-530)) (-862)) 49)) (-4010 (((-845 (-530))) 24)) (-3990 (((-845 (-530))) 38) (((-845 (-530)) (-597 (-530))) 37)) (-3981 (((-845 (-530))) 36) (((-845 (-530)) (-597 (-530))) 35)) (-3972 (((-845 (-530))) 34) (((-845 (-530)) (-597 (-530))) 33)) (-3962 (((-845 (-530))) 32) (((-845 (-530)) (-597 (-530))) 31)) (-3950 (((-845 (-530))) 30) (((-845 (-530)) (-597 (-530))) 29)) (-4001 (((-845 (-530))) 40) (((-845 (-530)) (-597 (-530))) 39)) (-3941 (((-845 (-530)) (-597 (-530))) 52) (((-845 (-530)) (-862)) 53)) (-3932 (((-845 (-530)) (-597 (-530))) 50) (((-845 (-530)) (-862)) 51)) (-3910 (((-845 (-530)) (-597 (-530))) 46) (((-845 (-530)) (-862)) 47)) (-3921 (((-845 (-530)) (-597 (-862))) 43)))
-(((-858) (-10 -7 (-15 -3899 ((-845 (-530)) (-862))) (-15 -3899 ((-845 (-530)) (-597 (-530)))) (-15 -3910 ((-845 (-530)) (-862))) (-15 -3910 ((-845 (-530)) (-597 (-530)))) (-15 -3921 ((-845 (-530)) (-597 (-862)))) (-15 -3932 ((-845 (-530)) (-862))) (-15 -3932 ((-845 (-530)) (-597 (-530)))) (-15 -3941 ((-845 (-530)) (-862))) (-15 -3941 ((-845 (-530)) (-597 (-530)))) (-15 -3950 ((-845 (-530)) (-597 (-530)))) (-15 -3950 ((-845 (-530)))) (-15 -3962 ((-845 (-530)) (-597 (-530)))) (-15 -3962 ((-845 (-530)))) (-15 -3972 ((-845 (-530)) (-597 (-530)))) (-15 -3972 ((-845 (-530)))) (-15 -3981 ((-845 (-530)) (-597 (-530)))) (-15 -3981 ((-845 (-530)))) (-15 -3990 ((-845 (-530)) (-597 (-530)))) (-15 -3990 ((-845 (-530)))) (-15 -4001 ((-845 (-530)) (-597 (-530)))) (-15 -4001 ((-845 (-530)))) (-15 -4010 ((-845 (-530)))) (-15 -4021 ((-845 (-530)) (-597 (-530)))) (-15 -4021 ((-845 (-530)) (-911))))) (T -858))
-((-4021 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4010 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4001 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3990 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3981 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3972 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3962 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3950 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(-10 -7 (-15 -3899 ((-845 (-530)) (-862))) (-15 -3899 ((-845 (-530)) (-597 (-530)))) (-15 -3910 ((-845 (-530)) (-862))) (-15 -3910 ((-845 (-530)) (-597 (-530)))) (-15 -3921 ((-845 (-530)) (-597 (-862)))) (-15 -3932 ((-845 (-530)) (-862))) (-15 -3932 ((-845 (-530)) (-597 (-530)))) (-15 -3941 ((-845 (-530)) (-862))) (-15 -3941 ((-845 (-530)) (-597 (-530)))) (-15 -3950 ((-845 (-530)) (-597 (-530)))) (-15 -3950 ((-845 (-530)))) (-15 -3962 ((-845 (-530)) (-597 (-530)))) (-15 -3962 ((-845 (-530)))) (-15 -3972 ((-845 (-530)) (-597 (-530)))) (-15 -3972 ((-845 (-530)))) (-15 -3981 ((-845 (-530)) (-597 (-530)))) (-15 -3981 ((-845 (-530)))) (-15 -3990 ((-845 (-530)) (-597 (-530)))) (-15 -3990 ((-845 (-530)))) (-15 -4001 ((-845 (-530)) (-597 (-530)))) (-15 -4001 ((-845 (-530)))) (-15 -4010 ((-845 (-530)))) (-15 -4021 ((-845 (-530)) (-597 (-530)))) (-15 -4021 ((-845 (-530)) (-911))))
-((-4041 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 12)) (-4030 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 11)))
-(((-859 |#1|) (-10 -7 (-15 -4030 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -4041 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))))) (-432)) (T -859))
-((-4041 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))) (-4030 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))))
-(-10 -7 (-15 -4030 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -4041 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))))
-((-2258 (((-297 |#1|) (-457)) 16)))
-(((-860 |#1|) (-10 -7 (-15 -2258 ((-297 |#1|) (-457)))) (-13 (-795) (-522))) (T -860))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-860 *4)) (-4 *4 (-13 (-795) (-522))))))
-(-10 -7 (-15 -2258 ((-297 |#1|) (-457))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-3150 (((-110) $) 31)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1680 (((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)) 79)) (-2116 (((-110) (-317 |#2| |#3| |#4| |#5|)) 17)) (-2031 (((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|)) 15)))
+(((-852 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -2116 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -852))
+((-1680 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *8))) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-2031 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -2116 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|))))
+((-1680 (((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 56)) (-2116 (((-110) (-317 (-388 (-530)) |#1| |#2| |#3|)) 16)) (-2031 (((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 14)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -2116 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)))) (-1157 (-388 (-530))) (-1157 (-388 |#1|)) (-323 (-388 (-530)) |#1| |#2|)) (T -853))
+((-1680 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *6))) (-5 *1 (-853 *4 *5 *6)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-853 *4 *5 *6)))) (-2031 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719)) (-5 *1 (-853 *4 *5 *6)))))
+(-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -2116 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))))
+((-2630 ((|#2| |#2|) 26)) (-2462 (((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) 15)) (-4049 (((-862) (-530)) 35)) (-4056 (((-530) |#2|) 42)) (-2828 (((-530) |#2|) 21) (((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|) 20)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -4049 ((-862) (-530))) (-15 -2828 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -2828 ((-530) |#2|)) (-15 -2462 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -4056 ((-530) |#2|)) (-15 -2630 (|#2| |#2|))) (-1157 (-388 (-530))) (-1157 (-388 |#1|))) (T -854))
+((-2630 (*1 *2 *2) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2)) (-4 *2 (-1157 (-388 *3))))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2828 (*1 *2 *3) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))) (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3))))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
+(-10 -7 (-15 -4049 ((-862) (-530))) (-15 -2828 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -2828 ((-530) |#2|)) (-15 -2462 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -4056 ((-530) |#2|)) (-15 -2630 (|#2| |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#1| $) 81)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 75)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-1832 (($ |#1| (-399 |#1|)) 73)) (-3086 (((-1095 |#1|) |#1| |#1|) 41)) (-2108 (($ $) 49)) (-2731 (((-110) $) NIL)) (-2886 (((-530) $) 78)) (-1344 (($ $ (-530)) 80)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-4065 ((|#1| $) 77)) (-2652 (((-399 |#1|) $) 76)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 74)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2311 (($ $) 39)) (-2366 (((-804) $) 99) (($ (-530)) 54) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-399 |#1|))) 67)) (-3300 (((-719)) 52)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 23 T CONST)) (-3093 (($) 12 T CONST)) (-2248 (((-110) $ $) 68)) (-2364 (($ $ $) NIL)) (-2351 (($ $) 88) (($ $ $) NIL)) (-2339 (($ $ $) 38)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 90) (($ $ $) 37) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-855 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -2366 ((-388 |#1|) $)) (-15 -2366 ($ (-388 (-399 |#1|)))) (-15 -2311 ($ $)) (-15 -2652 ((-399 |#1|) $)) (-15 -4065 (|#1| $)) (-15 -1344 ($ $ (-530))) (-15 -2886 ((-530) $)) (-15 -3086 ((-1095 |#1|) |#1| |#1|)) (-15 -2108 ($ $)) (-15 -1832 ($ |#1| (-399 |#1|))) (-15 -1612 (|#1| $)))) (-289)) (T -855))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-4065 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3086 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2)))) (-1612 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(-13 (-344) (-37 |#1|) (-10 -8 (-15 -2366 ((-388 |#1|) $)) (-15 -2366 ($ (-388 (-399 |#1|)))) (-15 -2311 ($ $)) (-15 -2652 ((-399 |#1|) $)) (-15 -4065 (|#1| $)) (-15 -1344 ($ $ (-530))) (-15 -2886 ((-530) $)) (-15 -3086 ((-1095 |#1|) |#1| |#1|)) (-15 -2108 ($ $)) (-15 -1832 ($ |#1| (-399 |#1|))) (-15 -1612 (|#1| $))))
+((-1832 (((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)) 17) (((-51) (-388 (-893 |#1|)) (-1099)) 18)))
+(((-856 |#1|) (-10 -7 (-15 -1832 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -1832 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)))) (-13 (-289) (-140))) (T -856))
+((-1832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5)))))
+(-10 -7 (-15 -1832 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -1832 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099))))
+((-2534 ((|#4| (-597 |#4|)) 121) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2204 (((-1095 |#4|) (-597 (-1095 |#4|))) 114) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 50) ((|#4| (-597 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-857 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2204 (|#4| |#4| |#4|)) (-15 -2204 (|#4| (-597 |#4|))) (-15 -2204 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2204 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -2534 (|#4| |#4| |#4|)) (-15 -2534 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2534 (|#4| (-597 |#4|)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -857))
+((-2534 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 (-1095 *7))) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-1095 *7)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2204 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2204 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))))
+(-10 -7 (-15 -2204 (|#4| |#4| |#4|)) (-15 -2204 (|#4| (-597 |#4|))) (-15 -2204 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2204 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -2534 (|#4| |#4| |#4|)) (-15 -2534 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2534 (|#4| (-597 |#4|))))
+((-3701 (((-845 (-530)) (-911)) 23) (((-845 (-530)) (-597 (-530))) 20)) (-2282 (((-845 (-530)) (-597 (-530))) 48) (((-845 (-530)) (-862)) 49)) (-4239 (((-845 (-530))) 24)) (-2544 (((-845 (-530))) 38) (((-845 (-530)) (-597 (-530))) 37)) (-2902 (((-845 (-530))) 36) (((-845 (-530)) (-597 (-530))) 35)) (-3195 (((-845 (-530))) 34) (((-845 (-530)) (-597 (-530))) 33)) (-1528 (((-845 (-530))) 32) (((-845 (-530)) (-597 (-530))) 31)) (-3047 (((-845 (-530))) 30) (((-845 (-530)) (-597 (-530))) 29)) (-1649 (((-845 (-530))) 40) (((-845 (-530)) (-597 (-530))) 39)) (-3216 (((-845 (-530)) (-597 (-530))) 52) (((-845 (-530)) (-862)) 53)) (-1292 (((-845 (-530)) (-597 (-530))) 50) (((-845 (-530)) (-862)) 51)) (-3902 (((-845 (-530)) (-597 (-530))) 46) (((-845 (-530)) (-862)) 47)) (-2786 (((-845 (-530)) (-597 (-862))) 43)))
+(((-858) (-10 -7 (-15 -2282 ((-845 (-530)) (-862))) (-15 -2282 ((-845 (-530)) (-597 (-530)))) (-15 -3902 ((-845 (-530)) (-862))) (-15 -3902 ((-845 (-530)) (-597 (-530)))) (-15 -2786 ((-845 (-530)) (-597 (-862)))) (-15 -1292 ((-845 (-530)) (-862))) (-15 -1292 ((-845 (-530)) (-597 (-530)))) (-15 -3216 ((-845 (-530)) (-862))) (-15 -3216 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)))) (-15 -1528 ((-845 (-530)) (-597 (-530)))) (-15 -1528 ((-845 (-530)))) (-15 -3195 ((-845 (-530)) (-597 (-530)))) (-15 -3195 ((-845 (-530)))) (-15 -2902 ((-845 (-530)) (-597 (-530)))) (-15 -2902 ((-845 (-530)))) (-15 -2544 ((-845 (-530)) (-597 (-530)))) (-15 -2544 ((-845 (-530)))) (-15 -1649 ((-845 (-530)) (-597 (-530)))) (-15 -1649 ((-845 (-530)))) (-15 -4239 ((-845 (-530)))) (-15 -3701 ((-845 (-530)) (-597 (-530)))) (-15 -3701 ((-845 (-530)) (-911))))) (T -858))
+((-3701 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4239 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1649 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2544 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2902 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3195 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1528 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3047 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(-10 -7 (-15 -2282 ((-845 (-530)) (-862))) (-15 -2282 ((-845 (-530)) (-597 (-530)))) (-15 -3902 ((-845 (-530)) (-862))) (-15 -3902 ((-845 (-530)) (-597 (-530)))) (-15 -2786 ((-845 (-530)) (-597 (-862)))) (-15 -1292 ((-845 (-530)) (-862))) (-15 -1292 ((-845 (-530)) (-597 (-530)))) (-15 -3216 ((-845 (-530)) (-862))) (-15 -3216 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)))) (-15 -1528 ((-845 (-530)) (-597 (-530)))) (-15 -1528 ((-845 (-530)))) (-15 -3195 ((-845 (-530)) (-597 (-530)))) (-15 -3195 ((-845 (-530)))) (-15 -2902 ((-845 (-530)) (-597 (-530)))) (-15 -2902 ((-845 (-530)))) (-15 -2544 ((-845 (-530)) (-597 (-530)))) (-15 -2544 ((-845 (-530)))) (-15 -1649 ((-845 (-530)) (-597 (-530)))) (-15 -1649 ((-845 (-530)))) (-15 -4239 ((-845 (-530)))) (-15 -3701 ((-845 (-530)) (-597 (-530)))) (-15 -3701 ((-845 (-530)) (-911))))
+((-2995 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 12)) (-3333 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 11)))
+(((-859 |#1|) (-10 -7 (-15 -3333 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2995 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))))) (-432)) (T -859))
+((-2995 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))))
+(-10 -7 (-15 -3333 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2995 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))))
+((-2366 (((-297 |#1|) (-457)) 16)))
+(((-860 |#1|) (-10 -7 (-15 -2366 ((-297 |#1|) (-457)))) (-13 (-795) (-522))) (T -860))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-860 *4)) (-4 *4 (-13 (-795) (-522))))))
+(-10 -7 (-15 -2366 ((-297 |#1|) (-457))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-861) (-133)) (T -861))
-((-4063 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -1981 (-597 *1)) (|:| -1898 *1))) (-5 *3 (-597 *1)))) (-4051 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
-(-13 (-432) (-10 -8 (-15 -4063 ((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $))) (-15 -4051 ((-3 (-597 $) "failed") (-597 $) $))))
+((-3856 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -2065 (-597 *1)) (|:| -1974 *1))) (-5 *3 (-597 *1)))) (-1286 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
+(-13 (-432) (-10 -8 (-15 -3856 ((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $))) (-15 -1286 ((-3 (-597 $) "failed") (-597 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2108 (($ $ $) NIL)) (-2258 (((-804) $) NIL)) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2955 (($) NIL T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ $ $) NIL)))
-(((-862) (-13 (-742) (-675) (-10 -8 (-15 -2108 ($ $ $)) (-6 (-4272 "*"))))) (T -862))
-((-2108 (*1 *1 *1 *1) (-5 *1 (-862))))
-(-13 (-742) (-675) (-10 -8 (-15 -2108 ($ $ $)) (-6 (-4272 "*"))))
-((-4072 ((|#2| (-597 |#1|) (-597 |#1|)) 24)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| (-597 |#1|) (-597 |#1|)))) (-344) (-1157 |#1|)) (T -863))
-((-4072 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4)) (-5 *1 (-863 *4 *2)))))
-(-10 -7 (-15 -4072 (|#2| (-597 |#1|) (-597 |#1|))))
-((-1511 (((-1095 |#2|) (-597 |#2|) (-597 |#2|)) 17) (((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|)) 13)))
-(((-864 |#1| |#2|) (-10 -7 (-15 -1511 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1511 ((-1095 |#2|) (-597 |#2|) (-597 |#2|)))) (-1099) (-344)) (T -864))
-((-1511 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-1099)))) (-1511 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099)) (-4 *5 (-344)) (-5 *1 (-864 *4 *5)))))
-(-10 -7 (-15 -1511 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1511 ((-1095 |#2|) (-597 |#2|) (-597 |#2|))))
-((-4096 (((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 139)) (-3083 ((|#4| |#4|) 155)) (-4145 (((-597 (-388 (-893 |#1|))) (-597 (-1099))) 118)) (-3071 (((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530)) 75)) (-4190 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|)) 59)) (-1247 (((-637 |#4|) (-637 |#4|) (-597 |#4|)) 55)) (-4106 (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 151)) (-4082 (((-530) (-637 |#4|) (-862) (-1082)) 132) (((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082)) 131) (((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082)) 130) (((-530) (-637 |#4|) (-1082)) 127) (((-530) (-637 |#4|) (-597 (-1099)) (-1082)) 126) (((-530) (-637 |#4|) (-597 |#4|) (-1082)) 125) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862)) 124) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862)) 123) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862)) 122) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|)) 120) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099))) 119) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|)) 115)) (-4158 ((|#4| (-893 |#1|)) 68)) (-1225 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 152)) (-1217 (((-597 (-597 (-530))) (-530) (-530)) 129)) (-4245 (((-597 (-597 |#4|)) (-597 (-597 |#4|))) 88)) (-4233 (((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 86)) (-4222 (((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 85)) (-3095 (((-110) (-597 (-893 |#1|))) 17) (((-110) (-597 |#4|)) 13)) (-4168 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|)) 71)) (-4213 (((-597 |#4|) |#4|) 49)) (-4132 (((-597 (-388 (-893 |#1|))) (-597 |#4|)) 114) (((-637 (-388 (-893 |#1|))) (-637 |#4|)) 56) (((-388 (-893 |#1|)) |#4|) 111)) (-4119 (((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530)) 93)) (-4180 (((-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719)) 84)) (-1235 (((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719)) 101)) (-4201 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -1896 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -4113 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) 48)))
-(((-865 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -4082 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -4096 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -4106 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -4119 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -4132 ((-388 (-893 |#1|)) |#4|)) (-15 -4132 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -4132 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -4145 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -4158 (|#4| (-893 |#1|))) (-15 -4168 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -4180 ((-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -4190 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -4201 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -1896 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -4113 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -4213 ((-597 |#4|) |#4|)) (-15 -4222 ((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -4233 ((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -4245 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -1217 ((-597 (-597 (-530))) (-530) (-530))) (-15 -1225 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1235 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -1247 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3071 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -3083 (|#4| |#4|)) (-15 -3095 ((-110) (-597 |#4|))) (-15 -3095 ((-110) (-597 (-893 |#1|))))) (-13 (-289) (-140)) (-13 (-795) (-572 (-1099))) (-741) (-890 |#1| |#3| |#2|)) (T -865))
-((-3095 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))) (-3071 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9)))) (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10)) (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741)) (-5 *2 (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12)) (|:| |wcond| (-597 (-893 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *9)))) (|:| -3853 (-597 (-1181 (-388 (-893 *9))))))))) (-5 *1 (-865 *9 *10 *11 *12)))) (-1247 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1235 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-1225 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *5 *6 *7 *8)))) (-1217 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-4213 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1896 (-637 (-388 (-893 *4)))) (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -4113 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3853 (-597 (-1181 (-388 (-893 *4))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-4190 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3853 (-597 (-1181 (-388 (-893 *4))))))) (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *8))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))) (-4168 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-4132 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-4119 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8)))) (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099)))) (-4 *10 (-741)) (-5 *2 (-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11)) (|:| |wcond| (-597 (-893 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *8)))) (|:| -3853 (-597 (-1181 (-388 (-893 *8)))))))))) (|:| |rgsz| (-530)))) (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3853 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3853 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6)) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-4082 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-4082 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3853 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3853 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3853 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3853 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3853 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3853 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(-10 -7 (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -4082 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -4082 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -4082 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -4096 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -4106 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -4119 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -4132 ((-388 (-893 |#1|)) |#4|)) (-15 -4132 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -4132 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -4145 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -4158 (|#4| (-893 |#1|))) (-15 -4168 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -4180 ((-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -4190 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -4201 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -1896 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -4113 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -4213 ((-597 |#4|) |#4|)) (-15 -4222 ((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -4233 ((-719) (-597 (-2 (|:| -4113 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -4245 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -1217 ((-597 (-597 (-530))) (-530) (-530))) (-15 -1225 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1235 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -1247 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3071 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3853 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -3083 (|#4| |#4|)) (-15 -3095 ((-110) (-597 |#4|))) (-15 -3095 ((-110) (-597 (-893 |#1|)))))
-((-3230 (((-868) |#1| (-1099)) 17) (((-868) |#1| (-1099) (-1022 (-208))) 21)) (-3384 (((-868) |#1| |#1| (-1099) (-1022 (-208))) 19) (((-868) |#1| (-1099) (-1022 (-208))) 15)))
-(((-866 |#1|) (-10 -7 (-15 -3384 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3384 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3230 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3230 ((-868) |#1| (-1099)))) (-572 (-506))) (T -866))
-((-3230 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-3384 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -3384 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3384 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3230 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3230 ((-868) |#1| (-1099))))
-((-3922 (($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 70)) (-2838 (((-1022 (-208)) $) 40)) (-2825 (((-1022 (-208)) $) 39)) (-2813 (((-1022 (-208)) $) 38)) (-3363 (((-597 (-597 (-208))) $) 43)) (-3373 (((-1022 (-208)) $) 41)) (-3291 (((-530) (-530)) 32)) (-3338 (((-530) (-530)) 28)) (-3314 (((-530) (-530)) 30)) (-3267 (((-110) (-110)) 35)) (-3302 (((-530)) 31)) (-1735 (($ $ (-1022 (-208))) 73) (($ $) 74)) (-3397 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 78) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 79)) (-3384 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-3254 (((-530)) 36)) (-3350 (((-530)) 27)) (-3326 (((-530)) 29)) (-3044 (((-597 (-597 (-884 (-208)))) $) 95)) (-3241 (((-110) (-110)) 37)) (-2258 (((-804) $) 94)) (-3279 (((-110)) 34)))
-(((-867) (-13 (-914) (-10 -8 (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ $ (-1022 (-208)))) (-15 -3922 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1735 ($ $ (-1022 (-208)))) (-15 -1735 ($ $)) (-15 -3373 ((-1022 (-208)) $)) (-15 -3363 ((-597 (-597 (-208))) $)) (-15 -3350 ((-530))) (-15 -3338 ((-530) (-530))) (-15 -3326 ((-530))) (-15 -3314 ((-530) (-530))) (-15 -3302 ((-530))) (-15 -3291 ((-530) (-530))) (-15 -3279 ((-110))) (-15 -3267 ((-110) (-110))) (-15 -3254 ((-530))) (-15 -3241 ((-110) (-110)))))) (T -867))
-((-3397 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-3397 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-3384 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-3384 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3922 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-1735 (*1 *1 *1) (-5 *1 (-867))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))) (-3350 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3326 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3302 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3291 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3279 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-3254 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(-13 (-914) (-10 -8 (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ $ (-1022 (-208)))) (-15 -3922 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1735 ($ $ (-1022 (-208)))) (-15 -1735 ($ $)) (-15 -3373 ((-1022 (-208)) $)) (-15 -3363 ((-597 (-597 (-208))) $)) (-15 -3350 ((-530))) (-15 -3338 ((-530) (-530))) (-15 -3326 ((-530))) (-15 -3314 ((-530) (-530))) (-15 -3302 ((-530))) (-15 -3291 ((-530) (-530))) (-15 -3279 ((-110))) (-15 -3267 ((-110) (-110))) (-15 -3254 ((-530))) (-15 -3241 ((-110) (-110)))))
-((-3922 (($ $ (-1022 (-208))) 70) (($ $ (-1022 (-208)) (-1022 (-208))) 71)) (-2825 (((-1022 (-208)) $) 44)) (-2813 (((-1022 (-208)) $) 43)) (-3373 (((-1022 (-208)) $) 45)) (-3141 (((-530) (-530)) 37)) (-3190 (((-530) (-530)) 33)) (-3166 (((-530) (-530)) 35)) (-3119 (((-110) (-110)) 39)) (-3153 (((-530)) 36)) (-1735 (($ $ (-1022 (-208))) 74) (($ $) 75)) (-3397 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 84) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 85)) (-3230 (($ (-1 (-208) (-208)) (-1022 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-3384 (($ (-1 (-208) (-208)) (-1022 (-208))) 79) (($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208))) 80) (($ (-597 (-1 (-208) (-208))) (-1022 (-208))) 87) (($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-3217 (((-110) $) 40)) (-3107 (((-530)) 41)) (-3204 (((-530)) 32)) (-3178 (((-530)) 34)) (-3044 (((-597 (-597 (-884 (-208)))) $) 23)) (-3274 (((-110) (-110)) 42)) (-2258 (((-804) $) 106)) (-3130 (((-110)) 38)))
-(((-868) (-13 (-896) (-10 -8 (-15 -3384 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -3384 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3230 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3230 ($ (-1 (-208) (-208)))) (-15 -3384 ($ $ (-1022 (-208)))) (-15 -3217 ((-110) $)) (-15 -3922 ($ $ (-1022 (-208)))) (-15 -3922 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -1735 ($ $ (-1022 (-208)))) (-15 -1735 ($ $)) (-15 -3373 ((-1022 (-208)) $)) (-15 -3204 ((-530))) (-15 -3190 ((-530) (-530))) (-15 -3178 ((-530))) (-15 -3166 ((-530) (-530))) (-15 -3153 ((-530))) (-15 -3141 ((-530) (-530))) (-15 -3130 ((-110))) (-15 -3119 ((-110) (-110))) (-15 -3107 ((-530))) (-15 -3274 ((-110) (-110)))))) (T -868))
-((-3384 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *2 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3397 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3397 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3230 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3922 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-1735 (*1 *1 *1) (-5 *1 (-868))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3204 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3178 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3153 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3141 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3130 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3107 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(-13 (-896) (-10 -8 (-15 -3384 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -3384 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3384 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -3397 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3230 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3230 ($ (-1 (-208) (-208)))) (-15 -3384 ($ $ (-1022 (-208)))) (-15 -3217 ((-110) $)) (-15 -3922 ($ $ (-1022 (-208)))) (-15 -3922 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -1735 ($ $ (-1022 (-208)))) (-15 -1735 ($ $)) (-15 -3373 ((-1022 (-208)) $)) (-15 -3204 ((-530))) (-15 -3190 ((-530) (-530))) (-15 -3178 ((-530))) (-15 -3166 ((-530) (-530))) (-15 -3153 ((-530))) (-15 -3141 ((-530) (-530))) (-15 -3130 ((-110))) (-15 -3119 ((-110) (-110))) (-15 -3107 ((-530))) (-15 -3274 ((-110) (-110)))))
-((-3408 (((-597 (-1022 (-208))) (-597 (-597 (-884 (-208))))) 24)))
-(((-869) (-10 -7 (-15 -3408 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))) (T -869))
-((-3408 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
-(-10 -7 (-15 -3408 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))
-((-1529 ((|#2| |#2|) 26)) (-2378 ((|#2| |#2|) 27)) (-2562 ((|#2| |#2|) 25)) (-3917 ((|#2| |#2| (-1082)) 24)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -3917 (|#2| |#2| (-1082))) (-15 -2562 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -2378 (|#2| |#2|))) (-795) (-411 |#1|)) (T -870))
-((-2378 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-3917 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-795)) (-5 *1 (-870 *4 *2)) (-4 *2 (-411 *4)))))
-(-10 -7 (-15 -3917 (|#2| |#2| (-1082))) (-15 -2562 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)))
-((-1529 (((-297 (-530)) (-1099)) 16)) (-2378 (((-297 (-530)) (-1099)) 14)) (-2562 (((-297 (-530)) (-1099)) 12)) (-3917 (((-297 (-530)) (-1099) (-1082)) 19)))
-(((-871) (-10 -7 (-15 -3917 ((-297 (-530)) (-1099) (-1082))) (-15 -2562 ((-297 (-530)) (-1099))) (-15 -1529 ((-297 (-530)) (-1099))) (-15 -2378 ((-297 (-530)) (-1099))))) (T -871))
-((-2378 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1082)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(-10 -7 (-15 -3917 ((-297 (-530)) (-1099) (-1082))) (-15 -2562 ((-297 (-530)) (-1099))) (-15 -1529 ((-297 (-530)) (-1099))) (-15 -2378 ((-297 (-530)) (-1099))))
-((-3431 (((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)) 25)) (-3419 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3419 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -3431 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-827 |#1|) (-13 (-1027) (-975 |#2|))) (T -872))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5)) (-5 *1 (-872 *5 *3 *6)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5))) (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-872 *4 *5 *6)))))
-(-10 -7 (-15 -3419 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -3431 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|))))
-((-3431 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 30)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-795) (-827 |#1|)) (-13 (-411 |#2|) (-572 (-833 |#1|)) (-827 |#1|) (-975 (-570 $)))) (T -873))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $)))) (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5))) (-5 *1 (-873 *5 *6 *3)))))
-(-10 -7 (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
-((-3431 (((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)) 13)))
-(((-874 |#1|) (-10 -7 (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)))) (-515)) (T -874))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515)) (-5 *1 (-874 *3)))))
-(-10 -7 (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))))
-((-3431 (((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)) 54)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -3431 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)))) (-1027) (-13 (-795) (-975 (-570 $)) (-572 (-833 |#1|)) (-827 |#1|))) (T -875))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027)) (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5))) (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6)))))
-(-10 -7 (-15 -3431 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|))))
-((-3431 (((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)) 15)))
-(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3431 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)))) (-1027) (-827 |#1|) (-617 |#2|)) (T -876))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3)))))
-(-10 -7 (-15 -3431 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|))))
-((-3431 (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|)) 17 (|has| |#3| (-827 |#1|))) (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|))) 16)))
-(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -3431 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|)) (-1027) (-741) (-795) (-13 (-984) (-795) (-827 |#1|)) (-13 (-890 |#4| |#2| |#3|) (-572 (-833 |#1|)))) (T -877))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5)) (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3))) (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6)) (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4))) (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6))) (-5 *1 (-877 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3431 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -3431 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|))
-((-2461 ((|#2| |#2| (-597 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2461 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2461 (|#2| |#2| (-597 (-1 (-110) |#3|))))) (-795) (-411 |#1|) (-1135)) (T -878))
-((-2461 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))) (-2461 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))))
-(-10 -7 (-15 -2461 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2461 (|#2| |#2| (-597 (-1 (-110) |#3|)))))
-((-2461 (((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))) 18) (((-297 (-530)) (-1099) (-1 (-110) |#1|)) 15)))
-(((-879 |#1|) (-10 -7 (-15 -2461 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2461 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))))) (-1135)) (T -879))
-((-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))))
-(-10 -7 (-15 -2461 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2461 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|)))))
-((-3431 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 25)))
-(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-827 |#1|) (-572 (-833 |#1|))) (-932 |#2|)) (T -880))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6)) (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5)) (-5 *1 (-880 *5 *6 *3)))))
-(-10 -7 (-15 -3431 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
-((-3431 (((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))) 17)))
-(((-881 |#1|) (-10 -7 (-15 -3431 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))))) (-1027)) (T -881))
-((-3431 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *1 (-881 *5)))))
-(-10 -7 (-15 -3431 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099)))))
-((-3444 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 33)) (-3431 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 32)))
-(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3431 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -3444 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))) (-1027) (-13 (-984) (-795)) (-13 (-984) (-572 (-833 |#1|)) (-975 |#2|))) (T -882))
-((-3444 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6))) (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027)) (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8)) (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))) (-3431 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9))) (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027)) (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9)) (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795))) (-5 *1 (-882 *7 *8 *9)))))
-(-10 -7 (-15 -3431 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -3444 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))))
-((-3536 (((-1095 (-388 (-530))) (-530)) 63)) (-3524 (((-1095 (-530)) (-530)) 66)) (-2956 (((-1095 (-530)) (-530)) 60)) (-3514 (((-530) (-1095 (-530))) 55)) (-3503 (((-1095 (-388 (-530))) (-530)) 49)) (-3492 (((-1095 (-530)) (-530)) 38)) (-3480 (((-1095 (-530)) (-530)) 68)) (-3467 (((-1095 (-530)) (-530)) 67)) (-3456 (((-1095 (-388 (-530))) (-530)) 51)))
-(((-883) (-10 -7 (-15 -3456 ((-1095 (-388 (-530))) (-530))) (-15 -3467 ((-1095 (-530)) (-530))) (-15 -3480 ((-1095 (-530)) (-530))) (-15 -3492 ((-1095 (-530)) (-530))) (-15 -3503 ((-1095 (-388 (-530))) (-530))) (-15 -3514 ((-530) (-1095 (-530)))) (-15 -2956 ((-1095 (-530)) (-530))) (-15 -3524 ((-1095 (-530)) (-530))) (-15 -3536 ((-1095 (-388 (-530))) (-530))))) (T -883))
-((-3536 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3524 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))) (-3503 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3480 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3456 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(-10 -7 (-15 -3456 ((-1095 (-388 (-530))) (-530))) (-15 -3467 ((-1095 (-530)) (-530))) (-15 -3480 ((-1095 (-530)) (-530))) (-15 -3492 ((-1095 (-530)) (-530))) (-15 -3503 ((-1095 (-388 (-530))) (-530))) (-15 -3514 ((-530) (-1095 (-530)))) (-15 -2956 ((-1095 (-530)) (-530))) (-15 -3524 ((-1095 (-530)) (-530))) (-15 -3536 ((-1095 (-388 (-530))) (-530))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719)) NIL (|has| |#1| (-23)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-4109 (($ (-597 |#1|)) 13)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-4172 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3547 (($ (-719) |#1|) 8)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 10 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1777 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1987 (((-110) $ (-719)) NIL)) (-2171 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1312 (($ $ (-597 |#1|)) 26)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 20) (($ $ (-1148 (-530))) NIL)) (-1796 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1248 (((-862) $) 16)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1788 (($ $ $) 24)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 17)) (-2268 (($ (-597 |#1|)) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2245 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2234 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2167 (((-719) $) 14 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2204 (($ $ $) NIL)) (-2366 (((-804) $) NIL)) (-3093 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ $ $) NIL)))
+(((-862) (-13 (-742) (-675) (-10 -8 (-15 -2204 ($ $ $)) (-6 (-4271 "*"))))) (T -862))
+((-2204 (*1 *1 *1 *1) (-5 *1 (-862))))
+(-13 (-742) (-675) (-10 -8 (-15 -2204 ($ $ $)) (-6 (-4271 "*"))))
+((-3474 ((|#2| (-597 |#1|) (-597 |#1|)) 24)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -3474 (|#2| (-597 |#1|) (-597 |#1|)))) (-344) (-1157 |#1|)) (T -863))
+((-3474 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4)) (-5 *1 (-863 *4 *2)))))
+(-10 -7 (-15 -3474 (|#2| (-597 |#1|) (-597 |#1|))))
+((-1621 (((-1095 |#2|) (-597 |#2|) (-597 |#2|)) 17) (((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|)) 13)))
+(((-864 |#1| |#2|) (-10 -7 (-15 -1621 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1621 ((-1095 |#2|) (-597 |#2|) (-597 |#2|)))) (-1099) (-344)) (T -864))
+((-1621 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-1099)))) (-1621 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099)) (-4 *5 (-344)) (-5 *1 (-864 *4 *5)))))
+(-10 -7 (-15 -1621 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1621 ((-1095 |#2|) (-597 |#2|) (-597 |#2|))))
+((-3724 (((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 139)) (-1496 ((|#4| |#4|) 155)) (-2926 (((-597 (-388 (-893 |#1|))) (-597 (-1099))) 118)) (-3094 (((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530)) 75)) (-1434 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|)) 59)) (-3492 (((-637 |#4|) (-637 |#4|) (-597 |#4|)) 55)) (-3513 (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 151)) (-2050 (((-530) (-637 |#4|) (-862) (-1082)) 132) (((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082)) 131) (((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082)) 130) (((-530) (-637 |#4|) (-1082)) 127) (((-530) (-637 |#4|) (-597 (-1099)) (-1082)) 126) (((-530) (-637 |#4|) (-597 |#4|) (-1082)) 125) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862)) 124) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862)) 123) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862)) 122) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|)) 120) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099))) 119) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|)) 115)) (-1514 ((|#4| (-893 |#1|)) 68)) (-2610 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 152)) (-2225 (((-597 (-597 (-530))) (-530) (-530)) 129)) (-2224 (((-597 (-597 |#4|)) (-597 (-597 |#4|))) 88)) (-3430 (((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 86)) (-1571 (((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 85)) (-2836 (((-110) (-597 (-893 |#1|))) 17) (((-110) (-597 |#4|)) 13)) (-3201 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|)) 71)) (-1876 (((-597 |#4|) |#4|) 49)) (-3146 (((-597 (-388 (-893 |#1|))) (-597 |#4|)) 114) (((-637 (-388 (-893 |#1|))) (-637 |#4|)) 56) (((-388 (-893 |#1|)) |#4|) 111)) (-2013 (((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530)) 93)) (-2974 (((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719)) 84)) (-2125 (((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719)) 101)) (-2489 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) 48)))
+(((-865 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -3724 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -3513 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -2013 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -3146 ((-388 (-893 |#1|)) |#4|)) (-15 -3146 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -3146 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -2926 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1514 (|#4| (-893 |#1|))) (-15 -3201 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -2974 ((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -1434 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -2489 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -1876 ((-597 |#4|) |#4|)) (-15 -1571 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -3430 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -2224 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -2225 ((-597 (-597 (-530))) (-530) (-530))) (-15 -2610 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -2125 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -3492 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3094 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -1496 (|#4| |#4|)) (-15 -2836 ((-110) (-597 |#4|))) (-15 -2836 ((-110) (-597 (-893 |#1|))))) (-13 (-289) (-140)) (-13 (-795) (-572 (-1099))) (-741) (-890 |#1| |#3| |#2|)) (T -865))
+((-2836 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))) (-3094 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9)))) (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10)) (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741)) (-5 *2 (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12)) (|:| |wcond| (-597 (-893 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *9)))) (|:| -3220 (-597 (-1181 (-388 (-893 *9))))))))) (-5 *1 (-865 *9 *10 *11 *12)))) (-3492 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2225 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2030 (-637 (-388 (-893 *4)))) (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))) (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-2974 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *8))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-2013 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8)))) (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099)))) (-4 *10 (-741)) (-5 *2 (-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11)) (|:| |wcond| (-597 (-893 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *8)))) (|:| -3220 (-597 (-1181 (-388 (-893 *8)))))))))) (|:| |rgsz| (-530)))) (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6)) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-2050 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3220 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3220 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
+(-10 -7 (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -3724 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -3513 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -2013 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -3146 ((-388 (-893 |#1|)) |#4|)) (-15 -3146 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -3146 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -2926 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1514 (|#4| (-893 |#1|))) (-15 -3201 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -2974 ((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -1434 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -2489 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -1876 ((-597 |#4|) |#4|)) (-15 -1571 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -3430 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -2224 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -2225 ((-597 (-597 (-530))) (-530) (-530))) (-15 -2610 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -2125 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -3492 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3094 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -1496 (|#4| |#4|)) (-15 -2836 ((-110) (-597 |#4|))) (-15 -2836 ((-110) (-597 (-893 |#1|)))))
+((-3852 (((-868) |#1| (-1099)) 17) (((-868) |#1| (-1099) (-1022 (-208))) 21)) (-2532 (((-868) |#1| |#1| (-1099) (-1022 (-208))) 19) (((-868) |#1| (-1099) (-1022 (-208))) 15)))
+(((-866 |#1|) (-10 -7 (-15 -2532 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -2532 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099)))) (-572 (-506))) (T -866))
+((-3852 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-2532 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-2532 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))))
+(-10 -7 (-15 -2532 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -2532 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099))))
+((-2898 (($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 70)) (-3574 (((-1022 (-208)) $) 40)) (-3562 (((-1022 (-208)) $) 39)) (-3554 (((-1022 (-208)) $) 38)) (-3985 (((-597 (-597 (-208))) $) 43)) (-2698 (((-1022 (-208)) $) 41)) (-2745 (((-530) (-530)) 32)) (-3465 (((-530) (-530)) 28)) (-2450 (((-530) (-530)) 30)) (-3879 (((-110) (-110)) 35)) (-1485 (((-530)) 31)) (-3399 (($ $ (-1022 (-208))) 73) (($ $) 74)) (-1836 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 78) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 79)) (-2532 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-1318 (((-530)) 36)) (-2210 (((-530)) 27)) (-1788 (((-530)) 29)) (-2425 (((-597 (-597 (-884 (-208)))) $) 95)) (-2667 (((-110) (-110)) 37)) (-2366 (((-804) $) 94)) (-2012 (((-110)) 34)))
+(((-867) (-13 (-914) (-10 -8 (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3985 ((-597 (-597 (-208))) $)) (-15 -2210 ((-530))) (-15 -3465 ((-530) (-530))) (-15 -1788 ((-530))) (-15 -2450 ((-530) (-530))) (-15 -1485 ((-530))) (-15 -2745 ((-530) (-530))) (-15 -2012 ((-110))) (-15 -3879 ((-110) (-110))) (-15 -1318 ((-530))) (-15 -2667 ((-110) (-110)))))) (T -867))
+((-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-1836 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-2898 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3399 (*1 *1 *1) (-5 *1 (-867))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))) (-2210 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-1788 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-1485 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2012 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-1318 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+(-13 (-914) (-10 -8 (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3985 ((-597 (-597 (-208))) $)) (-15 -2210 ((-530))) (-15 -3465 ((-530) (-530))) (-15 -1788 ((-530))) (-15 -2450 ((-530) (-530))) (-15 -1485 ((-530))) (-15 -2745 ((-530) (-530))) (-15 -2012 ((-110))) (-15 -3879 ((-110) (-110))) (-15 -1318 ((-530))) (-15 -2667 ((-110) (-110)))))
+((-2898 (($ $ (-1022 (-208))) 70) (($ $ (-1022 (-208)) (-1022 (-208))) 71)) (-3562 (((-1022 (-208)) $) 44)) (-3554 (((-1022 (-208)) $) 43)) (-2698 (((-1022 (-208)) $) 45)) (-1800 (((-530) (-530)) 37)) (-2124 (((-530) (-530)) 33)) (-4241 (((-530) (-530)) 35)) (-3211 (((-110) (-110)) 39)) (-2470 (((-530)) 36)) (-3399 (($ $ (-1022 (-208))) 74) (($ $) 75)) (-1836 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 84) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 85)) (-3852 (($ (-1 (-208) (-208)) (-1022 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-2532 (($ (-1 (-208) (-208)) (-1022 (-208))) 79) (($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208))) 80) (($ (-597 (-1 (-208) (-208))) (-1022 (-208))) 87) (($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-1954 (((-110) $) 40)) (-1407 (((-530)) 41)) (-3841 (((-530)) 32)) (-3191 (((-530)) 34)) (-2425 (((-597 (-597 (-884 (-208)))) $) 23)) (-3331 (((-110) (-110)) 42)) (-2366 (((-804) $) 106)) (-3051 (((-110)) 38)))
+(((-868) (-13 (-896) (-10 -8 (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -1954 ((-110) $)) (-15 -2898 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3841 ((-530))) (-15 -2124 ((-530) (-530))) (-15 -3191 ((-530))) (-15 -4241 ((-530) (-530))) (-15 -2470 ((-530))) (-15 -1800 ((-530) (-530))) (-15 -3051 ((-110))) (-15 -3211 ((-110) (-110))) (-15 -1407 ((-530))) (-15 -3331 ((-110) (-110)))))) (T -868))
+((-2532 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-1836 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3852 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3852 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-2898 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-2898 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3399 (*1 *1 *1) (-5 *1 (-868))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3841 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3191 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-2470 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3051 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-1407 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3331 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(-13 (-896) (-10 -8 (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -1954 ((-110) $)) (-15 -2898 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3841 ((-530))) (-15 -2124 ((-530) (-530))) (-15 -3191 ((-530))) (-15 -4241 ((-530) (-530))) (-15 -2470 ((-530))) (-15 -1800 ((-530) (-530))) (-15 -3051 ((-110))) (-15 -3211 ((-110) (-110))) (-15 -1407 ((-530))) (-15 -3331 ((-110) (-110)))))
+((-1320 (((-597 (-1022 (-208))) (-597 (-597 (-884 (-208))))) 24)))
+(((-869) (-10 -7 (-15 -1320 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))) (T -869))
+((-1320 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
+(-10 -7 (-15 -1320 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))
+((-1523 ((|#2| |#2|) 26)) (-2507 ((|#2| |#2|) 27)) (-2708 ((|#2| |#2|) 25)) (-3925 ((|#2| |#2| (-1082)) 24)))
+(((-870 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2| (-1082))) (-15 -2708 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2507 (|#2| |#2|))) (-795) (-411 |#1|)) (T -870))
+((-2507 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-795)) (-5 *1 (-870 *4 *2)) (-4 *2 (-411 *4)))))
+(-10 -7 (-15 -3925 (|#2| |#2| (-1082))) (-15 -2708 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)))
+((-1523 (((-297 (-530)) (-1099)) 16)) (-2507 (((-297 (-530)) (-1099)) 14)) (-2708 (((-297 (-530)) (-1099)) 12)) (-3925 (((-297 (-530)) (-1099) (-1082)) 19)))
+(((-871) (-10 -7 (-15 -3925 ((-297 (-530)) (-1099) (-1082))) (-15 -2708 ((-297 (-530)) (-1099))) (-15 -1523 ((-297 (-530)) (-1099))) (-15 -2507 ((-297 (-530)) (-1099))))) (T -871))
+((-2507 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1082)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
+(-10 -7 (-15 -3925 ((-297 (-530)) (-1099) (-1082))) (-15 -2708 ((-297 (-530)) (-1099))) (-15 -1523 ((-297 (-530)) (-1099))) (-15 -2507 ((-297 (-530)) (-1099))))
+((-2890 (((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)) 25)) (-4118 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -4118 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2890 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-827 |#1|) (-13 (-1027) (-975 |#2|))) (T -872))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5)) (-5 *1 (-872 *5 *3 *6)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5))) (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-872 *4 *5 *6)))))
+(-10 -7 (-15 -4118 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2890 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|))))
+((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 30)))
+(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-795) (-827 |#1|)) (-13 (-411 |#2|) (-572 (-833 |#1|)) (-827 |#1|) (-975 (-570 $)))) (T -873))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $)))) (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5))) (-5 *1 (-873 *5 *6 *3)))))
+(-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
+((-2890 (((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)) 13)))
+(((-874 |#1|) (-10 -7 (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)))) (-515)) (T -874))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515)) (-5 *1 (-874 *3)))))
+(-10 -7 (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))))
+((-2890 (((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)) 54)))
+(((-875 |#1| |#2|) (-10 -7 (-15 -2890 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)))) (-1027) (-13 (-795) (-975 (-570 $)) (-572 (-833 |#1|)) (-827 |#1|))) (T -875))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027)) (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5))) (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6)))))
+(-10 -7 (-15 -2890 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|))))
+((-2890 (((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)) 15)))
+(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)))) (-1027) (-827 |#1|) (-617 |#2|)) (T -876))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3)))))
+(-10 -7 (-15 -2890 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|))))
+((-2890 (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|)) 17 (|has| |#3| (-827 |#1|))) (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|))) 16)))
+(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|)) (-1027) (-741) (-795) (-13 (-984) (-795) (-827 |#1|)) (-13 (-890 |#4| |#2| |#3|) (-572 (-833 |#1|)))) (T -877))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5)) (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3)))) (-2890 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3))) (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6)) (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4))) (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6))) (-5 *1 (-877 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|))
+((-2598 ((|#2| |#2| (-597 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
+(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2598 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2598 (|#2| |#2| (-597 (-1 (-110) |#3|))))) (-795) (-411 |#1|) (-1135)) (T -878))
+((-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))))
+(-10 -7 (-15 -2598 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2598 (|#2| |#2| (-597 (-1 (-110) |#3|)))))
+((-2598 (((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))) 18) (((-297 (-530)) (-1099) (-1 (-110) |#1|)) 15)))
+(((-879 |#1|) (-10 -7 (-15 -2598 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2598 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))))) (-1135)) (T -879))
+((-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))))
+(-10 -7 (-15 -2598 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2598 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|)))))
+((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 25)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-827 |#1|) (-572 (-833 |#1|))) (-932 |#2|)) (T -880))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6)) (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5)) (-5 *1 (-880 *5 *6 *3)))))
+(-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
+((-2890 (((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))) 17)))
+(((-881 |#1|) (-10 -7 (-15 -2890 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))))) (-1027)) (T -881))
+((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *1 (-881 *5)))))
+(-10 -7 (-15 -2890 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099)))))
+((-1520 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 33)) (-2890 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 32)))
+(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -1520 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))) (-1027) (-13 (-984) (-795)) (-13 (-984) (-572 (-833 |#1|)) (-975 |#2|))) (T -882))
+((-1520 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6))) (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027)) (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8)) (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))) (-2890 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9))) (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027)) (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9)) (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795))) (-5 *1 (-882 *7 *8 *9)))))
+(-10 -7 (-15 -2890 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -1520 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))))
+((-1387 (((-1095 (-388 (-530))) (-530)) 63)) (-2915 (((-1095 (-530)) (-530)) 66)) (-3730 (((-1095 (-530)) (-530)) 60)) (-3126 (((-530) (-1095 (-530))) 55)) (-2067 (((-1095 (-388 (-530))) (-530)) 49)) (-3570 (((-1095 (-530)) (-530)) 38)) (-3699 (((-1095 (-530)) (-530)) 68)) (-1923 (((-1095 (-530)) (-530)) 67)) (-3190 (((-1095 (-388 (-530))) (-530)) 51)))
+(((-883) (-10 -7 (-15 -3190 ((-1095 (-388 (-530))) (-530))) (-15 -1923 ((-1095 (-530)) (-530))) (-15 -3699 ((-1095 (-530)) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -2067 ((-1095 (-388 (-530))) (-530))) (-15 -3126 ((-530) (-1095 (-530)))) (-15 -3730 ((-1095 (-530)) (-530))) (-15 -2915 ((-1095 (-530)) (-530))) (-15 -1387 ((-1095 (-388 (-530))) (-530))))) (T -883))
+((-1387 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))) (-2067 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-1923 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(-10 -7 (-15 -3190 ((-1095 (-388 (-530))) (-530))) (-15 -1923 ((-1095 (-530)) (-530))) (-15 -3699 ((-1095 (-530)) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -2067 ((-1095 (-388 (-530))) (-530))) (-15 -3126 ((-530) (-1095 (-530)))) (-15 -3730 ((-1095 (-530)) (-530))) (-15 -2915 ((-1095 (-530)) (-530))) (-15 -1387 ((-1095 (-388 (-530))) (-530))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2422 (($ (-597 |#1|)) 13)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 8)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 10 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-3168 (($ $ (-597 |#1|)) 26)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 20) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-2488 (((-862) $) 16)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) 24)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 17)) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) 14 (|has| $ (-6 -4269)))))
(((-884 |#1|) (-920 |#1|) (-984)) (T -884))
NIL
(-920 |#1|)
-((-3571 (((-460 |#1| |#2|) (-893 |#2|)) 20)) (-3605 (((-230 |#1| |#2|) (-893 |#2|)) 33)) (-3584 (((-893 |#2|) (-460 |#1| |#2|)) 25)) (-3559 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-3596 (((-893 |#2|) (-230 |#1| |#2|)) 30)) (-3549 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -3549 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -3559 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -3571 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -3584 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -3596 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3605 ((-230 |#1| |#2|) (-893 |#2|)))) (-597 (-1099)) (-984)) (T -885))
-((-3605 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(-10 -7 (-15 -3549 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -3559 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -3571 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -3584 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -3596 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3605 ((-230 |#1| |#2|) (-893 |#2|))))
-((-3613 (((-597 |#2|) |#2| |#2|) 10)) (-3638 (((-719) (-597 |#1|)) 37 (|has| |#1| (-793)))) (-3622 (((-597 |#2|) |#2|) 11)) (-3649 (((-719) (-597 |#1|) (-530) (-530)) 39 (|has| |#1| (-793)))) (-3631 ((|#1| |#2|) 32 (|has| |#1| (-793)))))
-(((-886 |#1| |#2|) (-10 -7 (-15 -3613 ((-597 |#2|) |#2| |#2|)) (-15 -3622 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -3631 (|#1| |#2|)) (-15 -3638 ((-719) (-597 |#1|))) (-15 -3649 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|)) (-344) (-1157 |#1|)) (T -886))
-((-3649 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))) (-3631 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1157 *2)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))) (-3613 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3613 ((-597 |#2|) |#2| |#2|)) (-15 -3622 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -3631 (|#1| |#2|)) (-15 -3638 ((-719) (-597 |#1|))) (-15 -3649 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|))
-((-3114 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -3114 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-984) (-984)) (T -887))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-893 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -3114 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
-((-2439 (((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)) 18)))
-(((-888 |#1| |#2|) (-10 -7 (-15 -2439 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)))) (-1099) (-984)) (T -888))
-((-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1099)) (-4 *6 (-984)) (-5 *2 (-1154 *5 (-893 *6))) (-5 *1 (-888 *5 *6)) (-5 *3 (-893 *6)))))
-(-10 -7 (-15 -2439 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|))))
-((-3667 (((-719) $) 71) (((-719) $ (-597 |#4|)) 74)) (-1359 (($ $) 173)) (-3550 (((-399 $) $) 165)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 116)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) 59)) (-2330 (($ $ $ |#4|) 76)) (-1298 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 106) (((-637 |#2|) (-637 $)) 99)) (-3703 (($ $) 180) (($ $ |#4|) 183)) (-2411 (((-597 $) $) 63)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 199) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 192)) (-3683 (((-597 $) $) 28)) (-2575 (($ |#2| |#3|) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) 57)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#4|) 162)) (-2457 (((-3 (-597 $) "failed") $) 42)) (-3691 (((-3 (-597 $) "failed") $) 31)) (-2467 (((-3 (-2 (|:| |var| |#4|) (|:| -3059 (-719))) "failed") $) 47)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 109)) (-1818 (((-399 (-1095 $)) (-1095 $)) 122)) (-3707 (((-399 (-1095 $)) (-1095 $)) 120)) (-2473 (((-399 $) $) 140)) (-4084 (($ $ (-597 (-276 $))) 21) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL)) (-2341 (($ $ |#4|) 78)) (-3173 (((-833 (-360)) $) 213) (((-833 (-530)) $) 206) (((-506) $) 221)) (-3658 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 154)) (-2782 ((|#2| $ |#3|) NIL) (($ $ |#4| (-719)) 52) (($ $ (-597 |#4|) (-597 (-719))) 55)) (-1795 (((-3 $ "failed") $) 156)) (-2172 (((-110) $ $) 186)))
-(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -1801 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3703 (|#1| |#1| |#4|)) (-15 -3658 (|#1| |#1| |#4|)) (-15 -2341 (|#1| |#1| |#4|)) (-15 -2330 (|#1| |#1| |#1| |#4|)) (-15 -2411 ((-597 |#1|) |#1|)) (-15 -3667 ((-719) |#1| (-597 |#4|))) (-15 -3667 ((-719) |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| |#4|) (|:| -3059 (-719))) "failed") |#1|)) (-15 -2457 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -3691 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2575 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2575 (|#1| |#1| |#4| (-719))) (-15 -2393 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3683 ((-597 |#1|) |#1|)) (-15 -2782 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2782 (|#1| |#1| |#4| (-719))) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#4| |#1|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#4| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#4| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2575 (|#1| |#2| |#3|)) (-15 -2782 (|#2| |#1| |#3|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3703 (|#1| |#1|))) (-890 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -889))
-NIL
-(-10 -8 (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1795 ((-3 |#1| "failed") |#1|)) (-15 -2172 ((-110) |#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -1801 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3703 (|#1| |#1| |#4|)) (-15 -3658 (|#1| |#1| |#4|)) (-15 -2341 (|#1| |#1| |#4|)) (-15 -2330 (|#1| |#1| |#1| |#4|)) (-15 -2411 ((-597 |#1|) |#1|)) (-15 -3667 ((-719) |#1| (-597 |#4|))) (-15 -3667 ((-719) |#1|)) (-15 -2467 ((-3 (-2 (|:| |var| |#4|) (|:| -3059 (-719))) "failed") |#1|)) (-15 -2457 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -3691 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2575 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2575 (|#1| |#1| |#4| (-719))) (-15 -2393 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3683 ((-597 |#1|) |#1|)) (-15 -2782 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2782 (|#1| |#1| |#4| (-719))) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#4| |#1|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#4| |#1|)) (-15 -4084 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4084 (|#1| |#1| |#4| |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2575 (|#1| |#2| |#3|)) (-15 -2782 (|#2| |#1| |#3|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3703 (|#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 |#3|) $) 110)) (-2439 (((-1095 $) $ |#3|) 125) (((-1095 |#1|) $) 124)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 87 (|has| |#1| (-522)))) (-3031 (($ $) 88 (|has| |#1| (-522)))) (-3006 (((-110) $) 90 (|has| |#1| (-522)))) (-3667 (((-719) $) 112) (((-719) $ (-597 |#3|)) 111)) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1359 (($ $) 98 (|has| |#1| (-432)))) (-3550 (((-399 $) $) 97 (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 103 (|has| |#1| (-850)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 164) (((-3 (-388 (-530)) "failed") $) 162 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 160 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 136)) (-2446 ((|#1| $) 165) (((-388 (-530)) $) 161 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 159 (|has| |#1| (-975 (-530)))) ((|#3| $) 135)) (-2330 (($ $ $ |#3|) 108 (|has| |#1| (-162)))) (-2425 (($ $) 154)) (-1298 (((-637 (-530)) (-637 $)) 134 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-1673 (((-3 $ "failed") $) 34)) (-3703 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-2411 (((-597 $) $) 109)) (-2049 (((-110) $) 96 (|has| |#1| (-850)))) (-2097 (($ $ |#1| |#2| $) 172)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 83 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-3150 (((-110) $) 31)) (-3239 (((-719) $) 169)) (-2586 (($ (-1095 |#1|) |#3|) 117) (($ (-1095 $) |#3|) 116)) (-3683 (((-597 $) $) 126)) (-3327 (((-110) $) 152)) (-2575 (($ |#1| |#2|) 153) (($ $ |#3| (-719)) 119) (($ $ (-597 |#3|) (-597 (-719))) 118)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#3|) 120)) (-3674 ((|#2| $) 170) (((-719) $ |#3|) 122) (((-597 (-719)) $ (-597 |#3|)) 121)) (-4194 (($ $ $) 79 (|has| |#1| (-795)))) (-1757 (($ $ $) 78 (|has| |#1| (-795)))) (-2107 (($ (-1 |#2| |#2|) $) 171)) (-3114 (($ (-1 |#1| |#1|) $) 151)) (-1367 (((-3 |#3| "failed") $) 123)) (-2388 (($ $) 149)) (-2402 ((|#1| $) 148)) (-2072 (($ (-597 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3443 (((-1082) $) 9)) (-2457 (((-3 (-597 $) "failed") $) 114)) (-3691 (((-3 (-597 $) "failed") $) 115)) (-2467 (((-3 (-2 (|:| |var| |#3|) (|:| -3059 (-719))) "failed") $) 113)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 166)) (-2375 ((|#1| $) 167)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 95 (|has| |#1| (-432)))) (-2108 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 102 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 99 (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) 145) (($ $ (-276 $)) 144) (($ $ $ $) 143) (($ $ (-597 $) (-597 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-597 |#3|) (-597 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-597 |#3|) (-597 $)) 138)) (-2341 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3211 (($ $ |#3|) 42) (($ $ (-597 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-597 |#3|) (-597 (-719))) 39)) (-3409 ((|#2| $) 150) (((-719) $ |#3|) 130) (((-597 (-719)) $ (-597 |#3|)) 129)) (-3173 (((-833 (-360)) $) 82 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 81 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 80 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 104 (-3340 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-522))) (($ (-388 (-530))) 72 (-1476 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-1669 (((-597 |#1|) $) 168)) (-2782 ((|#1| $ |#2|) 155) (($ $ |#3| (-719)) 128) (($ $ (-597 |#3|) (-597 (-719))) 127)) (-1795 (((-3 $ "failed") $) 73 (-1476 (-3340 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 29)) (-2084 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 89 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ |#3|) 38) (($ $ (-597 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-597 |#3|) (-597 (-719))) 35)) (-2204 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 157 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-1704 (((-460 |#1| |#2|) (-893 |#2|)) 20)) (-3938 (((-230 |#1| |#2|) (-893 |#2|)) 33)) (-2823 (((-893 |#2|) (-460 |#1| |#2|)) 25)) (-2953 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-2315 (((-893 |#2|) (-230 |#1| |#2|)) 30)) (-3185 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -3185 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -2953 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1704 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -2823 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -2315 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3938 ((-230 |#1| |#2|) (-893 |#2|)))) (-597 (-1099)) (-984)) (T -885))
+((-3938 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(-10 -7 (-15 -3185 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -2953 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1704 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -2823 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -2315 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3938 ((-230 |#1| |#2|) (-893 |#2|))))
+((-2526 (((-597 |#2|) |#2| |#2|) 10)) (-2636 (((-719) (-597 |#1|)) 37 (|has| |#1| (-793)))) (-2353 (((-597 |#2|) |#2|) 11)) (-2390 (((-719) (-597 |#1|) (-530) (-530)) 39 (|has| |#1| (-793)))) (-4169 ((|#1| |#2|) 32 (|has| |#1| (-793)))))
+(((-886 |#1| |#2|) (-10 -7 (-15 -2526 ((-597 |#2|) |#2| |#2|)) (-15 -2353 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -4169 (|#1| |#2|)) (-15 -2636 ((-719) (-597 |#1|))) (-15 -2390 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|)) (-344) (-1157 |#1|)) (T -886))
+((-2390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))) (-4169 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1157 *2)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))) (-2526 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -2526 ((-597 |#2|) |#2| |#2|)) (-15 -2353 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -4169 (|#1| |#2|)) (-15 -2636 ((-719) (-597 |#1|))) (-15 -2390 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|))
+((-3217 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -3217 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-984) (-984)) (T -887))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-893 *6)) (-5 *1 (-887 *5 *6)))))
+(-10 -7 (-15 -3217 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
+((-2577 (((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)) 18)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -2577 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)))) (-1099) (-984)) (T -888))
+((-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1099)) (-4 *6 (-984)) (-5 *2 (-1154 *5 (-893 *6))) (-5 *1 (-888 *5 *6)) (-5 *3 (-893 *6)))))
+(-10 -7 (-15 -2577 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|))))
+((-3471 (((-719) $) 71) (((-719) $ (-597 |#4|)) 74)) (-3544 (($ $) 173)) (-3272 (((-399 $) $) 165)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 116)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) 59)) (-3388 (($ $ $ |#4|) 76)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 106) (((-637 |#2|) (-637 $)) 99)) (-1239 (($ $) 180) (($ $ |#4|) 183)) (-2548 (((-597 $) $) 63)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 199) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 192)) (-2469 (((-597 $) $) 28)) (-2725 (($ |#2| |#3|) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) 57)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#4|) 162)) (-1862 (((-3 (-597 $) "failed") $) 42)) (-1534 (((-3 (-597 $) "failed") $) 31)) (-1487 (((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") $) 47)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 109)) (-3845 (((-399 (-1095 $)) (-1095 $)) 122)) (-1473 (((-399 (-1095 $)) (-1095 $)) 120)) (-2611 (((-399 $) $) 140)) (-4098 (($ $ (-597 (-276 $))) 21) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL)) (-3060 (($ $ |#4|) 78)) (-3260 (((-833 (-360)) $) 213) (((-833 (-530)) $) 206) (((-506) $) 221)) (-3829 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 154)) (-4085 ((|#2| $ |#3|) NIL) (($ $ |#4| (-719)) 52) (($ $ (-597 |#4|) (-597 (-719))) 55)) (-3251 (((-3 $ "failed") $) 156)) (-2272 (((-110) $ $) 186)))
+(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1239 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#4|)) (-15 -3060 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -2548 ((-597 |#1|) |#1|)) (-15 -3471 ((-719) |#1| (-597 |#4|))) (-15 -3471 ((-719) |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2725 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2725 (|#1| |#1| |#4| (-719))) (-15 -1357 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -2469 ((-597 |#1|) |#1|)) (-15 -4085 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -4085 (|#1| |#1| |#4| (-719))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2725 (|#1| |#2| |#3|)) (-15 -4085 (|#2| |#1| |#3|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -1239 (|#1| |#1|))) (-890 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -889))
+NIL
+(-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1239 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#4|)) (-15 -3060 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -2548 ((-597 |#1|) |#1|)) (-15 -3471 ((-719) |#1| (-597 |#4|))) (-15 -3471 ((-719) |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2725 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2725 (|#1| |#1| |#4| (-719))) (-15 -1357 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -2469 ((-597 |#1|) |#1|)) (-15 -4085 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -4085 (|#1| |#1| |#4| (-719))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2725 (|#1| |#2| |#3|)) (-15 -4085 (|#2| |#1| |#3|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -1239 (|#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133)) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| |#2| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#2|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-2944 ((|#2| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#2| |#2|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2040 (((-3 |#3| "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136)) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37)) (-1429 ((|#2| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-522))) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#2|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-890 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -890))
-((-3703 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3409 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-2782 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-2782 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-3683 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2439 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *3)))) (-1367 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3674 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-2393 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-890 *4 *5 *3)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-2586 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *4)) (-4 *4 (-984)) (-4 *1 (-890 *4 *5 *3)) (-4 *5 (-741)) (-4 *3 (-795)))) (-2586 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)))) (-3691 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2457 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2467 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3059 (-719)))))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3667 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2330 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-2341 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3658 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-3703 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3550 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5)))))
-(-13 (-841 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-491 |t#3| |t#1|) (-491 |t#3| $) (-975 |t#3|) (-358 |t#1|) (-10 -8 (-15 -3409 ((-719) $ |t#3|)) (-15 -3409 ((-597 (-719)) $ (-597 |t#3|))) (-15 -2782 ($ $ |t#3| (-719))) (-15 -2782 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -3683 ((-597 $) $)) (-15 -2439 ((-1095 $) $ |t#3|)) (-15 -2439 ((-1095 |t#1|) $)) (-15 -1367 ((-3 |t#3| "failed") $)) (-15 -3674 ((-719) $ |t#3|)) (-15 -3674 ((-597 (-719)) $ (-597 |t#3|))) (-15 -2393 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |t#3|)) (-15 -2575 ($ $ |t#3| (-719))) (-15 -2575 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -2586 ($ (-1095 |t#1|) |t#3|)) (-15 -2586 ($ (-1095 $) |t#3|)) (-15 -3691 ((-3 (-597 $) "failed") $)) (-15 -2457 ((-3 (-597 $) "failed") $)) (-15 -2467 ((-3 (-2 (|:| |var| |t#3|) (|:| -3059 (-719))) "failed") $)) (-15 -3667 ((-719) $)) (-15 -3667 ((-719) $ (-597 |t#3|))) (-15 -2596 ((-597 |t#3|) $)) (-15 -2411 ((-597 $) $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (IF (|has| |t#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-530)))) (IF (|has| |t#3| (-572 (-833 (-530)))) (-6 (-572 (-833 (-530)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-360)))) (IF (|has| |t#3| (-572 (-833 (-360)))) (-6 (-572 (-833 (-360)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-530))) (IF (|has| |t#3| (-827 (-530))) (-6 (-827 (-530))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-360))) (IF (|has| |t#3| (-827 (-360))) (-6 (-827 (-360))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -2330 ($ $ $ |t#3|)) (-15 -2341 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -3658 ($ $ |t#3|)) (-15 -3703 ($ $)) (-15 -3703 ($ $ |t#3|)) (-15 -3550 ((-399 $) $)) (-15 -1359 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4268)) (-6 -4268) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-272) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-2596 (((-597 |#2|) |#5|) 36)) (-2439 (((-1095 |#5|) |#5| |#2| (-1095 |#5|)) 23) (((-388 (-1095 |#5|)) |#5| |#2|) 16)) (-2586 ((|#5| (-388 (-1095 |#5|)) |#2|) 30)) (-1367 (((-3 |#2| "failed") |#5|) 65)) (-2457 (((-3 (-597 |#5|) "failed") |#5|) 59)) (-2479 (((-3 (-2 (|:| |val| |#5|) (|:| -3059 (-530))) "failed") |#5|) 47)) (-3691 (((-3 (-597 |#5|) "failed") |#5|) 61)) (-2467 (((-3 (-2 (|:| |var| |#2|) (|:| -3059 (-530))) "failed") |#5|) 51)))
-(((-891 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2596 ((-597 |#2|) |#5|)) (-15 -1367 ((-3 |#2| "failed") |#5|)) (-15 -2439 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2586 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2439 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -3691 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -2457 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -2467 ((-3 (-2 (|:| |var| |#2|) (|:| -3059 (-530))) "failed") |#5|)) (-15 -2479 ((-3 (-2 (|:| |val| |#5|) (|:| -3059 (-530))) "failed") |#5|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2258 ($ |#4|)) (-15 -1848 (|#4| $)) (-15 -1857 (|#4| $))))) (T -891))
-((-2479 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3059 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))) (-2467 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3059 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))) (-2457 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))) (-3691 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))) (-2439 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))) (-4 *7 (-890 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-5 *1 (-891 *5 *4 *6 *7 *3)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 *2))) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *2 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))) (-5 *1 (-891 *5 *4 *6 *7 *2)) (-4 *7 (-890 *6 *5 *4)))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-388 (-1095 *3))) (-5 *1 (-891 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))) (-1367 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2)) (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *6)) (-15 -1848 (*6 $)) (-15 -1857 (*6 $))))))) (-2596 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *5)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $))))))))
-(-10 -7 (-15 -2596 ((-597 |#2|) |#5|)) (-15 -1367 ((-3 |#2| "failed") |#5|)) (-15 -2439 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2586 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2439 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -3691 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -2457 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -2467 ((-3 (-2 (|:| |var| |#2|) (|:| -3059 (-530))) "failed") |#5|)) (-15 -2479 ((-3 (-2 (|:| |val| |#5|) (|:| -3059 (-530))) "failed") |#5|)))
-((-3114 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3114 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (T -892))
-((-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *6 (-741)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (-5 *1 (-892 *6 *7 *8 *5 *2)) (-4 *5 (-890 *8 *6 *7)))))
-(-10 -7 (-15 -3114 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1099)) $) 16)) (-2439 (((-1095 $) $ (-1099)) 21) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1099))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 8) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1099) $) NIL)) (-2330 (($ $ $ (-1099)) NIL (|has| |#1| (-162)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-502 (-1099)) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1099) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1099) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#1|) (-1099)) NIL) (($ (-1095 $) (-1099)) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1099)) NIL)) (-3674 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 (-1099)) (-502 (-1099))) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1367 (((-3 (-1099) "failed") $) 19)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1099)) (|:| -3059 (-719))) "failed") $) NIL)) (-1637 (($ $ (-1099)) 29 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-597 (-1099)) (-597 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL)) (-2341 (($ $ (-1099)) NIL (|has| |#1| (-162)))) (-3211 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3409 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1099) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 25) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1099)) 27) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-893 |#1|) (-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1099))) |%noBranch|))) (-984)) (T -893))
-((-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-893 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
-(-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1099))) |%noBranch|)))
-((-2492 (((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#3| (-719)) 38)) (-2503 (((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719)) 34)) (-2525 (((-2 (|:| -3059 (-719)) (|:| -1981 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)) 54)) (-2514 (((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#5| (-719)) 64 (|has| |#3| (-432)))))
-(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2492 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -2503 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -2514 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2525 ((-2 (|:| -3059 (-719)) (|:| -1981 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1848 (|#4| $)) (-15 -1857 (|#4| $)) (-15 -2258 ($ |#4|))))) (T -894))
-((-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *3 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| (-597 *3)))) (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1848 (*3 $)) (-15 -1857 (*3 $)) (-15 -2258 ($ *3))))))) (-2514 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| *3))) (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719)) (-4 *3 (-13 (-344) (-10 -8 (-15 -1848 (*8 $)) (-15 -1857 (*8 $)) (-15 -2258 ($ *8))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *9) (|:| |radicand| *9))) (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719)) (-4 *9 (-13 (-344) (-10 -8 (-15 -1848 (*8 $)) (-15 -1857 (*8 $)) (-15 -2258 ($ *8))))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522)) (-4 *7 (-890 *3 *5 *6)) (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *8) (|:| |radicand| *8))) (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1848 (*7 $)) (-15 -1857 (*7 $)) (-15 -2258 ($ *7))))))))
-(-10 -7 (-15 -2492 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -2503 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -2514 ((-2 (|:| -3059 (-719)) (|:| -1981 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2525 ((-2 (|:| -3059 (-719)) (|:| -1981 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719))))
-((-2246 (((-110) $ $) NIL)) (-2534 (($ (-1046)) 8)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 14) (((-1046) $) 11)) (-2148 (((-110) $ $) 10)))
-(((-895) (-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -2534 ($ (-1046)))))) (T -895))
-((-2534 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
-(-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -2534 ($ (-1046)))))
-((-2825 (((-1022 (-208)) $) 8)) (-2813 (((-1022 (-208)) $) 9)) (-3044 (((-597 (-597 (-884 (-208)))) $) 10)) (-2258 (((-804) $) 6)))
+((-1239 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-1429 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-1429 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-2469 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2577 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *3)))) (-2040 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-1357 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-890 *4 *5 *3)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *4)) (-4 *4 (-984)) (-4 *1 (-890 *4 *5 *3)) (-4 *5 (-741)) (-4 *3 (-795)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)))) (-1534 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-1862 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-1487 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-719)))))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3471 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-2548 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3829 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-1239 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-3544 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3272 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5)))))
+(-13 (-841 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-491 |t#3| |t#1|) (-491 |t#3| $) (-975 |t#3|) (-358 |t#1|) (-10 -8 (-15 -1429 ((-719) $ |t#3|)) (-15 -1429 ((-597 (-719)) $ (-597 |t#3|))) (-15 -4085 ($ $ |t#3| (-719))) (-15 -4085 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -2469 ((-597 $) $)) (-15 -2577 ((-1095 $) $ |t#3|)) (-15 -2577 ((-1095 |t#1|) $)) (-15 -2040 ((-3 |t#3| "failed") $)) (-15 -2944 ((-719) $ |t#3|)) (-15 -2944 ((-597 (-719)) $ (-597 |t#3|))) (-15 -1357 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |t#3|)) (-15 -2725 ($ $ |t#3| (-719))) (-15 -2725 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -2735 ($ (-1095 |t#1|) |t#3|)) (-15 -2735 ($ (-1095 $) |t#3|)) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |var| |t#3|) (|:| -3194 (-719))) "failed") $)) (-15 -3471 ((-719) $)) (-15 -3471 ((-719) $ (-597 |t#3|))) (-15 -2746 ((-597 |t#3|) $)) (-15 -2548 ((-597 $) $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (IF (|has| |t#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-530)))) (IF (|has| |t#3| (-572 (-833 (-530)))) (-6 (-572 (-833 (-530)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-360)))) (IF (|has| |t#3| (-572 (-833 (-360)))) (-6 (-572 (-833 (-360)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-530))) (IF (|has| |t#3| (-827 (-530))) (-6 (-827 (-530))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-360))) (IF (|has| |t#3| (-827 (-360))) (-6 (-827 (-360))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3388 ($ $ $ |t#3|)) (-15 -3060 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -3829 ($ $ |t#3|)) (-15 -1239 ($ $)) (-15 -1239 ($ $ |t#3|)) (-15 -3272 ((-399 $) $)) (-15 -3544 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
+((-2746 (((-597 |#2|) |#5|) 36)) (-2577 (((-1095 |#5|) |#5| |#2| (-1095 |#5|)) 23) (((-388 (-1095 |#5|)) |#5| |#2|) 16)) (-2735 ((|#5| (-388 (-1095 |#5|)) |#2|) 30)) (-2040 (((-3 |#2| "failed") |#5|) 65)) (-1862 (((-3 (-597 |#5|) "failed") |#5|) 59)) (-3193 (((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|) 47)) (-1534 (((-3 (-597 |#5|) "failed") |#5|) 61)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|) 51)))
+(((-891 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2746 ((-597 |#2|) |#5|)) (-15 -2040 ((-3 |#2| "failed") |#5|)) (-15 -2577 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2735 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2577 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -1534 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1862 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1487 ((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|)) (-15 -3193 ((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2366 ($ |#4|)) (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $))))) (T -891))
+((-3193 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3194 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1487 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1862 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1534 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-2577 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))) (-4 *7 (-890 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-5 *1 (-891 *5 *4 *6 *7 *3)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 *2))) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *2 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))) (-5 *1 (-891 *5 *4 *6 *7 *2)) (-4 *7 (-890 *6 *5 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-388 (-1095 *3))) (-5 *1 (-891 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-2040 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2)) (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *6)) (-15 -1918 (*6 $)) (-15 -1928 (*6 $))))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *5)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))))
+(-10 -7 (-15 -2746 ((-597 |#2|) |#5|)) (-15 -2040 ((-3 |#2| "failed") |#5|)) (-15 -2577 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2735 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2577 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -1534 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1862 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1487 ((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|)) (-15 -3193 ((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|)))
+((-3217 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3217 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (T -892))
+((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *6 (-741)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (-5 *1 (-892 *6 *7 *8 *5 *2)) (-4 *5 (-890 *8 *6 *7)))))
+(-10 -7 (-15 -3217 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) 16)) (-2577 (((-1095 $) $ (-1099)) 21) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1099))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 8) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1099) $) NIL)) (-3388 (($ $ $ (-1099)) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-1099)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1099) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1099) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-1099)) NIL) (($ (-1095 $) (-1099)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1099)) NIL)) (-2944 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-1099)) (-502 (-1099))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2040 (((-3 (-1099) "failed") $) 19)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1099)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $ (-1099)) 29 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-597 (-1099)) (-597 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL)) (-3060 (($ $ (-1099)) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1429 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1099) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 25) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1099)) 27) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-893 |#1|) (-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1099))) |%noBranch|))) (-984)) (T -893))
+((-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-893 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
+(-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1099))) |%noBranch|)))
+((-2962 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719)) 38)) (-1515 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719)) 34)) (-2894 (((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)) 54)) (-3452 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719)) 64 (|has| |#3| (-432)))))
+(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2962 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -1515 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -3452 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2894 ((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $)) (-15 -2366 ($ |#4|))))) (T -894))
+((-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *3 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| (-597 *3)))) (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1918 (*3 $)) (-15 -1928 (*3 $)) (-15 -2366 ($ *3))))))) (-3452 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *3))) (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719)) (-4 *3 (-13 (-344) (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *9) (|:| |radicand| *9))) (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719)) (-4 *9 (-13 (-344) (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))) (-2962 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522)) (-4 *7 (-890 *3 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *8) (|:| |radicand| *8))) (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1918 (*7 $)) (-15 -1928 (*7 $)) (-15 -2366 ($ *7))))))))
+(-10 -7 (-15 -2962 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -1515 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -3452 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2894 ((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719))))
+((-2352 (((-110) $ $) NIL)) (-1417 (($ (-1046)) 8)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 14) (((-1046) $) 11)) (-2248 (((-110) $ $) 10)))
+(((-895) (-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -1417 ($ (-1046)))))) (T -895))
+((-1417 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
+(-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -1417 ($ (-1046)))))
+((-3562 (((-1022 (-208)) $) 8)) (-3554 (((-1022 (-208)) $) 9)) (-2425 (((-597 (-597 (-884 (-208)))) $) 10)) (-2366 (((-804) $) 6)))
(((-896) (-133)) (T -896))
-((-3044 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3044 ((-597 (-597 (-884 (-208)))) $)) (-15 -2813 ((-1022 (-208)) $)) (-15 -2825 ((-1022 (-208)) $))))
+((-2425 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))))
+(-13 (-571 (-804)) (-10 -8 (-15 -2425 ((-597 (-597 (-884 (-208)))) $)) (-15 -3554 ((-1022 (-208)) $)) (-15 -3562 ((-1022 (-208)) $))))
(((-571 (-804)) . T))
-((-2544 (((-3 (-637 |#1|) "failed") |#2| (-862)) 15)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -2544 ((-3 (-637 |#1|) "failed") |#2| (-862)))) (-522) (-607 |#1|)) (T -897))
-((-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5)) (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
-(-10 -7 (-15 -2544 ((-3 (-637 |#1|) "failed") |#2| (-862))))
-((-1802 (((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 18)) (-3114 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 13)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -1802 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3114 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1135) (-1135)) (T -898))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-898 *5 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5)))))
-(-10 -7 (-15 -1802 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3114 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) 16 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 15 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 13)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) |#1|) 12)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) 10 (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) 17 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) 11)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 14) (($ $ (-1148 (-530))) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) NIL)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2167 (((-719) $) 8 (|has| $ (-6 -4270)))))
+((-3177 (((-3 (-637 |#1|) "failed") |#2| (-862)) 15)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -3177 ((-3 (-637 |#1|) "failed") |#2| (-862)))) (-522) (-607 |#1|)) (T -897))
+((-3177 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5)) (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
+(-10 -7 (-15 -3177 ((-3 (-637 |#1|) "failed") |#2| (-862))))
+((-2753 (((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 18)) (-3217 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 13)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -2753 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3217 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1135) (-1135)) (T -898))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-898 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5)))))
+(-10 -7 (-15 -2753 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3217 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 16 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 15 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 13)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 12)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 10 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 17 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 11)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 14) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 8 (|has| $ (-6 -4269)))))
(((-899 |#1|) (-19 |#1|) (-1135)) (T -899))
NIL
(-19 |#1|)
-((-2553 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)))
+((-1900 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)))
(((-900) (-133)) (T -900))
-((-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099)))))
-(-13 (-10 -8 (-15 -2553 ($ $ (-1099))) (-15 -2553 ($ $ (-1020 $)))))
-((-2563 (((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)) 25) (((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099))) 26) (((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099)) 43)))
-(((-901 |#1|) (-10 -7 (-15 -2563 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -2563 ((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2563 ((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)))) (-13 (-344) (-140))) (T -901))
-((-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 *6))) (|:| |prim| (-1095 *6)))) (-5 *1 (-901 *6)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))) (-2563 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))))
-(-10 -7 (-15 -2563 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -2563 ((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2563 ((-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099))))
-((-2593 (((-597 |#1|) |#1| |#1|) 42)) (-2049 (((-110) |#1|) 39)) (-2583 ((|#1| |#1|) 65)) (-2572 ((|#1| |#1|) 64)))
-(((-902 |#1|) (-10 -7 (-15 -2049 ((-110) |#1|)) (-15 -2572 (|#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -2593 ((-597 |#1|) |#1| |#1|))) (-515)) (T -902))
-((-2593 (*1 *2 *3 *3) (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))) (-2583 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-2572 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-2049 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -2049 ((-110) |#1|)) (-15 -2572 (|#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -2593 ((-597 |#1|) |#1| |#1|)))
-((-1603 (((-1186) (-804)) 9)))
-(((-903) (-10 -7 (-15 -1603 ((-1186) (-804))))) (T -903))
-((-1603 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
-(-10 -7 (-15 -1603 ((-1186) (-804))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 63 (|has| |#1| (-522)))) (-3031 (($ $) 64 (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 28)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) 24)) (-1673 (((-3 $ "failed") $) 35)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-2097 (($ $ |#1| |#2| $) 48)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) 16)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| |#2|) NIL)) (-3674 ((|#2| $) 19)) (-2107 (($ (-1 |#2| |#2|) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ $) 23)) (-2402 ((|#1| $) 21)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) 40)) (-2375 ((|#1| $) NIL)) (-2137 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-128)) (|has| |#1| (-522))))) (-3562 (((-3 $ "failed") $ $) 76 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-522)))) (-3409 ((|#2| $) 17)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) 39) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 34) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ |#2|) 31)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) 15)) (-2084 (($ $ $ (-719)) 59 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 69 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 55) (($ $ (-719)) 56)) (-2943 (($) 22 T CONST)) (-2955 (($) 12 T CONST)) (-2148 (((-110) $ $) 68)) (-2257 (($ $ |#1|) 77 (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) 54) (($ $ (-719)) 52)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-904 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -2137 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|))) (-984) (-740)) (T -904))
-((-2137 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -2137 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3821 (($ $ $) 63 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (-3618 (((-3 $ "failed") $ $) 50 (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-2879 (((-719)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2603 ((|#2| $) 21)) (-2613 ((|#1| $) 20)) (-3956 (($) NIL (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-1673 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-1376 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3150 (((-110) $) NIL (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-4194 (($ $ $) NIL (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-1757 (($ $ $) NIL (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2625 (($ |#1| |#2|) 19)) (-3830 (((-862) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1910 (($ (-862)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2485 (((-1046) $) NIL)) (-1800 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1527 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2258 (((-804) $) 14)) (-2723 (($ $ (-530)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-2943 (($) 40 (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-2955 (($) 24 (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))) CONST)) (-2204 (((-110) $ $) NIL (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2182 (((-110) $ $) NIL (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2148 (((-110) $ $) 18)) (-2195 (((-110) $ $) NIL (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2172 (((-110) $ $) 66 (-1476 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2257 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2245 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2234 (($ $ $) 43 (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (** (($ $ (-530)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) 31 (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-862)) NIL (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (* (($ (-530) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-719) $) 46 (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ (-862) $) NIL (-1476 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ $ $) 27 (-1476 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))))
-(((-905 |#1| |#2|) (-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -2625 ($ |#1| |#2|)) (-15 -2613 (|#1| $)) (-15 -2603 (|#2| $)))) (-1027) (-1027)) (T -905))
-((-2625 (*1 *1 *2 *3) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2613 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))) (-2603 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
-(-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -2625 ($ |#1| |#2|)) (-15 -2613 (|#1| $)) (-15 -2603 (|#2| $))))
-((-3387 (((-1031) $) 12)) (-1759 (($ (-1099) (-1031)) 13)) (-3901 (((-1099) $) 10)) (-2258 (((-804) $) 22)))
-(((-906) (-13 (-571 (-804)) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -3387 ((-1031) $)) (-15 -1759 ($ (-1099) (-1031)))))) (T -906))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-906)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-906)))) (-1759 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-906)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3901 ((-1099) $)) (-15 -3387 ((-1031) $)) (-15 -1759 ($ (-1099) (-1031)))))
-((-2596 (((-1029 (-1099)) $) 19)) (-2726 (((-110) $) 26)) (-3994 (((-1099) $) 27)) (-2746 (((-110) $) 24)) (-2736 ((|#1| $) 25)) (-2675 (((-814 $ $) $) 34)) (-2684 (((-110) $) 33)) (-2656 (($ $ $) 12)) (-2715 (($ $) 29)) (-2977 (((-110) $) 28)) (-3694 (($ $) 10)) (-2655 (((-814 $ $) $) 36)) (-2666 (((-110) $) 35)) (-2925 (($ $ $) 13)) (-2636 (((-814 $ $) $) 38)) (-2645 (((-110) $) 37)) (-2756 (($ $ $) 14)) (-2258 (($ |#1|) 7) (($ (-1099)) 9) (((-804) $) 40 (|has| |#1| (-571 (-804))))) (-2694 (((-814 $ $) $) 32)) (-2704 (((-110) $) 30)) (-3340 (($ $ $) 11)))
-(((-907 |#1|) (-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2258 ($ |#1|)) (-15 -2258 ($ (-1099))) (-15 -2596 ((-1029 (-1099)) $)) (-15 -2746 ((-110) $)) (-15 -2736 (|#1| $)) (-15 -2726 ((-110) $)) (-15 -3994 ((-1099) $)) (-15 -2977 ((-110) $)) (-15 -2715 ($ $)) (-15 -2704 ((-110) $)) (-15 -2694 ((-814 $ $) $)) (-15 -2684 ((-110) $)) (-15 -2675 ((-814 $ $) $)) (-15 -2666 ((-110) $)) (-15 -2655 ((-814 $ $) $)) (-15 -2645 ((-110) $)) (-15 -2636 ((-814 $ $) $)))) (-908)) (T -907))
-((-2258 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1099))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2736 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2258 ($ |#1|)) (-15 -2258 ($ (-1099))) (-15 -2596 ((-1029 (-1099)) $)) (-15 -2746 ((-110) $)) (-15 -2736 (|#1| $)) (-15 -2726 ((-110) $)) (-15 -3994 ((-1099) $)) (-15 -2977 ((-110) $)) (-15 -2715 ($ $)) (-15 -2704 ((-110) $)) (-15 -2694 ((-814 $ $) $)) (-15 -2684 ((-110) $)) (-15 -2675 ((-814 $ $) $)) (-15 -2666 ((-110) $)) (-15 -2655 ((-814 $ $) $)) (-15 -2645 ((-110) $)) (-15 -2636 ((-814 $ $) $))))
-((-2656 (($ $ $) 8)) (-3694 (($ $) 6)) (-2925 (($ $ $) 9)) (-2756 (($ $ $) 10)) (-3340 (($ $ $) 7)))
+((-1900 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))) (-1900 (*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099)))))
+(-13 (-10 -8 (-15 -1900 ($ $ (-1099))) (-15 -1900 ($ $ (-1020 $)))))
+((-1677 (((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)) 25) (((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099))) 26) (((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099)) 43)))
+(((-901 |#1|) (-10 -7 (-15 -1677 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)))) (-13 (-344) (-140))) (T -901))
+((-1677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *6))) (|:| |prim| (-1095 *6)))) (-5 *1 (-901 *6)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))) (-1677 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))))
+(-10 -7 (-15 -1677 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099))))
+((-3703 (((-597 |#1|) |#1| |#1|) 42)) (-3295 (((-110) |#1|) 39)) (-2153 ((|#1| |#1|) 65)) (-3506 ((|#1| |#1|) 64)))
+(((-902 |#1|) (-10 -7 (-15 -3295 ((-110) |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -3703 ((-597 |#1|) |#1| |#1|))) (-515)) (T -902))
+((-3703 (*1 *2 *3 *3) (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))) (-2153 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-3506 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-3295 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
+(-10 -7 (-15 -3295 ((-110) |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -3703 ((-597 |#1|) |#1| |#1|)))
+((-1606 (((-1186) (-804)) 9)))
+(((-903) (-10 -7 (-15 -1606 ((-1186) (-804))))) (T -903))
+((-1606 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
+(-10 -7 (-15 -1606 ((-1186) (-804))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 61 (|has| |#1| (-522)))) (-3446 (($ $) 62 (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 28)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) 24)) (-2707 (((-3 $ "failed") $) 35)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2410 (($ $ |#1| |#2| $) 48)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 16)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2944 ((|#2| $) 19)) (-3756 (($ (-1 |#2| |#2|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2521 (($ $) 23)) (-2533 ((|#1| $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 40)) (-2505 ((|#1| $) NIL)) (-1641 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-128)) (|has| |#1| (-522))))) (-3551 (((-3 $ "failed") $ $) 74 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-522)))) (-1429 ((|#2| $) 17)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) 39) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 34) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ |#2|) 31)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 15)) (-2659 (($ $ $ (-719)) 57 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 67 (|has| |#1| (-522)))) (-3080 (($) 22 T CONST)) (-3093 (($) 12 T CONST)) (-2248 (((-110) $ $) 66)) (-2364 (($ $ |#1|) 75 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 54) (($ $ (-719)) 52)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-904 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -1641 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-740)) (T -904))
+((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -1641 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3418 (($ $ $) 63 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (-1889 (((-3 $ "failed") $ $) 50 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3023 (((-719)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3479 ((|#2| $) 21)) (-2077 ((|#1| $) 20)) (-2350 (($) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-1364 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-2508 (($ $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-1849 (($ |#1| |#2|) 19)) (-1905 (((-862) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1986 (($ (-862)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2624 (((-1046) $) NIL)) (-2555 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2607 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2366 (((-804) $) 14)) (-3080 (($) 40 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-3093 (($) 24 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))) CONST)) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2248 (((-110) $ $) 18)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2272 (((-110) $ $) 66 (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2364 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2351 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2339 (($ $ $) 43 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (** (($ $ (-530)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) 31 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (* (($ (-530) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-719) $) 46 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ (-862) $) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ $ $) 27 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))))
+(((-905 |#1| |#2|) (-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -1849 ($ |#1| |#2|)) (-15 -2077 (|#1| $)) (-15 -3479 (|#2| $)))) (-1027) (-1027)) (T -905))
+((-1849 (*1 *1 *2 *3) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2077 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
+(-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -1849 ($ |#1| |#2|)) (-15 -2077 (|#1| $)) (-15 -3479 (|#2| $))))
+((-3417 (((-1031) $) 12)) (-1818 (($ (-1099) (-1031)) 13)) (-3907 (((-1099) $) 10)) (-2366 (((-804) $) 22)))
+(((-906) (-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -3417 ((-1031) $)) (-15 -1818 ($ (-1099) (-1031)))))) (T -906))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-906)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-906)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-906)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -3417 ((-1031) $)) (-15 -1818 ($ (-1099) (-1031)))))
+((-2746 (((-1029 (-1099)) $) 19)) (-3311 (((-110) $) 26)) (-4007 (((-1099) $) 27)) (-3953 (((-110) $) 24)) (-3037 ((|#1| $) 25)) (-2320 (((-814 $ $) $) 34)) (-1847 (((-110) $) 33)) (-2813 (($ $ $) 12)) (-1784 (($ $) 29)) (-3111 (((-110) $) 28)) (-3676 (($ $) 10)) (-3149 (((-814 $ $) $) 36)) (-2787 (((-110) $) 35)) (-3064 (($ $ $) 13)) (-4029 (((-814 $ $) $) 38)) (-1673 (((-110) $) 37)) (-3582 (($ $ $) 14)) (-2366 (($ |#1|) 7) (($ (-1099)) 9) (((-804) $) 40 (|has| |#1| (-571 (-804))))) (-3241 (((-814 $ $) $) 32)) (-3128 (((-110) $) 30)) (-3380 (($ $ $) 11)))
+(((-907 |#1|) (-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-1099))) (-15 -2746 ((-1029 (-1099)) $)) (-15 -3953 ((-110) $)) (-15 -3037 (|#1| $)) (-15 -3311 ((-110) $)) (-15 -4007 ((-1099) $)) (-15 -3111 ((-110) $)) (-15 -1784 ($ $)) (-15 -3128 ((-110) $)) (-15 -3241 ((-814 $ $) $)) (-15 -1847 ((-110) $)) (-15 -2320 ((-814 $ $) $)) (-15 -2787 ((-110) $)) (-15 -3149 ((-814 $ $) $)) (-15 -1673 ((-110) $)) (-15 -4029 ((-814 $ $) $)))) (-908)) (T -907))
+((-2366 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1099))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3037 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1784 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-1099))) (-15 -2746 ((-1029 (-1099)) $)) (-15 -3953 ((-110) $)) (-15 -3037 (|#1| $)) (-15 -3311 ((-110) $)) (-15 -4007 ((-1099) $)) (-15 -3111 ((-110) $)) (-15 -1784 ($ $)) (-15 -3128 ((-110) $)) (-15 -3241 ((-814 $ $) $)) (-15 -1847 ((-110) $)) (-15 -2320 ((-814 $ $) $)) (-15 -2787 ((-110) $)) (-15 -3149 ((-814 $ $) $)) (-15 -1673 ((-110) $)) (-15 -4029 ((-814 $ $) $))))
+((-2813 (($ $ $) 8)) (-3676 (($ $) 6)) (-3064 (($ $ $) 9)) (-3582 (($ $ $) 10)) (-3380 (($ $ $) 7)))
(((-908) (-133)) (T -908))
-((-2756 (*1 *1 *1 *1) (-4 *1 (-908))) (-2925 (*1 *1 *1 *1) (-4 *1 (-908))) (-2656 (*1 *1 *1 *1) (-4 *1 (-908))) (-3340 (*1 *1 *1 *1) (-4 *1 (-908))) (-3694 (*1 *1 *1) (-4 *1 (-908))))
-(-13 (-10 -8 (-15 -3694 ($ $)) (-15 -3340 ($ $ $)) (-15 -2656 ($ $ $)) (-15 -2925 ($ $ $)) (-15 -2756 ($ $ $))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-2767 (($ $ $) 43)) (-3842 (($ $ $) 44)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1757 ((|#1| $) 45)) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3582 (*1 *1 *1 *1) (-4 *1 (-908))) (-3064 (*1 *1 *1 *1) (-4 *1 (-908))) (-2813 (*1 *1 *1 *1) (-4 *1 (-908))) (-3380 (*1 *1 *1 *1) (-4 *1 (-908))) (-3676 (*1 *1 *1) (-4 *1 (-908))))
+(-13 (-10 -8 (-15 -3676 ($ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3064 ($ $ $)) (-15 -3582 ($ $ $))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2090 (($ $ $) 43)) (-3683 (($ $ $) 44)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 45)) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-909 |#1|) (-133) (-795)) (T -909))
-((-1757 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4270) (-15 -1757 (|t#1| $)) (-15 -3842 ($ $ $)) (-15 -2767 ($ $ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2901 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|) 85)) (-2322 ((|#2| |#2| |#2|) 83)) (-2912 (((-2 (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|) 87)) (-2923 (((-2 (|:| |coef1| |#2|) (|:| -2108 |#2|)) |#2| |#2|) 89)) (-3004 (((-2 (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-2974 (((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|) 46)) (-2788 (((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|) 64)) (-2801 (((-2 (|:| |coef1| |#2|) (|:| -2330 |#1|)) |#2| |#2|) 66)) (-2893 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2839 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 71)) (-2945 (((-2 (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|) 97)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 74)) (-2970 (((-597 (-719)) |#2| |#2|) 82)) (-2949 ((|#1| |#2| |#2|) 42)) (-2993 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-2981 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-2961 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|) 44)) (-2777 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|) 63)) (-2330 ((|#1| |#2| |#2|) 61)) (-2291 (((-2 (|:| -1981 |#1|) (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|) 35)) (-3051 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2883 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3037 ((|#2| |#2| |#2|) 75)) (-2826 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 69)) (-2814 ((|#2| |#2| |#2| (-719)) 67)) (-2108 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3562 (((-1181 |#2|) (-1181 |#2|) |#1|) 21)) (-3017 (((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|) 39)) (-2935 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|) 95)) (-2341 ((|#1| |#2|) 92)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 73)) (-2851 ((|#2| |#2| |#2| (-719)) 72)) (-2957 (((-597 |#2|) |#2| |#2|) 80)) (-3040 ((|#2| |#2| |#1| |#1| (-719)) 50)) (-3028 ((|#1| |#1| |#1| (-719)) 49)) (* (((-1181 |#2|) |#1| (-1181 |#2|)) 16)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -2330 (|#1| |#2| |#2|)) (-15 -2777 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2788 ((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2801 ((-2 (|:| |coef1| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2814 (|#2| |#2| |#2| (-719))) (-15 -2826 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2839 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2851 (|#2| |#2| |#2| (-719))) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3037 (|#2| |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -2901 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2923 ((-2 (|:| |coef1| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|)) (-15 -2945 ((-2 (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|)) (-15 -2957 ((-597 |#2|) |#2| |#2|)) (-15 -2970 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -2993 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3562 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2291 ((-2 (|:| -1981 |#1|) (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|)) (-15 -3017 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|)) (-15 -3028 (|#1| |#1| |#1| (-719))) (-15 -3040 (|#2| |#2| |#1| |#1| (-719))) (-15 -3051 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2949 (|#1| |#2| |#2|)) (-15 -2961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2974 ((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|))) (-522) (-1157 |#1|)) (T -910))
-((-2974 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2330 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2330 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2949 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-3051 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-3040 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-3028 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4)) (-4 *4 (-1157 *2)))) (-3017 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2291 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1981 *4) (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3562 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (-2108 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-3004 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2981 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2993 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2981 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-2970 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2957 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2945 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2341 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2935 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2341 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2341 (*1 *2 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-2923 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2108 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2108 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2901 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2108 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2322 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2893 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3037 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2871 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2851 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-2839 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2826 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2814 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-2801 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2330 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2788 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2330 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2777 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2330 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2330 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
-(-10 -7 (-15 -2330 (|#1| |#2| |#2|)) (-15 -2777 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2788 ((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2801 ((-2 (|:| |coef1| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2814 (|#2| |#2| |#2| (-719))) (-15 -2826 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2839 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2851 (|#2| |#2| |#2| (-719))) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3037 (|#2| |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2322 (|#2| |#2| |#2|)) (-15 -2901 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef2| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2923 ((-2 (|:| |coef1| |#2|) (|:| -2108 |#2|)) |#2| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|)) (-15 -2945 ((-2 (|:| |coef2| |#2|) (|:| -2341 |#1|)) |#2|)) (-15 -2957 ((-597 |#2|) |#2| |#2|)) (-15 -2970 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -2993 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef2| |#2|) (|:| -2981 |#1|)) |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3562 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2291 ((-2 (|:| -1981 |#1|) (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|)) (-15 -3017 ((-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) |#2| |#2|)) (-15 -3028 (|#1| |#1| |#1| (-719))) (-15 -3040 (|#2| |#2| |#1| |#1| (-719))) (-15 -3051 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2949 (|#1| |#2| |#2|)) (-15 -2961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)) (-15 -2974 ((-2 (|:| |coef2| |#2|) (|:| -2330 |#1|)) |#2| |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) 27)) (-3956 (($) NIL T CONST)) (-2997 (((-597 (-597 (-530))) (-597 (-530))) 29)) (-2985 (((-530) $) 45)) (-3008 (($ (-597 (-530))) 17)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3173 (((-597 (-530)) $) 12)) (-1800 (($ $) 32)) (-2258 (((-804) $) 43) (((-597 (-530)) $) 10)) (-2943 (($) 7 T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 19)) (-2234 (($ $ $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) 25)))
-(((-911) (-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -3008 ($ (-597 (-530)))) (-15 -2997 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -2985 ((-530) $)) (-15 -1800 ($ $)) (-15 -2258 ((-597 (-530)) $))))) (T -911))
-((-3008 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))) (-2997 (*1 *2 *3) (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911)) (-5 *3 (-597 (-530))))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))) (-1800 (*1 *1 *1) (-5 *1 (-911))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
-(-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -3008 ($ (-597 (-530)))) (-15 -2997 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -2985 ((-530) $)) (-15 -1800 ($ $)) (-15 -2258 ((-597 (-530)) $))))
-((-2257 (($ $ |#2|) 30)) (-2245 (($ $) 22) (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-530)) $) 26) (($ $ (-388 (-530))) 28)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2257 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-913 |#2| |#3| |#4|) (-984) (-740) (-795)) (T -912))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2257 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 |#3|) $) 74)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-3032 (((-110) $) 73)) (-3150 (((-110) $) 31)) (-3327 (((-110) $) 62)) (-2575 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-597 |#3|) (-597 |#2|)) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-3409 ((|#2| $) 64)) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522))) (($ |#1|) 47 (|has| |#1| (-162)))) (-2782 ((|#1| $ |#2|) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-1817 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-2090 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -1817 (|t#1| $)) (-15 -3683 ($ $ $)) (-15 -2090 ($ $ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2474 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 85)) (-3950 ((|#2| |#2| |#2|) 83)) (-4015 (((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 87)) (-2617 (((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 89)) (-2368 (((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-1819 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 46)) (-3325 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 64)) (-1969 (((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 66)) (-2838 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2140 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 71)) (-1696 (((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|) 97)) (-2298 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 74)) (-1526 (((-597 (-719)) |#2| |#2|) 82)) (-3775 ((|#1| |#2| |#2|) 42)) (-2752 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-4129 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-4082 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 44)) (-1793 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 63)) (-3388 ((|#1| |#2| |#2|) 61)) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|) 35)) (-1830 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3787 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2991 ((|#2| |#2| |#2|) 75)) (-2397 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 69)) (-3924 ((|#2| |#2| |#2| (-719)) 67)) (-2204 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3551 (((-1181 |#2|) (-1181 |#2|) |#1|) 21)) (-3763 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|) 39)) (-2241 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|) 95)) (-3060 ((|#1| |#2|) 92)) (-2639 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 73)) (-3781 ((|#2| |#2| |#2| (-719)) 72)) (-3825 (((-597 |#2|) |#2| |#2|) 80)) (-2061 ((|#2| |#2| |#1| |#1| (-719)) 50)) (-3374 ((|#1| |#1| |#1| (-719)) 49)) (* (((-1181 |#2|) |#1| (-1181 |#2|)) 16)))
+(((-910 |#1| |#2|) (-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -1793 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3325 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2| (-719))) (-15 -2397 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2140 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3781 (|#2| |#2| |#2| (-719))) (-15 -2639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2298 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3787 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2838 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2474 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -4015 ((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -2617 ((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -3060 (|#1| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -3825 ((-597 |#2|) |#2| |#2|)) (-15 -1526 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -4129 (|#1| |#2| |#2|)) (-15 -2752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2368 ((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2204 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3551 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2504 ((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3763 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3374 (|#1| |#1| |#1| (-719))) (-15 -2061 (|#2| |#2| |#1| |#1| (-719))) (-15 -1830 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3775 (|#1| |#2| |#2|)) (-15 -4082 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) (-522) (-1157 |#1|)) (T -910))
+((-1819 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4082 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3775 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-1830 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2061 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-3374 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4)) (-4 *4 (-1157 *2)))) (-3763 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -2065 *4) (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (-2204 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2368 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4129 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-1526 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3825 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3060 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3060 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3060 (*1 *2 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-2617 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4015 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2474 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3950 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2838 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2991 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2298 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2639 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-3781 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-2140 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2397 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-3924 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-1793 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
+(-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -1793 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3325 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2| (-719))) (-15 -2397 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2140 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3781 (|#2| |#2| |#2| (-719))) (-15 -2639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2298 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3787 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2838 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2474 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -4015 ((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -2617 ((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -3060 (|#1| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -3825 ((-597 |#2|) |#2| |#2|)) (-15 -1526 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -4129 (|#1| |#2| |#2|)) (-15 -2752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2368 ((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2204 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3551 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2504 ((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3763 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3374 (|#1| |#1| |#1| (-719))) (-15 -2061 (|#2| |#2| |#1| |#1| (-719))) (-15 -1830 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3775 (|#1| |#2| |#2|)) (-15 -4082 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) 27)) (-2350 (($) NIL T CONST)) (-3006 (((-597 (-597 (-530))) (-597 (-530))) 29)) (-3253 (((-530) $) 45)) (-1444 (($ (-597 (-530))) 17)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3260 (((-597 (-530)) $) 12)) (-2555 (($ $) 32)) (-2366 (((-804) $) 43) (((-597 (-530)) $) 10)) (-3080 (($) 7 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 19)) (-2339 (($ $ $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) 25)))
+(((-911) (-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -1444 ($ (-597 (-530)))) (-15 -3006 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -3253 ((-530) $)) (-15 -2555 ($ $)) (-15 -2366 ((-597 (-530)) $))))) (T -911))
+((-1444 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911)) (-5 *3 (-597 (-530))))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))) (-2555 (*1 *1 *1) (-5 *1 (-911))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
+(-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -1444 ($ (-597 (-530)))) (-15 -3006 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -3253 ((-530) $)) (-15 -2555 ($ $)) (-15 -2366 ((-597 (-530)) $))))
+((-2364 (($ $ |#2|) 30)) (-2351 (($ $) 22) (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-530)) $) 26) (($ $ (-388 (-530))) 28)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-913 |#2| |#3| |#4|) (-984) (-740) (-795)) (T -912))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 72)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3555 (((-110) $) 71)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-597 |#3|) (-597 |#2|)) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-913 |#1| |#2| |#3|) (-133) (-984) (-740) (-795)) (T -913))
-((-2402 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795)) (-4 *2 (-984)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *2 (-740)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740)) (-4 *2 (-795)))) (-2575 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2575 ($ $ |t#3| |t#2|)) (-15 -2575 ($ $ (-597 |t#3|) (-597 |t#2|))) (-15 -2388 ($ $)) (-15 -2402 (|t#1| $)) (-15 -3409 (|t#2| $)) (-15 -2596 ((-597 |t#3|) $)) (-15 -3032 ((-110) $)) (-15 -3021 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2838 (((-1022 (-208)) $) 8)) (-2825 (((-1022 (-208)) $) 9)) (-2813 (((-1022 (-208)) $) 10)) (-3044 (((-597 (-597 (-884 (-208)))) $) 11)) (-2258 (((-804) $) 6)))
+((-2533 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795)) (-4 *2 (-984)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *2 (-740)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-110)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2725 ($ $ |t#3| |t#2|)) (-15 -2725 ($ $ (-597 |t#3|) (-597 |t#2|))) (-15 -2521 ($ $)) (-15 -2533 (|t#1| $)) (-15 -1429 (|t#2| $)) (-15 -2746 ((-597 |t#3|) $)) (-15 -3555 ((-110) $)) (-15 -4050 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
+((-3574 (((-1022 (-208)) $) 8)) (-3562 (((-1022 (-208)) $) 9)) (-3554 (((-1022 (-208)) $) 10)) (-2425 (((-597 (-597 (-884 (-208)))) $) 11)) (-2366 (((-804) $) 6)))
(((-914) (-133)) (T -914))
-((-3044 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3044 ((-597 (-597 (-884 (-208)))) $)) (-15 -2813 ((-1022 (-208)) $)) (-15 -2825 ((-1022 (-208)) $)) (-15 -2838 ((-1022 (-208)) $))))
+((-2425 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
+(-13 (-571 (-804)) (-10 -8 (-15 -2425 ((-597 (-597 (-884 (-208)))) $)) (-15 -3554 ((-1022 (-208)) $)) (-15 -3562 ((-1022 (-208)) $)) (-15 -3574 ((-1022 (-208)) $))))
(((-571 (-804)) . T))
-((-2596 (((-597 |#4|) $) 23)) (-3158 (((-110) $) 48)) (-3055 (((-110) $) 47)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#4|) 36)) (-3111 (((-110) $) 49)) (-3134 (((-110) $ $) 55)) (-3123 (((-110) $ $) 58)) (-3145 (((-110) $) 53)) (-3064 (((-597 |#5|) (-597 |#5|) $) 90)) (-3076 (((-597 |#5|) (-597 |#5|) $) 87)) (-3088 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3222 (((-597 |#4|) $) 27)) (-3209 (((-110) |#4| $) 30)) (-3099 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3170 (($ $ |#4|) 33)) (-3196 (($ $ |#4|) 32)) (-3183 (($ $ |#4|) 34)) (-2148 (((-110) $ $) 40)))
-(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3055 ((-110) |#1|)) (-15 -3064 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3076 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3088 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3099 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3111 ((-110) |#1|)) (-15 -3123 ((-110) |#1| |#1|)) (-15 -3134 ((-110) |#1| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -3158 ((-110) |#1|)) (-15 -1317 ((-2 (|:| |under| |#1|) (|:| -1702 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3170 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -3196 (|#1| |#1| |#4|)) (-15 -3209 ((-110) |#4| |#1|)) (-15 -3222 ((-597 |#4|) |#1|)) (-15 -2596 ((-597 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-984) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -915))
+((-2746 (((-597 |#4|) $) 23)) (-2925 (((-110) $) 48)) (-4024 (((-110) $) 47)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#4|) 36)) (-3645 (((-110) $) 49)) (-2276 (((-110) $ $) 55)) (-3528 (((-110) $ $) 58)) (-3660 (((-110) $) 53)) (-3588 (((-597 |#5|) (-597 |#5|) $) 90)) (-2167 (((-597 |#5|) (-597 |#5|) $) 87)) (-3304 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2400 (((-597 |#4|) $) 27)) (-3533 (((-110) |#4| $) 30)) (-1964 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1687 (($ $ |#4|) 33)) (-1442 (($ $ |#4|) 32)) (-2553 (($ $ |#4|) 34)) (-2248 (((-110) $ $) 40)))
+(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4024 ((-110) |#1|)) (-15 -3588 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -2167 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3304 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1964 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3645 ((-110) |#1|)) (-15 -3528 ((-110) |#1| |#1|)) (-15 -2276 ((-110) |#1| |#1|)) (-15 -3660 ((-110) |#1|)) (-15 -2925 ((-110) |#1|)) (-15 -1307 ((-2 (|:| |under| |#1|) (|:| -3175 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3533 ((-110) |#4| |#1|)) (-15 -2400 ((-597 |#4|) |#1|)) (-15 -2746 ((-597 |#4|) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-984) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -915))
NIL
-(-10 -8 (-15 -3055 ((-110) |#1|)) (-15 -3064 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3076 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3088 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3099 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3111 ((-110) |#1|)) (-15 -3123 ((-110) |#1| |#1|)) (-15 -3134 ((-110) |#1| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -3158 ((-110) |#1|)) (-15 -1317 ((-2 (|:| |under| |#1|) (|:| -1702 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3170 (|#1| |#1| |#4|)) (-15 -3183 (|#1| |#1| |#4|)) (-15 -3196 (|#1| |#1| |#4|)) (-15 -3209 ((-110) |#4| |#1|)) (-15 -3222 ((-597 |#4|) |#1|)) (-15 -2596 ((-597 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270)))) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270)))) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2485 (((-1046) $) 10)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -4024 ((-110) |#1|)) (-15 -3588 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -2167 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3304 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1964 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3645 ((-110) |#1|)) (-15 -3528 ((-110) |#1| |#1|)) (-15 -2276 ((-110) |#1| |#1|)) (-15 -3660 ((-110) |#1|)) (-15 -2925 ((-110) |#1|)) (-15 -1307 ((-2 (|:| |under| |#1|) (|:| -3175 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3533 ((-110) |#4| |#1|)) (-15 -2400 ((-597 |#4|) |#1|)) (-15 -2746 ((-597 |#4|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269)))) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269)))) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2624 (((-1046) $) 10)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-916 |#1| |#2| |#3| |#4|) (-133) (-984) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -916))
-((-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795)))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-3209 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-3196 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-3183 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-3170 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-1317 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1702 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3134 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3123 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3099 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3088 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3076 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-3064 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))))
-(-13 (-1027) (-144 |t#4|) (-571 (-597 |t#4|)) (-10 -8 (-6 -4270) (-15 -3012 ((-3 $ "failed") (-597 |t#4|))) (-15 -2446 ($ (-597 |t#4|))) (-15 -4167 (|t#3| $)) (-15 -2596 ((-597 |t#3|) $)) (-15 -3222 ((-597 |t#3|) $)) (-15 -3209 ((-110) |t#3| $)) (-15 -3196 ($ $ |t#3|)) (-15 -3183 ($ $ |t#3|)) (-15 -3170 ($ $ |t#3|)) (-15 -1317 ((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |t#3|)) (-15 -3158 ((-110) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -3145 ((-110) $)) (-15 -3134 ((-110) $ $)) (-15 -3123 ((-110) $ $)) (-15 -3111 ((-110) $)) (-15 -3099 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3088 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3076 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -3064 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -3055 ((-110) $))) |%noBranch|)))
+((-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-1687 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-1307 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3175 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-2276 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3528 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3304 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2167 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-3588 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))))
+(-13 (-1027) (-144 |t#4|) (-571 (-597 |t#4|)) (-10 -8 (-6 -4269) (-15 -3139 ((-3 $ "failed") (-597 |t#4|))) (-15 -2585 ($ (-597 |t#4|))) (-15 -3122 (|t#3| $)) (-15 -2746 ((-597 |t#3|) $)) (-15 -2400 ((-597 |t#3|) $)) (-15 -3533 ((-110) |t#3| $)) (-15 -1442 ($ $ |t#3|)) (-15 -2553 ($ $ |t#3|)) (-15 -1687 ($ $ |t#3|)) (-15 -1307 ((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |t#3|)) (-15 -2925 ((-110) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -3660 ((-110) $)) (-15 -2276 ((-110) $ $)) (-15 -3528 ((-110) $ $)) (-15 -3645 ((-110) $)) (-15 -1964 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3304 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2167 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -3588 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -4024 ((-110) $))) |%noBranch|)))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-1027) . T) ((-1135) . T))
-((-3246 (((-597 |#4|) |#4| |#4|) 118)) (-3518 (((-597 |#4|) (-597 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-597 |#4|) (-597 |#4|)) 108 (|has| |#1| (-432)))) (-3367 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 35)) (-3356 (((-110) |#4|) 34)) (-3507 (((-597 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-3306 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|)) 20)) (-3318 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 22)) (-3331 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 23)) (-3461 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|)) 73)) (-3485 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3497 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3234 (((-597 |#4|) (-597 |#4|)) 110)) (-3425 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110)) 48) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 50)) (-3438 ((|#4| |#4| (-597 |#4|)) 49)) (-3527 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 114 (|has| |#1| (-432)))) (-3553 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 117 (|has| |#1| (-432)))) (-3540 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 116 (|has| |#1| (-432)))) (-3259 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|))) 87) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 89) (((-597 |#4|) (-597 |#4|) |#4|) 121) (((-597 |#4|) |#4| |#4|) 119) (((-597 |#4|) (-597 |#4|)) 88)) (-3590 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3344 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 41)) (-3295 (((-110) (-597 |#4|)) 62)) (-3284 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 53)) (-3390 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 29)) (-3377 (((-110) |#4|) 28)) (-3577 (((-597 |#4|) (-597 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3564 (((-597 |#4|) (-597 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3450 (((-597 |#4|) (-597 |#4|)) 66)) (-3473 (((-597 |#4|) (-597 |#4|)) 79)) (-3272 (((-110) (-597 |#4|) (-597 |#4|)) 51)) (-3413 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 39)) (-3402 (((-110) |#4|) 36)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3259 ((-597 |#4|) (-597 |#4|))) (-15 -3259 ((-597 |#4|) |#4| |#4|)) (-15 -3234 ((-597 |#4|) (-597 |#4|))) (-15 -3246 ((-597 |#4|) |#4| |#4|)) (-15 -3259 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -3259 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3259 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -3272 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3284 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -3295 ((-110) (-597 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -3318 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3331 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3344 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3356 ((-110) |#4|)) (-15 -3367 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3377 ((-110) |#4|)) (-15 -3390 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3402 ((-110) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3425 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3425 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -3438 (|#4| |#4| (-597 |#4|))) (-15 -3450 ((-597 |#4|) (-597 |#4|))) (-15 -3461 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -3473 ((-597 |#4|) (-597 |#4|))) (-15 -3485 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3497 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3507 ((-597 |#4|) |#4|)) (-15 -3518 ((-597 |#4|) (-597 |#4|))) (-15 -3518 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -3527 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3540 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3553 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -3564 ((-597 |#4|) (-597 |#4|))) (-15 -3577 ((-597 |#4|) (-597 |#4|))) (-15 -3590 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|)) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -917))
-((-3590 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3553 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3540 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3527 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3518 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3497 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3485 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3461 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1596 (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3438 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3425 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3425 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3413 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3390 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3377 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3259 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3246 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3259 ((-597 |#4|) (-597 |#4|))) (-15 -3259 ((-597 |#4|) |#4| |#4|)) (-15 -3234 ((-597 |#4|) (-597 |#4|))) (-15 -3246 ((-597 |#4|) |#4| |#4|)) (-15 -3259 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -3259 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3259 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -3272 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3284 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -3295 ((-110) (-597 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -3318 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3331 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3344 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3356 ((-110) |#4|)) (-15 -3367 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3377 ((-110) |#4|)) (-15 -3390 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3402 ((-110) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3425 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3425 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -3438 (|#4| |#4| (-597 |#4|))) (-15 -3450 ((-597 |#4|) (-597 |#4|))) (-15 -3461 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -3473 ((-597 |#4|) (-597 |#4|))) (-15 -3485 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3497 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3507 ((-597 |#4|) |#4|)) (-15 -3518 ((-597 |#4|) (-597 |#4|))) (-15 -3518 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -3527 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3540 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3553 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -3564 ((-597 |#4|) (-597 |#4|))) (-15 -3577 ((-597 |#4|) (-597 |#4|))) (-15 -3590 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|))
-((-3599 (((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2348 (((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 36)) (-2337 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
-(((-918 |#1|) (-10 -7 (-15 -3599 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2337 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2348 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -918))
-((-2348 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))) (-2337 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-918 *5)))) (-3599 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
-(-10 -7 (-15 -3599 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2337 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2348 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))))
-((-3550 (((-399 |#4|) |#4|) 48)))
-(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3550 ((-399 |#4|) |#4|))) (-795) (-741) (-432) (-890 |#3| |#2| |#1|)) (T -919))
-((-3550 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -3550 ((-399 |#4|) |#4|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1520 (($ (-719)) 112 (|has| |#1| (-23)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-1944 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-4109 (($ (-597 |#1|)) 118)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-4172 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1777 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1987 (((-110) $ (-719)) 10)) (-2171 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1312 (($ $ (-597 |#1|)) 115)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1796 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-1248 (((-862) $) 117)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-1788 (($ $ $) 104)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 116)) (-2268 (($ (-597 |#1|)) 70)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2245 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2234 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3043 (((-597 |#4|) |#4| |#4|) 118)) (-3444 (((-597 |#4|) (-597 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-597 |#4|) (-597 |#4|)) 108 (|has| |#1| (-432)))) (-3265 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 35)) (-1516 (((-110) |#4|) 34)) (-3726 (((-597 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-3755 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|)) 20)) (-2994 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 22)) (-3922 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 23)) (-3633 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|)) 73)) (-4194 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2834 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1224 (((-597 |#4|) (-597 |#4|)) 110)) (-3459 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110)) 48) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 50)) (-2262 ((|#4| |#4| (-597 |#4|)) 49)) (-1942 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 114 (|has| |#1| (-432)))) (-3510 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 117 (|has| |#1| (-432)))) (-1820 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 116 (|has| |#1| (-432)))) (-1745 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|))) 87) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 89) (((-597 |#4|) (-597 |#4|) |#4|) 121) (((-597 |#4|) |#4| |#4|) 119) (((-597 |#4|) (-597 |#4|)) 88)) (-2904 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2806 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 41)) (-1895 (((-110) (-597 |#4|)) 62)) (-2502 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 53)) (-2490 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 29)) (-3052 (((-110) |#4|) 28)) (-2476 (((-597 |#4|) (-597 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2126 (((-597 |#4|) (-597 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3667 (((-597 |#4|) (-597 |#4|)) 66)) (-2524 (((-597 |#4|) (-597 |#4|)) 79)) (-1216 (((-110) (-597 |#4|) (-597 |#4|)) 51)) (-1806 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 39)) (-3968 (((-110) |#4|) 36)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1745 ((-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) |#4| |#4|)) (-15 -1224 ((-597 |#4|) (-597 |#4|))) (-15 -3043 ((-597 |#4|) |#4| |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -1216 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2502 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1895 ((-110) (-597 |#4|))) (-15 -3755 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3922 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -2806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -1516 ((-110) |#4|)) (-15 -3265 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3052 ((-110) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3968 ((-110) |#4|)) (-15 -1806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2262 (|#4| |#4| (-597 |#4|))) (-15 -3667 ((-597 |#4|) (-597 |#4|))) (-15 -3633 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -2524 ((-597 |#4|) (-597 |#4|))) (-15 -4194 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2834 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3726 ((-597 |#4|) |#4|)) (-15 -3444 ((-597 |#4|) (-597 |#4|))) (-15 -3444 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -1942 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1820 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3510 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -2126 ((-597 |#4|) (-597 |#4|))) (-15 -2476 ((-597 |#4|) (-597 |#4|))) (-15 -2904 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|)) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -917))
+((-2904 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3510 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1820 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1942 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2834 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))) (-4194 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *1 (-917 *6 *7 *8 *9)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3633 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1598 (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2262 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3459 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3052 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3265 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2806 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))) (-1216 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1745 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1745 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1745 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3043 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-1224 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1745 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1745 ((-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) |#4| |#4|)) (-15 -1224 ((-597 |#4|) (-597 |#4|))) (-15 -3043 ((-597 |#4|) |#4| |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -1216 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2502 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1895 ((-110) (-597 |#4|))) (-15 -3755 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3922 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -2806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -1516 ((-110) |#4|)) (-15 -3265 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3052 ((-110) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3968 ((-110) |#4|)) (-15 -1806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2262 (|#4| |#4| (-597 |#4|))) (-15 -3667 ((-597 |#4|) (-597 |#4|))) (-15 -3633 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -2524 ((-597 |#4|) (-597 |#4|))) (-15 -4194 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2834 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3726 ((-597 |#4|) |#4|)) (-15 -3444 ((-597 |#4|) (-597 |#4|))) (-15 -3444 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -1942 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1820 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3510 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -2126 ((-597 |#4|) (-597 |#4|))) (-15 -2476 ((-597 |#4|) (-597 |#4|))) (-15 -2904 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|))
+((-1427 (((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2429 (((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 36)) (-2899 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
+(((-918 |#1|) (-10 -7 (-15 -1427 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2429 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -918))
+((-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))) (-2899 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-918 *5)))) (-1427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
+(-10 -7 (-15 -1427 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2429 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))))
+((-3272 (((-399 |#4|) |#4|) 48)))
+(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-399 |#4|) |#4|))) (-795) (-741) (-432) (-890 |#3| |#2| |#1|)) (T -919))
+((-3272 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
+(-10 -7 (-15 -3272 ((-399 |#4|) |#4|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719)) 112 (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-2422 (($ (-597 |#1|)) 118)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2337 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-2763 (((-110) $ (-719)) 10)) (-4109 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-3168 (($ $ (-597 |#1|)) 115)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3334 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-2488 (((-862) $) 117)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-3691 (($ $ $) 104)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 116)) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2351 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2339 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-920 |#1|) (-133) (-984)) (T -920))
-((-4109 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-1788 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984)))) (-1312 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984)))))
-(-13 (-1179 |t#1|) (-10 -8 (-15 -4109 ($ (-597 |t#1|))) (-15 -1248 ((-862) $)) (-15 -3173 ($ (-597 |t#1|))) (-15 -1788 ($ $ $)) (-15 -1312 ($ $ (-597 |t#1|)))))
-(((-33) . T) ((-99) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T) ((-1179 |#1|) . T))
-((-3114 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 17)))
-(((-921 |#1| |#2|) (-10 -7 (-15 -3114 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-984) (-984)) (T -921))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6)))))
-(-10 -7 (-15 -3114 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
-((-2377 ((|#1| (-884 |#1|)) 13)) (-2368 ((|#1| (-884 |#1|)) 12)) (-2360 ((|#1| (-884 |#1|)) 11)) (-2401 ((|#1| (-884 |#1|)) 15)) (-2449 ((|#1| (-884 |#1|)) 21)) (-2389 ((|#1| (-884 |#1|)) 14)) (-2412 ((|#1| (-884 |#1|)) 16)) (-2436 ((|#1| (-884 |#1|)) 20)) (-2424 ((|#1| (-884 |#1|)) 19)))
-(((-922 |#1|) (-10 -7 (-15 -2360 (|#1| (-884 |#1|))) (-15 -2368 (|#1| (-884 |#1|))) (-15 -2377 (|#1| (-884 |#1|))) (-15 -2389 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -2412 (|#1| (-884 |#1|))) (-15 -2424 (|#1| (-884 |#1|))) (-15 -2436 (|#1| (-884 |#1|))) (-15 -2449 (|#1| (-884 |#1|)))) (-984)) (T -922))
-((-2449 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(-10 -7 (-15 -2360 (|#1| (-884 |#1|))) (-15 -2368 (|#1| (-884 |#1|))) (-15 -2377 (|#1| (-884 |#1|))) (-15 -2389 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -2412 (|#1| (-884 |#1|))) (-15 -2424 (|#1| (-884 |#1|))) (-15 -2436 (|#1| (-884 |#1|))) (-15 -2449 (|#1| (-884 |#1|))))
-((-2639 (((-3 |#1| "failed") |#1|) 18)) (-2519 (((-3 |#1| "failed") |#1|) 6)) (-2618 (((-3 |#1| "failed") |#1|) 16)) (-2496 (((-3 |#1| "failed") |#1|) 4)) (-2660 (((-3 |#1| "failed") |#1|) 20)) (-2538 (((-3 |#1| "failed") |#1|) 8)) (-2460 (((-3 |#1| "failed") |#1| (-719)) 1)) (-2482 (((-3 |#1| "failed") |#1|) 3)) (-2470 (((-3 |#1| "failed") |#1|) 2)) (-2669 (((-3 |#1| "failed") |#1|) 21)) (-2547 (((-3 |#1| "failed") |#1|) 9)) (-2649 (((-3 |#1| "failed") |#1|) 19)) (-2528 (((-3 |#1| "failed") |#1|) 7)) (-2629 (((-3 |#1| "failed") |#1|) 17)) (-2507 (((-3 |#1| "failed") |#1|) 5)) (-2697 (((-3 |#1| "failed") |#1|) 24)) (-2576 (((-3 |#1| "failed") |#1|) 12)) (-2678 (((-3 |#1| "failed") |#1|) 22)) (-2556 (((-3 |#1| "failed") |#1|) 10)) (-2719 (((-3 |#1| "failed") |#1|) 26)) (-2597 (((-3 |#1| "failed") |#1|) 14)) (-2730 (((-3 |#1| "failed") |#1|) 27)) (-2606 (((-3 |#1| "failed") |#1|) 15)) (-2708 (((-3 |#1| "failed") |#1|) 25)) (-2587 (((-3 |#1| "failed") |#1|) 13)) (-2687 (((-3 |#1| "failed") |#1|) 23)) (-2566 (((-3 |#1| "failed") |#1|) 11)))
+((-2422 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-3691 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984)))))
+(-13 (-1179 |t#1|) (-10 -8 (-15 -2422 ($ (-597 |t#1|))) (-15 -2488 ((-862) $)) (-15 -3260 ($ (-597 |t#1|))) (-15 -3691 ($ $ $)) (-15 -3168 ($ $ (-597 |t#1|)))))
+(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T) ((-1179 |#1|) . T))
+((-3217 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 17)))
+(((-921 |#1| |#2|) (-10 -7 (-15 -3217 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-984) (-984)) (T -921))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6)))))
+(-10 -7 (-15 -3217 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
+((-2737 ((|#1| (-884 |#1|)) 13)) (-4188 ((|#1| (-884 |#1|)) 12)) (-1754 ((|#1| (-884 |#1|)) 11)) (-3905 ((|#1| (-884 |#1|)) 15)) (-3522 ((|#1| (-884 |#1|)) 21)) (-2401 ((|#1| (-884 |#1|)) 14)) (-3415 ((|#1| (-884 |#1|)) 16)) (-3886 ((|#1| (-884 |#1|)) 20)) (-3073 ((|#1| (-884 |#1|)) 19)))
+(((-922 |#1|) (-10 -7 (-15 -1754 (|#1| (-884 |#1|))) (-15 -4188 (|#1| (-884 |#1|))) (-15 -2737 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -3905 (|#1| (-884 |#1|))) (-15 -3415 (|#1| (-884 |#1|))) (-15 -3073 (|#1| (-884 |#1|))) (-15 -3886 (|#1| (-884 |#1|))) (-15 -3522 (|#1| (-884 |#1|)))) (-984)) (T -922))
+((-3522 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(-10 -7 (-15 -1754 (|#1| (-884 |#1|))) (-15 -4188 (|#1| (-884 |#1|))) (-15 -2737 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -3905 (|#1| (-884 |#1|))) (-15 -3415 (|#1| (-884 |#1|))) (-15 -3073 (|#1| (-884 |#1|))) (-15 -3886 (|#1| (-884 |#1|))) (-15 -3522 (|#1| (-884 |#1|))))
+((-1229 (((-3 |#1| "failed") |#1|) 18)) (-2697 (((-3 |#1| "failed") |#1|) 6)) (-2481 (((-3 |#1| "failed") |#1|) 16)) (-2010 (((-3 |#1| "failed") |#1|) 4)) (-3352 (((-3 |#1| "failed") |#1|) 20)) (-3610 (((-3 |#1| "failed") |#1|) 8)) (-2120 (((-3 |#1| "failed") |#1| (-719)) 1)) (-3432 (((-3 |#1| "failed") |#1|) 3)) (-3626 (((-3 |#1| "failed") |#1|) 2)) (-3026 (((-3 |#1| "failed") |#1|) 21)) (-3517 (((-3 |#1| "failed") |#1|) 9)) (-3722 (((-3 |#1| "failed") |#1|) 19)) (-1963 (((-3 |#1| "failed") |#1|) 7)) (-1709 (((-3 |#1| "failed") |#1|) 17)) (-3765 (((-3 |#1| "failed") |#1|) 5)) (-3498 (((-3 |#1| "failed") |#1|) 24)) (-2771 (((-3 |#1| "failed") |#1|) 12)) (-1304 (((-3 |#1| "failed") |#1|) 22)) (-2198 (((-3 |#1| "failed") |#1|) 10)) (-3874 (((-3 |#1| "failed") |#1|) 26)) (-4057 (((-3 |#1| "failed") |#1|) 14)) (-3619 (((-3 |#1| "failed") |#1|) 27)) (-2655 (((-3 |#1| "failed") |#1|) 15)) (-2222 (((-3 |#1| "failed") |#1|) 25)) (-2510 (((-3 |#1| "failed") |#1|) 13)) (-3728 (((-3 |#1| "failed") |#1|) 23)) (-4071 (((-3 |#1| "failed") |#1|) 11)))
(((-923 |#1|) (-133) (-1121)) (T -923))
-((-2730 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2719 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2708 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2697 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2687 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2678 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2669 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2660 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2649 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2639 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2629 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2618 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2606 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2597 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2587 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2576 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2566 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2556 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2547 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2538 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2528 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2519 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2507 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2496 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2482 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2470 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2460 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(-13 (-10 -7 (-15 -2460 ((-3 |t#1| "failed") |t#1| (-719))) (-15 -2470 ((-3 |t#1| "failed") |t#1|)) (-15 -2482 ((-3 |t#1| "failed") |t#1|)) (-15 -2496 ((-3 |t#1| "failed") |t#1|)) (-15 -2507 ((-3 |t#1| "failed") |t#1|)) (-15 -2519 ((-3 |t#1| "failed") |t#1|)) (-15 -2528 ((-3 |t#1| "failed") |t#1|)) (-15 -2538 ((-3 |t#1| "failed") |t#1|)) (-15 -2547 ((-3 |t#1| "failed") |t#1|)) (-15 -2556 ((-3 |t#1| "failed") |t#1|)) (-15 -2566 ((-3 |t#1| "failed") |t#1|)) (-15 -2576 ((-3 |t#1| "failed") |t#1|)) (-15 -2587 ((-3 |t#1| "failed") |t#1|)) (-15 -2597 ((-3 |t#1| "failed") |t#1|)) (-15 -2606 ((-3 |t#1| "failed") |t#1|)) (-15 -2618 ((-3 |t#1| "failed") |t#1|)) (-15 -2629 ((-3 |t#1| "failed") |t#1|)) (-15 -2639 ((-3 |t#1| "failed") |t#1|)) (-15 -2649 ((-3 |t#1| "failed") |t#1|)) (-15 -2660 ((-3 |t#1| "failed") |t#1|)) (-15 -2669 ((-3 |t#1| "failed") |t#1|)) (-15 -2678 ((-3 |t#1| "failed") |t#1|)) (-15 -2687 ((-3 |t#1| "failed") |t#1|)) (-15 -2697 ((-3 |t#1| "failed") |t#1|)) (-15 -2708 ((-3 |t#1| "failed") |t#1|)) (-15 -2719 ((-3 |t#1| "failed") |t#1|)) (-15 -2730 ((-3 |t#1| "failed") |t#1|))))
-((-2749 ((|#4| |#4| (-597 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2740 ((|#4| |#4| (-597 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3114 ((|#4| (-1 |#4| (-893 |#1|)) |#4|) 30)))
-(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 (|#4| |#4| |#3|)) (-15 -2740 (|#4| |#4| (-597 |#3|))) (-15 -2749 (|#4| |#4| |#3|)) (-15 -2749 (|#4| |#4| (-597 |#3|))) (-15 -3114 (|#4| (-1 |#4| (-893 |#1|)) |#4|))) (-984) (-741) (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099))))) (-890 (-893 |#1|) |#2| |#3|)) (T -924))
-((-3114 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-893 *4))) (-4 *4 (-984)) (-4 *2 (-890 (-893 *4) *5 *6)) (-4 *5 (-741)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-2749 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-2749 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-2740 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)) (-15 -3994 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))))
-(-10 -7 (-15 -2740 (|#4| |#4| |#3|)) (-15 -2740 (|#4| |#4| (-597 |#3|))) (-15 -2749 (|#4| |#4| |#3|)) (-15 -2749 (|#4| |#4| (-597 |#3|))) (-15 -3114 (|#4| (-1 |#4| (-893 |#1|)) |#4|)))
-((-2759 ((|#2| |#3|) 35)) (-3154 (((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 73)) (-3142 (((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 89)))
-(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2759 (|#2| |#3|))) (-330) (-1157 |#1|) (-1157 |#2|) (-673 |#2| |#3|)) (T -925))
-((-2759 (*1 *2 *3) (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))) (-3154 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5)))) (-3142 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3853 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5)))))
-(-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2759 (|#2| |#3|)))
-((-2830 (((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))) 69)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -2830 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))))) (-597 (-1099)) (-719)) (T -926))
-((-2830 (*1 *2 *2) (-12 (-5 *2 (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719)) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
-(-10 -7 (-15 -2830 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))))))
-((-2246 (((-110) $ $) NIL)) (-2104 (((-3 (-110) "failed") $) 69)) (-2498 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2805 (($ $ (-3 (-110) "failed")) 70)) (-2818 (($ (-597 |#4|) |#4|) 25)) (-3443 (((-1082) $) NIL)) (-2770 (($ $) 67)) (-2485 (((-1046) $) NIL)) (-1262 (((-110) $) 68)) (-4227 (($) 30)) (-2780 ((|#4| $) 72)) (-2793 (((-597 |#4|) $) 71)) (-2258 (((-804) $) 66)) (-2148 (((-110) $ $) NIL)))
-(((-927 |#1| |#2| |#3| |#4|) (-13 (-1027) (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -2818 ($ (-597 |#4|) |#4|)) (-15 -2104 ((-3 (-110) "failed") $)) (-15 -2805 ($ $ (-3 (-110) "failed"))) (-15 -1262 ((-110) $)) (-15 -2793 ((-597 |#4|) $)) (-15 -2780 (|#4| $)) (-15 -2770 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2498 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-795) (-741) (-890 |#1| |#3| |#2|)) (T -927))
-((-4227 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))) (-2104 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2805 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-1262 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2793 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))) (-2770 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-2498 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
-(-13 (-1027) (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -2818 ($ (-597 |#4|) |#4|)) (-15 -2104 ((-3 (-110) "failed") $)) (-15 -2805 ($ $ (-3 (-110) "failed"))) (-15 -1262 ((-110) $)) (-15 -2793 ((-597 |#4|) $)) (-15 -2780 (|#4| $)) (-15 -2770 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2498 ($ $)) |%noBranch|) |%noBranch|)))
-((-3630 (((-110) |#5| |#5|) 38)) (-2397 (((-110) |#5| |#5|) 52)) (-2455 (((-110) |#5| (-597 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-2407 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-2478 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) 63)) (-3621 (((-1186)) 33)) (-3612 (((-1186) (-1082) (-1082) (-1082)) 29)) (-2466 (((-597 |#5|) (-597 |#5|)) 81)) (-2491 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) 79)) (-2502 (((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 101)) (-2384 (((-110) |#5| |#5|) 47)) (-2445 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2420 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-2433 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1845 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-2513 (((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-2373 (((-597 |#5|) (-597 |#5|)) 43)))
-(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3612 ((-1186) (-1082) (-1082) (-1082))) (-15 -3621 ((-1186))) (-15 -3630 ((-110) |#5| |#5|)) (-15 -2373 ((-597 |#5|) (-597 |#5|))) (-15 -2384 ((-110) |#5| |#5|)) (-15 -2397 ((-110) |#5| |#5|)) (-15 -2407 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2420 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2433 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1845 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2445 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2455 ((-110) |#5| |#5|)) (-15 -2455 ((-110) |#5| (-597 |#5|))) (-15 -2466 ((-597 |#5|) (-597 |#5|))) (-15 -2478 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -2491 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-15 -2502 ((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -2513 ((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -928))
-((-2513 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2623 (-597 *9)) (|:| -2350 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-2502 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2623 (-597 *9)) (|:| -2350 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2350 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-2478 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-2455 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2445 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1845 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2433 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2420 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2407 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3630 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3621 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3612 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3612 ((-1186) (-1082) (-1082) (-1082))) (-15 -3621 ((-1186))) (-15 -3630 ((-110) |#5| |#5|)) (-15 -2373 ((-597 |#5|) (-597 |#5|))) (-15 -2384 ((-110) |#5| |#5|)) (-15 -2397 ((-110) |#5| |#5|)) (-15 -2407 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2420 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2433 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1845 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2445 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2455 ((-110) |#5| |#5|)) (-15 -2455 ((-110) |#5| (-597 |#5|))) (-15 -2466 ((-597 |#5|) (-597 |#5|))) (-15 -2478 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -2491 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-15 -2502 ((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -2513 ((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-3994 (((-1099) $) 15)) (-3387 (((-1082) $) 16)) (-1663 (($ (-1099) (-1082)) 14)) (-2258 (((-804) $) 13)))
-(((-929) (-13 (-571 (-804)) (-10 -8 (-15 -1663 ($ (-1099) (-1082))) (-15 -3994 ((-1099) $)) (-15 -3387 ((-1082) $))))) (T -929))
-((-1663 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-929)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -1663 ($ (-1099) (-1082))) (-15 -3994 ((-1099) $)) (-15 -3387 ((-1082) $))))
-((-3114 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#2| |#1|) |#3|))) (-522) (-522) (-932 |#1|) (-932 |#2|)) (T -930))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-4 *2 (-932 *6)) (-5 *1 (-930 *5 *6 *4 *2)) (-4 *4 (-932 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) 65) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) 95)) (-2446 ((|#2| $) NIL) (((-1099) $) 60) (((-388 (-530)) $) NIL) (((-530) $) 92)) (-1298 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 112) (((-637 |#2|) (-637 $)) 28)) (-1376 (($) 98)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 75) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84)) (-2854 (($ $) 10)) (-1560 (((-3 $ "failed") $) 20)) (-3114 (($ (-1 |#2| |#2|) $) 22)) (-3677 (($) 16)) (-1684 (($ $) 54)) (-3211 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2842 (($ $) 12)) (-3173 (((-833 (-530)) $) 70) (((-833 (-360)) $) 79) (((-506) $) 40) (((-360) $) 44) (((-208) $) 47)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 90) (($ |#2|) NIL) (($ (-1099)) 57)) (-1667 (((-719)) 31)) (-2172 (((-110) $ $) 50)))
-(((-931 |#1| |#2|) (-10 -8 (-15 -2172 ((-110) |#1| |#1|)) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2258 (|#1| (-1099))) (-15 -1376 (|#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -2258 ((-804) |#1|))) (-932 |#2|) (-522)) (T -931))
-((-1667 (*1 *2) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4)) (-4 *3 (-932 *4)))))
-(-10 -8 (-15 -2172 ((-110) |#1| |#1|)) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2258 (|#1| (-1099))) (-15 -1376 (|#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3431 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -1298 ((-637 |#2|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1694 ((|#1| $) 139 (|has| |#1| (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 130 (|has| |#1| (-850)))) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 133 (|has| |#1| (-850)))) (-1945 (((-110) $ $) 59)) (-3592 (((-530) $) 120 (|has| |#1| (-768)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 178) (((-3 (-1099) "failed") $) 128 (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 112 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) 110 (|has| |#1| (-975 (-530))))) (-2446 ((|#1| $) 177) (((-1099) $) 127 (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 111 (|has| |#1| (-975 (-530)))) (((-530) $) 109 (|has| |#1| (-975 (-530))))) (-3607 (($ $ $) 55)) (-1298 (((-637 (-530)) (-637 $)) 152 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 151 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 150) (((-637 |#1|) (-637 $)) 149)) (-1673 (((-3 $ "failed") $) 34)) (-1376 (($) 137 (|has| |#1| (-515)))) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-2991 (((-110) $) 122 (|has| |#1| (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 146 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 145 (|has| |#1| (-827 (-360))))) (-3150 (((-110) $) 31)) (-2854 (($ $) 141)) (-1848 ((|#1| $) 143)) (-1560 (((-3 $ "failed") $) 108 (|has| |#1| (-1075)))) (-3002 (((-110) $) 121 (|has| |#1| (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-4194 (($ $ $) 118 (|has| |#1| (-795)))) (-1757 (($ $ $) 117 (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) 169)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-3677 (($) 107 (|has| |#1| (-1075)) CONST)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1684 (($ $) 138 (|has| |#1| (-289)))) (-1702 ((|#1| $) 135 (|has| |#1| (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 132 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 131 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) 175 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 173 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 172 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 171 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 170 (|has| |#1| (-491 (-1099) |#1|)))) (-1934 (((-719) $) 58)) (-1832 (($ $ |#1|) 176 (|has| |#1| (-268 |#1| |#1|)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3211 (($ $) 168 (|has| |#1| (-216))) (($ $ (-719)) 166 (|has| |#1| (-216))) (($ $ (-1099)) 164 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 163 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 162 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 161 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2842 (($ $) 140)) (-1857 ((|#1| $) 142)) (-3173 (((-833 (-530)) $) 148 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 147 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 125 (|has| |#1| (-572 (-506)))) (((-360) $) 124 (|has| |#1| (-960))) (((-208) $) 123 (|has| |#1| (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 134 (-3340 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ |#1|) 181) (($ (-1099)) 129 (|has| |#1| (-975 (-1099))))) (-1795 (((-3 $ "failed") $) 126 (-1476 (|has| |#1| (-138)) (-3340 (|has| $ (-138)) (|has| |#1| (-850)))))) (-1667 (((-719)) 29)) (-1709 ((|#1| $) 136 (|has| |#1| (-515)))) (-3020 (((-110) $ $) 39)) (-2218 (($ $) 119 (|has| |#1| (-768)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $) 167 (|has| |#1| (-216))) (($ $ (-719)) 165 (|has| |#1| (-216))) (($ $ (-1099)) 160 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 159 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 158 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 157 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-2204 (((-110) $ $) 115 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 114 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 116 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 113 (|has| |#1| (-795)))) (-2257 (($ $ $) 64) (($ |#1| |#1|) 144)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+((-3619 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3874 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2222 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3498 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3728 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1304 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3026 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3352 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3722 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1229 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1709 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2481 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2655 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-4057 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2510 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2771 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-4071 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2198 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3517 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3610 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1963 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2697 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2010 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3432 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3626 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2120 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(-13 (-10 -7 (-15 -2120 ((-3 |t#1| "failed") |t#1| (-719))) (-15 -3626 ((-3 |t#1| "failed") |t#1|)) (-15 -3432 ((-3 |t#1| "failed") |t#1|)) (-15 -2010 ((-3 |t#1| "failed") |t#1|)) (-15 -3765 ((-3 |t#1| "failed") |t#1|)) (-15 -2697 ((-3 |t#1| "failed") |t#1|)) (-15 -1963 ((-3 |t#1| "failed") |t#1|)) (-15 -3610 ((-3 |t#1| "failed") |t#1|)) (-15 -3517 ((-3 |t#1| "failed") |t#1|)) (-15 -2198 ((-3 |t#1| "failed") |t#1|)) (-15 -4071 ((-3 |t#1| "failed") |t#1|)) (-15 -2771 ((-3 |t#1| "failed") |t#1|)) (-15 -2510 ((-3 |t#1| "failed") |t#1|)) (-15 -4057 ((-3 |t#1| "failed") |t#1|)) (-15 -2655 ((-3 |t#1| "failed") |t#1|)) (-15 -2481 ((-3 |t#1| "failed") |t#1|)) (-15 -1709 ((-3 |t#1| "failed") |t#1|)) (-15 -1229 ((-3 |t#1| "failed") |t#1|)) (-15 -3722 ((-3 |t#1| "failed") |t#1|)) (-15 -3352 ((-3 |t#1| "failed") |t#1|)) (-15 -3026 ((-3 |t#1| "failed") |t#1|)) (-15 -1304 ((-3 |t#1| "failed") |t#1|)) (-15 -3728 ((-3 |t#1| "failed") |t#1|)) (-15 -3498 ((-3 |t#1| "failed") |t#1|)) (-15 -2222 ((-3 |t#1| "failed") |t#1|)) (-15 -3874 ((-3 |t#1| "failed") |t#1|)) (-15 -3619 ((-3 |t#1| "failed") |t#1|))))
+((-3097 ((|#4| |#4| (-597 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2118 ((|#4| |#4| (-597 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3217 ((|#4| (-1 |#4| (-893 |#1|)) |#4|) 30)))
+(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2118 (|#4| |#4| |#3|)) (-15 -2118 (|#4| |#4| (-597 |#3|))) (-15 -3097 (|#4| |#4| |#3|)) (-15 -3097 (|#4| |#4| (-597 |#3|))) (-15 -3217 (|#4| (-1 |#4| (-893 |#1|)) |#4|))) (-984) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-890 (-893 |#1|) |#2| |#3|)) (T -924))
+((-3217 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-893 *4))) (-4 *4 (-984)) (-4 *2 (-890 (-893 *4) *5 *6)) (-4 *5 (-741)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-3097 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-2118 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))))
+(-10 -7 (-15 -2118 (|#4| |#4| |#3|)) (-15 -2118 (|#4| |#4| (-597 |#3|))) (-15 -3097 (|#4| |#4| |#3|)) (-15 -3097 (|#4| |#4| (-597 |#3|))) (-15 -3217 (|#4| (-1 |#4| (-893 |#1|)) |#4|)))
+((-2781 ((|#2| |#3|) 35)) (-2596 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 73)) (-3696 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 89)))
+(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2781 (|#2| |#3|))) (-330) (-1157 |#1|) (-1157 |#2|) (-673 |#2| |#3|)) (T -925))
+((-2781 (*1 *2 *3) (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))) (-2596 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5)))) (-3696 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5)))))
+(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2781 (|#2| |#3|)))
+((-2768 (((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))) 69)))
+(((-926 |#1| |#2|) (-10 -7 (-15 -2768 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))))) (-597 (-1099)) (-719)) (T -926))
+((-2768 (*1 *2 *2) (-12 (-5 *2 (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719)) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
+(-10 -7 (-15 -2768 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))))))
+((-2352 (((-110) $ $) NIL)) (-2199 (((-3 (-110) "failed") $) 69)) (-2251 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2430 (($ $ (-3 (-110) "failed")) 70)) (-1635 (($ (-597 |#4|) |#4|) 25)) (-1424 (((-1082) $) NIL)) (-2435 (($ $) 67)) (-2624 (((-1046) $) NIL)) (-3250 (((-110) $) 68)) (-3958 (($) 30)) (-3882 ((|#4| $) 72)) (-2528 (((-597 |#4|) $) 71)) (-2366 (((-804) $) 66)) (-2248 (((-110) $ $) NIL)))
+(((-927 |#1| |#2| |#3| |#4|) (-13 (-1027) (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1635 ($ (-597 |#4|) |#4|)) (-15 -2199 ((-3 (-110) "failed") $)) (-15 -2430 ($ $ (-3 (-110) "failed"))) (-15 -3250 ((-110) $)) (-15 -2528 ((-597 |#4|) $)) (-15 -3882 (|#4| $)) (-15 -2435 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2251 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-795) (-741) (-890 |#1| |#3| |#2|)) (T -927))
+((-3958 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-1635 (*1 *1 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))) (-2199 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-3250 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-3882 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))) (-2435 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
+(-13 (-1027) (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1635 ($ (-597 |#4|) |#4|)) (-15 -2199 ((-3 (-110) "failed") $)) (-15 -2430 ($ $ (-3 (-110) "failed"))) (-15 -3250 ((-110) $)) (-15 -2528 ((-597 |#4|) $)) (-15 -3882 (|#4| $)) (-15 -2435 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2251 ($ $)) |%noBranch|) |%noBranch|)))
+((-4081 (((-110) |#5| |#5|) 38)) (-1821 (((-110) |#5| |#5|) 52)) (-3000 (((-110) |#5| (-597 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-1245 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-4211 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 63)) (-2212 (((-1186)) 33)) (-3526 (((-1186) (-1082) (-1082) (-1082)) 29)) (-1398 (((-597 |#5|) (-597 |#5|)) 81)) (-2882 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) 79)) (-4221 (((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 101)) (-1996 (((-110) |#5| |#5|) 47)) (-3287 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2844 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-3641 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1406 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-1881 (((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-3534 (((-597 |#5|) (-597 |#5|)) 43)))
+(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -928))
+((-1881 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-4221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3287 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3534 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-4081 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2212 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3526 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-4007 (((-1099) $) 15)) (-3417 (((-1082) $) 16)) (-1685 (($ (-1099) (-1082)) 14)) (-2366 (((-804) $) 13)))
+(((-929) (-13 (-571 (-804)) (-10 -8 (-15 -1685 ($ (-1099) (-1082))) (-15 -4007 ((-1099) $)) (-15 -3417 ((-1082) $))))) (T -929))
+((-1685 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-929)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -1685 ($ (-1099) (-1082))) (-15 -4007 ((-1099) $)) (-15 -3417 ((-1082) $))))
+((-3217 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|))) (-522) (-522) (-932 |#1|) (-932 |#2|)) (T -930))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-4 *2 (-932 *6)) (-5 *1 (-930 *5 *6 *4 *2)) (-4 *4 (-932 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) 65) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) 95)) (-2585 ((|#2| $) NIL) (((-1099) $) 60) (((-388 (-530)) $) NIL) (((-530) $) 92)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 112) (((-637 |#2|) (-637 $)) 28)) (-1364 (($) 98)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 75) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84)) (-4127 (($ $) 10)) (-2972 (((-3 $ "failed") $) 20)) (-3217 (($ (-1 |#2| |#2|) $) 22)) (-3657 (($) 16)) (-1979 (($ $) 54)) (-3289 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1269 (($ $) 12)) (-3260 (((-833 (-530)) $) 70) (((-833 (-360)) $) 79) (((-506) $) 40) (((-360) $) 44) (((-208) $) 47)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 90) (($ |#2|) NIL) (($ (-1099)) 57)) (-3300 (((-719)) 31)) (-2272 (((-110) $ $) 50)))
+(((-931 |#1| |#2|) (-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -1364 (|#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|))) (-932 |#2|) (-522)) (T -931))
+((-3300 (*1 *2) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4)) (-4 *3 (-932 *4)))))
+(-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -1364 (|#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 ((|#1| $) 136 (|has| |#1| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 127 (|has| |#1| (-850)))) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 130 (|has| |#1| (-850)))) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 117 (|has| |#1| (-768)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 175) (((-3 (-1099) "failed") $) 125 (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 109 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) 107 (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 174) (((-1099) $) 124 (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 108 (|has| |#1| (-975 (-530)))) (((-530) $) 106 (|has| |#1| (-975 (-530))))) (-3590 (($ $ $) 53)) (-2329 (((-637 (-530)) (-637 $)) 149 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 148 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 147) (((-637 |#1|) (-637 $)) 146)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 134 (|has| |#1| (-515)))) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2514 (((-110) $) 119 (|has| |#1| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 143 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 142 (|has| |#1| (-827 (-360))))) (-2731 (((-110) $) 30)) (-4127 (($ $) 138)) (-1918 ((|#1| $) 140)) (-2972 (((-3 $ "failed") $) 105 (|has| |#1| (-1075)))) (-2166 (((-110) $) 118 (|has| |#1| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 115 (|has| |#1| (-795)))) (-1817 (($ $ $) 114 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 166)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 104 (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 135 (|has| |#1| (-289)))) (-3175 ((|#1| $) 132 (|has| |#1| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 129 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 128 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 172 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 170 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 169 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 168 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 167 (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) 56)) (-1902 (($ $ |#1|) 173 (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3289 (($ $) 165 (|has| |#1| (-216))) (($ $ (-719)) 163 (|has| |#1| (-216))) (($ $ (-1099)) 161 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 160 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 159 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 158 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1269 (($ $) 137)) (-1928 ((|#1| $) 139)) (-3260 (((-833 (-530)) $) 145 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 144 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 122 (|has| |#1| (-572 (-506)))) (((-360) $) 121 (|has| |#1| (-960))) (((-208) $) 120 (|has| |#1| (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 131 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 178) (($ (-1099)) 126 (|has| |#1| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) 123 (-1461 (|has| |#1| (-138)) (-3380 (|has| $ (-138)) (|has| |#1| (-850)))))) (-3300 (((-719)) 28)) (-2748 ((|#1| $) 133 (|has| |#1| (-515)))) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 116 (|has| |#1| (-768)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 164 (|has| |#1| (-216))) (($ $ (-719)) 162 (|has| |#1| (-216))) (($ $ (-1099)) 157 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 156 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 155 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 154 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2306 (((-110) $ $) 112 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 111 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 113 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 110 (|has| |#1| (-795)))) (-2364 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
(((-932 |#1|) (-133) (-522)) (T -932))
-((-2257 (*1 *1 *2 *2) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-2854 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1376 (*1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-515)) (-4 *2 (-522)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))))
-(-13 (-344) (-37 |t#1|) (-975 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-825 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2257 ($ |t#1| |t#1|)) (-15 -1848 (|t#1| $)) (-15 -1857 (|t#1| $)) (-15 -2854 ($ $)) (-15 -2842 ($ $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-975 (-530))) (PROGN (-6 (-975 (-530))) (-6 (-975 (-388 (-530))))) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-768)) (-6 (-768)) |%noBranch|) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-975 (-1099))) (-6 (-975 (-1099))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -1694 (|t#1| $)) (-15 -1684 ($ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1376 ($)) (-15 -1709 (|t#1| $)) (-15 -1702 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) |has| |#1| (-960)) ((-572 (-360)) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-739) |has| |#1| (-768)) ((-740) |has| |#1| (-768)) ((-742) |has| |#1| (-768)) ((-743) |has| |#1| (-768)) ((-768) |has| |#1| (-768)) ((-793) |has| |#1| (-768)) ((-795) -1476 (|has| |#1| (-795)) (|has| |#1| (-768))) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) |has| |#1| (-850)) ((-861) . T) ((-960) |has| |#1| (-960)) ((-975 (-388 (-530))) |has| |#1| (-975 (-530))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-1099)) |has| |#1| (-975 (-1099))) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1135) . T) ((-1139) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-2864 (($ (-1066 |#1| |#2|)) 11)) (-2162 (((-1066 |#1| |#2|) $) 12)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1832 ((|#2| $ (-223 |#1| |#2|)) 16)) (-2258 (((-804) $) NIL)) (-2943 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL)))
-(((-933 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2864 ($ (-1066 |#1| |#2|))) (-15 -2162 ((-1066 |#1| |#2|) $)) (-15 -1832 (|#2| $ (-223 |#1| |#2|))))) (-862) (-344)) (T -933))
-((-2864 (*1 *1 *2) (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)) (-5 *1 (-933 *3 *4)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1066 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-862)) (-4 *2 (-344)) (-5 *1 (-933 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2864 ($ (-1066 |#1| |#2|))) (-15 -2162 ((-1066 |#1| |#2|) $)) (-15 -1832 (|#2| $ (-223 |#1| |#2|)))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2896 (($ $) 46)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-2171 (((-719) $) 45)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2886 ((|#1| $) 44)) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-2915 ((|#1| |#1| $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-2904 ((|#1| $) 47)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-2876 ((|#1| $) 43)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2364 (*1 *1 *2 *2) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1269 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1364 (*1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-515)) (-4 *2 (-522)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))))
+(-13 (-344) (-37 |t#1|) (-975 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-825 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2364 ($ |t#1| |t#1|)) (-15 -1918 (|t#1| $)) (-15 -1928 (|t#1| $)) (-15 -4127 ($ $)) (-15 -1269 ($ $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-975 (-530))) (PROGN (-6 (-975 (-530))) (-6 (-975 (-388 (-530))))) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-768)) (-6 (-768)) |%noBranch|) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-975 (-1099))) (-6 (-975 (-1099))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -1612 (|t#1| $)) (-15 -1979 ($ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1364 ($)) (-15 -2748 (|t#1| $)) (-15 -3175 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) |has| |#1| (-960)) ((-572 (-360)) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-739) |has| |#1| (-768)) ((-740) |has| |#1| (-768)) ((-742) |has| |#1| (-768)) ((-743) |has| |#1| (-768)) ((-768) |has| |#1| (-768)) ((-793) |has| |#1| (-768)) ((-795) -1461 (|has| |#1| (-795)) (|has| |#1| (-768))) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) |has| |#1| (-850)) ((-861) . T) ((-960) |has| |#1| (-960)) ((-975 (-388 (-530))) |has| |#1| (-975 (-530))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-1099)) |has| |#1| (-975 (-1099))) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1135) . T) ((-1139) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2889 (($ (-1066 |#1| |#2|)) 11)) (-2263 (((-1066 |#1| |#2|) $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#2| $ (-223 |#1| |#2|)) 16)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL)))
+(((-933 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2889 ($ (-1066 |#1| |#2|))) (-15 -2263 ((-1066 |#1| |#2|) $)) (-15 -1902 (|#2| $ (-223 |#1| |#2|))))) (-862) (-344)) (T -933))
+((-2889 (*1 *1 *2) (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)) (-5 *1 (-933 *3 *4)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1066 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-862)) (-4 *2 (-344)) (-5 *1 (-933 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -2889 ($ (-1066 |#1| |#2|))) (-15 -2263 ((-1066 |#1| |#2|) $)) (-15 -1902 (|#2| $ (-223 |#1| |#2|)))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-1907 (($ $) 46)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-4109 (((-719) $) 45)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3288 ((|#1| $) 44)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3203 ((|#1| |#1| $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1540 ((|#1| $) 47)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-1371 ((|#1| $) 43)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-934 |#1|) (-133) (-1135)) (T -934))
-((-2915 (*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4270) (-15 -2915 (|t#1| |t#1| $)) (-15 -2904 (|t#1| $)) (-15 -2896 ($ $)) (-15 -2171 ((-719) $)) (-15 -2886 (|t#1| $)) (-15 -2876 (|t#1| $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3015 (((-110) $) 42)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 43)) (-1936 (((-3 (-388 (-530)) "failed") $) 78)) (-1928 (((-110) $) 72)) (-1917 (((-388 (-530)) $) 76)) (-3150 (((-110) $) 41)) (-1717 ((|#2| $) 22)) (-3114 (($ (-1 |#2| |#2|) $) 19)) (-2359 (($ $) 61)) (-3211 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3173 (((-506) $) 67)) (-1800 (($ $) 17)) (-2258 (((-804) $) 56) (($ (-530)) 38) (($ |#2|) 36) (($ (-388 (-530))) NIL)) (-1667 (((-719)) 10)) (-2218 ((|#2| $) 71)) (-2148 (((-110) $ $) 25)) (-2172 (((-110) $ $) 69)) (-2245 (($ $) 29) (($ $ $) 28)) (-2234 (($ $ $) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-935 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| (-388 (-530)))) (-15 -2172 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2359 (|#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -3150 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-936 |#2|) (-162)) (T -935))
-((-1667 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4)) (-4 *3 (-936 *4)))))
-(-10 -8 (-15 -2258 (|#1| (-388 (-530)))) (-15 -2172 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2359 (|#1| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -1717 (|#2| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3114 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -2258 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -3150 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -3015 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2234 (|#1| |#1| |#1|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3012 (((-3 (-530) "failed") $) 119 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 117 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 116)) (-2446 (((-530) $) 120 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 118 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 115)) (-1298 (((-637 (-530)) (-637 $)) 90 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 89 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 88) (((-637 |#1|) (-637 $)) 87)) (-1673 (((-3 $ "failed") $) 34)) (-2499 ((|#1| $) 80)) (-1936 (((-3 (-388 (-530)) "failed") $) 76 (|has| |#1| (-515)))) (-1928 (((-110) $) 78 (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) 77 (|has| |#1| (-515)))) (-2927 (($ |#1| |#1| |#1| |#1|) 81)) (-3150 (((-110) $) 31)) (-1717 ((|#1| $) 82)) (-4194 (($ $ $) 68 (|has| |#1| (-795)))) (-1757 (($ $ $) 67 (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) 91)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 73 (|has| |#1| (-344)))) (-1775 ((|#1| $) 83)) (-1784 ((|#1| $) 84)) (-1794 ((|#1| $) 85)) (-2485 (((-1046) $) 10)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) 97 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 95 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 94 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 93 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 92 (|has| |#1| (-491 (-1099) |#1|)))) (-1832 (($ $ |#1|) 98 (|has| |#1| (-268 |#1| |#1|)))) (-3211 (($ $) 114 (|has| |#1| (-216))) (($ $ (-719)) 112 (|has| |#1| (-216))) (($ $ (-1099)) 110 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 109 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 108 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 107 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3173 (((-506) $) 74 (|has| |#1| (-572 (-506))))) (-1800 (($ $) 86)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 37) (($ (-388 (-530))) 62 (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-1795 (((-3 $ "failed") $) 75 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-2218 ((|#1| $) 79 (|has| |#1| (-993)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 72 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $) 113 (|has| |#1| (-216))) (($ $ (-719)) 111 (|has| |#1| (-216))) (($ $ (-1099)) 106 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 105 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 104 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 103 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-2204 (((-110) $ $) 65 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 64 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 66 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 63 (|has| |#1| (-795)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 71 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-388 (-530))) 70 (|has| |#1| (-344))) (($ (-388 (-530)) $) 69 (|has| |#1| (-344)))))
+((-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1907 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3203 (|t#1| |t#1| $)) (-15 -1540 (|t#1| $)) (-15 -1907 ($ $)) (-15 -4109 ((-719) $)) (-15 -3288 (|t#1| $)) (-15 -1371 (|t#1| $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-1813 (((-110) $) 42)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 43)) (-2180 (((-3 (-388 (-530)) "failed") $) 78)) (-3016 (((-110) $) 72)) (-3370 (((-388 (-530)) $) 76)) (-2731 (((-110) $) 41)) (-2376 ((|#2| $) 22)) (-3217 (($ (-1 |#2| |#2|) $) 19)) (-2483 (($ $) 61)) (-3289 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3260 (((-506) $) 67)) (-2555 (($ $) 17)) (-2366 (((-804) $) 56) (($ (-530)) 38) (($ |#2|) 36) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 10)) (-3934 ((|#2| $) 71)) (-2248 (((-110) $ $) 25)) (-2272 (((-110) $ $) 69)) (-2351 (($ $) 29) (($ $ $) 28)) (-2339 (($ $ $) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
+(((-935 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2483 (|#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2731 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-936 |#2|) (-162)) (T -935))
+((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4)) (-4 *3 (-936 *4)))))
+(-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2483 (|#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2731 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 116 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 114 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 113)) (-2585 (((-530) $) 117 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 115 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 112)) (-2329 (((-637 (-530)) (-637 $)) 87 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 86 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 85) (((-637 |#1|) (-637 $)) 84)) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 77)) (-2180 (((-3 (-388 (-530)) "failed") $) 73 (|has| |#1| (-515)))) (-3016 (((-110) $) 75 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 74 (|has| |#1| (-515)))) (-2912 (($ |#1| |#1| |#1| |#1|) 78)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 79)) (-2508 (($ $ $) 66 (|has| |#1| (-795)))) (-1817 (($ $ $) 65 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 88)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 70 (|has| |#1| (-344)))) (-2110 ((|#1| $) 80)) (-1702 ((|#1| $) 81)) (-3178 ((|#1| $) 82)) (-2624 (((-1046) $) 10)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 94 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 92 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 91 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 90 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 89 (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) 95 (|has| |#1| (-268 |#1| |#1|)))) (-3289 (($ $) 111 (|has| |#1| (-216))) (($ $ (-719)) 109 (|has| |#1| (-216))) (($ $ (-1099)) 107 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 106 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 105 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 104 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3260 (((-506) $) 71 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 83)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 60 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) 72 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3934 ((|#1| $) 76 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 110 (|has| |#1| (-216))) (($ $ (-719)) 108 (|has| |#1| (-216))) (($ $ (-1099)) 103 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 102 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 101 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 100 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2306 (((-110) $ $) 63 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 62 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 64 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 61 (|has| |#1| (-795)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 69 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-388 (-530))) 68 (|has| |#1| (-344))) (($ (-388 (-530)) $) 67 (|has| |#1| (-344)))))
(((-936 |#1|) (-133) (-162)) (T -936))
-((-1800 (*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2927 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-1936 (*1 *2 *1) (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
-(-13 (-37 |t#1|) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1800 ($ $)) (-15 -1794 (|t#1| $)) (-15 -1784 (|t#1| $)) (-15 -1775 (|t#1| $)) (-15 -1717 (|t#1| $)) (-15 -2927 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2499 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -2218 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1928 ((-110) $)) (-15 -1917 ((-388 (-530)) $)) (-15 -1936 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1476 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 #0#) |has| |#1| (-344)) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-344)) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-344)) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3114 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|))) (-936 |#2|) (-162) (-936 |#4|) (-162)) (T -937))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-936 *6)) (-5 *1 (-937 *4 *5 *2 *6)) (-4 *4 (-936 *5)))))
-(-10 -7 (-15 -3114 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-2499 ((|#1| $) 12)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-1928 (((-110) $) NIL (|has| |#1| (-515)))) (-1917 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-2927 (($ |#1| |#1| |#1| |#1|) 16)) (-3150 (((-110) $) NIL)) (-1717 ((|#1| $) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1775 ((|#1| $) 15)) (-1784 ((|#1| $) 14)) (-1794 ((|#1| $) 13)) (-2485 (((-1046) $) NIL)) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1832 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3211 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-1800 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2218 ((|#1| $) NIL (|has| |#1| (-993)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 8 T CONST)) (-2955 (($) 10 T CONST)) (-3286 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-344)))))
+((-2555 (*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2912 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
+(-13 (-37 |t#1|) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -2555 ($ $)) (-15 -3178 (|t#1| $)) (-15 -1702 (|t#1| $)) (-15 -2110 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -2912 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2637 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 #0#) |has| |#1| (-344)) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-344)) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-344)) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
+((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-936 |#2|) (-162) (-936 |#4|) (-162)) (T -937))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-936 *6)) (-5 *1 (-937 *4 *5 *2 *6)) (-4 *4 (-936 *5)))))
+(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 12)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-2912 (($ |#1| |#1| |#1| |#1|) 16)) (-2731 (((-110) $) NIL)) (-2376 ((|#1| $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-2110 ((|#1| $) 15)) (-1702 ((|#1| $) 14)) (-3178 ((|#1| $) 13)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3934 ((|#1| $) NIL (|has| |#1| (-993)))) (-3080 (($) 8 T CONST)) (-3093 (($) 10 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-344)))))
(((-938 |#1|) (-936 |#1|) (-162)) (T -938))
NIL
(-936 |#1|)
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-2896 (($ $) 20)) (-1809 (($ (-597 |#1|)) 29)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-2171 (((-719) $) 22)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) 24)) (-3440 (($ |#1| $) 15)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2886 ((|#1| $) 23)) (-3287 ((|#1| $) 19)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-2915 ((|#1| |#1| $) 14)) (-1262 (((-110) $) 17)) (-4227 (($) NIL)) (-2904 ((|#1| $) 18)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) NIL)) (-2876 ((|#1| $) 26)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-939 |#1|) (-13 (-934 |#1|) (-10 -8 (-15 -1809 ($ (-597 |#1|))))) (-1027)) (T -939))
-((-1809 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
-(-13 (-934 |#1|) (-10 -8 (-15 -1809 ($ (-597 |#1|)))))
-((-2487 (($ $) 12)) (-1817 (($ $ (-530)) 13)))
-(((-940 |#1|) (-10 -8 (-15 -2487 (|#1| |#1|)) (-15 -1817 (|#1| |#1| (-530)))) (-941)) (T -940))
-NIL
-(-10 -8 (-15 -2487 (|#1| |#1|)) (-15 -1817 (|#1| |#1| (-530))))
-((-2487 (($ $) 6)) (-1817 (($ $ (-530)) 7)) (** (($ $ (-388 (-530))) 8)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1907 (($ $) 20)) (-1580 (($ (-597 |#1|)) 29)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-4109 (((-719) $) 22)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 24)) (-2441 (($ |#1| $) 15)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3288 ((|#1| $) 23)) (-2738 ((|#1| $) 19)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3203 ((|#1| |#1| $) 14)) (-3250 (((-110) $) 17)) (-3958 (($) NIL)) (-1540 ((|#1| $) 18)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-1371 ((|#1| $) 26)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-939 |#1|) (-13 (-934 |#1|) (-10 -8 (-15 -1580 ($ (-597 |#1|))))) (-1027)) (T -939))
+((-1580 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
+(-13 (-934 |#1|) (-10 -8 (-15 -1580 ($ (-597 |#1|)))))
+((-2625 (($ $) 12)) (-3741 (($ $ (-530)) 13)))
+(((-940 |#1|) (-10 -8 (-15 -2625 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-530)))) (-941)) (T -940))
+NIL
+(-10 -8 (-15 -2625 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-530))))
+((-2625 (($ $) 6)) (-3741 (($ $ (-530)) 7)) (** (($ $ (-388 (-530))) 8)))
(((-941) (-133)) (T -941))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-530))))) (-1817 (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))) (-2487 (*1 *1 *1) (-4 *1 (-941))))
-(-13 (-10 -8 (-15 -2487 ($ $)) (-15 -1817 ($ $ (-530))) (-15 ** ($ $ (-388 (-530))))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1319 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3031 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3359 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1380 (((-388 |#2|) $) NIL)) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3550 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1945 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-2879 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1473 (((-110)) NIL)) (-1462 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-3477 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 70) (($ (-1181 |#2|) |#2|) NIL)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3607 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3348 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1375 (((-1181 $) (-1181 $)) NIL)) (-3856 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-1673 (((-3 $ "failed") $) NIL)) (-1231 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-1509 (((-110) |#1| |#1|) NIL)) (-4113 (((-862)) NIL)) (-1376 (($) NIL (|has| (-388 |#2|) (-349)))) (-1451 (((-110)) NIL)) (-1441 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3588 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-3703 (($ $) NIL)) (-2563 (($) NIL (|has| (-388 |#2|) (-330)))) (-1674 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3175 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2049 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1334 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-3150 (((-110) $) NIL)) (-2176 (((-719)) NIL)) (-1388 (((-1181 $) (-1181 $)) NIL)) (-1717 (((-388 |#2|) $) NIL)) (-1242 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-1560 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-3873 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-3830 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-3844 ((|#3| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3443 (((-1082) $) NIL)) (-1330 (((-637 (-388 |#2|))) 52)) (-1354 (((-637 (-388 |#2|))) 51)) (-2359 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1297 (($ (-1181 |#2|) |#2|) 71)) (-1340 (((-637 (-388 |#2|))) 50)) (-1365 (((-637 (-388 |#2|))) 49)) (-1285 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1308 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 77)) (-1430 (((-1181 $)) 46)) (-3142 (((-1181 $)) 45)) (-1420 (((-110) $) NIL)) (-1409 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3677 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1910 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-1264 (((-3 |#2| "failed")) 63)) (-2485 (((-1046) $) NIL)) (-1530 (((-719)) NIL)) (-1898 (($) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2108 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2473 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3562 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1934 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1832 ((|#1| $ |#1| |#1|) NIL)) (-1275 (((-3 |#2| "failed")) 62)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-2341 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 42)) (-3187 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3211 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3139 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-4212 ((|#3|) 53)) (-1612 (($) NIL (|has| (-388 |#2|) (-330)))) (-3351 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 72) (((-637 (-388 |#2|)) (-1181 $)) NIL)) (-3173 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-1398 (((-1181 $) (-1181 $)) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1476 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1795 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1640 ((|#3| $) NIL)) (-1667 (((-719)) NIL)) (-1497 (((-110)) 60)) (-1484 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-3853 (((-1181 $)) 121)) (-3020 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1253 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1519 (((-110)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1476 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-530))))) (-3741 (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))) (-2625 (*1 *1 *1) (-4 *1 (-941))))
+(-13 (-10 -8 (-15 -2625 ($ $)) (-15 -3741 ($ $ (-530))) (-15 ** ($ $ (-388 (-530))))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3446 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1367 (((-388 |#2|) $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) NIL)) (-2757 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 70) (($ (-1181 |#2|) |#2|) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1728 (((-1181 $) (-1181 $)) NIL)) (-2134 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-1789 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) NIL)) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) NIL)) (-1358 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3571 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-1239 (($ $) NIL)) (-1677 (($) NIL (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) NIL)) (-2255 (((-719)) NIL)) (-1256 (((-1181 $) (-1181 $)) NIL)) (-2376 (((-388 |#2|) $) NIL)) (-4116 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) NIL)) (-2696 (((-637 (-388 |#2|))) 52)) (-3198 (((-637 (-388 |#2|))) 51)) (-2483 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 71)) (-1412 (((-637 (-388 |#2|))) 50)) (-3075 (((-637 (-388 |#2|))) 49)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 77)) (-3361 (((-1181 $)) 46)) (-3696 (((-1181 $)) 45)) (-1747 (((-110) $) NIL)) (-3001 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3657 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) 63)) (-2624 (((-1046) $) NIL)) (-2835 (((-719)) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) NIL)) (-2174 (((-3 |#2| "failed")) 62)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 42)) (-1823 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 53)) (-3406 (($) NIL (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 72) (((-637 (-388 |#2|)) (-1181 $)) NIL)) (-3260 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3251 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) NIL)) (-3300 (((-719)) NIL)) (-2190 (((-110)) 60)) (-4054 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-3220 (((-1181 $)) 121)) (-3944 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1684 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
(((-942 |#1| |#2| |#3| |#4| |#5|) (-323 |#1| |#2| |#3|) (-1139) (-1157 |#1|) (-1157 (-388 |#2|)) (-388 |#2|) (-719)) (T -942))
NIL
(-323 |#1| |#2| |#3|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1870 (((-597 (-530)) $) 54)) (-1835 (($ (-597 (-530))) 62)) (-1694 (((-530) $) 40 (|has| (-530) (-289)))) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL (|has| (-530) (-768)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) 49) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 47 (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) 49 (|has| (-530) (-975 (-530))))) (-2446 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3607 (($ $ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1376 (($) NIL (|has| (-530) (-515)))) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-1852 (((-597 (-530)) $) 60)) (-2991 (((-110) $) NIL (|has| (-530) (-768)))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL)) (-1848 (((-530) $) 37)) (-1560 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-3002 (((-110) $) NIL (|has| (-530) (-768)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-530) (-795)))) (-3114 (($ (-1 (-530) (-530)) $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL)) (-3677 (($) NIL (|has| (-530) (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1684 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) 42)) (-1861 (((-1080 (-530)) $) 59)) (-1826 (($ (-597 (-530)) (-597 (-530))) 63)) (-1702 (((-530) $) 53 (|has| (-530) (-515)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2473 (((-399 $) $) NIL)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4084 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-1934 (((-719) $) NIL)) (-1832 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $) 11 (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2842 (($ $) NIL)) (-1857 (((-530) $) 39)) (-1843 (((-597 (-530)) $) 61)) (-3173 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2258 (((-804) $) 77) (($ (-530)) 43) (($ $) NIL) (($ (-388 (-530))) 20) (($ (-530)) 43) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) 18)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-1667 (((-719)) 9)) (-1709 (((-530) $) 51 (|has| (-530) (-515)))) (-3020 (((-110) $ $) NIL)) (-2218 (($ $) NIL (|has| (-530) (-768)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 10 T CONST)) (-2955 (($) 12 T CONST)) (-3286 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2204 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2148 (((-110) $ $) 14)) (-2195 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2172 (((-110) $ $) 33 (|has| (-530) (-795)))) (-2257 (($ $ $) 29) (($ (-530) (-530)) 31)) (-2245 (($ $) 15) (($ $ $) 23)) (-2234 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 25) (($ $ $) 27) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) 25) (($ $ (-530)) NIL)))
-(((-943 |#1|) (-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -1870 ((-597 (-530)) $)) (-15 -1861 ((-1080 (-530)) $)) (-15 -1852 ((-597 (-530)) $)) (-15 -1843 ((-597 (-530)) $)) (-15 -1835 ($ (-597 (-530)))) (-15 -1826 ($ (-597 (-530)) (-597 (-530)))))) (-530)) (T -943))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1826 (*1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2258 ((-388 (-530)) $)) (-15 -1684 ((-388 (-530)) $)) (-15 -1870 ((-597 (-530)) $)) (-15 -1861 ((-1080 (-530)) $)) (-15 -1852 ((-597 (-530)) $)) (-15 -1843 ((-597 (-530)) $)) (-15 -1835 ($ (-597 (-530)))) (-15 -1826 ($ (-597 (-530)) (-597 (-530))))))
-((-1880 (((-51) (-388 (-530)) (-530)) 9)))
-(((-944) (-10 -7 (-15 -1880 ((-51) (-388 (-530)) (-530))))) (T -944))
-((-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51)) (-5 *1 (-944)))))
-(-10 -7 (-15 -1880 ((-51) (-388 (-530)) (-530))))
-((-2879 (((-530)) 13)) (-1907 (((-530)) 16)) (-1899 (((-1186) (-530)) 15)) (-1890 (((-530) (-530)) 17) (((-530)) 12)))
-(((-945) (-10 -7 (-15 -1890 ((-530))) (-15 -2879 ((-530))) (-15 -1890 ((-530) (-530))) (-15 -1899 ((-1186) (-530))) (-15 -1907 ((-530))))) (T -945))
-((-1907 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-2879 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-1890 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
-(-10 -7 (-15 -1890 ((-530))) (-15 -2879 ((-530))) (-15 -1890 ((-530) (-530))) (-15 -1899 ((-1186) (-530))) (-15 -1907 ((-530))))
-((-2101 (((-399 |#1|) |#1|) 41)) (-2473 (((-399 |#1|) |#1|) 40)))
-(((-946 |#1|) (-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1|))) (-1157 (-388 (-530)))) (T -946))
-((-2101 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))))
-(-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1|)))
-((-1936 (((-3 (-388 (-530)) "failed") |#1|) 15)) (-1928 (((-110) |#1|) 14)) (-1917 (((-388 (-530)) |#1|) 10)))
-(((-947 |#1|) (-10 -7 (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|))) (-975 (-388 (-530)))) (T -947))
-((-1936 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))) (-1917 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
-(-10 -7 (-15 -1917 ((-388 (-530)) |#1|)) (-15 -1928 ((-110) |#1|)) (-15 -1936 ((-3 (-388 (-530)) "failed") |#1|)))
-((-2416 ((|#2| $ "value" |#2|) 12)) (-1832 ((|#2| $ "value") 10)) (-1974 (((-110) $ $) 18)))
-(((-948 |#1| |#2|) (-10 -8 (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1974 ((-110) |#1| |#1|)) (-15 -1832 (|#2| |#1| "value"))) (-949 |#2|) (-1135)) (T -948))
-NIL
-(-10 -8 (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1974 ((-110) |#1| |#1|)) (-15 -1832 (|#2| |#1| "value")))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3956 (($) 7 T CONST)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47)) (-1984 (((-530) $ $) 44)) (-3663 (((-110) $) 46)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1554 (((-597 (-530)) $) 54)) (-2780 (($ (-597 (-530))) 62)) (-1612 (((-530) $) 40 (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 49) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 47 (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) 49 (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3914 (((-597 (-530)) $) 60)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) 37)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) 42)) (-2663 (((-1080 (-530)) $) 59)) (-2570 (($ (-597 (-530)) (-597 (-530))) 63)) (-3175 (((-530) $) 53 (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) 11 (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) 39)) (-4210 (((-597 (-530)) $) 61)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) 77) (($ (-530)) 43) (($ $) NIL) (($ (-388 (-530))) 20) (($ (-530)) 43) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) 18)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) 9)) (-2748 (((-530) $) 51 (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) 10 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) 14)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) 33 (|has| (-530) (-795)))) (-2364 (($ $ $) 29) (($ (-530) (-530)) 31)) (-2351 (($ $) 15) (($ $ $) 23)) (-2339 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 25) (($ $ $) 27) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) 25) (($ $ (-530)) NIL)))
+(((-943 |#1|) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1554 ((-597 (-530)) $)) (-15 -2663 ((-1080 (-530)) $)) (-15 -3914 ((-597 (-530)) $)) (-15 -4210 ((-597 (-530)) $)) (-15 -2780 ($ (-597 (-530)))) (-15 -2570 ($ (-597 (-530)) (-597 (-530)))))) (-530)) (T -943))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2570 (*1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1554 ((-597 (-530)) $)) (-15 -2663 ((-1080 (-530)) $)) (-15 -3914 ((-597 (-530)) $)) (-15 -4210 ((-597 (-530)) $)) (-15 -2780 ($ (-597 (-530)))) (-15 -2570 ($ (-597 (-530)) (-597 (-530))))))
+((-4060 (((-51) (-388 (-530)) (-530)) 9)))
+(((-944) (-10 -7 (-15 -4060 ((-51) (-388 (-530)) (-530))))) (T -944))
+((-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51)) (-5 *1 (-944)))))
+(-10 -7 (-15 -4060 ((-51) (-388 (-530)) (-530))))
+((-3023 (((-530)) 13)) (-3693 (((-530)) 16)) (-2247 (((-1186) (-530)) 15)) (-2599 (((-530) (-530)) 17) (((-530)) 12)))
+(((-945) (-10 -7 (-15 -2599 ((-530))) (-15 -3023 ((-530))) (-15 -2599 ((-530) (-530))) (-15 -2247 ((-1186) (-530))) (-15 -3693 ((-530))))) (T -945))
+((-3693 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-3023 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-2599 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
+(-10 -7 (-15 -2599 ((-530))) (-15 -3023 ((-530))) (-15 -2599 ((-530) (-530))) (-15 -2247 ((-1186) (-530))) (-15 -3693 ((-530))))
+((-1550 (((-399 |#1|) |#1|) 41)) (-2611 (((-399 |#1|) |#1|) 40)))
+(((-946 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|))) (-1157 (-388 (-530)))) (T -946))
+((-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))))
+(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)))
+((-2180 (((-3 (-388 (-530)) "failed") |#1|) 15)) (-3016 (((-110) |#1|) 14)) (-3370 (((-388 (-530)) |#1|) 10)))
+(((-947 |#1|) (-10 -7 (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|))) (-975 (-388 (-530)))) (T -947))
+((-2180 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))) (-3016 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))) (-3370 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
+(-10 -7 (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)))
+((-2552 ((|#2| $ "value" |#2|) 12)) (-1902 ((|#2| $ "value") 10)) (-4153 (((-110) $ $) 18)))
+(((-948 |#1| |#2|) (-10 -8 (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -1902 (|#2| |#1| "value"))) (-949 |#2|) (-1135)) (T -948))
+NIL
+(-10 -8 (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -1902 (|#2| |#1| "value")))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-949 |#1|) (-133) (-1135)) (T -949))
-((-3885 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-1984 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-1974 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1966 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4271)) (-4 *1 (-949 *3)) (-4 *3 (-1135)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4271)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1947 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
-(-13 (-468 |t#1|) (-10 -8 (-15 -3885 ((-597 $) $)) (-15 -1994 ((-597 $) $)) (-15 -3937 ((-110) $)) (-15 -3387 (|t#1| $)) (-15 -1832 (|t#1| $ "value")) (-15 -3663 ((-110) $)) (-15 -3353 ((-597 |t#1|) $)) (-15 -1984 ((-530) $ $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -1974 ((-110) $ $)) (-15 -1966 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4271)) (PROGN (-15 -1955 ($ $ (-597 $))) (-15 -2416 (|t#1| $ "value" |t#1|)) (-15 -1947 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2487 (($ $) 9) (($ $ (-862)) 43) (($ (-388 (-530))) 13) (($ (-530)) 15)) (-4189 (((-3 $ "failed") (-1095 $) (-862) (-804)) 23) (((-3 $ "failed") (-1095 $) (-862)) 28)) (-1817 (($ $ (-530)) 49)) (-1667 (((-719)) 17)) (-4200 (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 (-388 (-530)))) 54) (((-597 $) (-1095 (-530))) 59) (((-597 $) (-893 $)) 63) (((-597 $) (-893 (-388 (-530)))) 67) (((-597 $) (-893 (-530))) 71)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 47)))
-(((-950 |#1|) (-10 -8 (-15 -2487 (|#1| (-530))) (-15 -2487 (|#1| (-388 (-530)))) (-15 -2487 (|#1| |#1| (-862))) (-15 -4200 ((-597 |#1|) (-893 (-530)))) (-15 -4200 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -4200 ((-597 |#1|) (-893 |#1|))) (-15 -4200 ((-597 |#1|) (-1095 (-530)))) (-15 -4200 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -4200 ((-597 |#1|) (-1095 |#1|))) (-15 -4189 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -4189 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1817 (|#1| |#1| (-530))) (-15 -2487 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -1667 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862)))) (-951)) (T -950))
-((-1667 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951)))))
-(-10 -8 (-15 -2487 (|#1| (-530))) (-15 -2487 (|#1| (-388 (-530)))) (-15 -2487 (|#1| |#1| (-862))) (-15 -4200 ((-597 |#1|) (-893 (-530)))) (-15 -4200 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -4200 ((-597 |#1|) (-893 |#1|))) (-15 -4200 ((-597 |#1|) (-1095 (-530)))) (-15 -4200 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -4200 ((-597 |#1|) (-1095 |#1|))) (-15 -4189 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -4189 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1817 (|#1| |#1| (-530))) (-15 -2487 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -1667 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 89)) (-3031 (($ $) 90)) (-3006 (((-110) $) 92)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 109)) (-3550 (((-399 $) $) 110)) (-2487 (($ $) 73) (($ $ (-862)) 59) (($ (-388 (-530))) 58) (($ (-530)) 57)) (-1945 (((-110) $ $) 100)) (-3592 (((-530) $) 127)) (-3956 (($) 17 T CONST)) (-4189 (((-3 $ "failed") (-1095 $) (-862) (-804)) 67) (((-3 $ "failed") (-1095 $) (-862)) 66)) (-3012 (((-3 (-530) "failed") $) 85 (|has| (-388 (-530)) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 83 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) 81)) (-2446 (((-530) $) 86 (|has| (-388 (-530)) (-975 (-530)))) (((-388 (-530)) $) 84 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 80)) (-2012 (($ $ (-804)) 56)) (-2003 (($ $ (-804)) 55)) (-3607 (($ $ $) 104)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 103)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 98)) (-2049 (((-110) $) 111)) (-2991 (((-110) $) 125)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 72)) (-3002 (((-110) $) 126)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 107)) (-4194 (($ $ $) 124)) (-1757 (($ $ $) 123)) (-2020 (((-3 (-1095 $) "failed") $) 68)) (-2037 (((-3 (-804) "failed") $) 70)) (-2028 (((-3 (-1095 $) "failed") $) 69)) (-2072 (($ (-597 $)) 96) (($ $ $) 95)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 112)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 97)) (-2108 (($ (-597 $)) 94) (($ $ $) 93)) (-2473 (((-399 $) $) 108)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 105)) (-3562 (((-3 $ "failed") $ $) 88)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 99)) (-1934 (((-719) $) 101)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 102)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 117) (($ $) 87) (($ (-388 (-530))) 82) (($ (-530)) 79) (($ (-388 (-530))) 76)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 91)) (-4125 (((-388 (-530)) $ $) 54)) (-4200 (((-597 $) (-1095 $)) 65) (((-597 $) (-1095 (-388 (-530)))) 64) (((-597 $) (-1095 (-530))) 63) (((-597 $) (-893 $)) 62) (((-597 $) (-893 (-388 (-530)))) 61) (((-597 $) (-893 (-530))) 60)) (-2218 (($ $) 128)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 113)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 121)) (-2182 (((-110) $ $) 120)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 122)) (-2172 (((-110) $ $) 119)) (-2257 (($ $ $) 118)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 114) (($ $ (-388 (-530))) 71)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 116) (($ $ (-388 (-530))) 115) (($ (-530) $) 78) (($ $ (-530)) 77) (($ (-388 (-530)) $) 75) (($ $ (-388 (-530))) 74)))
+((-2557 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-2011 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-4153 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1646 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3)) (-4 *3 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1615 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -2557 ((-597 $) $)) (-15 -2011 ((-597 $) $)) (-15 -3615 ((-110) $)) (-15 -3417 (|t#1| $)) (-15 -1902 (|t#1| $ "value")) (-15 -4246 ((-110) $)) (-15 -3390 ((-597 |t#1|) $)) (-15 -2539 ((-530) $ $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -4153 ((-110) $ $)) (-15 -1646 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4091 ($ $ (-597 $))) (-15 -2552 (|t#1| $ "value" |t#1|)) (-15 -1615 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-2625 (($ $) 9) (($ $ (-862)) 43) (($ (-388 (-530))) 13) (($ (-530)) 15)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) 23) (((-3 $ "failed") (-1095 $) (-862)) 28)) (-3741 (($ $ (-530)) 49)) (-3300 (((-719)) 17)) (-3462 (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 (-388 (-530)))) 54) (((-597 $) (-1095 (-530))) 59) (((-597 $) (-893 $)) 63) (((-597 $) (-893 (-388 (-530)))) 67) (((-597 $) (-893 (-530))) 71)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 47)))
+(((-950 |#1|) (-10 -8 (-15 -2625 (|#1| (-530))) (-15 -2625 (|#1| (-388 (-530)))) (-15 -2625 (|#1| |#1| (-862))) (-15 -3462 ((-597 |#1|) (-893 (-530)))) (-15 -3462 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-893 |#1|))) (-15 -3462 ((-597 |#1|) (-1095 (-530)))) (-15 -3462 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-1095 |#1|))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3741 (|#1| |#1| (-530))) (-15 -2625 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862)))) (-951)) (T -950))
+((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951)))))
+(-10 -8 (-15 -2625 (|#1| (-530))) (-15 -2625 (|#1| (-388 (-530)))) (-15 -2625 (|#1| |#1| (-862))) (-15 -3462 ((-597 |#1|) (-893 (-530)))) (-15 -3462 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-893 |#1|))) (-15 -3462 ((-597 |#1|) (-1095 (-530)))) (-15 -3462 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-1095 |#1|))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3741 (|#1| |#1| (-530))) (-15 -2625 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 87)) (-3446 (($ $) 88)) (-1276 (((-110) $) 90)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 107)) (-3272 (((-399 $) $) 108)) (-2625 (($ $) 71) (($ $ (-862)) 57) (($ (-388 (-530))) 56) (($ (-530)) 55)) (-1426 (((-110) $ $) 98)) (-1867 (((-530) $) 124)) (-2350 (($) 17 T CONST)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) 65) (((-3 $ "failed") (-1095 $) (-862)) 64)) (-3139 (((-3 (-530) "failed") $) 83 (|has| (-388 (-530)) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 81 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) 79)) (-2585 (((-530) $) 84 (|has| (-388 (-530)) (-975 (-530)))) (((-388 (-530)) $) 82 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 78)) (-3843 (($ $ (-804)) 54)) (-2417 (($ $ (-804)) 53)) (-3590 (($ $ $) 102)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 101)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 96)) (-3295 (((-110) $) 109)) (-2514 (((-110) $) 122)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 70)) (-2166 (((-110) $) 123)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 105)) (-2508 (($ $ $) 121)) (-1817 (($ $ $) 120)) (-3491 (((-3 (-1095 $) "failed") $) 66)) (-1631 (((-3 (-804) "failed") $) 68)) (-1965 (((-3 (-1095 $) "failed") $) 67)) (-2170 (($ (-597 $)) 94) (($ $ $) 93)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 110)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 95)) (-2204 (($ (-597 $)) 92) (($ $ $) 91)) (-2611 (((-399 $) $) 106)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 103)) (-3551 (((-3 $ "failed") $ $) 86)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 97)) (-2356 (((-719) $) 99)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 100)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 114) (($ $) 85) (($ (-388 (-530))) 80) (($ (-530)) 77) (($ (-388 (-530))) 74)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 89)) (-4136 (((-388 (-530)) $ $) 52)) (-3462 (((-597 $) (-1095 $)) 63) (((-597 $) (-1095 (-388 (-530)))) 62) (((-597 $) (-1095 (-530))) 61) (((-597 $) (-893 $)) 60) (((-597 $) (-893 (-388 (-530)))) 59) (((-597 $) (-893 (-530))) 58)) (-3934 (($ $) 125)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 118)) (-2284 (((-110) $ $) 117)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 119)) (-2272 (((-110) $ $) 116)) (-2364 (($ $ $) 115)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 111) (($ $ (-388 (-530))) 69)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 113) (($ $ (-388 (-530))) 112) (($ (-530) $) 76) (($ $ (-530)) 75) (($ (-388 (-530)) $) 73) (($ $ (-388 (-530))) 72)))
(((-951) (-133)) (T -951))
-((-2487 (*1 *1 *1) (-4 *1 (-951))) (-2037 (*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))) (-2028 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-2020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-4189 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804)) (-4 *1 (-951)))) (-4189 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-2487 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-862)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-951)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-951)))) (-2012 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-2003 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-530))))))
-(-13 (-140) (-793) (-162) (-344) (-392 (-388 (-530))) (-37 (-530)) (-37 (-388 (-530))) (-941) (-10 -8 (-15 -2037 ((-3 (-804) "failed") $)) (-15 -2028 ((-3 (-1095 $) "failed") $)) (-15 -2020 ((-3 (-1095 $) "failed") $)) (-15 -4189 ((-3 $ "failed") (-1095 $) (-862) (-804))) (-15 -4189 ((-3 $ "failed") (-1095 $) (-862))) (-15 -4200 ((-597 $) (-1095 $))) (-15 -4200 ((-597 $) (-1095 (-388 (-530))))) (-15 -4200 ((-597 $) (-1095 (-530)))) (-15 -4200 ((-597 $) (-893 $))) (-15 -4200 ((-597 $) (-893 (-388 (-530))))) (-15 -4200 ((-597 $) (-893 (-530)))) (-15 -2487 ($ $ (-862))) (-15 -2487 ($ $)) (-15 -2487 ($ (-388 (-530)))) (-15 -2487 ($ (-530))) (-15 -2012 ($ $ (-804))) (-15 -2003 ($ $ (-804))) (-15 -4125 ((-388 (-530)) $ $))))
+((-2625 (*1 *1 *1) (-4 *1 (-951))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))) (-1965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-3491 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-1326 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804)) (-4 *1 (-951)))) (-1326 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-2625 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-862)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-951)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-951)))) (-3843 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-2417 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-4136 (*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-530))))))
+(-13 (-140) (-793) (-162) (-344) (-392 (-388 (-530))) (-37 (-530)) (-37 (-388 (-530))) (-941) (-10 -8 (-15 -1631 ((-3 (-804) "failed") $)) (-15 -1965 ((-3 (-1095 $) "failed") $)) (-15 -3491 ((-3 (-1095 $) "failed") $)) (-15 -1326 ((-3 $ "failed") (-1095 $) (-862) (-804))) (-15 -1326 ((-3 $ "failed") (-1095 $) (-862))) (-15 -3462 ((-597 $) (-1095 $))) (-15 -3462 ((-597 $) (-1095 (-388 (-530))))) (-15 -3462 ((-597 $) (-1095 (-530)))) (-15 -3462 ((-597 $) (-893 $))) (-15 -3462 ((-597 $) (-893 (-388 (-530))))) (-15 -3462 ((-597 $) (-893 (-530)))) (-15 -2625 ($ $ (-862))) (-15 -2625 ($ $)) (-15 -2625 ($ (-388 (-530)))) (-15 -2625 ($ (-530))) (-15 -3843 ($ $ (-804))) (-15 -2417 ($ $ (-804))) (-15 -4136 ((-388 (-530)) $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 #1=(-530)) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-392 (-388 (-530))) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-861) . T) ((-941) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) |has| (-388 (-530)) (-975 (-530))) ((-990 #0#) . T) ((-990 #1#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2047 (((-2 (|:| |ans| |#2|) (|:| -3657 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -2047 ((-2 (|:| |ans| |#2|) (|:| -3657 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -952))
-((-2047 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3657 *4) (|:| |sol?| (-110)))) (-5 *1 (-952 *8 *4)))))
-(-10 -7 (-15 -2047 ((-2 (|:| |ans| |#2|) (|:| -3657 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2055 (((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -2055 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -953))
-((-2055 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
-(-10 -7 (-15 -2055 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2555 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2087 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2623 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)) 30)) (-2064 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-2076 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2076 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2087 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2623 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -954))
-((-2087 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2623 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-954 *6 *3)))) (-2076 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))) (-2064 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -4031 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -2064 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2076 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2087 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2623 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|))))
-((-2099 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-2111 (((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -2099 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2111 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -955))
-((-2111 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5)) (-5 *3 (-388 *5)))) (-2099 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4031 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -2099 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4031 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2111 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))))
-((-2123 (((-1 |#1|) (-597 (-2 (|:| -3387 |#1|) (|:| -3073 (-530))))) 37)) (-1453 (((-1 |#1|) (-1029 |#1|)) 45)) (-2135 (((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)) 34)))
-(((-956 |#1|) (-10 -7 (-15 -1453 ((-1 |#1|) (-1029 |#1|))) (-15 -2123 ((-1 |#1|) (-597 (-2 (|:| -3387 |#1|) (|:| -3073 (-530)))))) (-15 -2135 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)))) (-1027)) (T -956))
-((-2135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530)) (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3387 *4) (|:| -3073 (-530))))) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
-(-10 -7 (-15 -1453 ((-1 |#1|) (-1029 |#1|))) (-15 -2123 ((-1 |#1|) (-597 (-2 (|:| -3387 |#1|) (|:| -3073 (-530)))))) (-15 -2135 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530))))
-((-1334 (((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1334 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -957))
-((-1334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719)) (-5 *1 (-957 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -1334 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1735 (((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) 31) (((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530))) 28)) (-2166 (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530))) 33) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530))) 29) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) 32) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|) 27)) (-2156 (((-597 (-388 (-530))) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) 19)) (-2146 (((-388 (-530)) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) 16)))
-(((-958 |#1|) (-10 -7 (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|)) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2146 ((-388 (-530)) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2156 ((-597 (-388 (-530))) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))))) (-1157 (-530))) (T -958))
-((-2156 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-1735 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-1735 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3648 *5) (|:| -3657 *5)))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3648 *5) (|:| -3657 *5))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))) (-2166 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|)) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2146 ((-388 (-530)) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2156 ((-597 (-388 (-530))) (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))))
-((-1735 (((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) 35) (((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530))) 32)) (-2166 (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530))) 30) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530))) 26) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) 28) (((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|) 24)))
-(((-959 |#1|) (-10 -7 (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|)) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))) (-1157 (-388 (-530)))) (T -959))
-((-1735 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-1735 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3648 *5) (|:| -3657 *5)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3648 *5) (|:| -3657 *5))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3648 *4) (|:| -3657 *4)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))) (-5 *4 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))) (-2166 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))))
-(-10 -7 (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1|)) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2166 ((-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-388 (-530)))) (-15 -1735 ((-3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) "failed") |#1| (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))) (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))))
-((-3173 (((-208) $) 6) (((-360) $) 9)))
+((-3213 (((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -3213 ((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -952))
+((-3213 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110)))) (-5 *1 (-952 *8 *4)))))
+(-10 -7 (-15 -3213 ((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2699 (((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -2699 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -953))
+((-2699 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
+(-10 -7 (-15 -2699 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2867 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)) 30)) (-1718 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-4177 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -1718 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -4177 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2867 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -954))
+((-2867 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-954 *6 *3)))) (-4177 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))) (-1718 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -4046 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -1718 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -4177 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2867 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|))))
+((-1354 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-3960 (((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -1354 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3960 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -955))
+((-3960 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5)) (-5 *3 (-388 *5)))) (-1354 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4046 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -1354 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3960 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))))
+((-3548 (((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530))))) 37)) (-3155 (((-1 |#1|) (-1029 |#1|)) 45)) (-1947 (((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)) 34)))
+(((-956 |#1|) (-10 -7 (-15 -3155 ((-1 |#1|) (-1029 |#1|))) (-15 -3548 ((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530)))))) (-15 -1947 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)))) (-1027)) (T -956))
+((-1947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530)) (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3417 *4) (|:| -2001 (-530))))) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
+(-10 -7 (-15 -3155 ((-1 |#1|) (-1029 |#1|))) (-15 -3548 ((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530)))))) (-15 -1947 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530))))
+((-2031 (((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -957))
+((-2031 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719)) (-5 *1 (-957 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3399 (((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 31) (((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 28)) (-2956 (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 33) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530))) 29) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 32) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|) 27)) (-2530 (((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) 19)) (-3814 (((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 16)))
+(((-958 |#1|) (-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -3814 ((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2530 ((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))) (-1157 (-530))) (T -958))
+((-2530 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-3399 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-3399 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))))
+(-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -3814 ((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2530 ((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))))
+((-3399 (((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 35) (((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 32)) (-2956 (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 30) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530))) 26) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 28) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|) 24)))
+(((-959 |#1|) (-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-1157 (-388 (-530)))) (T -959))
+((-3399 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-3399 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *4) (|:| -3638 *4)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))) (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))))
+(-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
+((-3260 (((-208) $) 6) (((-360) $) 9)))
(((-960) (-133)) (T -960))
NIL
(-13 (-572 (-208)) (-572 (-360)))
(((-572 (-208)) . T) ((-572 (-360)) . T))
-((-3066 (((-597 (-360)) (-893 (-530)) (-360)) 28) (((-597 (-360)) (-893 (-388 (-530))) (-360)) 27)) (-3525 (((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360)) 37)))
-(((-961) (-10 -7 (-15 -3066 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -3066 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3525 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))) (T -961))
-((-3525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))))
-(-10 -7 (-15 -3066 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -3066 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3525 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 70)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-2487 (($ $) NIL) (($ $ (-862)) NIL) (($ (-388 (-530))) NIL) (($ (-530)) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) 65)) (-3956 (($) NIL T CONST)) (-4189 (((-3 $ "failed") (-1095 $) (-862) (-804)) NIL) (((-3 $ "failed") (-1095 $) (-862)) 50)) (-3012 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-530) "failed") $) NIL (-1476 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-2446 (((-388 (-530)) $) 15 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 15) ((|#1| $) 108) (((-530) $) NIL (-1476 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-2012 (($ $ (-804)) 42)) (-2003 (($ $ (-804)) 43)) (-3607 (($ $ $) NIL)) (-4179 (((-388 (-530)) $ $) 19)) (-1673 (((-3 $ "failed") $) 83)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-2991 (((-110) $) 61)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL)) (-3002 (((-110) $) 64)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2020 (((-3 (-1095 $) "failed") $) 78)) (-2037 (((-3 (-804) "failed") $) 77)) (-2028 (((-3 (-1095 $) "failed") $) 75)) (-2179 (((-3 (-994 $ (-1095 $)) "failed") $) 73)) (-2072 (($ (-597 $)) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 84)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-2258 (((-804) $) 82) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) 58) (($ (-388 (-530))) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 110)) (-1667 (((-719)) NIL)) (-3020 (((-110) $ $) NIL)) (-4125 (((-388 (-530)) $ $) 25)) (-4200 (((-597 $) (-1095 $)) 56) (((-597 $) (-1095 (-388 (-530)))) NIL) (((-597 $) (-1095 (-530))) NIL) (((-597 $) (-893 $)) NIL) (((-597 $) (-893 (-388 (-530)))) NIL) (((-597 $) (-893 (-530))) NIL)) (-2193 (($ (-994 $ (-1095 $)) (-804)) 41)) (-2218 (($ $) 20)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (-2943 (($) 29 T CONST)) (-2955 (($) 35 T CONST)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 22)) (-2257 (($ $ $) 33)) (-2245 (($ $) 34) (($ $ $) 69)) (-2234 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 91) (($ $ $) 96) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ (-530) $) 91) (($ $ (-530)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-962 |#1|) (-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -2193 ($ (-994 $ (-1095 $)) (-804))) (-15 -2179 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -4179 ((-388 (-530)) $ $)))) (-13 (-793) (-344) (-960))) (T -962))
-((-2193 (*1 *1 *2 *3) (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804)) (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))) (-2179 (*1 *2 *1) (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))) (-4179 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
-(-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -2193 ($ (-994 $ (-1095 $)) (-804))) (-15 -2179 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -4179 ((-388 (-530)) $ $))))
-((-2203 (((-2 (|:| -2623 |#2|) (|:| -4135 (-597 |#1|))) |#2| (-597 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -2203 (|#2| |#2| |#1|)) (-15 -2203 ((-2 (|:| -2623 |#2|) (|:| -4135 (-597 |#1|))) |#2| (-597 |#1|)))) (-344) (-607 |#1|)) (T -963))
-((-2203 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2623 *3) (|:| -4135 (-597 *5)))) (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))) (-2203 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3)))))
-(-10 -7 (-15 -2203 (|#2| |#2| |#1|)) (-15 -2203 ((-2 (|:| -2623 |#2|) (|:| -4135 (-597 |#1|))) |#2| (-597 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2213 ((|#1| $ |#1|) 14)) (-2416 ((|#1| $ |#1|) 12)) (-2231 (($ |#1|) 10)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1832 ((|#1| $) 11)) (-2222 ((|#1| $) 13)) (-2258 (((-804) $) 21 (|has| |#1| (-1027)))) (-2148 (((-110) $ $) 9)))
-(((-964 |#1|) (-13 (-1135) (-10 -8 (-15 -2231 ($ |#1|)) (-15 -1832 (|#1| $)) (-15 -2416 (|#1| $ |#1|)) (-15 -2222 (|#1| $)) (-15 -2213 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -964))
-((-2231 (*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-1832 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2416 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2222 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2213 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -2231 ($ |#1|)) (-15 -1832 (|#1| $)) (-15 -2416 (|#1| $ |#1|)) (-15 -2222 (|#1| $)) (-15 -2213 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) NIL)) (-2844 (((-597 $) (-597 |#4|)) 105) (((-597 $) (-597 |#4|) (-110)) 106) (((-597 $) (-597 |#4|) (-110) (-110)) 104) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2596 (((-597 |#3|) $) NIL)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2906 ((|#4| |#4| $) NIL)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 99)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 54)) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) 26 (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3064 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2446 (($ (-597 |#4|)) NIL)) (-2918 (((-3 $ "failed") $) 39)) (-2878 ((|#4| |#4| $) 57)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2272 (($ |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2856 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) NIL)) (-3118 (((-110) |#4| $) NIL)) (-3094 (((-110) |#4| $) NIL)) (-3129 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1507 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 119)) (-2456 (((-597 |#4|) $) 16 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4167 ((|#3| $) 33)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#4|) $) 17 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2847 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 21)) (-3222 (((-597 |#3|) $) NIL)) (-3209 (((-110) |#3| $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 97)) (-2294 (((-3 |#4| "failed") $) 37)) (-3060 (((-597 $) |#4| $) 80)) (-3082 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-3418 (((-597 $) |#4| $) 102) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 103) (((-597 $) |#4| (-597 $)) NIL)) (-1517 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 114)) (-1528 (($ |#4| $) 70) (($ (-597 |#4|) $) 71) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-3011 (((-597 |#4|) $) NIL)) (-2938 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2888 ((|#4| |#4| $) NIL)) (-1845 (((-110) $ $) NIL)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2898 ((|#4| |#4| $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-3 |#4| "failed") $) 35)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2807 (((-3 $ "failed") $ |#4|) 48)) (-1312 (($ $ |#4|) NIL) (((-597 $) |#4| $) 82) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 77)) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 15)) (-4227 (($) 13)) (-3409 (((-719) $) NIL)) (-2494 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) 12)) (-3173 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 20)) (-3170 (($ $ |#3|) 42)) (-3196 (($ $ |#3|) 44)) (-2866 (($ $) NIL)) (-3183 (($ $ |#3|) NIL)) (-2258 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2795 (((-719) $) NIL (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3025 (((-597 $) |#4| $) 79) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) NIL)) (-3106 (((-110) |#4| $) NIL)) (-3292 (((-110) |#3| $) 53)) (-2148 (((-110) $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-965 |#1| |#2| |#3| |#4|) (-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1528 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1517 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1507 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -965))
-((-1528 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-2844 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1517 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1507 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8))))) (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1528 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1517 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1507 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
-((-1215 (((-597 (-637 |#1|)) (-597 (-637 |#1|))) 58) (((-637 |#1|) (-637 |#1|)) 57) (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 56) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 53)) (-4243 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 52) (((-637 |#1|) (-637 |#1|) (-862)) 51)) (-1223 (((-597 (-637 (-530))) (-597 (-597 (-530)))) 68) (((-597 (-637 (-530))) (-597 (-846 (-530))) (-530)) 67) (((-637 (-530)) (-597 (-530))) 64) (((-637 (-530)) (-846 (-530)) (-530)) 63)) (-4231 (((-637 (-893 |#1|)) (-719)) 81)) (-2320 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 37 (|has| |#1| (-6 (-4272 "*")))) (((-637 |#1|) (-637 |#1|) (-862)) 35 (|has| |#1| (-6 (-4272 "*"))))))
-(((-966 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4272 "*"))) (-15 -2320 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4272 "*"))) (-15 -2320 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -4231 ((-637 (-893 |#1|)) (-719))) (-15 -4243 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -4243 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -1215 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1215 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1215 ((-637 |#1|) (-637 |#1|))) (-15 -1215 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1223 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -1223 ((-637 (-530)) (-597 (-530)))) (-15 -1223 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -1223 ((-597 (-637 (-530))) (-597 (-597 (-530)))))) (-984)) (T -966))
-((-1223 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530)) (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-1223 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4)) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-1215 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-1215 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-1215 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-1215 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-4243 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-4243 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-2320 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (|has| *4 (-6 (-4272 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-2320 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4272 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4272 "*"))) (-15 -2320 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4272 "*"))) (-15 -2320 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -4231 ((-637 (-893 |#1|)) (-719))) (-15 -4243 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -4243 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -1215 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1215 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1215 ((-637 |#1|) (-637 |#1|))) (-15 -1215 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1223 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -1223 ((-637 (-530)) (-597 (-530)))) (-15 -1223 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -1223 ((-597 (-637 (-530))) (-597 (-597 (-530))))))
-((-1266 (((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)) 50 (|has| |#1| (-289)))) (-1373 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))) 76 (|has| |#1| (-344))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|)) 79 (|has| |#1| (-344)))) (-1310 (((-1181 |#1|) (-597 (-1181 |#1|)) (-530)) 93 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-1299 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862)) 85 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110)) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|))) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530)) 81 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-1287 (((-110) (-597 (-637 |#1|))) 71 (|has| |#1| (-344))) (((-110) (-597 (-637 |#1|)) (-530)) 73 (|has| |#1| (-344)))) (-1255 (((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|)) 48 (|has| |#1| (-289)))) (-1244 (((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|)) 34)) (-1233 (((-637 |#1|) (-1181 (-1181 |#1|))) 31)) (-1277 (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530)) 65 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 64 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530)) 69 (|has| |#1| (-344)))))
-(((-967 |#1|) (-10 -7 (-15 -1233 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -1244 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1255 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1266 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -1287 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -1287 ((-110) (-597 (-637 |#1|)))) (-15 -1373 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1373 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -1310 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|)) (-984)) (T -967))
-((-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))) (-1299 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1299 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1299 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984)) (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4)) (-5 *3 (-597 (-637 *4))))) (-1299 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6)) (-5 *3 (-597 (-637 *6))))) (-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1287 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *4)))) (-1287 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5)))) (-1277 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))) (-1277 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)) (-4 *4 (-344)) (-4 *4 (-984)))) (-1277 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530)) (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))) (-1255 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))) (-1244 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)))))
-(-10 -7 (-15 -1233 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -1244 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1255 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1266 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -1277 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -1287 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -1287 ((-110) (-597 (-637 |#1|)))) (-15 -1373 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1373 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1299 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -1310 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|))
-((-2185 ((|#1| (-862) |#1|) 9)))
-(((-968 |#1|) (-10 -7 (-15 -2185 (|#1| (-862) |#1|))) (-13 (-1027) (-10 -8 (-15 -2234 ($ $ $))))) (T -968))
-((-2185 (*1 *2 *3 *2) (-12 (-5 *3 (-862)) (-5 *1 (-968 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2234 ($ $ $))))))))
-(-10 -7 (-15 -2185 (|#1| (-862) |#1|)))
-((-2242 (((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530))))) 59)) (-2251 (((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530))))) 48)) (-2265 (((-597 (-297 (-530))) (-637 (-388 (-893 (-530))))) 41)) (-2310 (((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530))))) 68)) (-2289 (((-637 (-297 (-530))) (-637 (-297 (-530)))) 34)) (-2299 (((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530))))) 62)) (-2277 (((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530))))) 66)))
-(((-969) (-10 -7 (-15 -2242 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -2251 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -2265 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -2277 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -2289 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -2299 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -2310 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))) (T -969))
-((-2310 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530)))) (-5 *1 (-969)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)) (-5 *3 (-297 (-530))))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530)))))))) (-5 *1 (-969)))))
-(-10 -7 (-15 -2242 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -2251 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -2265 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -2277 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -2289 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -2299 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -2310 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))
-((-1321 ((|#1| |#1| (-862)) 9)))
-(((-970 |#1|) (-10 -7 (-15 -1321 (|#1| |#1| (-862)))) (-13 (-1027) (-10 -8 (-15 * ($ $ $))))) (T -970))
-((-1321 (*1 *2 *2 *3) (-12 (-5 *3 (-862)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1321 (|#1| |#1| (-862))))
-((-2258 ((|#1| (-293)) 11) (((-1186) |#1|) 9)))
-(((-971 |#1|) (-10 -7 (-15 -2258 ((-1186) |#1|)) (-15 -2258 (|#1| (-293)))) (-1135)) (T -971))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1135)))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-971 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2258 ((-1186) |#1|)) (-15 -2258 (|#1| (-293))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3856 (($ |#4|) 25)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3844 ((|#4| $) 27)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 46) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1667 (((-719)) 43)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 23 T CONST)) (-2148 (((-110) $ $) 40)) (-2245 (($ $) 31) (($ $ $) NIL)) (-2234 (($ $ $) 29)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-972 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -3856 ($ |#4|)) (-15 -2258 ($ |#4|)) (-15 -3844 (|#4| $)))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|) (-597 |#4|)) (T -972))
-((-3856 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
-(-13 (-162) (-37 |#1|) (-10 -8 (-15 -3856 ($ |#4|)) (-15 -2258 ($ |#4|)) (-15 -3844 (|#4| $))))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-1935 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-1342 (((-110) (-110)) 39)) (-1332 (((-110) (-110)) 38)) (-2416 (((-51) $ (-1099) (-51)) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 (-51) "failed") (-1099) $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-1283 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2272 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2858 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4271)))) (-2787 (((-51) $ (-1099)) NIL)) (-2456 (((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3252 (((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-1965 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4271))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-3202 (((-597 (-1099)) $) 34)) (-2010 (((-110) (-1099) $) NIL)) (-3275 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL)) (-3440 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL)) (-1983 (((-597 (-1099)) $) NIL)) (-1993 (((-110) (-1099) $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-2907 (((-51) $) NIL (|has| (-1099) (-795)))) (-4221 (((-3 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) "failed") (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL)) (-1946 (($ $ (-51)) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-2002 (((-597 (-51)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (((-51) $ (-1099)) 35) (((-51) $ (-1099) (-51)) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-2258 (((-804) $) 37 (-1476 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-973) (-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1342 ((-110) (-110))) (-15 -1332 ((-110) (-110))) (-6 -4270)))) (T -973))
-((-1342 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1342 ((-110) (-110))) (-15 -1332 ((-110) (-110))) (-6 -4270)))
-((-2446 ((|#2| $) 10)))
-(((-974 |#1| |#2|) (-10 -8 (-15 -2446 (|#2| |#1|))) (-975 |#2|) (-1135)) (T -974))
-NIL
-(-10 -8 (-15 -2446 (|#2| |#1|)))
-((-3012 (((-3 |#1| "failed") $) 7)) (-2446 ((|#1| $) 8)) (-2258 (($ |#1|) 6)))
+((-2688 (((-597 (-360)) (-893 (-530)) (-360)) 28) (((-597 (-360)) (-893 (-388 (-530))) (-360)) 27)) (-3009 (((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360)) 37)))
+(((-961) (-10 -7 (-15 -2688 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -2688 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3009 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))) (T -961))
+((-3009 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))))
+(-10 -7 (-15 -2688 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -2688 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3009 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 70)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL) (($ $ (-862)) NIL) (($ (-388 (-530))) NIL) (($ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) 65)) (-2350 (($) NIL T CONST)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) NIL) (((-3 $ "failed") (-1095 $) (-862)) 50)) (-3139 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-530) "failed") $) NIL (-1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-2585 (((-388 (-530)) $) 15 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 15) ((|#1| $) 108) (((-530) $) NIL (-1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-3843 (($ $ (-804)) 42)) (-2417 (($ $ (-804)) 43)) (-3590 (($ $ $) NIL)) (-2891 (((-388 (-530)) $ $) 19)) (-2707 (((-3 $ "failed") $) 83)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) 61)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2166 (((-110) $) 64)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3491 (((-3 (-1095 $) "failed") $) 78)) (-1631 (((-3 (-804) "failed") $) 77)) (-1965 (((-3 (-1095 $) "failed") $) 75)) (-1366 (((-3 (-994 $ (-1095 $)) "failed") $) 73)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 84)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) 82) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) 58) (($ (-388 (-530))) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 110)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ $) 25)) (-3462 (((-597 $) (-1095 $)) 56) (((-597 $) (-1095 (-388 (-530)))) NIL) (((-597 $) (-1095 (-530))) NIL) (((-597 $) (-893 $)) NIL) (((-597 $) (-893 (-388 (-530)))) NIL) (((-597 $) (-893 (-530))) NIL)) (-4107 (($ (-994 $ (-1095 $)) (-804)) 41)) (-3934 (($ $) 20)) (-3080 (($) 29 T CONST)) (-3093 (($) 35 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 71)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 22)) (-2364 (($ $ $) 33)) (-2351 (($ $) 34) (($ $ $) 69)) (-2339 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 91) (($ $ $) 96) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ (-530) $) 91) (($ $ (-530)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-962 |#1|) (-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -4107 ($ (-994 $ (-1095 $)) (-804))) (-15 -1366 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -2891 ((-388 (-530)) $ $)))) (-13 (-793) (-344) (-960))) (T -962))
+((-4107 (*1 *1 *2 *3) (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804)) (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))) (-1366 (*1 *2 *1) (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))) (-2891 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
+(-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -4107 ($ (-994 $ (-1095 $)) (-804))) (-15 -1366 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -2891 ((-388 (-530)) $ $))))
+((-2880 (((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -2880 (|#2| |#2| |#1|)) (-15 -2880 ((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|)))) (-344) (-607 |#1|)) (T -963))
+((-2880 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2776 *3) (|:| -4145 (-597 *5)))) (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))) (-2880 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3)))))
+(-10 -7 (-15 -2880 (|#2| |#2| |#1|)) (-15 -2880 ((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1265 ((|#1| $ |#1|) 14)) (-2552 ((|#1| $ |#1|) 12)) (-2818 (($ |#1|) 10)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1902 ((|#1| $) 11)) (-4216 ((|#1| $) 13)) (-2366 (((-804) $) 21 (|has| |#1| (-1027)))) (-2248 (((-110) $ $) 9)))
+(((-964 |#1|) (-13 (-1135) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1902 (|#1| $)) (-15 -2552 (|#1| $ |#1|)) (-15 -4216 (|#1| $)) (-15 -1265 (|#1| $ |#1|)) (-15 -2248 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -964))
+((-2818 (*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-4216 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-1265 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1135)))))
+(-13 (-1135) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1902 (|#1| $)) (-15 -2552 (|#1| $ |#1|)) (-15 -4216 (|#1| $)) (-15 -1265 (|#1| $ |#1|)) (-15 -2248 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 105) (((-597 $) (-597 |#4|) (-110)) 106) (((-597 $) (-597 |#4|) (-110) (-110)) 104) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 99)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 54)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) 57)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3131 (((-110) |#4| $) NIL)) (-2747 (((-110) |#4| $) NIL)) (-2984 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1767 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 119)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 97)) (-2407 (((-3 |#4| "failed") $) 37)) (-3274 (((-597 $) |#4| $) 80)) (-1404 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-4033 (((-597 $) |#4| $) 102) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 103) (((-597 $) |#4| (-597 $)) NIL)) (-1801 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 114)) (-2721 (($ |#4| $) 70) (($ (-597 |#4|) $) 71) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 48)) (-3168 (($ $ |#4|) NIL) (((-597 $) |#4| $) 82) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 77)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-4208 (((-597 $) |#4| $) 79) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-1321 (((-110) |#4| $) NIL)) (-2856 (((-110) |#3| $) 53)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-965 |#1| |#2| |#3| |#4|) (-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -965))
+((-2721 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1512 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1801 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1767 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8))))) (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+(-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
+((-2000 (((-597 (-637 |#1|)) (-597 (-637 |#1|))) 58) (((-637 |#1|) (-637 |#1|)) 57) (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 56) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 53)) (-2009 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 52) (((-637 |#1|) (-637 |#1|) (-862)) 51)) (-3499 (((-597 (-637 (-530))) (-597 (-597 (-530)))) 68) (((-597 (-637 (-530))) (-597 (-846 (-530))) (-530)) 67) (((-637 (-530)) (-597 (-530))) 64) (((-637 (-530)) (-846 (-530)) (-530)) 63)) (-3200 (((-637 (-893 |#1|)) (-719)) 81)) (-3757 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 37 (|has| |#1| (-6 (-4271 "*")))) (((-637 |#1|) (-637 |#1|) (-862)) 35 (|has| |#1| (-6 (-4271 "*"))))))
+(((-966 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -3200 ((-637 (-893 |#1|)) (-719))) (-15 -2009 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -2009 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -2000 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2000 ((-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3499 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -3499 ((-637 (-530)) (-597 (-530)))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-597 (-530)))))) (-984)) (T -966))
+((-3499 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530)) (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4)) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3757 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-3757 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -3200 ((-637 (-893 |#1|)) (-719))) (-15 -2009 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -2009 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -2000 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2000 ((-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3499 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -3499 ((-637 (-530)) (-597 (-530)))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-597 (-530))))))
+((-3634 (((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)) 50 (|has| |#1| (-289)))) (-1489 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))) 76 (|has| |#1| (-344))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|)) 79 (|has| |#1| (-344)))) (-3585 (((-1181 |#1|) (-597 (-1181 |#1|)) (-530)) 93 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-1219 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862)) 85 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110)) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|))) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530)) 81 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-4066 (((-110) (-597 (-637 |#1|))) 71 (|has| |#1| (-344))) (((-110) (-597 (-637 |#1|)) (-530)) 73 (|has| |#1| (-344)))) (-1637 (((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|)) 48 (|has| |#1| (-289)))) (-3262 (((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|)) 34)) (-2106 (((-637 |#1|) (-1181 (-1181 |#1|))) 31)) (-2412 (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530)) 65 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 64 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530)) 69 (|has| |#1| (-344)))))
+(((-967 |#1|) (-10 -7 (-15 -2106 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -3262 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1637 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -3634 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -3585 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|)) (-984)) (T -967))
+((-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))) (-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1219 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984)) (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4)) (-5 *3 (-597 (-637 *4))))) (-1219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6)) (-5 *3 (-597 (-637 *6))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5)))) (-2412 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))) (-2412 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)) (-4 *4 (-344)) (-4 *4 (-984)))) (-2412 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530)) (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)))))
+(-10 -7 (-15 -2106 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -3262 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1637 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -3634 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -3585 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|))
+((-2285 ((|#1| (-862) |#1|) 9)))
+(((-968 |#1|) (-10 -7 (-15 -2285 (|#1| (-862) |#1|))) (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))) (T -968))
+((-2285 (*1 *2 *3 *2) (-12 (-5 *3 (-862)) (-5 *1 (-968 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))))))
+(-10 -7 (-15 -2285 (|#1| (-862) |#1|)))
+((-2437 (((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530))))) 59)) (-3770 (((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530))))) 48)) (-3416 (((-597 (-297 (-530))) (-637 (-388 (-893 (-530))))) 41)) (-1277 (((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530))))) 68)) (-1446 (((-637 (-297 (-530))) (-637 (-297 (-530)))) 34)) (-1733 (((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530))))) 62)) (-3074 (((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530))))) 66)))
+(((-969) (-10 -7 (-15 -2437 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -3770 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -3416 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -3074 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -1446 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -1733 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -1277 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))) (T -969))
+((-1277 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-3074 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530)))) (-5 *1 (-969)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)) (-5 *3 (-297 (-530))))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530)))))))) (-5 *1 (-969)))))
+(-10 -7 (-15 -2437 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -3770 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -3416 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -3074 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -1446 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -1733 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -1277 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))
+((-3451 ((|#1| |#1| (-862)) 9)))
+(((-970 |#1|) (-10 -7 (-15 -3451 (|#1| |#1| (-862)))) (-13 (-1027) (-10 -8 (-15 * ($ $ $))))) (T -970))
+((-3451 (*1 *2 *2 *3) (-12 (-5 *3 (-862)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3451 (|#1| |#1| (-862))))
+((-2366 ((|#1| (-293)) 11) (((-1186) |#1|) 9)))
+(((-971 |#1|) (-10 -7 (-15 -2366 ((-1186) |#1|)) (-15 -2366 (|#1| (-293)))) (-1135)) (T -971))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1135)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-971 *3)) (-4 *3 (-1135)))))
+(-10 -7 (-15 -2366 ((-1186) |#1|)) (-15 -2366 (|#1| (-293))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ |#4|) 25)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2123 ((|#4| $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 46) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3300 (((-719)) 43)) (-3080 (($) 21 T CONST)) (-3093 (($) 23 T CONST)) (-2248 (((-110) $ $) 40)) (-2351 (($ $) 31) (($ $ $) NIL)) (-2339 (($ $ $) 29)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-972 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -2134 ($ |#4|)) (-15 -2366 ($ |#4|)) (-15 -2123 (|#4| $)))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|) (-597 |#4|)) (T -972))
+((-2134 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
+(-13 (-162) (-37 |#1|) (-10 -8 (-15 -2134 ($ |#4|)) (-15 -2366 ($ |#4|)) (-15 -2123 (|#4| $))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-1666 (((-110) (-110)) 39)) (-4103 (((-110) (-110)) 38)) (-2552 (((-51) $ (-1099) (-51)) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1099) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1099)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1099)) $) 34)) (-3718 (((-110) (-1099) $) NIL)) (-1723 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-3567 (((-597 (-1099)) $) NIL)) (-1927 (((-110) (-1099) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3048 (((-51) $) NIL (|has| (-1099) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1099)) 35) (((-51) $ (-1099) (-51)) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2366 (((-804) $) 37 (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-973) (-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1666 ((-110) (-110))) (-15 -4103 ((-110) (-110))) (-6 -4269)))) (T -973))
+((-1666 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
+(-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1666 ((-110) (-110))) (-15 -4103 ((-110) (-110))) (-6 -4269)))
+((-2585 ((|#2| $) 10)))
+(((-974 |#1| |#2|) (-10 -8 (-15 -2585 (|#2| |#1|))) (-975 |#2|) (-1135)) (T -974))
+NIL
+(-10 -8 (-15 -2585 (|#2| |#1|)))
+((-3139 (((-3 |#1| "failed") $) 7)) (-2585 ((|#1| $) 8)) (-2366 (($ |#1|) 6)))
(((-975 |#1|) (-133) (-1135)) (T -975))
-((-2446 (*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-3012 (*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-2258 (*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -2258 ($ |t#1|)) (-15 -3012 ((-3 |t#1| "failed") $)) (-15 -2446 (|t#1| $))))
-((-1356 (((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))) 38)))
-(((-976 |#1| |#2|) (-10 -7 (-15 -1356 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))))) (-522) (-13 (-522) (-975 |#1|))) (T -976))
-((-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
-(-10 -7 (-15 -1356 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099)))))
-((-1379 (((-360)) 15)) (-1453 (((-1 (-360)) (-360) (-360)) 20)) (-4031 (((-1 (-360)) (-719)) 43)) (-1390 (((-360)) 34)) (-4176 (((-1 (-360)) (-360) (-360)) 35)) (-1400 (((-360)) 26)) (-1422 (((-1 (-360)) (-360)) 27)) (-1411 (((-360) (-719)) 38)) (-1432 (((-1 (-360)) (-719)) 39)) (-1345 (((-1 (-360)) (-719) (-719)) 42)) (-2227 (((-1 (-360)) (-719) (-719)) 40)))
-(((-977) (-10 -7 (-15 -1379 ((-360))) (-15 -1390 ((-360))) (-15 -1400 ((-360))) (-15 -1411 ((-360) (-719))) (-15 -1453 ((-1 (-360)) (-360) (-360))) (-15 -4176 ((-1 (-360)) (-360) (-360))) (-15 -1422 ((-1 (-360)) (-360))) (-15 -1432 ((-1 (-360)) (-719))) (-15 -2227 ((-1 (-360)) (-719) (-719))) (-15 -1345 ((-1 (-360)) (-719) (-719))) (-15 -4031 ((-1 (-360)) (-719))))) (T -977))
-((-4031 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-1345 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-2227 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-1422 (*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-4176 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))) (-1400 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-1390 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-1379 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(-10 -7 (-15 -1379 ((-360))) (-15 -1390 ((-360))) (-15 -1400 ((-360))) (-15 -1411 ((-360) (-719))) (-15 -1453 ((-1 (-360)) (-360) (-360))) (-15 -4176 ((-1 (-360)) (-360) (-360))) (-15 -1422 ((-1 (-360)) (-360))) (-15 -1432 ((-1 (-360)) (-719))) (-15 -2227 ((-1 (-360)) (-719) (-719))) (-15 -1345 ((-1 (-360)) (-719) (-719))) (-15 -4031 ((-1 (-360)) (-719))))
-((-2473 (((-399 |#1|) |#1|) 33)))
-(((-978 |#1|) (-10 -7 (-15 -2473 ((-399 |#1|) |#1|))) (-1157 (-388 (-893 (-530))))) (T -978))
-((-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1157 (-388 (-893 (-530))))))))
-(-10 -7 (-15 -2473 ((-399 |#1|) |#1|)))
-((-1443 (((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))) 14)))
-(((-979 |#1|) (-10 -7 (-15 -1443 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))))) (-289)) (T -979))
-((-1443 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
-(-10 -7 (-15 -1443 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|)))))
-((-2596 (((-597 (-1099)) (-388 (-893 |#1|))) 17)) (-2439 (((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 24)) (-2586 (((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099)) 26)) (-1367 (((-3 (-1099) "failed") (-388 (-893 |#1|))) 20)) (-4084 (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|))))) 32) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 33) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|)))) 28) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 29)) (-2258 (((-388 (-893 |#1|)) |#1|) 11)))
-(((-980 |#1|) (-10 -7 (-15 -2596 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -1367 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2439 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2586 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2258 ((-388 (-893 |#1|)) |#1|))) (-522)) (T -980))
-((-2258 (*1 *2 *3) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-980 *3)) (-4 *3 (-522)))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4084 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-5 *4 (-597 (-388 (-893 *5)))) (-5 *2 (-388 (-893 *5))) (-4 *5 (-522)) (-5 *1 (-980 *5)))) (-4084 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 (-388 (-893 *5))))) (-5 *4 (-1099)) (-5 *2 (-388 (-893 *5))) (-5 *1 (-980 *5)) (-4 *5 (-522)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-388 (-1095 (-388 (-893 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-388 (-893 *5))))) (-1367 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-1099)) (-5 *1 (-980 *4)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-1099))) (-5 *1 (-980 *4)))))
-(-10 -7 (-15 -2596 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -1367 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2439 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2586 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4084 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2258 ((-388 (-893 |#1|)) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 (-728 |#1| (-806 |#2|)))))) (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-2844 (((-597 $) (-597 (-728 |#1| (-806 |#2|)))) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)) NIL)) (-2596 (((-597 (-806 |#2|)) $) NIL)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-2963 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2906 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-1359 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2350 $))) (-728 |#1| (-806 |#2|)) $) NIL)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ (-806 |#2|)) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 (-728 |#1| (-806 |#2|)) "failed") $ (-806 |#2|)) NIL)) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) NIL (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-2917 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3064 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-3076 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-2446 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-2918 (((-3 $ "failed") $) NIL)) (-2878 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2272 (($ (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-2976 (((-110) (-728 |#1| (-806 |#2|)) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-2856 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3856 (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|))) NIL (|has| $ (-6 -4270))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-2999 (((-2 (|:| -2252 (-597 (-728 |#1| (-806 |#2|)))) (|:| -2415 (-597 (-728 |#1| (-806 |#2|))))) $) NIL)) (-3118 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3094 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3129 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2456 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2987 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-4167 (((-806 |#2|) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2847 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL)) (-3222 (((-597 (-806 |#2|)) $) NIL)) (-3209 (((-110) (-806 |#2|) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3049 (((-3 (-728 |#1| (-806 |#2|)) (-597 $)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3037 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2350 $))) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2294 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-3060 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL)) (-3082 (((-3 (-110) (-597 $)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3418 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL)) (-1528 (($ (-728 |#1| (-806 |#2|)) $) NIL) (($ (-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-3011 (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2938 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2888 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-1845 (((-110) $ $) NIL)) (-3099 (((-2 (|:| |num| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-2951 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2898 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-4221 (((-3 (-728 |#1| (-806 |#2|)) "failed") (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL)) (-2807 (((-3 $ "failed") $ (-728 |#1| (-806 |#2|))) NIL)) (-1312 (($ $ (-728 |#1| (-806 |#2|))) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-1505 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-276 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-597 (-276 (-728 |#1| (-806 |#2|))))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-3409 (((-719) $) NIL)) (-2494 (((-719) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-719) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-728 |#1| (-806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-3170 (($ $ (-806 |#2|)) NIL)) (-3196 (($ $ (-806 |#2|)) NIL)) (-2866 (($ $) NIL)) (-3183 (($ $ (-806 |#2|)) NIL)) (-2258 (((-804) $) NIL) (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2795 (((-719) $) NIL (|has| (-806 |#2|) (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-2929 (((-110) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-597 (-728 |#1| (-806 |#2|))))) NIL)) (-3025 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-1515 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2820 (((-597 (-806 |#2|)) $) NIL)) (-3106 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-3292 (((-110) (-806 |#2|) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-981 |#1| |#2|) (-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -2844 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110))))) (-432) (-597 (-1099))) (T -981))
-((-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-981 *5 *6)))))
-(-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -2844 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)))))
-((-1453 (((-1 (-530)) (-1022 (-530))) 33)) (-1499 (((-530) (-530) (-530) (-530) (-530)) 30)) (-1475 (((-1 (-530)) |RationalNumber|) NIL)) (-1486 (((-1 (-530)) |RationalNumber|) NIL)) (-1464 (((-1 (-530)) (-530) |RationalNumber|) NIL)))
-(((-982) (-10 -7 (-15 -1453 ((-1 (-530)) (-1022 (-530)))) (-15 -1464 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1475 ((-1 (-530)) |RationalNumber|)) (-15 -1486 ((-1 (-530)) |RationalNumber|)) (-15 -1499 ((-530) (-530) (-530) (-530) (-530))))) (T -982))
-((-1499 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))) (-1486 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-1475 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)) (-5 *3 (-530)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(-10 -7 (-15 -1453 ((-1 (-530)) (-1022 (-530)))) (-15 -1464 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1475 ((-1 (-530)) |RationalNumber|)) (-15 -1486 ((-1 (-530)) |RationalNumber|)) (-15 -1499 ((-530) (-530) (-530) (-530) (-530))))
-((-2258 (((-804) $) NIL) (($ (-530)) 10)))
-(((-983 |#1|) (-10 -8 (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-984)) (T -983))
-NIL
-(-10 -8 (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2585 (*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-3139 (*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))))
+(-13 (-10 -8 (-15 -2366 ($ |t#1|)) (-15 -3139 ((-3 |t#1| "failed") $)) (-15 -2585 (|t#1| $))))
+((-3364 (((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))) 38)))
+(((-976 |#1| |#2|) (-10 -7 (-15 -3364 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))))) (-522) (-13 (-522) (-975 |#1|))) (T -976))
+((-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
+(-10 -7 (-15 -3364 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099)))))
+((-2900 (((-360)) 15)) (-3155 (((-1 (-360)) (-360) (-360)) 20)) (-4046 (((-1 (-360)) (-719)) 43)) (-1456 (((-360)) 34)) (-4182 (((-1 (-360)) (-360) (-360)) 35)) (-3225 (((-360)) 26)) (-3734 (((-1 (-360)) (-360)) 27)) (-1955 (((-360) (-719)) 38)) (-3521 (((-1 (-360)) (-719)) 39)) (-1334 (((-1 (-360)) (-719) (-719)) 42)) (-3564 (((-1 (-360)) (-719) (-719)) 40)))
+(((-977) (-10 -7 (-15 -2900 ((-360))) (-15 -1456 ((-360))) (-15 -3225 ((-360))) (-15 -1955 ((-360) (-719))) (-15 -3155 ((-1 (-360)) (-360) (-360))) (-15 -4182 ((-1 (-360)) (-360) (-360))) (-15 -3734 ((-1 (-360)) (-360))) (-15 -3521 ((-1 (-360)) (-719))) (-15 -3564 ((-1 (-360)) (-719) (-719))) (-15 -1334 ((-1 (-360)) (-719) (-719))) (-15 -4046 ((-1 (-360)) (-719))))) (T -977))
+((-4046 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-1334 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3564 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-4182 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-3155 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))) (-3225 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-1456 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-2900 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+(-10 -7 (-15 -2900 ((-360))) (-15 -1456 ((-360))) (-15 -3225 ((-360))) (-15 -1955 ((-360) (-719))) (-15 -3155 ((-1 (-360)) (-360) (-360))) (-15 -4182 ((-1 (-360)) (-360) (-360))) (-15 -3734 ((-1 (-360)) (-360))) (-15 -3521 ((-1 (-360)) (-719))) (-15 -3564 ((-1 (-360)) (-719) (-719))) (-15 -1334 ((-1 (-360)) (-719) (-719))) (-15 -4046 ((-1 (-360)) (-719))))
+((-2611 (((-399 |#1|) |#1|) 33)))
+(((-978 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|))) (-1157 (-388 (-893 (-530))))) (T -978))
+((-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1157 (-388 (-893 (-530))))))))
+(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)))
+((-1588 (((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))) 14)))
+(((-979 |#1|) (-10 -7 (-15 -1588 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))))) (-289)) (T -979))
+((-1588 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
+(-10 -7 (-15 -1588 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|)))))
+((-2746 (((-597 (-1099)) (-388 (-893 |#1|))) 17)) (-2577 (((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 24)) (-2735 (((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099)) 26)) (-2040 (((-3 (-1099) "failed") (-388 (-893 |#1|))) 20)) (-4098 (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|))))) 32) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 33) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|)))) 28) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 29)) (-2366 (((-388 (-893 |#1|)) |#1|) 11)))
+(((-980 |#1|) (-10 -7 (-15 -2746 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -2040 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2577 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2735 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2366 ((-388 (-893 |#1|)) |#1|))) (-522)) (T -980))
+((-2366 (*1 *2 *3) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-980 *3)) (-4 *3 (-522)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4098 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-5 *4 (-597 (-388 (-893 *5)))) (-5 *2 (-388 (-893 *5))) (-4 *5 (-522)) (-5 *1 (-980 *5)))) (-4098 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 (-388 (-893 *5))))) (-5 *4 (-1099)) (-5 *2 (-388 (-893 *5))) (-5 *1 (-980 *5)) (-4 *5 (-522)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-388 (-1095 (-388 (-893 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-388 (-893 *5))))) (-2040 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-1099)) (-5 *1 (-980 *4)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-1099))) (-5 *1 (-980 *4)))))
+(-10 -7 (-15 -2746 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -2040 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2577 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2735 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2366 ((-388 (-893 |#1|)) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 (-728 |#1| (-806 |#2|)))))) (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-1512 (((-597 $) (-597 (-728 |#1| (-806 |#2|)))) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)) NIL)) (-2746 (((-597 (-806 |#2|)) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-1785 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3544 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ (-806 |#2|)) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 (-728 |#1| (-806 |#2|)) "failed") $ (-806 |#2|)) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3588 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-2585 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-3057 (((-3 $ "failed") $) NIL)) (-1622 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2383 (($ (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-3784 (((-110) (-728 |#1| (-806 |#2|)) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3252 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2134 (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|))) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-1919 (((-2 (|:| -2361 (-597 (-728 |#1| (-806 |#2|)))) (|:| -2551 (-597 (-728 |#1| (-806 |#2|))))) $) NIL)) (-3131 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2747 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2984 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3779 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3397 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3122 (((-806 |#2|) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-3583 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL)) (-2400 (((-597 (-806 |#2|)) $) NIL)) (-3533 (((-110) (-806 |#2|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 (-728 |#1| (-806 |#2|)) (-597 $)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2991 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2407 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-3274 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL)) (-1404 (((-3 (-110) (-597 $)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-4033 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL)) (-2721 (($ (-728 |#1| (-806 |#2|)) $) NIL) (($ (-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-1543 (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2559 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3482 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-1663 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2122 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-1437 (((-3 (-728 |#1| (-806 |#2|)) "failed") (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL)) (-1372 (((-3 $ "failed") $ (-728 |#1| (-806 |#2|))) NIL)) (-3168 (($ $ (-728 |#1| (-806 |#2|))) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-1533 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-276 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-597 (-276 (-728 |#1| (-806 |#2|))))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1429 (((-719) $) NIL)) (-2632 (((-719) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-719) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-728 |#1| (-806 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-1687 (($ $ (-806 |#2|)) NIL)) (-1442 (($ $ (-806 |#2|)) NIL)) (-1871 (($ $) NIL)) (-2553 (($ $ (-806 |#2|)) NIL)) (-2366 (((-804) $) NIL) (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2730 (((-719) $) NIL (|has| (-806 |#2|) (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3095 (((-110) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-597 (-728 |#1| (-806 |#2|))))) NIL)) (-4208 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 (-806 |#2|)) $) NIL)) (-1321 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2856 (((-110) (-806 |#2|) $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-981 |#1| |#2|) (-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -1512 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110))))) (-432) (-597 (-1099))) (T -981))
+((-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-981 *5 *6)))))
+(-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -1512 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)))))
+((-3155 (((-1 (-530)) (-1022 (-530))) 33)) (-2406 (((-530) (-530) (-530) (-530) (-530)) 30)) (-1428 (((-1 (-530)) |RationalNumber|) NIL)) (-3150 (((-1 (-530)) |RationalNumber|) NIL)) (-2947 (((-1 (-530)) (-530) |RationalNumber|) NIL)))
+(((-982) (-10 -7 (-15 -3155 ((-1 (-530)) (-1022 (-530)))) (-15 -2947 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1428 ((-1 (-530)) |RationalNumber|)) (-15 -3150 ((-1 (-530)) |RationalNumber|)) (-15 -2406 ((-530) (-530) (-530) (-530) (-530))))) (T -982))
+((-2406 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))) (-3150 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-1428 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)) (-5 *3 (-530)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
+(-10 -7 (-15 -3155 ((-1 (-530)) (-1022 (-530)))) (-15 -2947 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1428 ((-1 (-530)) |RationalNumber|)) (-15 -3150 ((-1 (-530)) |RationalNumber|)) (-15 -2406 ((-530) (-530) (-530) (-530) (-530))))
+((-2366 (((-804) $) NIL) (($ (-530)) 10)))
+(((-983 |#1|) (-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-984)) (T -983))
+NIL
+(-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-984) (-133)) (T -984))
-((-1667 (*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-984)))))
-(-13 (-991) (-675) (-599 $) (-10 -8 (-15 -1667 ((-719))) (-15 -2258 ($ (-530))) (-6 -4267)))
+((-3300 (*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-984)))))
+(-13 (-991) (-675) (-599 $) (-10 -8 (-15 -3300 ((-719))) (-15 -2366 ($ (-530))) (-6 -4266)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1511 (((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)) 46)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -1511 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)))) (-1099) (-344)) (T -985))
-((-1511 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344)) (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
-(-10 -7 (-15 -1511 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719))))
-((-1623 (((-110) $) 29)) (-1645 (((-110) $) 16)) (-3531 (((-719) $) 13)) (-3544 (((-719) $) 14)) (-1635 (((-110) $) 26)) (-1614 (((-110) $) 31)))
-(((-986 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3544 ((-719) |#1|)) (-15 -3531 ((-719) |#1|)) (-15 -1614 ((-110) |#1|)) (-15 -1623 ((-110) |#1|)) (-15 -1635 ((-110) |#1|)) (-15 -1645 ((-110) |#1|))) (-987 |#2| |#3| |#4| |#5| |#6|) (-719) (-719) (-984) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -986))
-NIL
-(-10 -8 (-15 -3544 ((-719) |#1|)) (-15 -3531 ((-719) |#1|)) (-15 -1614 ((-110) |#1|)) (-15 -1623 ((-110) |#1|)) (-15 -1635 ((-110) |#1|)) (-15 -1645 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1623 (((-110) $) 51)) (-3618 (((-3 $ "failed") $ $) 19)) (-1645 (((-110) $) 53)) (-4102 (((-110) $ (-719)) 61)) (-3956 (($) 17 T CONST)) (-1543 (($ $) 34 (|has| |#3| (-289)))) (-1564 ((|#4| $ (-530)) 39)) (-4113 (((-719) $) 33 (|has| |#3| (-522)))) (-2787 ((|#3| $ (-530) (-530)) 41)) (-2456 (((-597 |#3|) $) 68 (|has| $ (-6 -4270)))) (-1532 (((-719) $) 32 (|has| |#3| (-522)))) (-1522 (((-597 |#5|) $) 31 (|has| |#3| (-522)))) (-3531 (((-719) $) 45)) (-3544 (((-719) $) 44)) (-2014 (((-110) $ (-719)) 60)) (-1604 (((-530) $) 49)) (-1583 (((-530) $) 47)) (-3252 (((-597 |#3|) $) 69 (|has| $ (-6 -4270)))) (-3455 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4270))))) (-1593 (((-530) $) 48)) (-1574 (((-530) $) 46)) (-2162 (($ (-597 (-597 |#3|))) 54)) (-2847 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3285 (((-597 (-597 |#3|)) $) 43)) (-1987 (((-110) $ (-719)) 59)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-522)))) (-1505 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#3|) (-597 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1439 (((-110) $ $) 55)) (-1262 (((-110) $) 58)) (-4227 (($) 57)) (-1832 ((|#3| $ (-530) (-530)) 42) ((|#3| $ (-530) (-530) |#3|) 40)) (-1635 (((-110) $) 52)) (-2494 (((-719) |#3| $) 70 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4270)))) (-2441 (($ $) 56)) (-1554 ((|#5| $ (-530)) 38)) (-2258 (((-804) $) 11)) (-1515 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4270)))) (-1614 (((-110) $) 50)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2167 (((-719) $) 62 (|has| $ (-6 -4270)))))
+((-1621 (((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)) 46)))
+(((-985 |#1| |#2|) (-10 -7 (-15 -1621 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)))) (-1099) (-344)) (T -985))
+((-1621 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344)) (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
+(-10 -7 (-15 -1621 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719))))
+((-3053 (((-110) $) 29)) (-4040 (((-110) $) 16)) (-1796 (((-719) $) 13)) (-1810 (((-719) $) 14)) (-1362 (((-110) $) 26)) (-3589 (((-110) $) 31)))
+(((-986 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1810 ((-719) |#1|)) (-15 -1796 ((-719) |#1|)) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|))) (-987 |#2| |#3| |#4| |#5| |#6|) (-719) (-719) (-984) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -986))
+NIL
+(-10 -8 (-15 -1810 ((-719) |#1|)) (-15 -1796 ((-719) |#1|)) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3053 (((-110) $) 51)) (-1889 (((-3 $ "failed") $ $) 19)) (-4040 (((-110) $) 53)) (-3186 (((-110) $ (-719)) 61)) (-2350 (($) 17 T CONST)) (-1583 (($ $) 34 (|has| |#3| (-289)))) (-1325 ((|#4| $ (-530)) 39)) (-2426 (((-719) $) 33 (|has| |#3| (-522)))) (-3532 ((|#3| $ (-530) (-530)) 41)) (-3779 (((-597 |#3|) $) 68 (|has| $ (-6 -4269)))) (-1791 (((-719) $) 32 (|has| |#3| (-522)))) (-2515 (((-597 |#5|) $) 31 (|has| |#3| (-522)))) (-1796 (((-719) $) 45)) (-1810 (((-719) $) 44)) (-4027 (((-110) $ (-719)) 60)) (-3863 (((-530) $) 49)) (-3643 (((-530) $) 47)) (-2395 (((-597 |#3|) $) 69 (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 48)) (-3909 (((-530) $) 46)) (-2263 (($ (-597 (-597 |#3|))) 54)) (-3583 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2654 (((-597 (-597 |#3|)) $) 43)) (-2763 (((-110) $ (-719)) 59)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-522)))) (-1533 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#3|) (-597 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) 55)) (-3250 (((-110) $) 58)) (-3958 (($) 57)) (-1902 ((|#3| $ (-530) (-530)) 42) ((|#3| $ (-530) (-530) |#3|) 40)) (-1362 (((-110) $) 52)) (-2632 (((-719) |#3| $) 70 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4269)))) (-2579 (($ $) 56)) (-3350 ((|#5| $ (-530)) 38)) (-2366 (((-804) $) 11)) (-3889 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 50)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2267 (((-719) $) 62 (|has| $ (-6 -4269)))))
(((-987 |#1| |#2| |#3| |#4| |#5|) (-133) (-719) (-719) (-984) (-221 |t#2| |t#3|) (-221 |t#1| |t#3|)) (T -987))
-((-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *5))) (-4 *5 (-984)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5))))) (-1832 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-2787 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-1832 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *2 (-984)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-1564 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-1554 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-3114 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3562 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-522)))) (-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-1543 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-597 *7)))))
-(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4270) (IF (|has| |t#3| (-162)) (-6 (-666 |t#3|)) |%noBranch|) (-15 -2162 ($ (-597 (-597 |t#3|)))) (-15 -1645 ((-110) $)) (-15 -1635 ((-110) $)) (-15 -1623 ((-110) $)) (-15 -1614 ((-110) $)) (-15 -1604 ((-530) $)) (-15 -1593 ((-530) $)) (-15 -1583 ((-530) $)) (-15 -1574 ((-530) $)) (-15 -3531 ((-719) $)) (-15 -3544 ((-719) $)) (-15 -3285 ((-597 (-597 |t#3|)) $)) (-15 -1832 (|t#3| $ (-530) (-530))) (-15 -2787 (|t#3| $ (-530) (-530))) (-15 -1832 (|t#3| $ (-530) (-530) |t#3|)) (-15 -1564 (|t#4| $ (-530))) (-15 -1554 (|t#5| $ (-530))) (-15 -3114 ($ (-1 |t#3| |t#3|) $)) (-15 -3114 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-522)) (-15 -3562 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -2257 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -1543 ($ $)) |%noBranch|) (IF (|has| |t#3| (-522)) (PROGN (-15 -4113 ((-719) $)) (-15 -1532 ((-719) $)) (-15 -1522 ((-597 |t#5|) $))) |%noBranch|)))
+((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *5))) (-4 *5 (-984)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5))))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-3532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-1902 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *2 (-984)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-522)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-597 *7)))))
+(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4269) (IF (|has| |t#3| (-162)) (-6 (-666 |t#3|)) |%noBranch|) (-15 -2263 ($ (-597 (-597 |t#3|)))) (-15 -4040 ((-110) $)) (-15 -1362 ((-110) $)) (-15 -3053 ((-110) $)) (-15 -3589 ((-110) $)) (-15 -3863 ((-530) $)) (-15 -2307 ((-530) $)) (-15 -3643 ((-530) $)) (-15 -3909 ((-530) $)) (-15 -1796 ((-719) $)) (-15 -1810 ((-719) $)) (-15 -2654 ((-597 (-597 |t#3|)) $)) (-15 -1902 (|t#3| $ (-530) (-530))) (-15 -3532 (|t#3| $ (-530) (-530))) (-15 -1902 (|t#3| $ (-530) (-530) |t#3|)) (-15 -1325 (|t#4| $ (-530))) (-15 -3350 (|t#5| $ (-530))) (-15 -3217 ($ (-1 |t#3| |t#3|) $)) (-15 -3217 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -2364 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -1583 ($ $)) |%noBranch|) (IF (|has| |t#3| (-522)) (PROGN (-15 -2426 ((-719) $)) (-15 -1791 ((-719) $)) (-15 -2515 ((-597 |t#5|) $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-571 (-804)) . T) ((-291 |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-468 |#3|) . T) ((-491 |#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-599 |#3|) . T) ((-666 |#3|) |has| |#3| (-162)) ((-990 |#3|) . T) ((-1027) . T) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1623 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1645 (((-110) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-1543 (($ $) 43 (|has| |#3| (-289)))) (-1564 (((-223 |#2| |#3|) $ (-530)) 32)) (-1655 (($ (-637 |#3|)) 41)) (-4113 (((-719) $) 45 (|has| |#3| (-522)))) (-2787 ((|#3| $ (-530) (-530)) NIL)) (-2456 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-1532 (((-719) $) 47 (|has| |#3| (-522)))) (-1522 (((-597 (-223 |#1| |#3|)) $) 51 (|has| |#3| (-522)))) (-3531 (((-719) $) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2162 (($ (-597 (-597 |#3|))) 27)) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3285 (((-597 (-597 |#3|)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-522)))) (-1505 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#3| $ (-530) (-530)) NIL) ((|#3| $ (-530) (-530) |#3|) NIL)) (-1248 (((-130)) 54 (|has| |#3| (-344)))) (-1635 (((-110) $) NIL)) (-2494 (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027)))) (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) 63 (|has| |#3| (-572 (-506))))) (-1554 (((-223 |#1| |#3|) $ (-530)) 36)) (-2258 (((-804) $) 16) (((-637 |#3|) $) 38)) (-1515 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-2943 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-988 |#1| |#2| |#3|) (-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1655 ($ (-637 |#3|))) (-15 -2258 ((-637 |#3|) $)))) (-719) (-719) (-984)) (T -988))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-637 *5)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-984)))) (-1655 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)))))
-(-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1655 ($ (-637 |#3|))) (-15 -2258 ((-637 |#3|) $))))
-((-3856 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3114 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-989 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3114 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3856 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-719) (-719) (-984) (-221 |#2| |#3|) (-221 |#1| |#3|) (-987 |#1| |#2| |#3| |#4| |#5|) (-984) (-221 |#2| |#7|) (-221 |#1| |#7|) (-987 |#1| |#2| |#7| |#8| |#9|)) (T -989))
-((-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-987 *5 *6 *10 *11 *12)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10)))))
-(-10 -7 (-15 -3114 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3856 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ |#1|) 23)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 43 (|has| |#3| (-289)))) (-1325 (((-223 |#2| |#3|) $ (-530)) 32)) (-1783 (($ (-637 |#3|)) 41)) (-2426 (((-719) $) 45 (|has| |#3| (-522)))) (-3532 ((|#3| $ (-530) (-530)) NIL)) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-1791 (((-719) $) 47 (|has| |#3| (-522)))) (-2515 (((-597 (-223 |#1| |#3|)) $) 51 (|has| |#3| (-522)))) (-1796 (((-719) $) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#3|))) 27)) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2654 (((-597 (-597 |#3|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-522)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) (-530)) NIL) ((|#3| $ (-530) (-530) |#3|) NIL)) (-2488 (((-130)) 54 (|has| |#3| (-344)))) (-1362 (((-110) $) NIL)) (-2632 (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027)))) (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 63 (|has| |#3| (-572 (-506))))) (-3350 (((-223 |#1| |#3|) $ (-530)) 36)) (-2366 (((-804) $) 16) (((-637 |#3|) $) 38)) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3080 (($) 13 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-988 |#1| |#2| |#3|) (-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1783 ($ (-637 |#3|))) (-15 -2366 ((-637 |#3|) $)))) (-719) (-719) (-984)) (T -988))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-637 *5)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-984)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)))))
+(-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1783 ($ (-637 |#3|))) (-15 -2366 ((-637 |#3|) $))))
+((-2134 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3217 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-989 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3217 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2134 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-719) (-719) (-984) (-221 |#2| |#3|) (-221 |#1| |#3|) (-987 |#1| |#2| |#3| |#4| |#5|) (-984) (-221 |#2| |#7|) (-221 |#1| |#7|) (-987 |#1| |#2| |#7| |#8| |#9|)) (T -989))
+((-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-987 *5 *6 *10 *11 *12)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10)))))
+(-10 -7 (-15 -3217 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2134 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ |#1|) 23)))
(((-990 |#1|) (-133) (-991)) (T -990))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-991)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 26)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-991) (-133)) (T -991))
NIL
(-13 (-21) (-1039))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1039) . T) ((-1027) . T))
-((-1323 (($ $) 16)) (-1676 (($ $) 22)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 49)) (-1717 (($ $) 24)) (-1684 (($ $) 11)) (-1702 (($ $) 38)) (-3173 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) 33)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 28) (($ (-530)) NIL) (($ (-388 (-530))) 28)) (-1667 (((-719)) 8)) (-1709 (($ $) 39)))
-(((-992 |#1|) (-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -2258 ((-804) |#1|))) (-993)) (T -992))
-((-1667 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
-(-10 -8 (-15 -1676 (|#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3431 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 -3173 ((-208) |#1|)) (-15 -3173 ((-360) |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -1667 ((-719))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1694 (((-530) $) 89)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-1323 (($ $) 87)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-2487 (($ $) 97)) (-1945 (((-110) $ $) 59)) (-3592 (((-530) $) 114)) (-3956 (($) 17 T CONST)) (-1676 (($ $) 86)) (-3012 (((-3 (-530) "failed") $) 102) (((-3 (-388 (-530)) "failed") $) 99)) (-2446 (((-530) $) 101) (((-388 (-530)) $) 98)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-2049 (((-110) $) 71)) (-2991 (((-110) $) 112)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 93)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 96)) (-1717 (($ $) 92)) (-3002 (((-110) $) 113)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-4194 (($ $ $) 111)) (-1757 (($ $ $) 110)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-1684 (($ $) 88)) (-1702 (($ $) 90)) (-2473 (((-399 $) $) 74)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3173 (((-360) $) 105) (((-208) $) 104) (((-833 (-360)) $) 94)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ (-530)) 103) (($ (-388 (-530))) 100)) (-1667 (((-719)) 29)) (-1709 (($ $) 91)) (-3020 (((-110) $ $) 39)) (-2218 (($ $) 115)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2204 (((-110) $ $) 108)) (-2182 (((-110) $ $) 107)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 109)) (-2172 (((-110) $ $) 106)) (-2257 (($ $ $) 64)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68) (($ $ (-388 (-530))) 95)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66)))
+((-1951 (($ $) 16)) (-2963 (($ $) 22)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 49)) (-2376 (($ $) 24)) (-1979 (($ $) 11)) (-3175 (($ $) 38)) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) 33)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 28) (($ (-530)) NIL) (($ (-388 (-530))) 28)) (-3300 (((-719)) 8)) (-2748 (($ $) 39)))
+(((-992 |#1|) (-10 -8 (-15 -2963 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|))) (-993)) (T -992))
+((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
+(-10 -8 (-15 -2963 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 (((-530) $) 86)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1951 (($ $) 84)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 94)) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 111)) (-2350 (($) 17 T CONST)) (-2963 (($ $) 83)) (-3139 (((-3 (-530) "failed") $) 99) (((-3 (-388 (-530)) "failed") $) 96)) (-2585 (((-530) $) 98) (((-388 (-530)) $) 95)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2514 (((-110) $) 109)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 90)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 93)) (-2376 (($ $) 89)) (-2166 (((-110) $) 110)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 108)) (-1817 (($ $ $) 107)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 85)) (-3175 (($ $) 87)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3260 (((-360) $) 102) (((-208) $) 101) (((-833 (-360)) $) 91)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-530)) 100) (($ (-388 (-530))) 97)) (-3300 (((-719)) 28)) (-2748 (($ $) 88)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 112)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 105)) (-2284 (((-110) $ $) 104)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 106)) (-2272 (((-110) $ $) 103)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 92)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
(((-993) (-133)) (T -993))
-((-2218 (*1 *1 *1) (-4 *1 (-993))) (-1717 (*1 *1 *1) (-4 *1 (-993))) (-1709 (*1 *1 *1) (-4 *1 (-993))) (-1702 (*1 *1 *1) (-4 *1 (-993))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))) (-1684 (*1 *1 *1) (-4 *1 (-993))) (-1323 (*1 *1 *1) (-4 *1 (-993))) (-1676 (*1 *1 *1) (-4 *1 (-993))))
-(-13 (-344) (-793) (-960) (-975 (-530)) (-975 (-388 (-530))) (-941) (-572 (-833 (-360))) (-827 (-360)) (-140) (-10 -8 (-15 -1717 ($ $)) (-15 -1709 ($ $)) (-15 -1702 ($ $)) (-15 -1694 ((-530) $)) (-15 -1684 ($ $)) (-15 -1323 ($ $)) (-15 -1676 ($ $)) (-15 -2218 ($ $))))
+((-3934 (*1 *1 *1) (-4 *1 (-993))) (-2376 (*1 *1 *1) (-4 *1 (-993))) (-2748 (*1 *1 *1) (-4 *1 (-993))) (-3175 (*1 *1 *1) (-4 *1 (-993))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))) (-1979 (*1 *1 *1) (-4 *1 (-993))) (-1951 (*1 *1 *1) (-4 *1 (-993))) (-2963 (*1 *1 *1) (-4 *1 (-993))))
+(-13 (-344) (-793) (-960) (-975 (-530)) (-975 (-388 (-530))) (-941) (-572 (-833 (-360))) (-827 (-360)) (-140) (-10 -8 (-15 -2376 ($ $)) (-15 -2748 ($ $)) (-15 -3175 ($ $)) (-15 -1612 ((-530) $)) (-15 -1979 ($ $)) (-15 -1951 ($ $)) (-15 -2963 ($ $)) (-15 -3934 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-833 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-827 (-360)) . T) ((-861) . T) ((-941) . T) ((-960) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) |#2| $) 23)) (-2879 ((|#1| $) 10)) (-3592 (((-530) |#2| $) 88)) (-4189 (((-3 $ "failed") |#2| (-862)) 57)) (-3657 ((|#1| $) 28)) (-4179 ((|#1| |#2| $ |#1|) 37)) (-1735 (($ $) 25)) (-1673 (((-3 |#2| "failed") |#2| $) 87)) (-2991 (((-110) |#2| $) NIL)) (-3002 (((-110) |#2| $) NIL)) (-1725 (((-110) |#2| $) 24)) (-1742 ((|#1| $) 89)) (-3648 ((|#1| $) 27)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-4212 ((|#2| $) 79)) (-2258 (((-804) $) 70)) (-4125 ((|#1| |#2| $ |#1|) 38)) (-4200 (((-597 $) |#2|) 59)) (-2148 (((-110) $ $) 74)))
-(((-994 |#1| |#2|) (-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3648 (|#1| $)) (-15 -3657 (|#1| $)) (-15 -2879 (|#1| $)) (-15 -1742 (|#1| $)) (-15 -1735 ($ $)) (-15 -1725 ((-110) |#2| $)) (-15 -4179 (|#1| |#2| $ |#1|)))) (-13 (-793) (-344)) (-1157 |#1|)) (T -994))
-((-4179 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3648 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3657 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-2879 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-1742 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-1735 (*1 *1 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-1725 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3)) (-4 *3 (-1157 *4)))))
-(-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3648 (|#1| $)) (-15 -3657 (|#1| $)) (-15 -2879 (|#1| $)) (-15 -1742 (|#1| $)) (-15 -1735 ($ $)) (-15 -1725 ((-110) |#2| $)) (-15 -4179 (|#1| |#2| $ |#1|))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-4075 (($ $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-4055 (($ $ $ $) NIL)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL)) (-4206 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-1750 (($ (-1099)) 10) (($ (-530)) 7)) (-3012 (((-3 (-530) "failed") $) NIL)) (-2446 (((-530) $) NIL)) (-3607 (($ $ $) NIL)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL)) (-1928 (((-110) $) NIL)) (-1917 (((-388 (-530)) $) NIL)) (-1376 (($) NIL) (($ $) NIL)) (-3588 (($ $ $) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-4034 (($ $ $ $) NIL)) (-4086 (($ $ $) NIL)) (-2991 (((-110) $) NIL)) (-1364 (($ $ $) NIL)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-3150 (((-110) $) NIL)) (-1555 (((-110) $) NIL)) (-1560 (((-3 $ "failed") $) NIL)) (-3002 (((-110) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4044 (($ $ $ $) NIL)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2966 (($ $) NIL)) (-2171 (($ $) NIL)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-4024 (($ $ $) NIL)) (-3677 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2485 (((-1046) $) NIL) (($ $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1339 (($ $) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-1692 (($ $) NIL)) (-2441 (($ $) NIL)) (-3173 (((-530) $) 16) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL) (($ (-1099)) 9)) (-2258 (((-804) $) 20) (($ (-530)) 6) (($ $) NIL) (($ (-530)) 6)) (-1667 (((-719)) NIL)) (-4098 (((-110) $ $) NIL)) (-1464 (($ $ $) NIL)) (-3256 (($) NIL)) (-3020 (((-110) $ $) NIL)) (-4066 (($ $ $ $) NIL)) (-2218 (($ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) NIL)) (-2245 (($ $) 19) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-995) (-13 (-515) (-10 -8 (-6 -4257) (-6 -4262) (-6 -4258) (-15 -3173 ($ (-1099))) (-15 -1750 ($ (-1099))) (-15 -1750 ($ (-530)))))) (T -995))
-((-3173 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995)))))
-(-13 (-515) (-10 -8 (-6 -4257) (-6 -4262) (-6 -4258) (-15 -3173 ($ (-1099))) (-15 -1750 ($ (-1099))) (-15 -1750 ($ (-530)))))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-1935 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-3647 (($) 9)) (-2416 (((-51) $ (-1099) (-51)) NIL)) (-3716 (($ $) 30)) (-3745 (($ $) 28)) (-3756 (($ $) 27)) (-3736 (($ $) 29)) (-3706 (($ $) 32)) (-3699 (($ $) 33)) (-3766 (($ $) 26)) (-3727 (($ $) 31)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) 25 (|has| $ (-6 -4270)))) (-2614 (((-3 (-51) "failed") (-1099) $) 40)) (-3956 (($) NIL T CONST)) (-3776 (($) 7)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-1283 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) 50 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2272 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270)))) (-1760 (((-3 (-1082) "failed") $ (-1082) (-530)) 59)) (-2858 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4271)))) (-2787 (((-51) $ (-1099)) NIL)) (-2456 (((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3252 (((-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) 35 (|has| $ (-6 -4270))) (((-597 (-51)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-1965 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4271))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-3202 (((-597 (-1099)) $) NIL)) (-2010 (((-110) (-1099) $) NIL)) (-3275 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL)) (-3440 (($ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) 43)) (-1983 (((-597 (-1099)) $) NIL)) (-1993 (((-110) (-1099) $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-3673 (((-360) $ (-1099)) 49)) (-3666 (((-597 (-1082)) $ (-1082)) 60)) (-2907 (((-51) $) NIL (|has| (-1099) (-795)))) (-4221 (((-3 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) "failed") (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL)) (-1946 (($ $ (-51)) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL (-12 (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-291 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027))))) (-2002 (((-597 (-51)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (((-51) $ (-1099)) NIL) (((-51) $ (-1099) (-51)) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-3656 (($ $ (-1099)) 51)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) 37)) (-3476 (($ $ $) 38)) (-2258 (((-804) $) NIL (-1476 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-571 (-804)))))) (-3690 (($ $ (-1099) (-360)) 47)) (-3682 (($ $ (-1099) (-360)) 48)) (-3298 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 (-1099)) (|:| -1806 (-51)))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-51) (-1027)) (|has| (-2 (|:| -2940 (-1099)) (|:| -1806 (-51))) (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-996) (-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3476 ($ $ $)) (-15 -3776 ($)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $)) (-15 -3736 ($ $)) (-15 -3727 ($ $)) (-15 -3716 ($ $)) (-15 -3706 ($ $)) (-15 -3699 ($ $)) (-15 -3690 ($ $ (-1099) (-360))) (-15 -3682 ($ $ (-1099) (-360))) (-15 -3673 ((-360) $ (-1099))) (-15 -3666 ((-597 (-1082)) $ (-1082))) (-15 -3656 ($ $ (-1099))) (-15 -3647 ($)) (-15 -1760 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4270)))) (T -996))
-((-3476 (*1 *1 *1 *1) (-5 *1 (-996))) (-3776 (*1 *1) (-5 *1 (-996))) (-3766 (*1 *1 *1) (-5 *1 (-996))) (-3756 (*1 *1 *1) (-5 *1 (-996))) (-3745 (*1 *1 *1) (-5 *1 (-996))) (-3736 (*1 *1 *1) (-5 *1 (-996))) (-3727 (*1 *1 *1) (-5 *1 (-996))) (-3716 (*1 *1 *1) (-5 *1 (-996))) (-3706 (*1 *1 *1) (-5 *1 (-996))) (-3699 (*1 *1 *1) (-5 *1 (-996))) (-3690 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-3682 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))) (-3666 (*1 *2 *1 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))) (-3647 (*1 *1) (-5 *1 (-996))) (-1760 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
-(-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3476 ($ $ $)) (-15 -3776 ($)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $)) (-15 -3736 ($ $)) (-15 -3727 ($ $)) (-15 -3716 ($ $)) (-15 -3706 ($ $)) (-15 -3699 ($ $)) (-15 -3690 ($ $ (-1099) (-360))) (-15 -3682 ($ $ (-1099) (-360))) (-15 -3673 ((-360) $ (-1099))) (-15 -3666 ((-597 (-1082)) $ (-1082))) (-15 -3656 ($ $ (-1099))) (-15 -3647 ($)) (-15 -1760 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4270)))
-((-2040 (($ $) 45)) (-4020 (((-110) $ $) 74)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) 227) (((-3 $ "failed") (-893 (-530))) 226) (((-3 $ "failed") (-893 |#2|)) 229)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) NIL) (($ (-893 (-388 (-530)))) 215) (($ (-893 (-530))) 211) (($ (-893 |#2|)) 231)) (-2425 (($ $) NIL) (($ $ |#4|) 43)) (-2976 (((-110) $ $) 112) (((-110) $ (-597 $)) 113)) (-4081 (((-110) $) 56)) (-2291 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 107)) (-3815 (($ $) 138)) (-3920 (($ $) 134)) (-3930 (($ $) 133)) (-4009 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4000 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2987 (((-110) $ $) 121) (((-110) $ (-597 $)) 122)) (-4167 ((|#4| $) 33)) (-3949 (($ $ $) 110)) (-4095 (((-110) $) 55)) (-4157 (((-719) $) 35)) (-3787 (($ $) 152)) (-3796 (($ $) 149)) (-4040 (((-597 $) $) 68)) (-4071 (($ $) 57)) (-3805 (($ $) 145)) (-4050 (((-597 $) $) 65)) (-4062 (($ $) 59)) (-2402 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3940 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1791 (-719))) $ $) 111)) (-3961 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $) 108) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $ |#4|) 109)) (-3971 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $) 104) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $ |#4|) 105)) (-3989 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3980 (($ $ $) 90) (($ $ $ |#4|) 96)) (-4118 (((-597 $) $) 51)) (-2938 (((-110) $ $) 118) (((-110) $ (-597 $)) 119)) (-2888 (($ $ $) 103)) (-3677 (($ $) 37)) (-1845 (((-110) $ $) 72)) (-2951 (((-110) $ $) 114) (((-110) $ (-597 $)) 116)) (-2898 (($ $ $) 101)) (-4144 (($ $) 40)) (-2108 ((|#2| |#2| $) 142) (($ (-597 $)) NIL) (($ $ $) NIL)) (-3898 (($ $ |#2|) NIL) (($ $ $) 131)) (-3909 (($ $ |#2|) 126) (($ $ $) 129)) (-4130 (($ $) 48)) (-4105 (($ $) 52)) (-3173 (((-833 (-360)) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (($ (-893 (-388 (-530)))) 217) (($ (-893 (-530))) 213) (($ (-893 |#2|)) 228) (((-1082) $) 250) (((-893 |#2|) $) 162)) (-2258 (((-804) $) 30) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-893 |#2|) $) 163) (($ (-388 (-530))) NIL) (($ $) NIL)) (-4029 (((-3 (-110) "failed") $ $) 71)))
-(((-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 ((-893 |#2|) |#1|)) (-15 -3173 ((-893 |#2|) |#1|)) (-15 -3173 ((-1082) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -2108 (|#2| |#2| |#1|)) (-15 -3898 (|#1| |#1| |#1|)) (-15 -3909 (|#1| |#1| |#1|)) (-15 -3898 (|#1| |#1| |#2|)) (-15 -3909 (|#1| |#1| |#2|)) (-15 -3920 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3173 (|#1| (-893 |#2|))) (-15 -2446 (|#1| (-893 |#2|))) (-15 -3012 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3173 (|#1| (-893 (-530)))) (-15 -2446 (|#1| (-893 (-530)))) (-15 -3012 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3173 (|#1| (-893 (-388 (-530))))) (-15 -2446 (|#1| (-893 (-388 (-530))))) (-15 -3012 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2898 (|#1| |#1| |#1|)) (-15 -3940 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1791 (-719))) |#1| |#1|)) (-15 -3949 (|#1| |#1| |#1|)) (-15 -2291 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3971 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3971 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3980 (|#1| |#1| |#1| |#4|)) (-15 -3989 (|#1| |#1| |#1| |#4|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#1| |#1| |#4|)) (-15 -4009 (|#1| |#1| |#1| |#4|)) (-15 -4000 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2987 ((-110) |#1| (-597 |#1|))) (-15 -2987 ((-110) |#1| |#1|)) (-15 -2938 ((-110) |#1| (-597 |#1|))) (-15 -2938 ((-110) |#1| |#1|)) (-15 -2951 ((-110) |#1| (-597 |#1|))) (-15 -2951 ((-110) |#1| |#1|)) (-15 -2976 ((-110) |#1| (-597 |#1|))) (-15 -2976 ((-110) |#1| |#1|)) (-15 -4020 ((-110) |#1| |#1|)) (-15 -1845 ((-110) |#1| |#1|)) (-15 -4029 ((-3 (-110) "failed") |#1| |#1|)) (-15 -4040 ((-597 |#1|) |#1|)) (-15 -4050 ((-597 |#1|) |#1|)) (-15 -4062 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4081 ((-110) |#1|)) (-15 -4095 ((-110) |#1|)) (-15 -2425 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -4105 (|#1| |#1|)) (-15 -4118 ((-597 |#1|) |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4157 ((-719) |#1|)) (-15 -4167 (|#4| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -2258 (|#1| |#4|)) (-15 -2402 (|#2| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-998 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -997))
-NIL
-(-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2108 (|#1| (-597 |#1|))) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 ((-893 |#2|) |#1|)) (-15 -3173 ((-893 |#2|) |#1|)) (-15 -3173 ((-1082) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -2108 (|#2| |#2| |#1|)) (-15 -3898 (|#1| |#1| |#1|)) (-15 -3909 (|#1| |#1| |#1|)) (-15 -3898 (|#1| |#1| |#2|)) (-15 -3909 (|#1| |#1| |#2|)) (-15 -3920 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3173 (|#1| (-893 |#2|))) (-15 -2446 (|#1| (-893 |#2|))) (-15 -3012 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3173 (|#1| (-893 (-530)))) (-15 -2446 (|#1| (-893 (-530)))) (-15 -3012 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3173 (|#1| (-893 (-388 (-530))))) (-15 -2446 (|#1| (-893 (-388 (-530))))) (-15 -3012 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2898 (|#1| |#1| |#1|)) (-15 -3940 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1791 (-719))) |#1| |#1|)) (-15 -3949 (|#1| |#1| |#1|)) (-15 -2291 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3961 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3971 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3088 |#1|)) |#1| |#1| |#4|)) (-15 -3971 ((-2 (|:| -1981 |#1|) (|:| |gap| (-719)) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -3980 (|#1| |#1| |#1| |#4|)) (-15 -3989 (|#1| |#1| |#1| |#4|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -3989 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#1| |#1| |#4|)) (-15 -4009 (|#1| |#1| |#1| |#4|)) (-15 -4000 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2987 ((-110) |#1| (-597 |#1|))) (-15 -2987 ((-110) |#1| |#1|)) (-15 -2938 ((-110) |#1| (-597 |#1|))) (-15 -2938 ((-110) |#1| |#1|)) (-15 -2951 ((-110) |#1| (-597 |#1|))) (-15 -2951 ((-110) |#1| |#1|)) (-15 -2976 ((-110) |#1| (-597 |#1|))) (-15 -2976 ((-110) |#1| |#1|)) (-15 -4020 ((-110) |#1| |#1|)) (-15 -1845 ((-110) |#1| |#1|)) (-15 -4029 ((-3 (-110) "failed") |#1| |#1|)) (-15 -4040 ((-597 |#1|) |#1|)) (-15 -4050 ((-597 |#1|) |#1|)) (-15 -4062 (|#1| |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4081 ((-110) |#1|)) (-15 -4095 ((-110) |#1|)) (-15 -2425 (|#1| |#1| |#4|)) (-15 -2402 (|#1| |#1| |#4|)) (-15 -4105 (|#1| |#1|)) (-15 -4118 ((-597 |#1|) |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4157 ((-719) |#1|)) (-15 -4167 (|#4| |#1|)) (-15 -3173 ((-506) |#1|)) (-15 -3173 ((-833 (-530)) |#1|)) (-15 -3173 ((-833 (-360)) |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -3012 ((-3 |#4| "failed") |#1|)) (-15 -2258 (|#1| |#4|)) (-15 -2402 (|#2| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 |#3|) $) 110)) (-2439 (((-1095 $) $ |#3|) 125) (((-1095 |#1|) $) 124)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 87 (|has| |#1| (-522)))) (-3031 (($ $) 88 (|has| |#1| (-522)))) (-3006 (((-110) $) 90 (|has| |#1| (-522)))) (-3667 (((-719) $) 112) (((-719) $ (-597 |#3|)) 111)) (-2040 (($ $) 271)) (-4020 (((-110) $ $) 257)) (-3618 (((-3 $ "failed") $ $) 19)) (-2322 (($ $ $) 216 (|has| |#1| (-522)))) (-3859 (((-597 $) $ $) 211 (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1359 (($ $) 98 (|has| |#1| (-432)))) (-3550 (((-399 $) $) 97 (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 103 (|has| |#1| (-850)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 164) (((-3 (-388 (-530)) "failed") $) 162 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 160 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-893 (-388 (-530)))) 231 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) 228 (-1476 (-12 (-3694 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) 225 (-1476 (-12 (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3694 (|has| |#1| (-515))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3694 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-2446 ((|#1| $) 165) (((-388 (-530)) $) 161 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 159 (|has| |#1| (-975 (-530)))) ((|#3| $) 135) (($ (-893 (-388 (-530)))) 230 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 227 (-1476 (-12 (-3694 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 224 (-1476 (-12 (-3694 (|has| |#1| (-37 (-388 (-530))))) (-3694 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3694 (|has| |#1| (-515))) (-3694 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3694 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-2330 (($ $ $ |#3|) 108 (|has| |#1| (-162))) (($ $ $) 212 (|has| |#1| (-522)))) (-2425 (($ $) 154) (($ $ |#3|) 266)) (-1298 (((-637 (-530)) (-637 $)) 134 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-2976 (((-110) $ $) 256) (((-110) $ (-597 $)) 255)) (-1673 (((-3 $ "failed") $) 34)) (-4081 (((-110) $) 264)) (-2291 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 236)) (-3815 (($ $) 205 (|has| |#1| (-432)))) (-3703 (($ $) 176 (|has| |#1| (-432))) (($ $ |#3|) 105 (|has| |#1| (-432)))) (-2411 (((-597 $) $) 109)) (-2049 (((-110) $) 96 (|has| |#1| (-850)))) (-3920 (($ $) 221 (|has| |#1| (-522)))) (-3930 (($ $) 222 (|has| |#1| (-522)))) (-4009 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4000 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2097 (($ $ |#1| |#2| $) 172)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 83 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-3150 (((-110) $) 31)) (-3239 (((-719) $) 169)) (-2987 (((-110) $ $) 250) (((-110) $ (-597 $)) 249)) (-3826 (($ $ $ $ $) 207 (|has| |#1| (-522)))) (-4167 ((|#3| $) 275)) (-2586 (($ (-1095 |#1|) |#3|) 117) (($ (-1095 $) |#3|) 116)) (-3683 (((-597 $) $) 126)) (-3327 (((-110) $) 152)) (-2575 (($ |#1| |#2|) 153) (($ $ |#3| (-719)) 119) (($ $ (-597 |#3|) (-597 (-719))) 118)) (-3949 (($ $ $) 235)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#3|) 120)) (-4095 (((-110) $) 265)) (-3674 ((|#2| $) 170) (((-719) $ |#3|) 122) (((-597 (-719)) $ (-597 |#3|)) 121)) (-4194 (($ $ $) 79 (|has| |#1| (-795)))) (-4157 (((-719) $) 274)) (-1757 (($ $ $) 78 (|has| |#1| (-795)))) (-2107 (($ (-1 |#2| |#2|) $) 171)) (-3114 (($ (-1 |#1| |#1|) $) 151)) (-1367 (((-3 |#3| "failed") $) 123)) (-3787 (($ $) 202 (|has| |#1| (-432)))) (-3796 (($ $) 203 (|has| |#1| (-432)))) (-4040 (((-597 $) $) 260)) (-4071 (($ $) 263)) (-3805 (($ $) 204 (|has| |#1| (-432)))) (-4050 (((-597 $) $) 261)) (-4062 (($ $) 262)) (-2388 (($ $) 149)) (-2402 ((|#1| $) 148) (($ $ |#3|) 267)) (-2072 (($ (-597 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3940 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1791 (-719))) $ $) 234)) (-3961 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $) 238) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $ |#3|) 237)) (-3971 (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $) 240) (((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $ |#3|) 239)) (-3989 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3980 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3443 (((-1082) $) 9)) (-3037 (($ $ $) 210 (|has| |#1| (-522)))) (-4118 (((-597 $) $) 269)) (-2457 (((-3 (-597 $) "failed") $) 114)) (-3691 (((-3 (-597 $) "failed") $) 115)) (-2467 (((-3 (-2 (|:| |var| |#3|) (|:| -3059 (-719))) "failed") $) 113)) (-2938 (((-110) $ $) 252) (((-110) $ (-597 $)) 251)) (-2888 (($ $ $) 232)) (-3677 (($ $) 273)) (-1845 (((-110) $ $) 258)) (-2951 (((-110) $ $) 254) (((-110) $ (-597 $)) 253)) (-2898 (($ $ $) 233)) (-4144 (($ $) 272)) (-2485 (((-1046) $) 10)) (-3869 (((-2 (|:| -2108 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-522)))) (-3878 (((-2 (|:| -2108 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-522)))) (-2366 (((-110) $) 166)) (-2375 ((|#1| $) 167)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 95 (|has| |#1| (-432)))) (-2108 ((|#1| |#1| $) 206 (|has| |#1| (-432))) (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 102 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 99 (|has| |#1| (-850)))) (-3889 (((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-522)))) (-3562 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-522)))) (-3898 (($ $ |#1|) 219 (|has| |#1| (-522))) (($ $ $) 217 (|has| |#1| (-522)))) (-3909 (($ $ |#1|) 220 (|has| |#1| (-522))) (($ $ $) 218 (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) 145) (($ $ (-276 $)) 144) (($ $ $ $) 143) (($ $ (-597 $) (-597 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-597 |#3|) (-597 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-597 |#3|) (-597 $)) 138)) (-2341 (($ $ |#3|) 107 (|has| |#1| (-162)))) (-3211 (($ $ |#3|) 42) (($ $ (-597 |#3|)) 41) (($ $ |#3| (-719)) 40) (($ $ (-597 |#3|) (-597 (-719))) 39)) (-3409 ((|#2| $) 150) (((-719) $ |#3|) 130) (((-597 (-719)) $ (-597 |#3|)) 129)) (-4130 (($ $) 270)) (-4105 (($ $) 268)) (-3173 (((-833 (-360)) $) 82 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 81 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 80 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506))))) (($ (-893 (-388 (-530)))) 229 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 226 (-1476 (-12 (-3694 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 223 (|has| |#3| (-572 (-1099)))) (((-1082) $) 201 (-12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099))))) (((-893 |#1|) $) 200 (|has| |#3| (-572 (-1099))))) (-3658 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ |#3|) 106 (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 104 (-3340 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-893 |#1|) $) 199 (|has| |#3| (-572 (-1099)))) (($ (-388 (-530))) 72 (-1476 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 85 (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) 168)) (-2782 ((|#1| $ |#2|) 155) (($ $ |#3| (-719)) 128) (($ $ (-597 |#3|) (-597 (-719))) 127)) (-1795 (((-3 $ "failed") $) 73 (-1476 (-3340 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 29)) (-2084 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 89 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-4029 (((-3 (-110) "failed") $ $) 259)) (-2955 (($) 30 T CONST)) (-3836 (($ $ $ $ (-719)) 208 (|has| |#1| (-522)))) (-3848 (($ $ $ (-719)) 209 (|has| |#1| (-522)))) (-3286 (($ $ |#3|) 38) (($ $ (-597 |#3|)) 37) (($ $ |#3| (-719)) 36) (($ $ (-597 |#3|) (-597 (-719))) 35)) (-2204 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 157 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) |#2| $) 23)) (-3023 ((|#1| $) 10)) (-1867 (((-530) |#2| $) 88)) (-1326 (((-3 $ "failed") |#2| (-862)) 57)) (-3638 ((|#1| $) 28)) (-2891 ((|#1| |#2| $ |#1|) 37)) (-3399 (($ $) 25)) (-2707 (((-3 |#2| "failed") |#2| $) 87)) (-2514 (((-110) |#2| $) NIL)) (-2166 (((-110) |#2| $) NIL)) (-3786 (((-110) |#2| $) 24)) (-2913 ((|#1| $) 89)) (-3628 ((|#1| $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1781 ((|#2| $) 79)) (-2366 (((-804) $) 70)) (-4136 ((|#1| |#2| $ |#1|) 38)) (-3462 (((-597 $) |#2|) 59)) (-2248 (((-110) $ $) 74)))
+(((-994 |#1| |#2|) (-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3628 (|#1| $)) (-15 -3638 (|#1| $)) (-15 -3023 (|#1| $)) (-15 -2913 (|#1| $)) (-15 -3399 ($ $)) (-15 -3786 ((-110) |#2| $)) (-15 -2891 (|#1| |#2| $ |#1|)))) (-13 (-793) (-344)) (-1157 |#1|)) (T -994))
+((-2891 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3628 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3638 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3023 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-2913 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3399 (*1 *1 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3786 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3)) (-4 *3 (-1157 *4)))))
+(-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3628 (|#1| $)) (-15 -3638 (|#1| $)) (-15 -3023 (|#1| $)) (-15 -2913 (|#1| $)) (-15 -3399 ($ $)) (-15 -3786 ((-110) |#2| $)) (-15 -2891 (|#1| |#2| $ |#1|))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) NIL)) (-2350 (($) NIL T CONST)) (-3621 (($ (-1099)) 10) (($ (-530)) 7)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) NIL) (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) NIL)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3103 (($ $) NIL)) (-4109 (($ $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2624 (((-1046) $) NIL) (($ $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) NIL)) (-2579 (($ $) NIL)) (-3260 (((-530) $) 16) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL) (($ (-1099)) 9)) (-2366 (((-804) $) 20) (($ (-530)) 6) (($ $) NIL) (($ (-530)) 6)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) NIL)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $) 19) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
+(((-995) (-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3260 ($ (-1099))) (-15 -3621 ($ (-1099))) (-15 -3621 ($ (-530)))))) (T -995))
+((-3260 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995)))))
+(-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3260 ($ (-1099))) (-15 -3621 ($ (-1099))) (-15 -3621 ($ (-530)))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2273 (($) 9)) (-2552 (((-51) $ (-1099) (-51)) NIL)) (-4084 (($ $) 30)) (-1579 (($ $) 28)) (-4159 (($ $) 27)) (-2034 (($ $) 29)) (-1388 (($ $) 32)) (-3935 (($ $) 33)) (-2713 (($ $) 26)) (-3587 (($ $) 31)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) 25 (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1099) $) 40)) (-2350 (($) NIL T CONST)) (-1312 (($) 7)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) 50 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3197 (((-3 (-1082) "failed") $ (-1082) (-530)) 59)) (-3592 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1099)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) 35 (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1099)) $) NIL)) (-3718 (((-110) (-1099) $) NIL)) (-1723 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) 43)) (-3567 (((-597 (-1099)) $) NIL)) (-1927 (((-110) (-1099) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2843 (((-360) $ (-1099)) 49)) (-3379 (((-597 (-1082)) $ (-1082)) 60)) (-3048 (((-51) $) NIL (|has| (-1099) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1099)) NIL) (((-51) $ (-1099) (-51)) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3714 (($ $ (-1099)) 51)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) 37)) (-3483 (($ $ $) 38)) (-2366 (((-804) $) NIL (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-571 (-804)))))) (-1436 (($ $ (-1099) (-360)) 47)) (-2382 (($ $ (-1099) (-360)) 48)) (-2242 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-996) (-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3483 ($ $ $)) (-15 -1312 ($)) (-15 -2713 ($ $)) (-15 -4159 ($ $)) (-15 -1579 ($ $)) (-15 -2034 ($ $)) (-15 -3587 ($ $)) (-15 -4084 ($ $)) (-15 -1388 ($ $)) (-15 -3935 ($ $)) (-15 -1436 ($ $ (-1099) (-360))) (-15 -2382 ($ $ (-1099) (-360))) (-15 -2843 ((-360) $ (-1099))) (-15 -3379 ((-597 (-1082)) $ (-1082))) (-15 -3714 ($ $ (-1099))) (-15 -2273 ($)) (-15 -3197 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4269)))) (T -996))
+((-3483 (*1 *1 *1 *1) (-5 *1 (-996))) (-1312 (*1 *1) (-5 *1 (-996))) (-2713 (*1 *1 *1) (-5 *1 (-996))) (-4159 (*1 *1 *1) (-5 *1 (-996))) (-1579 (*1 *1 *1) (-5 *1 (-996))) (-2034 (*1 *1 *1) (-5 *1 (-996))) (-3587 (*1 *1 *1) (-5 *1 (-996))) (-4084 (*1 *1 *1) (-5 *1 (-996))) (-1388 (*1 *1 *1) (-5 *1 (-996))) (-3935 (*1 *1 *1) (-5 *1 (-996))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))) (-3714 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))) (-2273 (*1 *1) (-5 *1 (-996))) (-3197 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
+(-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3483 ($ $ $)) (-15 -1312 ($)) (-15 -2713 ($ $)) (-15 -4159 ($ $)) (-15 -1579 ($ $)) (-15 -2034 ($ $)) (-15 -3587 ($ $)) (-15 -4084 ($ $)) (-15 -1388 ($ $)) (-15 -3935 ($ $)) (-15 -1436 ($ $ (-1099) (-360))) (-15 -2382 ($ $ (-1099) (-360))) (-15 -2843 ((-360) $ (-1099))) (-15 -3379 ((-597 (-1082)) $ (-1082))) (-15 -3714 ($ $ (-1099))) (-15 -2273 ($)) (-15 -3197 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4269)))
+((-2133 (($ $) 45)) (-3627 (((-110) $ $) 74)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) 227) (((-3 $ "failed") (-893 (-530))) 226) (((-3 $ "failed") (-893 |#2|)) 229)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) NIL) (($ (-893 (-388 (-530)))) 215) (($ (-893 (-530))) 211) (($ (-893 |#2|)) 231)) (-2562 (($ $) NIL) (($ $ |#4|) 43)) (-3784 (((-110) $ $) 112) (((-110) $ (-597 $)) 113)) (-1943 (((-110) $) 56)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 107)) (-4122 (($ $) 138)) (-2651 (($ $) 134)) (-4224 (($ $) 133)) (-4170 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3535 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3397 (((-110) $ $) 121) (((-110) $ (-597 $)) 122)) (-3122 ((|#4| $) 33)) (-2938 (($ $ $) 110)) (-1841 (((-110) $) 55)) (-1419 (((-719) $) 35)) (-3975 (($ $) 152)) (-3630 (($ $) 149)) (-2922 (((-597 $) $) 68)) (-3384 (($ $) 57)) (-2036 (($ $) 145)) (-2467 (((-597 $) $) 65)) (-3777 (($ $) 59)) (-2533 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 111)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 108) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#4|) 109)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) 104) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#4|) 105)) (-2456 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2824 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3162 (((-597 $) $) 51)) (-2559 (((-110) $ $) 118) (((-110) $ (-597 $)) 119)) (-3482 (($ $ $) 103)) (-3657 (($ $) 37)) (-1406 (((-110) $ $) 72)) (-1663 (((-110) $ $) 114) (((-110) $ (-597 $)) 116)) (-2122 (($ $ $) 101)) (-2846 (($ $) 40)) (-2204 ((|#2| |#2| $) 142) (($ (-597 $)) NIL) (($ $ $) NIL)) (-2150 (($ $ |#2|) NIL) (($ $ $) 131)) (-3792 (($ $ |#2|) 126) (($ $ $) 129)) (-1581 (($ $) 48)) (-3434 (($ $) 52)) (-3260 (((-833 (-360)) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (($ (-893 (-388 (-530)))) 217) (($ (-893 (-530))) 213) (($ (-893 |#2|)) 228) (((-1082) $) 250) (((-893 |#2|) $) 162)) (-2366 (((-804) $) 30) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-893 |#2|) $) 163) (($ (-388 (-530))) NIL) (($ $) NIL)) (-3264 (((-3 (-110) "failed") $ $) 71)))
+(((-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 ((-893 |#2|) |#1|)) (-15 -3260 ((-893 |#2|) |#1|)) (-15 -3260 ((-1082) |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2204 (|#2| |#2| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2651 (|#1| |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3260 (|#1| (-893 |#2|))) (-15 -2585 (|#1| (-893 |#2|))) (-15 -3139 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3260 (|#1| (-893 (-530)))) (-15 -2585 (|#1| (-893 (-530)))) (-15 -3139 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3260 (|#1| (-893 (-388 (-530))))) (-15 -2585 (|#1| (-893 (-388 (-530))))) (-15 -3139 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2122 (|#1| |#1| |#1|)) (-15 -4237 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4003 (-719))) |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1| |#4|)) (-15 -4170 (|#1| |#1| |#1| |#4|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -3397 ((-110) |#1| (-597 |#1|))) (-15 -3397 ((-110) |#1| |#1|)) (-15 -2559 ((-110) |#1| (-597 |#1|))) (-15 -2559 ((-110) |#1| |#1|)) (-15 -1663 ((-110) |#1| (-597 |#1|))) (-15 -1663 ((-110) |#1| |#1|)) (-15 -3784 ((-110) |#1| (-597 |#1|))) (-15 -3784 ((-110) |#1| |#1|)) (-15 -3627 ((-110) |#1| |#1|)) (-15 -1406 ((-110) |#1| |#1|)) (-15 -3264 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2922 ((-597 |#1|) |#1|)) (-15 -2467 ((-597 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1943 ((-110) |#1|)) (-15 -1841 ((-110) |#1|)) (-15 -2562 (|#1| |#1| |#4|)) (-15 -2533 (|#1| |#1| |#4|)) (-15 -3434 (|#1| |#1|)) (-15 -3162 ((-597 |#1|) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1419 ((-719) |#1|)) (-15 -3122 (|#4| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -2533 (|#2| |#1|)) (-15 -2562 (|#1| |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-998 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -997))
+NIL
+(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 ((-893 |#2|) |#1|)) (-15 -3260 ((-893 |#2|) |#1|)) (-15 -3260 ((-1082) |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2204 (|#2| |#2| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2651 (|#1| |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3260 (|#1| (-893 |#2|))) (-15 -2585 (|#1| (-893 |#2|))) (-15 -3139 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3260 (|#1| (-893 (-530)))) (-15 -2585 (|#1| (-893 (-530)))) (-15 -3139 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3260 (|#1| (-893 (-388 (-530))))) (-15 -2585 (|#1| (-893 (-388 (-530))))) (-15 -3139 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2122 (|#1| |#1| |#1|)) (-15 -4237 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4003 (-719))) |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1| |#4|)) (-15 -4170 (|#1| |#1| |#1| |#4|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -3397 ((-110) |#1| (-597 |#1|))) (-15 -3397 ((-110) |#1| |#1|)) (-15 -2559 ((-110) |#1| (-597 |#1|))) (-15 -2559 ((-110) |#1| |#1|)) (-15 -1663 ((-110) |#1| (-597 |#1|))) (-15 -1663 ((-110) |#1| |#1|)) (-15 -3784 ((-110) |#1| (-597 |#1|))) (-15 -3784 ((-110) |#1| |#1|)) (-15 -3627 ((-110) |#1| |#1|)) (-15 -1406 ((-110) |#1| |#1|)) (-15 -3264 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2922 ((-597 |#1|) |#1|)) (-15 -2467 ((-597 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1943 ((-110) |#1|)) (-15 -1841 ((-110) |#1|)) (-15 -2562 (|#1| |#1| |#4|)) (-15 -2533 (|#1| |#1| |#4|)) (-15 -3434 (|#1| |#1|)) (-15 -3162 ((-597 |#1|) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1419 ((-719) |#1|)) (-15 -3122 (|#4| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -2533 (|#2| |#1|)) (-15 -2562 (|#1| |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-2133 (($ $) 269)) (-3627 (((-110) $ $) 255)) (-1889 (((-3 $ "failed") $ $) 19)) (-3950 (($ $ $) 214 (|has| |#1| (-522)))) (-2540 (((-597 $) $ $) 209 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-893 (-388 (-530)))) 229 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) 226 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) 223 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-515))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133) (($ (-893 (-388 (-530)))) 228 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 225 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 222 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-515))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162))) (($ $ $) 210 (|has| |#1| (-522)))) (-2562 (($ $) 152) (($ $ |#3|) 264)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-3784 (((-110) $ $) 254) (((-110) $ (-597 $)) 253)) (-2707 (((-3 $ "failed") $) 32)) (-1943 (((-110) $) 262)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 234)) (-4122 (($ $) 203 (|has| |#1| (-432)))) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2651 (($ $) 219 (|has| |#1| (-522)))) (-4224 (($ $) 220 (|has| |#1| (-522)))) (-4170 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3535 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2410 (($ $ |#1| |#2| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-3397 (((-110) $ $) 248) (((-110) $ (-597 $)) 247)) (-2793 (($ $ $ $ $) 205 (|has| |#1| (-522)))) (-3122 ((|#3| $) 273)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#2|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-2938 (($ $ $) 233)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-1841 (((-110) $) 263)) (-2944 ((|#2| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1419 (((-719) $) 272)) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#2| |#2|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2040 (((-3 |#3| "failed") $) 121)) (-3975 (($ $) 200 (|has| |#1| (-432)))) (-3630 (($ $) 201 (|has| |#1| (-432)))) (-2922 (((-597 $) $) 258)) (-3384 (($ $) 261)) (-2036 (($ $) 202 (|has| |#1| (-432)))) (-2467 (((-597 $) $) 259)) (-3777 (($ $) 260)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146) (($ $ |#3|) 265)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 232)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 236) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 235)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) 238) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#3|) 237)) (-2456 (($ $ $) 242) (($ $ $ |#3|) 240)) (-2824 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1424 (((-1082) $) 9)) (-2991 (($ $ $) 208 (|has| |#1| (-522)))) (-3162 (((-597 $) $) 267)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2559 (((-110) $ $) 250) (((-110) $ (-597 $)) 249)) (-3482 (($ $ $) 230)) (-3657 (($ $) 271)) (-1406 (((-110) $ $) 256)) (-1663 (((-110) $ $) 252) (((-110) $ (-597 $)) 251)) (-2122 (($ $ $) 231)) (-2846 (($ $) 270)) (-2624 (((-1046) $) 10)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-522)))) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 ((|#1| |#1| $) 204 (|has| |#1| (-432))) (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-2150 (($ $ |#1|) 217 (|has| |#1| (-522))) (($ $ $) 215 (|has| |#1| (-522)))) (-3792 (($ $ |#1|) 218 (|has| |#1| (-522))) (($ $ $) 216 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136)) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37)) (-1429 ((|#2| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127)) (-1581 (($ $) 268)) (-3434 (($ $) 266)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506))))) (($ (-893 (-388 (-530)))) 227 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 224 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 221 (|has| |#3| (-572 (-1099)))) (((-1082) $) 199 (-12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099))))) (((-893 |#1|) $) 198 (|has| |#3| (-572 (-1099))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-893 |#1|) $) 197 (|has| |#3| (-572 (-1099)))) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#2|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3264 (((-3 (-110) "failed") $ $) 257)) (-3093 (($) 29 T CONST)) (-1271 (($ $ $ $ (-719)) 206 (|has| |#1| (-522)))) (-3984 (($ $ $ (-719)) 207 (|has| |#1| (-522)))) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-998 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -998))
-((-4167 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3677 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4144 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4130 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4118 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-4105 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2425 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-4071 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4062 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4050 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-4040 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-4029 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1845 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-4020 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2976 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-2987 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2987 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-4009 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4000 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4009 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4000 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3989 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3980 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3989 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3980 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3971 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3088 *1))) (-4 *1 (-998 *3 *4 *5)))) (-3971 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3088 *1))) (-4 *1 (-998 *4 *5 *3)))) (-3961 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-998 *3 *4 *5)))) (-3961 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-998 *4 *5 *3)))) (-2291 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-998 *3 *4 *5)))) (-3949 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3940 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1791 (-719)))) (-4 *1 (-998 *3 *4 *5)))) (-2898 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2888 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3012 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3012 (*1 *1 *2) (|partial| -1476 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2446 (*1 *1 *2) (-1476 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3173 (*1 *1 *2) (-1476 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3012 (*1 *1 *2) (|partial| -1476 (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-3694 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-515))) (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2446 (*1 *1 *2) (-1476 (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-3694 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-515))) (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3694 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *5 (-572 (-1099))) (-4 *4 (-741)) (-4 *5 (-795)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3909 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3898 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3909 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3898 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2322 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3889 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2108 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3878 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2108 *1) (|:| |coef1| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3869 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2108 *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-2330 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3859 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-3037 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3848 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-3836 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-3826 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2108 (*1 *2 *2 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3805 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))))
-(-13 (-890 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4167 (|t#3| $)) (-15 -4157 ((-719) $)) (-15 -3677 ($ $)) (-15 -4144 ($ $)) (-15 -2040 ($ $)) (-15 -4130 ($ $)) (-15 -4118 ((-597 $) $)) (-15 -4105 ($ $)) (-15 -2402 ($ $ |t#3|)) (-15 -2425 ($ $ |t#3|)) (-15 -4095 ((-110) $)) (-15 -4081 ((-110) $)) (-15 -4071 ($ $)) (-15 -4062 ($ $)) (-15 -4050 ((-597 $) $)) (-15 -4040 ((-597 $) $)) (-15 -4029 ((-3 (-110) "failed") $ $)) (-15 -1845 ((-110) $ $)) (-15 -4020 ((-110) $ $)) (-15 -2976 ((-110) $ $)) (-15 -2976 ((-110) $ (-597 $))) (-15 -2951 ((-110) $ $)) (-15 -2951 ((-110) $ (-597 $))) (-15 -2938 ((-110) $ $)) (-15 -2938 ((-110) $ (-597 $))) (-15 -2987 ((-110) $ $)) (-15 -2987 ((-110) $ (-597 $))) (-15 -4009 ($ $ $)) (-15 -4000 ($ $ $)) (-15 -4009 ($ $ $ |t#3|)) (-15 -4000 ($ $ $ |t#3|)) (-15 -3989 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -3989 ($ $ $ |t#3|)) (-15 -3980 ($ $ $ |t#3|)) (-15 -3971 ((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $)) (-15 -3971 ((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3088 $)) $ $ |t#3|)) (-15 -3961 ((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -3961 ((-2 (|:| -1981 $) (|:| |gap| (-719)) (|:| -3624 $) (|:| -3088 $)) $ $ |t#3|)) (-15 -2291 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -3949 ($ $ $)) (-15 -3940 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1791 (-719))) $ $)) (-15 -2898 ($ $ $)) (-15 -2888 ($ $ $)) (IF (|has| |t#3| (-572 (-1099))) (PROGN (-6 (-571 (-893 |t#1|))) (-6 (-572 (-893 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -3012 ((-3 $ "failed") (-893 (-388 (-530))))) (-15 -2446 ($ (-893 (-388 (-530))))) (-15 -3173 ($ (-893 (-388 (-530))))) (-15 -3012 ((-3 $ "failed") (-893 (-530)))) (-15 -2446 ($ (-893 (-530)))) (-15 -3173 ($ (-893 (-530)))) (IF (|has| |t#1| (-932 (-530))) |%noBranch| (PROGN (-15 -3012 ((-3 $ "failed") (-893 |t#1|))) (-15 -2446 ($ (-893 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3012 ((-3 $ "failed") (-893 (-530)))) (-15 -2446 ($ (-893 (-530)))) (-15 -3173 ($ (-893 (-530)))) (IF (|has| |t#1| (-515)) |%noBranch| (PROGN (-15 -3012 ((-3 $ "failed") (-893 |t#1|))) (-15 -2446 ($ (-893 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3012 ((-3 $ "failed") (-893 |t#1|))) (-15 -2446 ($ (-893 |t#1|)))))) (-15 -3173 ($ (-893 |t#1|))) (IF (|has| |t#1| (-975 (-530))) (-6 (-572 (-1082))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -3930 ($ $)) (-15 -3920 ($ $)) (-15 -3909 ($ $ |t#1|)) (-15 -3898 ($ $ |t#1|)) (-15 -3909 ($ $ $)) (-15 -3898 ($ $ $)) (-15 -2322 ($ $ $)) (-15 -3889 ((-2 (|:| -2108 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3878 ((-2 (|:| -2108 $) (|:| |coef1| $)) $ $)) (-15 -3869 ((-2 (|:| -2108 $) (|:| |coef2| $)) $ $)) (-15 -2330 ($ $ $)) (-15 -3859 ((-597 $) $ $)) (-15 -3037 ($ $ $)) (-15 -3848 ($ $ $ (-719))) (-15 -3836 ($ $ $ $ (-719))) (-15 -3826 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -2108 (|t#1| |t#1| $)) (-15 -3815 ($ $)) (-15 -3805 ($ $)) (-15 -3796 ($ $)) (-15 -3787 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-571 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-162) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-572 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-572 (-1082)) -12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099)))) ((-272) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#2| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-3015 (((-110) |#3| $) 13)) (-4189 (((-3 $ "failed") |#3| (-862)) 23)) (-1673 (((-3 |#3| "failed") |#3| $) 38)) (-2991 (((-110) |#3| $) 16)) (-3002 (((-110) |#3| $) 14)))
-(((-999 |#1| |#2| |#3|) (-10 -8 (-15 -4189 ((-3 |#1| "failed") |#3| (-862))) (-15 -1673 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2991 ((-110) |#3| |#1|)) (-15 -3002 ((-110) |#3| |#1|)) (-15 -3015 ((-110) |#3| |#1|))) (-1000 |#2| |#3|) (-13 (-793) (-344)) (-1157 |#2|)) (T -999))
-NIL
-(-10 -8 (-15 -4189 ((-3 |#1| "failed") |#3| (-862))) (-15 -1673 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2991 ((-110) |#3| |#1|)) (-15 -3002 ((-110) |#3| |#1|)) (-15 -3015 ((-110) |#3| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) |#2| $) 21)) (-3592 (((-530) |#2| $) 22)) (-4189 (((-3 $ "failed") |#2| (-862)) 15)) (-4179 ((|#1| |#2| $ |#1|) 13)) (-1673 (((-3 |#2| "failed") |#2| $) 18)) (-2991 (((-110) |#2| $) 19)) (-3002 (((-110) |#2| $) 20)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-4212 ((|#2| $) 17)) (-2258 (((-804) $) 11)) (-4125 ((|#1| |#2| $ |#1|) 14)) (-4200 (((-597 $) |#2|) 16)) (-2148 (((-110) $ $) 6)))
+((-3122 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2846 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3162 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-3434 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2562 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2467 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-2922 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-3264 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3627 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3784 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-1663 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-2559 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3397 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3535 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4170 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3535 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2824 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2456 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2824 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4223 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-4223 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1))) (-4 *1 (-998 *4 *5 *3)))) (-1420 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-1420 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *4 *5 *3)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-2938 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4237 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4003 (-719)))) (-4 *1 (-998 *3 *4 *5)))) (-2122 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3482 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3139 (*1 *1 *2) (|partial| -1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2585 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3260 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3139 (*1 *1 *2) (|partial| -1461 (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2585 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *5 (-572 (-1099))) (-4 *4 (-741)) (-4 *5 (-795)))) (-4224 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2651 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2150 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2150 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3950 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2408 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1))) (-4 *1 (-998 *3 *4 *5)))) (-2177 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-2991 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3984 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-1271 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-2793 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2204 (*1 *2 *2 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-2036 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3975 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))))
+(-13 (-890 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3122 (|t#3| $)) (-15 -1419 ((-719) $)) (-15 -3657 ($ $)) (-15 -2846 ($ $)) (-15 -2133 ($ $)) (-15 -1581 ($ $)) (-15 -3162 ((-597 $) $)) (-15 -3434 ($ $)) (-15 -2533 ($ $ |t#3|)) (-15 -2562 ($ $ |t#3|)) (-15 -1841 ((-110) $)) (-15 -1943 ((-110) $)) (-15 -3384 ($ $)) (-15 -3777 ($ $)) (-15 -2467 ((-597 $) $)) (-15 -2922 ((-597 $) $)) (-15 -3264 ((-3 (-110) "failed") $ $)) (-15 -1406 ((-110) $ $)) (-15 -3627 ((-110) $ $)) (-15 -3784 ((-110) $ $)) (-15 -3784 ((-110) $ (-597 $))) (-15 -1663 ((-110) $ $)) (-15 -1663 ((-110) $ (-597 $))) (-15 -2559 ((-110) $ $)) (-15 -2559 ((-110) $ (-597 $))) (-15 -3397 ((-110) $ $)) (-15 -3397 ((-110) $ (-597 $))) (-15 -4170 ($ $ $)) (-15 -3535 ($ $ $)) (-15 -4170 ($ $ $ |t#3|)) (-15 -3535 ($ $ $ |t#3|)) (-15 -2456 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2456 ($ $ $ |t#3|)) (-15 -2824 ($ $ $ |t#3|)) (-15 -4223 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $)) (-15 -4223 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |t#3|)) (-15 -1420 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -1420 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |t#3|)) (-15 -2504 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $)) (-15 -2122 ($ $ $)) (-15 -3482 ($ $ $)) (IF (|has| |t#3| (-572 (-1099))) (PROGN (-6 (-571 (-893 |t#1|))) (-6 (-572 (-893 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -3139 ((-3 $ "failed") (-893 (-388 (-530))))) (-15 -2585 ($ (-893 (-388 (-530))))) (-15 -3260 ($ (-893 (-388 (-530))))) (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3260 ($ (-893 (-530)))) (IF (|has| |t#1| (-932 (-530))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3260 ($ (-893 (-530)))) (IF (|has| |t#1| (-515)) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|)))))) (-15 -3260 ($ (-893 |t#1|))) (IF (|has| |t#1| (-975 (-530))) (-6 (-572 (-1082))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -4224 ($ $)) (-15 -2651 ($ $)) (-15 -3792 ($ $ |t#1|)) (-15 -2150 ($ $ |t#1|)) (-15 -3792 ($ $ $)) (-15 -2150 ($ $ $)) (-15 -3950 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -3388 ($ $ $)) (-15 -2540 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -3984 ($ $ $ (-719))) (-15 -1271 ($ $ $ $ (-719))) (-15 -2793 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -2204 (|t#1| |t#1| $)) (-15 -4122 ($ $)) (-15 -2036 ($ $)) (-15 -3630 ($ $)) (-15 -3975 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-571 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-572 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-572 (-1082)) -12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099)))) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#2| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
+((-1813 (((-110) |#3| $) 13)) (-1326 (((-3 $ "failed") |#3| (-862)) 23)) (-2707 (((-3 |#3| "failed") |#3| $) 38)) (-2514 (((-110) |#3| $) 16)) (-2166 (((-110) |#3| $) 14)))
+(((-999 |#1| |#2| |#3|) (-10 -8 (-15 -1326 ((-3 |#1| "failed") |#3| (-862))) (-15 -2707 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2514 ((-110) |#3| |#1|)) (-15 -2166 ((-110) |#3| |#1|)) (-15 -1813 ((-110) |#3| |#1|))) (-1000 |#2| |#3|) (-13 (-793) (-344)) (-1157 |#2|)) (T -999))
+NIL
+(-10 -8 (-15 -1326 ((-3 |#1| "failed") |#3| (-862))) (-15 -2707 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2514 ((-110) |#3| |#1|)) (-15 -2166 ((-110) |#3| |#1|)) (-15 -1813 ((-110) |#3| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) |#2| $) 21)) (-1867 (((-530) |#2| $) 22)) (-1326 (((-3 $ "failed") |#2| (-862)) 15)) (-2891 ((|#1| |#2| $ |#1|) 13)) (-2707 (((-3 |#2| "failed") |#2| $) 18)) (-2514 (((-110) |#2| $) 19)) (-2166 (((-110) |#2| $) 20)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1781 ((|#2| $) 17)) (-2366 (((-804) $) 11)) (-4136 ((|#1| |#2| $ |#1|) 14)) (-3462 (((-597 $) |#2|) 16)) (-2248 (((-110) $ $) 6)))
(((-1000 |#1| |#2|) (-133) (-13 (-793) (-344)) (-1157 |t#1|)) (T -1000))
-((-3592 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-530)))) (-3015 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-3002 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2991 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-1673 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1)) (-4 *1 (-1000 *4 *3)))) (-4189 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344))) (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))) (-4125 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))) (-4179 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))))
-(-13 (-1027) (-10 -8 (-15 -3592 ((-530) |t#2| $)) (-15 -3015 ((-110) |t#2| $)) (-15 -3002 ((-110) |t#2| $)) (-15 -2991 ((-110) |t#2| $)) (-15 -1673 ((-3 |t#2| "failed") |t#2| $)) (-15 -4212 (|t#2| $)) (-15 -4200 ((-597 $) |t#2|)) (-15 -4189 ((-3 $ "failed") |t#2| (-862))) (-15 -4125 (|t#1| |t#2| $ |t#1|)) (-15 -4179 (|t#1| |t#2| $ |t#1|))))
+((-1867 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-530)))) (-1813 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2707 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-3462 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1)) (-4 *1 (-1000 *4 *3)))) (-1326 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344))) (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))) (-4136 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))) (-2891 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))))
+(-13 (-1027) (-10 -8 (-15 -1867 ((-530) |t#2| $)) (-15 -1813 ((-110) |t#2| $)) (-15 -2166 ((-110) |t#2| $)) (-15 -2514 ((-110) |t#2| $)) (-15 -2707 ((-3 |t#2| "failed") |t#2| $)) (-15 -1781 (|t#2| $)) (-15 -3462 ((-597 $) |t#2|)) (-15 -1326 ((-3 $ "failed") |t#2| (-862))) (-15 -4136 (|t#1| |t#2| $ |t#1|)) (-15 -2891 (|t#1| |t#2| $ |t#1|))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1495 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719)) 96)) (-1459 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719)) 56)) (-4131 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719)) 87)) (-1438 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-1471 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719)) 58) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110)) 60)) (-1482 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 79)) (-3173 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) 82)) (-1449 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-110)) 55)) (-1428 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
-(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1428 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1438 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1449 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-110))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -1495 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719))) (-15 -3173 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -4131 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1001))
-((-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1001 *4 *5 *6 *7 *8)))) (-1495 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2350 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2350 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11)))) (-1482 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-1482 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-1471 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1471 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1471 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3)))) (-1459 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1459 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1449 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1428 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1438 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1449 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-110))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -1495 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719))) (-15 -3173 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -4131 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719))))
-((-3118 (((-110) |#5| $) 21)) (-3094 (((-110) |#5| $) 24)) (-3129 (((-110) |#5| $) 16) (((-110) $) 45)) (-3418 (((-597 $) |#5| $) NIL) (((-597 $) (-597 |#5|) $) 77) (((-597 $) (-597 |#5|) (-597 $)) 75) (((-597 $) |#5| (-597 $)) 78)) (-1312 (($ $ |#5|) NIL) (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 60) (((-597 $) (-597 |#5|) $) 62) (((-597 $) (-597 |#5|) (-597 $)) 64)) (-3025 (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 54) (((-597 $) (-597 |#5|) $) 56) (((-597 $) (-597 |#5|) (-597 $)) 58)) (-3106 (((-110) |#5| $) 27)))
-(((-1002 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1312 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -1312 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -1312 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -1312 ((-597 |#1|) |#5| |#1|)) (-15 -3025 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3025 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3025 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3025 ((-597 |#1|) |#5| |#1|)) (-15 -3418 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3418 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3418 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3418 ((-597 |#1|) |#5| |#1|)) (-15 -3094 ((-110) |#5| |#1|)) (-15 -3129 ((-110) |#1|)) (-15 -3106 ((-110) |#5| |#1|)) (-15 -3118 ((-110) |#5| |#1|)) (-15 -3129 ((-110) |#5| |#1|)) (-15 -1312 (|#1| |#1| |#5|))) (-1003 |#2| |#3| |#4| |#5|) (-432) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1002))
-NIL
-(-10 -8 (-15 -1312 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -1312 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -1312 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -1312 ((-597 |#1|) |#5| |#1|)) (-15 -3025 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3025 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3025 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3025 ((-597 |#1|) |#5| |#1|)) (-15 -3418 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3418 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3418 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3418 ((-597 |#1|) |#5| |#1|)) (-15 -3094 ((-110) |#5| |#1|)) (-15 -3129 ((-110) |#1|)) (-15 -3106 ((-110) |#5| |#1|)) (-15 -3118 ((-110) |#5| |#1|)) (-15 -3129 ((-110) |#5| |#1|)) (-15 -1312 (|#1| |#1| |#5|)))
-((-2246 (((-110) $ $) 7)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) 85)) (-2844 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) 101) (((-110) $) 97)) (-2906 ((|#4| |#4| $) 92)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 126)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 79)) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2918 (((-3 $ "failed") $) 82)) (-2878 ((|#4| |#4| $) 89)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2856 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) 105)) (-3118 (((-110) |#4| $) 136)) (-3094 (((-110) |#4| $) 133)) (-3129 (((-110) |#4| $) 137) (((-110) $) 134)) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) 104) (((-110) $) 103)) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 127)) (-2294 (((-3 |#4| "failed") $) 83)) (-3060 (((-597 $) |#4| $) 129)) (-3082 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3418 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-1528 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-3011 (((-597 |#4|) $) 107)) (-2938 (((-110) |#4| $) 99) (((-110) $) 95)) (-2888 ((|#4| |#4| $) 90)) (-1845 (((-110) $ $) 110)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) 100) (((-110) $) 96)) (-2898 ((|#4| |#4| $) 91)) (-2485 (((-1046) $) 10)) (-2907 (((-3 |#4| "failed") $) 84)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2807 (((-3 $ "failed") $ |#4|) 78)) (-1312 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-3409 (((-719) $) 106)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-2866 (($ $) 88)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2795 (((-719) $) 76 (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3025 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) 81)) (-3106 (((-110) |#4| $) 135)) (-3292 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+((-2500 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719)) 96)) (-2535 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 56)) (-4141 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)) 87)) (-2249 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-2280 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 58) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110)) 60)) (-3850 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 79)) (-3260 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 82)) (-3920 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110)) 55)) (-3204 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
+(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1001))
+((-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1001 *4 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11)))) (-3850 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2280 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-3920 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719))))
+((-3131 (((-110) |#5| $) 21)) (-2747 (((-110) |#5| $) 24)) (-2984 (((-110) |#5| $) 16) (((-110) $) 45)) (-4033 (((-597 $) |#5| $) NIL) (((-597 $) (-597 |#5|) $) 77) (((-597 $) (-597 |#5|) (-597 $)) 75) (((-597 $) |#5| (-597 $)) 78)) (-3168 (($ $ |#5|) NIL) (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 60) (((-597 $) (-597 |#5|) $) 62) (((-597 $) (-597 |#5|) (-597 $)) 64)) (-4208 (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 54) (((-597 $) (-597 |#5|) $) 56) (((-597 $) (-597 |#5|) (-597 $)) 58)) (-1321 (((-110) |#5| $) 27)))
+(((-1002 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3168 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3168 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3168 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3168 ((-597 |#1|) |#5| |#1|)) (-15 -4208 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4208 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4208 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4208 ((-597 |#1|) |#5| |#1|)) (-15 -4033 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4033 ((-597 |#1|) |#5| |#1|)) (-15 -2747 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#1|)) (-15 -1321 ((-110) |#5| |#1|)) (-15 -3131 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#5| |#1|)) (-15 -3168 (|#1| |#1| |#5|))) (-1003 |#2| |#3| |#4| |#5|) (-432) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1002))
+NIL
+(-10 -8 (-15 -3168 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3168 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3168 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3168 ((-597 |#1|) |#5| |#1|)) (-15 -4208 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4208 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4208 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4208 ((-597 |#1|) |#5| |#1|)) (-15 -4033 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4033 ((-597 |#1|) |#5| |#1|)) (-15 -2747 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#1|)) (-15 -1321 ((-110) |#5| |#1|)) (-15 -3131 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#5| |#1|)) (-15 -3168 (|#1| |#1| |#5|)))
+((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-1003 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1003))
-((-3129 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3118 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3106 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3094 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3082 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3070 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3070 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3060 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3049 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3037 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-1359 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3418 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-3025 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3025 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-3025 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-3025 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-1528 (*1 *1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1528 (*1 *1 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)))) (-1312 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-1312 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-1312 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-1312 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *5 *6 *7 *8)))))
-(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3129 ((-110) |t#4| $)) (-15 -3118 ((-110) |t#4| $)) (-15 -3106 ((-110) |t#4| $)) (-15 -3129 ((-110) $)) (-15 -3094 ((-110) |t#4| $)) (-15 -3082 ((-3 (-110) (-597 $)) |t#4| $)) (-15 -3070 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |t#4| $)) (-15 -3070 ((-110) |t#4| $)) (-15 -3060 ((-597 $) |t#4| $)) (-15 -3049 ((-3 |t#4| (-597 $)) |t#4| |t#4| $)) (-15 -3037 ((-597 (-2 (|:| |val| |t#4|) (|:| -2350 $))) |t#4| |t#4| $)) (-15 -1359 ((-597 (-2 (|:| |val| |t#4|) (|:| -2350 $))) |t#4| $)) (-15 -3418 ((-597 $) |t#4| $)) (-15 -3418 ((-597 $) (-597 |t#4|) $)) (-15 -3418 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -3418 ((-597 $) |t#4| (-597 $))) (-15 -3025 ((-597 $) |t#4| $)) (-15 -3025 ((-597 $) |t#4| (-597 $))) (-15 -3025 ((-597 $) (-597 |t#4|) $)) (-15 -3025 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -1528 ($ |t#4| $)) (-15 -1528 ($ (-597 |t#4|) $)) (-15 -1312 ((-597 $) |t#4| $)) (-15 -1312 ((-597 $) |t#4| (-597 $))) (-15 -1312 ((-597 $) (-597 |t#4|) $)) (-15 -1312 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -2844 ((-597 $) (-597 |t#4|) (-110)))))
+((-2984 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3131 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1321 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2747 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1404 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3017 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3017 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3274 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-1609 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-2991 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4033 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4033 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-4208 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4208 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-4208 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-4208 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-2721 (*1 *1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2721 (*1 *1 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)))) (-3168 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-3168 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *5 *6 *7 *8)))))
+(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2984 ((-110) |t#4| $)) (-15 -3131 ((-110) |t#4| $)) (-15 -1321 ((-110) |t#4| $)) (-15 -2984 ((-110) $)) (-15 -2747 ((-110) |t#4| $)) (-15 -1404 ((-3 (-110) (-597 $)) |t#4| $)) (-15 -3017 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |t#4| $)) (-15 -3017 ((-110) |t#4| $)) (-15 -3274 ((-597 $) |t#4| $)) (-15 -1609 ((-3 |t#4| (-597 $)) |t#4| |t#4| $)) (-15 -2991 ((-597 (-2 (|:| |val| |t#4|) (|:| -2473 $))) |t#4| |t#4| $)) (-15 -3544 ((-597 (-2 (|:| |val| |t#4|) (|:| -2473 $))) |t#4| $)) (-15 -4033 ((-597 $) |t#4| $)) (-15 -4033 ((-597 $) (-597 |t#4|) $)) (-15 -4033 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -4033 ((-597 $) |t#4| (-597 $))) (-15 -4208 ((-597 $) |t#4| $)) (-15 -4208 ((-597 $) |t#4| (-597 $))) (-15 -4208 ((-597 $) (-597 |t#4|) $)) (-15 -4208 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -2721 ($ |t#4| $)) (-15 -2721 ($ (-597 |t#4|) $)) (-15 -3168 ((-597 $) |t#4| $)) (-15 -3168 ((-597 $) |t#4| (-597 $))) (-15 -3168 ((-597 $) (-597 |t#4|) $)) (-15 -3168 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -1512 ((-597 $) (-597 |t#4|) (-110)))))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-3216 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|) 81)) (-3177 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|) 113)) (-3203 (((-597 |#5|) |#4| |#5|) 70)) (-3189 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-2552 (((-1186)) 37)) (-2533 (((-1186)) 26)) (-2543 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2524 (((-1186) (-1082) (-1082) (-1082)) 22)) (-3140 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|) 96)) (-3151 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110)) 107) (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3164 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2524 ((-1186) (-1082) (-1082) (-1082))) (-15 -2533 ((-1186))) (-15 -2543 ((-1186) (-1082) (-1082) (-1082))) (-15 -2552 ((-1186))) (-15 -3140 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3151 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3151 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110))) (-15 -3164 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3177 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3189 ((-110) |#4| |#5|)) (-15 -3189 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -3203 ((-597 |#5|) |#4| |#5|)) (-15 -3216 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1004))
-((-3216 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3189 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3189 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3177 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3164 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2350 *9)))) (-5 *1 (-1004 *6 *7 *4 *8 *9)))) (-3151 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2543 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2533 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2524 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2524 ((-1186) (-1082) (-1082) (-1082))) (-15 -2533 ((-1186))) (-15 -2543 ((-1186) (-1082) (-1082) (-1082))) (-15 -2552 ((-1186))) (-15 -3140 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3151 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3151 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110))) (-15 -3164 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3177 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -3189 ((-110) |#4| |#5|)) (-15 -3189 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -3203 ((-597 |#5|) |#4| |#5|)) (-15 -3216 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|)))
-((-2246 (((-110) $ $) NIL)) (-3901 (((-1099) $) 8)) (-3443 (((-1082) $) 16)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 13)))
-(((-1005 |#1|) (-13 (-1027) (-10 -8 (-15 -3901 ((-1099) $)))) (-1099)) (T -1005))
-((-3901 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1005 *3)) (-14 *3 *2))))
-(-13 (-1027) (-10 -8 (-15 -3901 ((-1099) $))))
-((-2246 (((-110) $ $) NIL)) (-2461 (($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|))) 33)) (-1866 (($ |#3| |#3|) 22) (($ |#3| |#3| (-597 (-1099))) 20)) (-1503 ((|#3| $) 13)) (-3012 (((-3 (-276 |#3|) "failed") $) 58)) (-2446 (((-276 |#3|) $) NIL)) (-3229 (((-597 (-1099)) $) 16)) (-2048 (((-833 |#1|) $) 11)) (-1491 ((|#3| $) 12)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1832 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-862)) 39)) (-2258 (((-804) $) 86) (($ (-276 |#3|)) 21)) (-2148 (((-110) $ $) 36)))
-(((-1006 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1866 ($ |#3| |#3|)) (-15 -1866 ($ |#3| |#3| (-597 (-1099)))) (-15 -2461 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2048 ((-833 |#1|) $)) (-15 -1491 (|#3| $)) (-15 -1503 (|#3| $)) (-15 -1832 (|#3| $ |#3| (-862))) (-15 -3229 ((-597 (-1099)) $)))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1006))
-((-1866 (*1 *1 *2 *2) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1866 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-2461 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1 (-110) (-597 *6))) (-4 *6 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *6)))) (-2048 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2))) (-5 *2 (-833 *3)) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 *2))))) (-1491 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1503 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1832 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3229 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1866 ($ |#3| |#3|)) (-15 -1866 ($ |#3| |#3| (-597 (-1099)))) (-15 -2461 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2048 ((-833 |#1|) $)) (-15 -1491 (|#3| $)) (-15 -1503 (|#3| $)) (-15 -1832 (|#3| $ |#3| (-862))) (-15 -3229 ((-597 (-1099)) $))))
-((-2246 (((-110) $ $) NIL)) (-2426 (($ (-597 (-1006 |#1| |#2| |#3|))) 13)) (-3719 (((-597 (-1006 |#1| |#2| |#3|)) $) 20)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-1832 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-862)) 26)) (-2258 (((-804) $) 16)) (-2148 (((-110) $ $) 19)))
-(((-1007 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2426 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3719 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1832 (|#3| $ |#3| (-862))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1007))
-((-2426 (*1 *1 *2) (-12 (-5 *2 (-597 (-1006 *3 *4 *5))) (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1007 *3 *4 *5)))) (-3719 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1006 *3 *4 *5))) (-5 *1 (-1007 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1832 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1007 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
-(-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2426 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3719 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1832 (|#3| $ |#3| (-862)))))
-((-3240 (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 75) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 77) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 76)))
-(((-1008 |#1| |#2|) (-10 -7 (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-597 (-1099))) (T -1008))
-((-3240 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4)))))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))))
-(-10 -7 (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3240 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))))
-((-2473 (((-399 |#3|) |#3|) 18)))
-(((-1009 |#1| |#2| |#3|) (-10 -7 (-15 -2473 ((-399 |#3|) |#3|))) (-1157 (-388 (-530))) (-13 (-344) (-140) (-673 (-388 (-530)) |#1|)) (-1157 |#2|)) (T -1009))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-530)) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#3|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 126)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-3031 (($ $) NIL (|has| |#1| (-344)))) (-3006 (((-110) $) NIL (|has| |#1| (-344)))) (-3359 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) 115)) (-1380 ((|#1| $) 119)) (-1621 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2879 (((-719)) 40 (|has| |#1| (-349)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-3477 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) 43)) (-1601 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-3348 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 106) (((-637 |#1|) (-637 $)) 101)) (-3856 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-1673 (((-3 $ "failed") $) NIL)) (-4113 (((-862)) 77)) (-1376 (($) 44 (|has| |#1| (-349)))) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2563 (($) NIL (|has| |#1| (-330)))) (-1674 (((-110) $) NIL (|has| |#1| (-330)))) (-3175 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-1334 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-3150 (((-110) $) NIL)) (-1717 ((|#1| $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3873 ((|#2| $) 84 (|has| |#1| (-344)))) (-3830 (((-862) $) 131 (|has| |#1| (-349)))) (-3844 ((|#2| $) 58)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-3677 (($) NIL (|has| |#1| (-330)) CONST)) (-1910 (($ (-862)) 125 (|has| |#1| (-349)))) (-2485 (((-1046) $) NIL)) (-1898 (($) 121)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1633 (((-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))) NIL (|has| |#1| (-330)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-2341 ((|#1| (-1181 $)) NIL) ((|#1|) 109)) (-3187 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3211 (($ $) NIL (-1476 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3139 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-4212 ((|#2|) 73)) (-1612 (($) NIL (|has| |#1| (-330)))) (-3351 (((-1181 |#1|) $ (-1181 $)) 89) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 71) (((-637 |#1|) (-1181 $)) 85)) (-3173 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-330)))) (-2258 (((-804) $) 57) (($ (-530)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-1795 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1640 ((|#2| $) 82)) (-1667 (((-719)) 75)) (-3853 (((-1181 $)) 81)) (-3020 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 30 T CONST)) (-2955 (($) 19 T CONST)) (-3286 (($ $) NIL (-1476 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2148 (((-110) $ $) 63)) (-2257 (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) 67) (($ $ $) NIL)) (-2234 (($ $ $) 65)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
+((-3110 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 81)) (-3079 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 113)) (-3737 (((-597 |#5|) |#4| |#5|) 70)) (-2021 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3033 (((-1186)) 37)) (-1308 (((-1186)) 26)) (-3058 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2802 (((-1186) (-1082) (-1082) (-1082)) 22)) (-1681 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|) 96)) (-2842 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110)) 107) (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2335 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1681 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2335 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3079 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2021 ((-110) |#4| |#5|)) (-15 -2021 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3737 ((-597 |#5|) |#4| |#5|)) (-15 -3110 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1004))
+((-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3079 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2335 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9)))) (-5 *1 (-1004 *6 *7 *4 *8 *9)))) (-2842 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1681 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3033 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3058 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1308 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2802 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1681 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2335 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3079 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2021 ((-110) |#4| |#5|)) (-15 -2021 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3737 ((-597 |#5|) |#4| |#5|)) (-15 -3110 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)))
+((-2352 (((-110) $ $) NIL)) (-3907 (((-1099) $) 8)) (-1424 (((-1082) $) 16)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 13)))
+(((-1005 |#1|) (-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $)))) (-1099)) (T -1005))
+((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1005 *3)) (-14 *3 *2))))
+(-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $))))
+((-2352 (((-110) $ $) NIL)) (-2598 (($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|))) 33)) (-1938 (($ |#3| |#3|) 22) (($ |#3| |#3| (-597 (-1099))) 20)) (-1491 ((|#3| $) 13)) (-3139 (((-3 (-276 |#3|) "failed") $) 58)) (-2585 (((-276 |#3|) $) NIL)) (-3735 (((-597 (-1099)) $) 16)) (-2144 (((-833 |#1|) $) 11)) (-1478 ((|#3| $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-862)) 39)) (-2366 (((-804) $) 86) (($ (-276 |#3|)) 21)) (-2248 (((-110) $ $) 36)))
+(((-1006 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1938 ($ |#3| |#3|)) (-15 -1938 ($ |#3| |#3| (-597 (-1099)))) (-15 -2598 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2144 ((-833 |#1|) $)) (-15 -1478 (|#3| $)) (-15 -1491 (|#3| $)) (-15 -1902 (|#3| $ |#3| (-862))) (-15 -3735 ((-597 (-1099)) $)))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1006))
+((-1938 (*1 *1 *2 *2) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1938 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-2598 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1 (-110) (-597 *6))) (-4 *6 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *6)))) (-2144 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2))) (-5 *2 (-833 *3)) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 *2))))) (-1478 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1491 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1902 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3735 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
+(-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1938 ($ |#3| |#3|)) (-15 -1938 ($ |#3| |#3| (-597 (-1099)))) (-15 -2598 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2144 ((-833 |#1|) $)) (-15 -1478 (|#3| $)) (-15 -1491 (|#3| $)) (-15 -1902 (|#3| $ |#3| (-862))) (-15 -3735 ((-597 (-1099)) $))))
+((-2352 (((-110) $ $) NIL)) (-2563 (($ (-597 (-1006 |#1| |#2| |#3|))) 13)) (-3704 (((-597 (-1006 |#1| |#2| |#3|)) $) 20)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-862)) 26)) (-2366 (((-804) $) 16)) (-2248 (((-110) $ $) 19)))
+(((-1007 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2563 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3704 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1902 (|#3| $ |#3| (-862))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1007))
+((-2563 (*1 *1 *2) (-12 (-5 *2 (-597 (-1006 *3 *4 *5))) (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1007 *3 *4 *5)))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1006 *3 *4 *5))) (-5 *1 (-1007 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1902 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1007 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
+(-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2563 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3704 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1902 (|#3| $ |#3| (-862)))))
+((-3654 (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 75) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 77) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 76)))
+(((-1008 |#1| |#2|) (-10 -7 (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-597 (-1099))) (T -1008))
+((-3654 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))))
+(-10 -7 (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))))
+((-2611 (((-399 |#3|) |#3|) 18)))
+(((-1009 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3|))) (-1157 (-388 (-530))) (-13 (-344) (-140) (-673 (-388 (-530)) |#1|)) (-1157 |#2|)) (T -1009))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-530)) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#3|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 126)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-3446 (($ $) NIL (|has| |#1| (-344)))) (-1276 (((-110) $) NIL (|has| |#1| (-344)))) (-1863 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) 115)) (-1367 ((|#1| $) 119)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3023 (((-719)) 40 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) 43)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-1984 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 106) (((-637 |#1|) (-637 $)) 101)) (-2134 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-2426 (((-862)) 77)) (-1364 (($) 44 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1677 (($) NIL (|has| |#1| (-330)))) (-2798 (((-110) $) NIL (|has| |#1| (-330)))) (-3948 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2031 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-2731 (((-110) $) NIL)) (-2376 ((|#1| $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1359 ((|#2| $) 84 (|has| |#1| (-344)))) (-1905 (((-862) $) 131 (|has| |#1| (-349)))) (-2123 ((|#2| $) 58)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-3657 (($) NIL (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 125 (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-1974 (($) 121)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-330)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3060 ((|#1| (-1181 $)) NIL) ((|#1|) 109)) (-1823 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3289 (($ $) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1781 ((|#2|) 73)) (-3406 (($) NIL (|has| |#1| (-330)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 89) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 71) (((-637 |#1|) (-1181 $)) 85)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-330)))) (-2366 (((-804) $) 57) (($ (-530)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1814 ((|#2| $) 82)) (-3300 (((-719)) 75)) (-3220 (((-1181 $)) 81)) (-3944 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3080 (($) 30 T CONST)) (-3093 (($) 19 T CONST)) (-3340 (($ $) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2248 (((-110) $ $) 63)) (-2364 (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) 67) (($ $ $) NIL)) (-2339 (($ $ $) 65)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
(((-1010 |#1| |#2| |#3|) (-673 |#1| |#2|) (-162) (-1157 |#1|) |#2|) (T -1010))
NIL
(-673 |#1| |#2|)
-((-2473 (((-399 |#3|) |#3|) 19)))
-(((-1011 |#1| |#2| |#3|) (-10 -7 (-15 -2473 ((-399 |#3|) |#3|))) (-1157 (-388 (-893 (-530)))) (-13 (-344) (-140) (-673 (-388 (-893 (-530))) |#1|)) (-1157 |#2|)) (T -1011))
-((-2473 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-893 (-530))))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-893 (-530))) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2473 ((-399 |#3|) |#3|)))
-((-2246 (((-110) $ $) NIL)) (-4194 (($ $ $) 14)) (-1757 (($ $ $) 15)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3253 (($) 6)) (-3173 (((-1099) $) 18)) (-2258 (((-804) $) 12)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 13)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 8)))
-(((-1012) (-13 (-795) (-10 -8 (-15 -3253 ($)) (-15 -3173 ((-1099) $))))) (T -1012))
-((-3253 (*1 *1) (-5 *1 (-1012))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1012)))))
-(-13 (-795) (-10 -8 (-15 -3253 ($)) (-15 -3173 ((-1099) $))))
-((-3266 ((|#1| |#1| (-1 (-530) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1828 (((-1186)) 15)) (-2443 (((-597 |#1|)) 9)))
-(((-1013 |#1|) (-10 -7 (-15 -1828 ((-1186))) (-15 -2443 ((-597 |#1|))) (-15 -3266 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3266 (|#1| |#1| (-1 (-530) |#1| |#1|)))) (-129)) (T -1013))
-((-3266 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-3266 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-2443 (*1 *2) (-12 (-5 *2 (-597 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))) (-1828 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
-(-10 -7 (-15 -1828 ((-1186))) (-15 -2443 ((-597 |#1|))) (-15 -3266 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3266 (|#1| |#1| (-1 (-530) |#1| |#1|))))
-((-3301 (($ (-106) $) 16)) (-3313 (((-3 (-106) "failed") (-1099) $) 15)) (-4227 (($) 7)) (-3290 (($) 17)) (-3278 (($) 18)) (-3325 (((-597 (-164)) $) 10)) (-2258 (((-804) $) 21)))
-(((-1014) (-13 (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -3325 ((-597 (-164)) $)) (-15 -3313 ((-3 (-106) "failed") (-1099) $)) (-15 -3301 ($ (-106) $)) (-15 -3290 ($)) (-15 -3278 ($))))) (T -1014))
-((-4227 (*1 *1) (-5 *1 (-1014))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))) (-3313 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))) (-3301 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))) (-3290 (*1 *1) (-5 *1 (-1014))) (-3278 (*1 *1) (-5 *1 (-1014))))
-(-13 (-571 (-804)) (-10 -8 (-15 -4227 ($)) (-15 -3325 ((-597 (-164)) $)) (-15 -3313 ((-3 (-106) "failed") (-1099) $)) (-15 -3301 ($ (-106) $)) (-15 -3290 ($)) (-15 -3278 ($))))
-((-3337 (((-1181 (-637 |#1|)) (-597 (-637 |#1|))) 42) (((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|))) 63) (((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|)))) 79)) (-3351 (((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))) 36)))
-(((-1015 |#1|) (-10 -7 (-15 -3337 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3337 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3337 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3351 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))))) (-344)) (T -1015))
-((-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1015 *4)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-893 *5)))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-893 *5))))) (-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-388 (-893 *5))))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(-10 -7 (-15 -3337 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3337 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3337 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3351 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3964 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-3073 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2596 (((-597 (-1017 (-1099))) $) NIL)) (-2439 (((-1095 $) $ (-1017 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1017 (-1099)))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3943 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1017 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1017 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-2330 (($ $ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-502 (-1017 (-1099))) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-2586 (($ (-1095 |#1|) (-1017 (-1099))) NIL) (($ (-1095 $) (-1017 (-1099))) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1017 (-1099))) NIL)) (-3674 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 (-1017 (-1099))) (-502 (-1017 (-1099)))) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3085 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-1367 (((-3 (-1017 (-1099)) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2790 (((-1017 (-1099)) $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-3952 (((-110) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1017 (-1099))) (|:| -3059 (-719))) "failed") $) NIL)) (-2273 (($ $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1017 (-1099)) |#1|) NIL) (($ $ (-597 (-1017 (-1099))) (-597 |#1|)) NIL) (($ $ (-1017 (-1099)) $) NIL) (($ $ (-597 (-1017 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-2341 (($ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-3211 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3974 (((-597 (-1099)) $) NIL)) (-3409 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1017 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-2611 (((-399 |#3|) |#3|) 19)))
+(((-1011 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3|))) (-1157 (-388 (-893 (-530)))) (-13 (-344) (-140) (-673 (-388 (-893 (-530))) |#1|)) (-1157 |#2|)) (T -1011))
+((-2611 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-893 (-530))))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-893 (-530))) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(-10 -7 (-15 -2611 ((-399 |#3|) |#3|)))
+((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) 14)) (-1817 (($ $ $) 15)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2491 (($) 6)) (-3260 (((-1099) $) 18)) (-2366 (((-804) $) 12)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 13)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
+(((-1012) (-13 (-795) (-10 -8 (-15 -2491 ($)) (-15 -3260 ((-1099) $))))) (T -1012))
+((-2491 (*1 *1) (-5 *1 (-1012))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1012)))))
+(-13 (-795) (-10 -8 (-15 -2491 ($)) (-15 -3260 ((-1099) $))))
+((-3780 ((|#1| |#1| (-1 (-530) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1898 (((-1186)) 15)) (-2581 (((-597 |#1|)) 9)))
+(((-1013 |#1|) (-10 -7 (-15 -1898 ((-1186))) (-15 -2581 ((-597 |#1|))) (-15 -3780 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3780 (|#1| |#1| (-1 (-530) |#1| |#1|)))) (-129)) (T -1013))
+((-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-2581 (*1 *2) (-12 (-5 *2 (-597 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))) (-1898 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
+(-10 -7 (-15 -1898 ((-1186))) (-15 -2581 ((-597 |#1|))) (-15 -3780 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3780 (|#1| |#1| (-1 (-530) |#1| |#1|))))
+((-1376 (($ (-106) $) 16)) (-3475 (((-3 (-106) "failed") (-1099) $) 15)) (-3958 (($) 7)) (-2620 (($) 17)) (-3901 (($) 18)) (-1274 (((-597 (-164)) $) 10)) (-2366 (((-804) $) 21)))
+(((-1014) (-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1274 ((-597 (-164)) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $)) (-15 -1376 ($ (-106) $)) (-15 -2620 ($)) (-15 -3901 ($))))) (T -1014))
+((-3958 (*1 *1) (-5 *1 (-1014))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))) (-3475 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))) (-1376 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))) (-2620 (*1 *1) (-5 *1 (-1014))) (-3901 (*1 *1) (-5 *1 (-1014))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1274 ((-597 (-164)) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $)) (-15 -1376 ($ (-106) $)) (-15 -2620 ($)) (-15 -3901 ($))))
+((-3365 (((-1181 (-637 |#1|)) (-597 (-637 |#1|))) 42) (((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|))) 63) (((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|)))) 79)) (-2328 (((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))) 36)))
+(((-1015 |#1|) (-10 -7 (-15 -3365 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3365 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3365 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2328 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))))) (-344)) (T -1015))
+((-2328 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1015 *4)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-893 *5)))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-893 *5))))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-388 (-893 *5))))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
+(-10 -7 (-15 -3365 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3365 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3365 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2328 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-2001 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2746 (((-597 (-1017 (-1099))) $) NIL)) (-2577 (((-1095 $) $ (-1017 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1017 (-1099)))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1017 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1017 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-3388 (($ $ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-1017 (-1099))) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-1017 (-1099))) NIL) (($ (-1095 $) (-1017 (-1099))) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1017 (-1099))) NIL)) (-2944 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-1017 (-1099))) (-502 (-1017 (-1099)))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 (-1017 (-1099)) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 (((-1017 (-1099)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1017 (-1099))) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1017 (-1099)) |#1|) NIL) (($ $ (-597 (-1017 (-1099))) (-597 |#1|)) NIL) (($ $ (-1017 (-1099)) $) NIL) (($ $ (-597 (-1017 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 (-1099)) $) NIL)) (-1429 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1017 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1016 |#1|) (-13 (-235 |#1| (-1099) (-1017 (-1099)) (-502 (-1017 (-1099)))) (-975 (-1051 |#1| (-1099)))) (-984)) (T -1016))
NIL
(-13 (-235 |#1| (-1099) (-1017 (-1099)) (-502 (-1017 (-1099)))) (-975 (-1051 |#1| (-1099))))
-((-2246 (((-110) $ $) NIL)) (-3073 (((-719) $) NIL)) (-3994 ((|#1| $) 10)) (-3012 (((-3 |#1| "failed") $) NIL)) (-2446 ((|#1| $) NIL)) (-1334 (((-719) $) 11)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-3085 (($ |#1| (-719)) 9)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3211 (($ $) NIL) (($ $ (-719)) NIL)) (-2258 (((-804) $) NIL) (($ |#1|) NIL)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 15)))
+((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) NIL)) (-4007 ((|#1| $) 10)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2031 (((-719) $) 11)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3135 (($ |#1| (-719)) 9)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 15)))
(((-1017 |#1|) (-248 |#1|) (-795)) (T -1017))
NIL
(-248 |#1|)
-((-3114 (((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 24 (|has| |#1| (-793))) (((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 14)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3114 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3114 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1018))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-1018 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1022 *6)) (-5 *1 (-1018 *5 *6)))))
-(-10 -7 (-15 -3114 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3114 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|))
-((-3114 (((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)) 19)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -3114 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)))) (-1135) (-1135)) (T -1019))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1020 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1020 *6)) (-5 *1 (-1019 *5 *6)))))
-(-10 -7 (-15 -3114 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3994 (((-1099) $) 11)) (-2392 (((-1022 |#1|) $) 12)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1663 (($ (-1099) (-1022 |#1|)) 10)) (-2258 (((-804) $) 20 (|has| |#1| (-1027)))) (-2148 (((-110) $ $) 15 (|has| |#1| (-1027)))))
-(((-1020 |#1|) (-13 (-1135) (-10 -8 (-15 -1663 ($ (-1099) (-1022 |#1|))) (-15 -3994 ((-1099) $)) (-15 -2392 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1020))
-((-1663 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135)) (-5 *1 (-1020 *4)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -1663 ($ (-1099) (-1022 |#1|))) (-15 -3994 ((-1099) $)) (-15 -2392 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-2392 (($ |#1| |#1|) 7)) (-3372 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-1985 (((-530) $) 8)) (-3362 ((|#1| $) 9)) (-1995 ((|#1| $) 11)) (-3173 (($ |#1|) 6)) (-3846 (($ |#1| |#1|) 14)) (-1941 (($ $ (-530)) 13)))
+((-3217 (((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 24 (|has| |#1| (-793))) (((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 14)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -3217 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1018))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-1018 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1022 *6)) (-5 *1 (-1018 *5 *6)))))
+(-10 -7 (-15 -3217 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|))
+((-3217 (((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)) 19)))
+(((-1019 |#1| |#2|) (-10 -7 (-15 -3217 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)))) (-1135) (-1135)) (T -1019))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1020 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1020 *6)) (-5 *1 (-1019 *5 *6)))))
+(-10 -7 (-15 -3217 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4007 (((-1099) $) 11)) (-2525 (((-1022 |#1|) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1685 (($ (-1099) (-1022 |#1|)) 10)) (-2366 (((-804) $) 20 (|has| |#1| (-1027)))) (-2248 (((-110) $ $) 15 (|has| |#1| (-1027)))))
+(((-1020 |#1|) (-13 (-1135) (-10 -8 (-15 -1685 ($ (-1099) (-1022 |#1|))) (-15 -4007 ((-1099) $)) (-15 -2525 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1020))
+((-1685 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135)) (-5 *1 (-1020 *4)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))))
+(-13 (-1135) (-10 -8 (-15 -1685 ($ (-1099) (-1022 |#1|))) (-15 -4007 ((-1099) $)) (-15 -2525 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-2525 (($ |#1| |#1|) 7)) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 12)) (-2070 (((-530) $) 8)) (-3884 ((|#1| $) 9)) (-2081 ((|#1| $) 11)) (-3260 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 14)) (-2022 (($ $ (-530)) 13)))
(((-1021 |#1|) (-133) (-1135)) (T -1021))
-((-3846 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-2392 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -3846 ($ |t#1| |t#1|)) (-15 -1941 ($ $ (-530))) (-15 -1975 (|t#1| $)) (-15 -1995 (|t#1| $)) (-15 -3372 (|t#1| $)) (-15 -3362 (|t#1| $)) (-15 -1985 ((-530) $)) (-15 -2392 ($ |t#1| |t#1|)) (-15 -3173 ($ |t#1|))))
+((-3848 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-2525 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
+(-13 (-1135) (-10 -8 (-15 -3848 ($ |t#1| |t#1|)) (-15 -2022 ($ $ (-530))) (-15 -2059 (|t#1| $)) (-15 -2081 (|t#1| $)) (-15 -2594 (|t#1| $)) (-15 -3884 (|t#1| $)) (-15 -2070 ((-530) $)) (-15 -2525 ($ |t#1| |t#1|)) (-15 -3260 ($ |t#1|))))
(((-1135) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2392 (($ |#1| |#1|) 15)) (-3114 (((-597 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-793)))) (-3372 ((|#1| $) 10)) (-1975 ((|#1| $) 9)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1985 (((-530) $) 14)) (-3362 ((|#1| $) 12)) (-1995 ((|#1| $) 11)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2147 (((-597 |#1|) $) 36 (|has| |#1| (-793))) (((-597 |#1|) (-597 $)) 35 (|has| |#1| (-793)))) (-3173 (($ |#1|) 26)) (-2258 (((-804) $) 25 (|has| |#1| (-1027)))) (-3846 (($ |#1| |#1|) 8)) (-1941 (($ $ (-530)) 16)) (-2148 (((-110) $ $) 19 (|has| |#1| (-1027)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2525 (($ |#1| |#1|) 15)) (-3217 (((-597 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-793)))) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 9)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2070 (((-530) $) 14)) (-3884 ((|#1| $) 12)) (-2081 ((|#1| $) 11)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2246 (((-597 |#1|) $) 36 (|has| |#1| (-793))) (((-597 |#1|) (-597 $)) 35 (|has| |#1| (-793)))) (-3260 (($ |#1|) 26)) (-2366 (((-804) $) 25 (|has| |#1| (-1027)))) (-3848 (($ |#1| |#1|) 8)) (-2022 (($ $ (-530)) 16)) (-2248 (((-110) $ $) 19 (|has| |#1| (-1027)))))
(((-1022 |#1|) (-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-597 |#1|))) |%noBranch|))) (-1135)) (T -1022))
NIL
(-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-597 |#1|))) |%noBranch|)))
-((-2392 (($ |#1| |#1|) 7)) (-3114 ((|#2| (-1 |#1| |#1|) $) 16)) (-3372 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-1985 (((-530) $) 8)) (-3362 ((|#1| $) 9)) (-1995 ((|#1| $) 11)) (-2147 ((|#2| (-597 $)) 18) ((|#2| $) 17)) (-3173 (($ |#1|) 6)) (-3846 (($ |#1| |#1|) 14)) (-1941 (($ $ (-530)) 13)))
+((-2525 (($ |#1| |#1|) 7)) (-3217 ((|#2| (-1 |#1| |#1|) $) 16)) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 12)) (-2070 (((-530) $) 8)) (-3884 ((|#1| $) 9)) (-2081 ((|#1| $) 11)) (-2246 ((|#2| (-597 $)) 18) ((|#2| $) 17)) (-3260 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 14)) (-2022 (($ $ (-530)) 13)))
(((-1023 |#1| |#2|) (-133) (-793) (-1073 |t#1|)) (T -1023))
-((-2147 (*1 *2 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1073 *3)))) (-3114 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))))
-(-13 (-1021 |t#1|) (-10 -8 (-15 -2147 (|t#2| (-597 $))) (-15 -2147 (|t#2| $)) (-15 -3114 (|t#2| (-1 |t#1| |t#1|) $))))
+((-2246 (*1 *2 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1073 *3)))) (-3217 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))))
+(-13 (-1021 |t#1|) (-10 -8 (-15 -2246 (|t#2| (-597 $))) (-15 -2246 (|t#2| $)) (-15 -3217 (|t#2| (-1 |t#1| |t#1|) $))))
(((-1021 |#1|) . T) ((-1135) . T))
-((-4204 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3396 (($ $ $) 10)) (-3407 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1024 |#1| |#2|) (-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -3396 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#2|)) (-15 -3407 (|#1| |#1| |#1|))) (-1025 |#2|) (-1027)) (T -1024))
+((-4204 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1746 (($ $ $) 10)) (-1252 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1024 |#1| |#2|) (-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1252 (|#1| |#1| |#1|))) (-1025 |#2|) (-1027)) (T -1024))
NIL
-(-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -3396 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#2|)) (-15 -3407 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-4204 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3396 (($ $ $) 20)) (-3383 (((-110) $ $) 19)) (-4102 (((-110) $ (-719)) 35)) (-1245 (($) 25) (($ (-597 |#1|)) 24)) (-2180 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4270)))) (-3956 (($) 36 T CONST)) (-2939 (($ $) 59 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4270)))) (-2456 (((-597 |#1|) $) 43 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) 28)) (-2014 (((-110) $ (-719)) 34)) (-3252 (((-597 |#1|) $) 44 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 38)) (-1987 (((-110) $ (-719)) 33)) (-3443 (((-1082) $) 9)) (-3418 (($ $ $) 23)) (-2485 (((-1046) $) 10)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-1505 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#1|) (-597 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 29)) (-1262 (((-110) $) 32)) (-4227 (($) 31)) (-3407 (($ $ $) 22) (($ $ |#1|) 21)) (-2494 (((-719) |#1| $) 45 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4270)))) (-2441 (($ $) 30)) (-3173 (((-506) $) 60 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 51)) (-2258 (((-804) $) 11)) (-3341 (($) 27) (($ (-597 |#1|)) 26)) (-1515 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 37 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1252 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-4204 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1746 (($ $ $) 20)) (-2431 (((-110) $ $) 19)) (-3186 (((-110) $ (-719)) 35)) (-1243 (($) 25) (($ (-597 |#1|)) 24)) (-2283 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4269)))) (-2350 (($) 36 T CONST)) (-3077 (($ $) 59 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 43 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 28)) (-4027 (((-110) $ (-719)) 34)) (-2395 (((-597 |#1|) $) 44 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 38)) (-2763 (((-110) $ (-719)) 33)) (-1424 (((-1082) $) 9)) (-4033 (($ $ $) 23)) (-2624 (((-1046) $) 10)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-1533 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 29)) (-3250 (((-110) $) 32)) (-3958 (($) 31)) (-1252 (($ $ $) 22) (($ $ |#1|) 21)) (-2632 (((-719) |#1| $) 45 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4269)))) (-2579 (($ $) 30)) (-3260 (((-506) $) 60 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 51)) (-2366 (((-804) $) 11)) (-3381 (($) 27) (($ (-597 |#1|)) 26)) (-3889 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 37 (|has| $ (-6 -4269)))))
(((-1025 |#1|) (-133) (-1027)) (T -1025))
-((-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3341 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-1245 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1245 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-3418 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3407 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3407 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3396 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-4204 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(-13 (-1027) (-144 |t#1|) (-10 -8 (-6 -4260) (-15 -3430 ((-110) $ $)) (-15 -3341 ($)) (-15 -3341 ($ (-597 |t#1|))) (-15 -1245 ($)) (-15 -1245 ($ (-597 |t#1|))) (-15 -3418 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3407 ($ $ |t#1|)) (-15 -3396 ($ $ $)) (-15 -3383 ((-110) $ $)) (-15 -4204 ($ $ $)) (-15 -4204 ($ $ |t#1|)) (-15 -4204 ($ |t#1| $))))
+((-2822 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3381 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-1243 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1243 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1252 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1252 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1746 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-2431 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-4204 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(-13 (-1027) (-144 |t#1|) (-10 -8 (-6 -4259) (-15 -2822 ((-110) $ $)) (-15 -3381 ($)) (-15 -3381 ($ (-597 |t#1|))) (-15 -1243 ($)) (-15 -1243 ($ (-597 |t#1|))) (-15 -4033 ($ $ $)) (-15 -1252 ($ $ $)) (-15 -1252 ($ $ |t#1|)) (-15 -1746 ($ $ $)) (-15 -2431 ((-110) $ $)) (-15 -4204 ($ $ $)) (-15 -4204 ($ $ |t#1|)) (-15 -4204 ($ |t#1| $))))
(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) . T) ((-1135) . T))
-((-3443 (((-1082) $) 10)) (-2485 (((-1046) $) 8)))
-(((-1026 |#1|) (-10 -8 (-15 -3443 ((-1082) |#1|)) (-15 -2485 ((-1046) |#1|))) (-1027)) (T -1026))
+((-1424 (((-1082) $) 10)) (-2624 (((-1046) $) 8)))
+(((-1026 |#1|) (-10 -8 (-15 -1424 ((-1082) |#1|)) (-15 -2624 ((-1046) |#1|))) (-1027)) (T -1026))
NIL
-(-10 -8 (-15 -3443 ((-1082) |#1|)) (-15 -2485 ((-1046) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+(-10 -8 (-15 -1424 ((-1082) |#1|)) (-15 -2624 ((-1046) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-1027) (-133)) (T -1027))
-((-2485 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1046)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
-(-13 (-99) (-571 (-804)) (-10 -8 (-15 -2485 ((-1046) $)) (-15 -3443 ((-1082) $))))
+((-2624 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1046)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
+(-13 (-99) (-571 (-804)) (-10 -8 (-15 -2624 ((-1046) $)) (-15 -1424 ((-1082) $))))
(((-99) . T) ((-571 (-804)) . T))
-((-2246 (((-110) $ $) NIL)) (-2879 (((-719)) 30)) (-3479 (($ (-597 (-862))) 52)) (-3502 (((-3 $ "failed") $ (-862) (-862)) 58)) (-1376 (($) 32)) (-3455 (((-110) (-862) $) 35)) (-3830 (((-862) $) 50)) (-3443 (((-1082) $) NIL)) (-1910 (($ (-862)) 31)) (-3513 (((-3 $ "failed") $ (-862)) 55)) (-2485 (((-1046) $) NIL)) (-3466 (((-1181 $)) 40)) (-3491 (((-597 (-862)) $) 24)) (-1535 (((-719) $ (-862) (-862)) 56)) (-2258 (((-804) $) 29)) (-2148 (((-110) $ $) 21)))
-(((-1028 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -3513 ((-3 $ "failed") $ (-862))) (-15 -3502 ((-3 $ "failed") $ (-862) (-862))) (-15 -3491 ((-597 (-862)) $)) (-15 -3479 ($ (-597 (-862)))) (-15 -3466 ((-1181 $))) (-15 -3455 ((-110) (-862) $)) (-15 -1535 ((-719) $ (-862) (-862))))) (-862) (-862)) (T -1028))
-((-3513 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3502 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3466 (*1 *2) (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3455 (*1 *2 *3 *1) (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1535 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-349) (-10 -8 (-15 -3513 ((-3 $ "failed") $ (-862))) (-15 -3502 ((-3 $ "failed") $ (-862) (-862))) (-15 -3491 ((-597 (-862)) $)) (-15 -3479 ($ (-597 (-862)))) (-15 -3466 ((-1181 $))) (-15 -3455 ((-110) (-862) $)) (-15 -1535 ((-719) $ (-862) (-862)))))
-((-2246 (((-110) $ $) NIL)) (-3556 (($) NIL (|has| |#1| (-349)))) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3396 (($ $ $) 72)) (-3383 (((-110) $ $) 73)) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#1| (-349)))) (-1245 (($ (-597 |#1|)) NIL) (($) 13)) (-2421 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1283 (($ |#1| $) 67 (|has| $ (-6 -4270))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-1376 (($) NIL (|has| |#1| (-349)))) (-2456 (((-597 |#1|) $) 19 (|has| $ (-6 -4270)))) (-3430 (((-110) $ $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-4194 ((|#1| $) 57 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1757 ((|#1| $) 55 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 34)) (-3830 (((-862) $) NIL (|has| |#1| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3418 (($ $ $) 70)) (-3275 ((|#1| $) 25)) (-3440 (($ |#1| $) 65)) (-1910 (($ (-862)) NIL (|has| |#1| (-349)))) (-2485 (((-1046) $) NIL)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-3287 ((|#1| $) 27)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 21)) (-4227 (($) 11)) (-3407 (($ $ |#1|) NIL) (($ $ $) 71)) (-3839 (($) NIL) (($ (-597 |#1|)) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 16)) (-3173 (((-506) $) 52 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 61)) (-2302 (($ $) NIL (|has| |#1| (-349)))) (-2258 (((-804) $) NIL)) (-2313 (((-719) $) NIL)) (-3341 (($ (-597 |#1|)) NIL) (($) 12)) (-3298 (($ (-597 |#1|)) NIL)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 54)) (-2167 (((-719) $) 10 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-3023 (((-719)) 30)) (-1808 (($ (-597 (-862))) 52)) (-1980 (((-3 $ "failed") $ (-862) (-862)) 58)) (-1364 (($) 32)) (-4197 (((-110) (-862) $) 35)) (-1905 (((-862) $) 50)) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 31)) (-4157 (((-3 $ "failed") $ (-862)) 55)) (-2624 (((-1046) $) NIL)) (-3067 (((-1181 $)) 40)) (-3496 (((-597 (-862)) $) 24)) (-2903 (((-719) $ (-862) (-862)) 56)) (-2366 (((-804) $) 29)) (-2248 (((-110) $ $) 21)))
+(((-1028 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -4157 ((-3 $ "failed") $ (-862))) (-15 -1980 ((-3 $ "failed") $ (-862) (-862))) (-15 -3496 ((-597 (-862)) $)) (-15 -1808 ($ (-597 (-862)))) (-15 -3067 ((-1181 $))) (-15 -4197 ((-110) (-862) $)) (-15 -2903 ((-719) $ (-862) (-862))))) (-862) (-862)) (T -1028))
+((-4157 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1980 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3067 (*1 *2) (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2903 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-349) (-10 -8 (-15 -4157 ((-3 $ "failed") $ (-862))) (-15 -1980 ((-3 $ "failed") $ (-862) (-862))) (-15 -3496 ((-597 (-862)) $)) (-15 -1808 ($ (-597 (-862)))) (-15 -3067 ((-1181 $))) (-15 -4197 ((-110) (-862) $)) (-15 -2903 ((-719) $ (-862) (-862)))))
+((-2352 (((-110) $ $) NIL)) (-2673 (($) NIL (|has| |#1| (-349)))) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-1243 (($ (-597 |#1|)) NIL) (($) 13)) (-2901 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 67 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4269)))) (-1364 (($) NIL (|has| |#1| (-349)))) (-3779 (((-597 |#1|) $) 19 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2508 ((|#1| $) 57 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1817 ((|#1| $) 55 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 34)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 70)) (-1723 ((|#1| $) 25)) (-2441 (($ |#1| $) 65)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-2738 ((|#1| $) 27)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 21)) (-3958 (($) 11)) (-1252 (($ $ |#1|) NIL) (($ $ $) 71)) (-1560 (($) NIL) (($ (-597 |#1|)) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 16)) (-3260 (((-506) $) 52 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 61)) (-3801 (($ $) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL)) (-1418 (((-719) $) NIL)) (-3381 (($ (-597 |#1|)) NIL) (($) 12)) (-2242 (($ (-597 |#1|)) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 54)) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
(((-1029 |#1|) (-406 |#1|) (-1027)) (T -1029))
NIL
(-406 |#1|)
-((-2246 (((-110) $ $) 7)) (-3548 (((-110) $) 32)) (-3758 ((|#2| $) 27)) (-3558 (((-110) $) 33)) (-3045 ((|#1| $) 28)) (-3583 (((-110) $) 35)) (-3604 (((-110) $) 37)) (-3570 (((-110) $) 34)) (-3443 (((-1082) $) 9)) (-3535 (((-110) $) 31)) (-3778 ((|#3| $) 26)) (-2485 (((-1046) $) 10)) (-3523 (((-110) $) 30)) (-2873 ((|#4| $) 25)) (-3954 ((|#5| $) 24)) (-2623 (((-110) $ $) 38)) (-1832 (($ $ (-530)) 14) (($ $ (-597 (-530))) 13)) (-2537 (((-597 $) $) 29)) (-3173 (($ (-597 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2258 (((-804) $) 11)) (-2809 (($ $) 16)) (-2797 (($ $) 17)) (-3595 (((-110) $) 36)) (-2148 (((-110) $ $) 6)) (-2167 (((-530) $) 15)))
+((-2352 (((-110) $ $) 7)) (-4201 (((-110) $) 32)) (-3747 ((|#2| $) 27)) (-2872 (((-110) $) 33)) (-3166 ((|#1| $) 28)) (-2709 (((-110) $) 35)) (-3815 (((-110) $) 37)) (-1529 (((-110) $) 34)) (-1424 (((-1082) $) 9)) (-1298 (((-110) $) 31)) (-3771 ((|#3| $) 26)) (-2624 (((-1046) $) 10)) (-2826 (((-110) $) 30)) (-3018 ((|#4| $) 25)) (-3964 ((|#5| $) 24)) (-2776 (((-110) $ $) 38)) (-1902 (($ $ (-530)) 14) (($ $ (-597 (-530))) 13)) (-2681 (((-597 $) $) 29)) (-3260 (($ (-597 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2366 (((-804) $) 11)) (-2960 (($ $) 16)) (-2950 (($ $) 17)) (-2181 (((-110) $) 36)) (-2248 (((-110) $ $) 6)) (-2267 (((-530) $) 15)))
(((-1030 |#1| |#2| |#3| |#4| |#5|) (-133) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1030))
-((-2623 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2537 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027)))) (-3173 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-2797 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2809 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-530)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2623 ((-110) $ $)) (-15 -3604 ((-110) $)) (-15 -3595 ((-110) $)) (-15 -3583 ((-110) $)) (-15 -3570 ((-110) $)) (-15 -3558 ((-110) $)) (-15 -3548 ((-110) $)) (-15 -3535 ((-110) $)) (-15 -3523 ((-110) $)) (-15 -2537 ((-597 $) $)) (-15 -3045 (|t#1| $)) (-15 -3758 (|t#2| $)) (-15 -3778 (|t#3| $)) (-15 -2873 (|t#4| $)) (-15 -3954 (|t#5| $)) (-15 -3173 ($ (-597 $))) (-15 -3173 ($ |t#1|)) (-15 -3173 ($ |t#2|)) (-15 -3173 ($ |t#3|)) (-15 -3173 ($ |t#4|)) (-15 -3173 ($ |t#5|)) (-15 -2797 ($ $)) (-15 -2809 ($ $)) (-15 -2167 ((-530) $)) (-15 -1832 ($ $ (-530))) (-15 -1832 ($ $ (-597 (-530))))))
+((-2776 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2681 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-2950 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2960 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-530)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2776 ((-110) $ $)) (-15 -3815 ((-110) $)) (-15 -2181 ((-110) $)) (-15 -2709 ((-110) $)) (-15 -1529 ((-110) $)) (-15 -2872 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2826 ((-110) $)) (-15 -2681 ((-597 $) $)) (-15 -3166 (|t#1| $)) (-15 -3747 (|t#2| $)) (-15 -3771 (|t#3| $)) (-15 -3018 (|t#4| $)) (-15 -3964 (|t#5| $)) (-15 -3260 ($ (-597 $))) (-15 -3260 ($ |t#1|)) (-15 -3260 ($ |t#2|)) (-15 -3260 ($ |t#3|)) (-15 -3260 ($ |t#4|)) (-15 -3260 ($ |t#5|)) (-15 -2950 ($ $)) (-15 -2960 ($ $)) (-15 -2267 ((-530) $)) (-15 -1902 ($ $ (-530))) (-15 -1902 ($ $ (-597 (-530))))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL)) (-3548 (((-110) $) NIL)) (-3758 (((-1099) $) NIL)) (-3558 (((-110) $) NIL)) (-3045 (((-1082) $) NIL)) (-3583 (((-110) $) NIL)) (-3604 (((-110) $) NIL)) (-3570 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-3535 (((-110) $) NIL)) (-3778 (((-530) $) NIL)) (-2485 (((-1046) $) NIL)) (-3523 (((-110) $) NIL)) (-2873 (((-208) $) NIL)) (-3954 (((-804) $) NIL)) (-2623 (((-110) $ $) NIL)) (-1832 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2537 (((-597 $) $) NIL)) (-3173 (($ (-597 $)) NIL) (($ (-1082)) NIL) (($ (-1099)) NIL) (($ (-530)) NIL) (($ (-208)) NIL) (($ (-804)) NIL)) (-2258 (((-804) $) NIL)) (-2809 (($ $) NIL)) (-2797 (($ $) NIL)) (-3595 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-530) $) NIL)))
+((-2352 (((-110) $ $) NIL)) (-4201 (((-110) $) NIL)) (-3747 (((-1099) $) NIL)) (-2872 (((-110) $) NIL)) (-3166 (((-1082) $) NIL)) (-2709 (((-110) $) NIL)) (-3815 (((-110) $) NIL)) (-1529 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-1298 (((-110) $) NIL)) (-3771 (((-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-2826 (((-110) $) NIL)) (-3018 (((-208) $) NIL)) (-3964 (((-804) $) NIL)) (-2776 (((-110) $ $) NIL)) (-1902 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2681 (((-597 $) $) NIL)) (-3260 (($ (-597 $)) NIL) (($ (-1082)) NIL) (($ (-1099)) NIL) (($ (-530)) NIL) (($ (-208)) NIL) (($ (-804)) NIL)) (-2366 (((-804) $) NIL)) (-2960 (($ $) NIL)) (-2950 (($ $) NIL)) (-2181 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-530) $) NIL)))
(((-1031) (-1030 (-1082) (-1099) (-530) (-208) (-804))) (T -1031))
NIL
(-1030 (-1082) (-1099) (-530) (-208) (-804))
-((-2246 (((-110) $ $) NIL)) (-3548 (((-110) $) 38)) (-3758 ((|#2| $) 42)) (-3558 (((-110) $) 37)) (-3045 ((|#1| $) 41)) (-3583 (((-110) $) 35)) (-3604 (((-110) $) 14)) (-3570 (((-110) $) 36)) (-3443 (((-1082) $) NIL)) (-3535 (((-110) $) 39)) (-3778 ((|#3| $) 44)) (-2485 (((-1046) $) NIL)) (-3523 (((-110) $) 40)) (-2873 ((|#4| $) 43)) (-3954 ((|#5| $) 45)) (-2623 (((-110) $ $) 34)) (-1832 (($ $ (-530)) 56) (($ $ (-597 (-530))) 58)) (-2537 (((-597 $) $) 22)) (-3173 (($ (-597 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2258 (((-804) $) 23)) (-2809 (($ $) 21)) (-2797 (($ $) 52)) (-3595 (((-110) $) 18)) (-2148 (((-110) $ $) 33)) (-2167 (((-530) $) 54)))
+((-2352 (((-110) $ $) NIL)) (-4201 (((-110) $) 38)) (-3747 ((|#2| $) 42)) (-2872 (((-110) $) 37)) (-3166 ((|#1| $) 41)) (-2709 (((-110) $) 35)) (-3815 (((-110) $) 14)) (-1529 (((-110) $) 36)) (-1424 (((-1082) $) NIL)) (-1298 (((-110) $) 39)) (-3771 ((|#3| $) 44)) (-2624 (((-1046) $) NIL)) (-2826 (((-110) $) 40)) (-3018 ((|#4| $) 43)) (-3964 ((|#5| $) 45)) (-2776 (((-110) $ $) 34)) (-1902 (($ $ (-530)) 56) (($ $ (-597 (-530))) 58)) (-2681 (((-597 $) $) 22)) (-3260 (($ (-597 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2366 (((-804) $) 23)) (-2960 (($ $) 21)) (-2950 (($ $) 52)) (-2181 (((-110) $) 18)) (-2248 (((-110) $ $) 33)) (-2267 (((-530) $) 54)))
(((-1032 |#1| |#2| |#3| |#4| |#5|) (-1030 |#1| |#2| |#3| |#4| |#5|) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1032))
NIL
(-1030 |#1| |#2| |#3| |#4| |#5|)
-((-3057 (((-1186) $) 23)) (-3643 (($ (-1099) (-415) |#2|) 11)) (-2258 (((-804) $) 16)))
-(((-1033 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3643 ($ (-1099) (-415) |#2|)))) (-795) (-411 |#1|)) (T -1033))
-((-3643 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-415)) (-4 *5 (-795)) (-5 *1 (-1033 *5 *4)) (-4 *4 (-411 *5)))))
-(-13 (-376) (-10 -8 (-15 -3643 ($ (-1099) (-415) |#2|))))
-((-3630 (((-110) |#5| |#5|) 38)) (-2397 (((-110) |#5| |#5|) 52)) (-2455 (((-110) |#5| (-597 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-2407 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-2478 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) 63)) (-3621 (((-1186)) 33)) (-3612 (((-1186) (-1082) (-1082) (-1082)) 29)) (-2466 (((-597 |#5|) (-597 |#5|)) 82)) (-2491 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) 80)) (-2502 (((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 102)) (-2384 (((-110) |#5| |#5|) 47)) (-2445 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2420 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-2433 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1845 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-2513 (((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-2373 (((-597 |#5|) (-597 |#5|)) 43)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3612 ((-1186) (-1082) (-1082) (-1082))) (-15 -3621 ((-1186))) (-15 -3630 ((-110) |#5| |#5|)) (-15 -2373 ((-597 |#5|) (-597 |#5|))) (-15 -2384 ((-110) |#5| |#5|)) (-15 -2397 ((-110) |#5| |#5|)) (-15 -2407 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2420 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2433 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1845 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2445 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2455 ((-110) |#5| |#5|)) (-15 -2455 ((-110) |#5| (-597 |#5|))) (-15 -2466 ((-597 |#5|) (-597 |#5|))) (-15 -2478 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -2491 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-15 -2502 ((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -2513 ((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1034))
-((-2513 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2623 (-597 *9)) (|:| -2350 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-2502 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2623 (-597 *9)) (|:| -2350 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2350 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-2478 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1034 *5 *6 *7 *8 *3)))) (-2455 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2445 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1845 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2433 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2420 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2407 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-3630 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3621 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3612 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3612 ((-1186) (-1082) (-1082) (-1082))) (-15 -3621 ((-1186))) (-15 -3630 ((-110) |#5| |#5|)) (-15 -2373 ((-597 |#5|) (-597 |#5|))) (-15 -2384 ((-110) |#5| |#5|)) (-15 -2397 ((-110) |#5| |#5|)) (-15 -2407 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2420 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2433 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1845 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2445 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2455 ((-110) |#5| |#5|)) (-15 -2455 ((-110) |#5| (-597 |#5|))) (-15 -2466 ((-597 |#5|) (-597 |#5|))) (-15 -2478 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -2491 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-15 -2502 ((-597 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -2513 ((-3 (-2 (|:| -2623 (-597 |#4|)) (|:| -2350 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-2665 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|) 96)) (-2561 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|) 72)) (-2592 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|) 91)) (-2612 (((-597 |#5|) |#4| |#5|) 110)) (-2635 (((-597 |#5|) |#4| |#5|) 117)) (-2654 (((-597 |#5|) |#4| |#5|) 118)) (-2602 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|) 97)) (-2624 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|) 116)) (-2644 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-2571 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110)) 84) (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2581 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|) 79)) (-2552 (((-1186)) 37)) (-2533 (((-1186)) 26)) (-2543 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2524 (((-1186) (-1082) (-1082) (-1082)) 22)))
-(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2524 ((-1186) (-1082) (-1082) (-1082))) (-15 -2533 ((-1186))) (-15 -2543 ((-1186) (-1082) (-1082) (-1082))) (-15 -2552 ((-1186))) (-15 -2561 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2571 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2571 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110))) (-15 -2581 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2592 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2644 ((-110) |#4| |#5|)) (-15 -2602 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2612 ((-597 |#5|) |#4| |#5|)) (-15 -2624 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2635 ((-597 |#5|) |#4| |#5|)) (-15 -2644 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2654 ((-597 |#5|) |#4| |#5|)) (-15 -2665 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1035))
-((-2665 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2654 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2644 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2624 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2602 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2644 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2592 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2581 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2350 *9)))) (-5 *1 (-1035 *6 *7 *4 *8 *9)))) (-2571 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-2561 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2543 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2533 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2524 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2524 ((-1186) (-1082) (-1082) (-1082))) (-15 -2533 ((-1186))) (-15 -2543 ((-1186) (-1082) (-1082) (-1082))) (-15 -2552 ((-1186))) (-15 -2561 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2571 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2571 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) |#3| (-110))) (-15 -2581 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2592 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#4| |#5|)) (-15 -2644 ((-110) |#4| |#5|)) (-15 -2602 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2612 ((-597 |#5|) |#4| |#5|)) (-15 -2624 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2635 ((-597 |#5|) |#4| |#5|)) (-15 -2644 ((-597 (-2 (|:| |val| (-110)) (|:| -2350 |#5|))) |#4| |#5|)) (-15 -2654 ((-597 |#5|) |#4| |#5|)) (-15 -2665 ((-597 (-2 (|:| |val| |#4|) (|:| -2350 |#5|))) |#4| |#5|)))
-((-2246 (((-110) $ $) 7)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) 85)) (-2844 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) 101) (((-110) $) 97)) (-2906 ((|#4| |#4| $) 92)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 126)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 79)) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2918 (((-3 $ "failed") $) 82)) (-2878 ((|#4| |#4| $) 89)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2856 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) 105)) (-3118 (((-110) |#4| $) 136)) (-3094 (((-110) |#4| $) 133)) (-3129 (((-110) |#4| $) 137) (((-110) $) 134)) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) 104) (((-110) $) 103)) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 127)) (-2294 (((-3 |#4| "failed") $) 83)) (-3060 (((-597 $) |#4| $) 129)) (-3082 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3418 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-1528 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-3011 (((-597 |#4|) $) 107)) (-2938 (((-110) |#4| $) 99) (((-110) $) 95)) (-2888 ((|#4| |#4| $) 90)) (-1845 (((-110) $ $) 110)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) 100) (((-110) $) 96)) (-2898 ((|#4| |#4| $) 91)) (-2485 (((-1046) $) 10)) (-2907 (((-3 |#4| "failed") $) 84)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2807 (((-3 $ "failed") $ |#4|) 78)) (-1312 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-3409 (((-719) $) 106)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-2866 (($ $) 88)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2795 (((-719) $) 76 (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3025 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) 81)) (-3106 (((-110) |#4| $) 135)) (-3292 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+((-3176 (((-1186) $) 23)) (-3623 (($ (-1099) (-415) |#2|) 11)) (-2366 (((-804) $) 16)))
+(((-1033 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3623 ($ (-1099) (-415) |#2|)))) (-795) (-411 |#1|)) (T -1033))
+((-3623 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-415)) (-4 *5 (-795)) (-5 *1 (-1033 *5 *4)) (-4 *4 (-411 *5)))))
+(-13 (-376) (-10 -8 (-15 -3623 ($ (-1099) (-415) |#2|))))
+((-4081 (((-110) |#5| |#5|) 38)) (-1821 (((-110) |#5| |#5|) 52)) (-3000 (((-110) |#5| (-597 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-1245 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-4211 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 63)) (-2212 (((-1186)) 33)) (-3526 (((-1186) (-1082) (-1082) (-1082)) 29)) (-1398 (((-597 |#5|) (-597 |#5|)) 82)) (-2882 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) 80)) (-4221 (((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 102)) (-1996 (((-110) |#5| |#5|) 47)) (-3287 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2844 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-3641 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1406 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-1881 (((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-3534 (((-597 |#5|) (-597 |#5|)) 43)))
+(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1034))
+((-1881 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-4221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1034 *5 *6 *7 *8 *3)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3287 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3534 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-4081 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2212 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3526 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-2675 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 96)) (-1541 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|) 72)) (-1822 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 91)) (-1981 (((-597 |#5|) |#4| |#5|) 110)) (-3946 (((-597 |#5|) |#4| |#5|) 117)) (-4162 (((-597 |#5|) |#4| |#5|) 118)) (-3387 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 97)) (-1734 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 116)) (-1561 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3420 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110)) 84) (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2051 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 79)) (-3033 (((-1186)) 37)) (-1308 (((-1186)) 26)) (-3058 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2802 (((-1186) (-1082) (-1082) (-1082)) 22)))
+(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1541 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2051 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1822 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1561 ((-110) |#4| |#5|)) (-15 -3387 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -1981 ((-597 |#5|) |#4| |#5|)) (-15 -1734 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3946 ((-597 |#5|) |#4| |#5|)) (-15 -1561 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -4162 ((-597 |#5|) |#4| |#5|)) (-15 -2675 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1035))
+((-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-4162 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1561 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3946 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1734 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1981 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3387 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1561 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1822 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2051 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9)))) (-5 *1 (-1035 *6 *7 *4 *8 *9)))) (-3420 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1541 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3033 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3058 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1308 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2802 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1541 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2051 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1822 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1561 ((-110) |#4| |#5|)) (-15 -3387 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -1981 ((-597 |#5|) |#4| |#5|)) (-15 -1734 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3946 ((-597 |#5|) |#4| |#5|)) (-15 -1561 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -4162 ((-597 |#5|) |#4| |#5|)) (-15 -2675 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)))
+((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-1036 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1036))
NIL
(-13 (-1003 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-2776 (((-597 (-530)) (-530) (-530) (-530)) 22)) (-2766 (((-597 (-530)) (-530) (-530) (-530)) 12)) (-2755 (((-597 (-530)) (-530) (-530) (-530)) 18)) (-2745 (((-530) (-530) (-530)) 9)) (-2735 (((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530)) 46) (((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530)) 41)) (-2725 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110)) 28)) (-2714 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 45)) (-2703 (((-637 (-530)) (-597 (-530)) (-597 (-530))) 33)) (-2692 (((-597 (-637 (-530))) (-597 (-530))) 35)) (-2683 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 49)) (-2674 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530))) 57)))
-(((-1037) (-10 -7 (-15 -2674 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -2683 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -2692 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2703 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -2714 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -2725 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2735 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2735 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2745 ((-530) (-530) (-530))) (-15 -2755 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2766 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2776 ((-597 (-530)) (-530) (-530) (-530))))) (T -1037))
-((-2776 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2766 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2755 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2745 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))) (-2735 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530)) (-5 *1 (-1037)))) (-2735 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037)))) (-2725 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))) (-2714 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))) (-2703 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-1037)))) (-2683 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))) (-2674 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(-10 -7 (-15 -2674 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -2683 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -2692 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2703 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -2714 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -2725 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2735 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2735 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2745 ((-530) (-530) (-530))) (-15 -2755 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2766 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2776 ((-597 (-530)) (-530) (-530) (-530))))
-((-2723 (($ $ (-862)) 12)) (** (($ $ (-862)) 10)))
-(((-1038 |#1|) (-10 -8 (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862)))) (-1039)) (T -1038))
-NIL
-(-10 -8 (-15 -2723 (|#1| |#1| (-862))) (-15 ** (|#1| |#1| (-862))))
-((-2246 (((-110) $ $) 7)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2723 (($ $ (-862)) 13)) (-2148 (((-110) $ $) 6)) (** (($ $ (-862)) 14)) (* (($ $ $) 15)))
+((-1689 (((-597 (-530)) (-530) (-530) (-530)) 22)) (-2006 (((-597 (-530)) (-530) (-530) (-530)) 12)) (-3489 (((-597 (-530)) (-530) (-530) (-530)) 18)) (-2558 (((-530) (-530) (-530)) 9)) (-2976 (((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530)) 46) (((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530)) 41)) (-3230 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110)) 28)) (-1661 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 45)) (-3030 (((-637 (-530)) (-597 (-530)) (-597 (-530))) 33)) (-4248 (((-597 (-637 (-530))) (-597 (-530))) 35)) (-1744 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 49)) (-2200 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530))) 57)))
+(((-1037) (-10 -7 (-15 -2200 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1744 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -4248 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -3030 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1661 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -3230 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2976 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2976 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2558 ((-530) (-530) (-530))) (-15 -3489 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2006 ((-597 (-530)) (-530) (-530) (-530))) (-15 -1689 ((-597 (-530)) (-530) (-530) (-530))))) (T -1037))
+((-1689 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2006 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-3489 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2558 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))) (-2976 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530)) (-5 *1 (-1037)))) (-2976 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037)))) (-3230 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))) (-1661 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))) (-3030 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-1037)))) (-1744 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))) (-2200 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
+(-10 -7 (-15 -2200 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1744 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -4248 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -3030 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1661 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -3230 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2976 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2976 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2558 ((-530) (-530) (-530))) (-15 -3489 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2006 ((-597 (-530)) (-530) (-530) (-530))) (-15 -1689 ((-597 (-530)) (-530) (-530) (-530))))
+((** (($ $ (-862)) 10)))
+(((-1038 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-862)))) (-1039)) (T -1038))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-862))))
+((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13)) (* (($ $ $) 14)))
(((-1039) (-133)) (T -1039))
-((* (*1 *1 *1 *1) (-4 *1 (-1039))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862)))) (-2723 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-862))) (-15 -2723 ($ $ (-862)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1039))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862)))))
+(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-862)))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2246 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-3015 (((-110) $) NIL (|has| |#3| (-128)))) (-1909 (($ (-862)) NIL (|has| |#3| (-984)))) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-3821 (($ $ $) NIL (|has| |#3| (-741)))) (-3618 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-4102 (((-110) $ (-719)) NIL)) (-2879 (((-719)) NIL (|has| |#3| (-349)))) (-3592 (((-530) $) NIL (|has| |#3| (-793)))) (-2416 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027)))) (-2446 (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) ((|#3| $) NIL (|has| |#3| (-1027)))) (-1298 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984)))) (-1673 (((-3 $ "failed") $) NIL (|has| |#3| (-675)))) (-1376 (($) NIL (|has| |#3| (-349)))) (-2858 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#3| $ (-530)) 12)) (-2991 (((-110) $) NIL (|has| |#3| (-793)))) (-2456 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL (|has| |#3| (-675)))) (-3002 (((-110) $) NIL (|has| |#3| (-793)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3252 (((-597 |#3|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2847 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-862) $) NIL (|has| |#3| (-349)))) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#3| (-1027)))) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-1910 (($ (-862)) NIL (|has| |#3| (-349)))) (-2485 (((-1046) $) NIL (|has| |#3| (-1027)))) (-2907 ((|#3| $) NIL (|has| (-530) (-795)))) (-1946 (($ $ |#3|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-2002 (((-597 |#3|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) NIL)) (-1796 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2515 (($ (-1181 |#3|)) NIL)) (-1248 (((-130)) NIL (|has| |#3| (-344)))) (-3211 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2494 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#3| (-1027))))) (-2441 (($ $) NIL)) (-2258 (((-1181 |#3|) $) NIL) (($ (-530)) NIL (-1476 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (($ |#3|) NIL (|has| |#3| (-1027))) (((-804) $) NIL (|has| |#3| (-571 (-804))))) (-1667 (((-719)) NIL (|has| |#3| (-984)))) (-1515 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4270)))) (-2218 (($ $) NIL (|has| |#3| (-793)))) (-2723 (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-862)) NIL (|has| |#3| (-675)))) (-2943 (($) NIL (|has| |#3| (-128)) CONST)) (-2955 (($) NIL (|has| |#3| (-675)) CONST)) (-3286 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2204 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2182 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2148 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-2195 (((-110) $ $) NIL (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2172 (((-110) $ $) 17 (-1476 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2257 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2245 (($ $ $) NIL (|has| |#3| (-984))) (($ $) NIL (|has| |#3| (-984)))) (-2234 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-862)) NIL (|has| |#3| (-675)))) (* (($ (-530) $) NIL (|has| |#3| (-984))) (($ $ $) NIL (|has| |#3| (-675))) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ (-719) $) NIL (|has| |#3| (-128))) (($ (-862) $) NIL (|has| |#3| (-25)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-1813 (((-110) $) NIL (|has| |#3| (-128)))) (-3930 (($ (-862)) NIL (|has| |#3| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#3| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#3| (-349)))) (-1867 (((-530) $) NIL (|has| |#3| (-793)))) (-2552 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) ((|#3| $) NIL (|has| |#3| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#3| (-675)))) (-1364 (($) NIL (|has| |#3| (-349)))) (-3592 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#3| $ (-530)) 12)) (-2514 (((-110) $) NIL (|has| |#3| (-793)))) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#3| (-675)))) (-2166 (((-110) $) NIL (|has| |#3| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#3| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#3| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#3| (-349)))) (-2624 (((-1046) $) NIL (|has| |#3| (-1027)))) (-3048 ((|#3| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2261 (((-597 |#3|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) NIL)) (-3334 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2658 (($ (-1181 |#3|)) NIL)) (-2488 (((-130)) NIL (|has| |#3| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2632 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (($ |#3|) NIL (|has| |#3| (-1027))) (((-804) $) NIL (|has| |#3| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#3| (-984)))) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#3| (-793)))) (-3080 (($) NIL (|has| |#3| (-128)) CONST)) (-3093 (($) NIL (|has| |#3| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2272 (((-110) $ $) 17 (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $ $) NIL (|has| |#3| (-984))) (($ $) NIL (|has| |#3| (-984)))) (-2339 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-862)) NIL (|has| |#3| (-675)))) (* (($ (-530) $) NIL (|has| |#3| (-984))) (($ $ $) NIL (|has| |#3| (-675))) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ (-719) $) NIL (|has| |#3| (-128))) (($ (-862) $) NIL (|has| |#3| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-1040 |#1| |#2| |#3|) (-221 |#1| |#3|) (-719) (-719) (-741)) (T -1040))
NIL
(-221 |#1| |#3|)
-((-2786 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 37)) (-2861 (((-530) (-1154 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-2837 (((-530) (-1154 |#2| |#1|)) 54)) (-2800 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 45)) (-2849 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-2812 (((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 48)) (-2824 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 53)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -2786 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2800 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2812 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2824 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2837 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -2849 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2861 ((-530) (-1154 |#2| |#1|)))) |%noBranch|)) (-768) (-1099)) (T -1041))
-((-2861 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2849 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2824 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2812 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(-10 -7 (-15 -2786 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2800 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2812 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2824 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2837 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -2849 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2861 ((-530) (-1154 |#2| |#1|)))) |%noBranch|))
-((-3592 (((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)) 17) (((-3 (-530) "failed") |#2| (-1099) (-788 |#2|)) 15) (((-3 (-530) "failed") |#2|) 54)))
-(((-1042 |#1| |#2|) (-10 -7 (-15 -3592 ((-3 (-530) "failed") |#2|)) (-15 -3592 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -3592 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|))) (T -1042))
-((-3592 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))))) (-3592 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)))) (-3592 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
-(-10 -7 (-15 -3592 ((-3 (-530) "failed") |#2|)) (-15 -3592 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -3592 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082))))
-((-3592 (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)) 35) (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|)))) 30) (((-3 (-530) "failed") (-388 (-893 |#1|))) 13)))
-(((-1043 |#1|) (-10 -7 (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)))) (-432)) (T -1043))
-((-3592 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-3592 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-3592 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *4)))))
-(-10 -7 (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -3592 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082))))
-((-2246 (((-110) $ $) NIL)) (-1732 (((-171) $) 8)) (-1690 (((-597 (-171)) $) 10)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 19)) (-2148 (((-110) $ $) 13)))
-(((-1044) (-13 (-1027) (-10 -8 (-15 -1732 ((-171) $)) (-15 -1690 ((-597 (-171)) $))))) (T -1044))
-((-1732 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-597 (-171))) (-5 *1 (-1044)))))
-(-13 (-1027) (-10 -8 (-15 -1732 ((-171) $)) (-15 -1690 ((-597 (-171)) $))))
-((-2498 (((-297 (-530)) (-47)) 12)))
-(((-1045) (-10 -7 (-15 -2498 ((-297 (-530)) (-47))))) (T -1045))
-((-2498 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045)))))
-(-10 -7 (-15 -2498 ((-297 (-530)) (-47))))
-((-2246 (((-110) $ $) NIL)) (-2390 (($ $) 41)) (-3015 (((-110) $) 65)) (-2947 (($ $ $) 48)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 85)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-4075 (($ $ $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-4055 (($ $ $ $) 74)) (-1359 (($ $) NIL)) (-3550 (((-399 $) $) NIL)) (-1945 (((-110) $ $) NIL)) (-3592 (((-530) $) NIL)) (-4206 (($ $ $) 71)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL)) (-2446 (((-530) $) NIL)) (-3607 (($ $ $) 59)) (-1298 (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 79) (((-637 (-530)) (-637 $)) 28)) (-1673 (((-3 $ "failed") $) NIL)) (-1936 (((-3 (-388 (-530)) "failed") $) NIL)) (-1928 (((-110) $) NIL)) (-1917 (((-388 (-530)) $) NIL)) (-1376 (($) 82) (($ $) 83)) (-3588 (($ $ $) 58)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL)) (-2049 (((-110) $) NIL)) (-4034 (($ $ $ $) NIL)) (-4086 (($ $ $) 80)) (-2991 (((-110) $) NIL)) (-1364 (($ $ $) NIL)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-3150 (((-110) $) 66)) (-1555 (((-110) $) 64)) (-3694 (($ $) 42)) (-1560 (((-3 $ "failed") $) NIL)) (-3002 (((-110) $) 75)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4044 (($ $ $ $) 72)) (-4194 (($ $ $) 68) (($) 39)) (-1757 (($ $ $) 67) (($) 38)) (-2966 (($ $) NIL)) (-2171 (($ $) 70)) (-2072 (($ $ $) NIL) (($ (-597 $)) NIL)) (-3443 (((-1082) $) NIL)) (-4024 (($ $ $) NIL)) (-3677 (($) NIL T CONST)) (-3820 (($ $) 50)) (-2485 (((-1046) $) NIL) (($ $) 69)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2108 (($ $ $) 62) (($ (-597 $)) NIL)) (-1339 (($ $) NIL)) (-2473 (((-399 $) $) NIL)) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL)) (-3562 (((-3 $ "failed") $ $) NIL)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1565 (((-110) $) NIL)) (-1934 (((-719) $) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 61)) (-3211 (($ $ (-719)) NIL) (($ $) NIL)) (-1692 (($ $) 51)) (-2441 (($ $) NIL)) (-3173 (((-530) $) 32) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL)) (-2258 (((-804) $) 31) (($ (-530)) 81) (($ $) NIL) (($ (-530)) 81)) (-1667 (((-719)) NIL)) (-4098 (((-110) $ $) NIL)) (-1464 (($ $ $) NIL)) (-3256 (($) 37)) (-3020 (((-110) $ $) NIL)) (-4066 (($ $ $ $) 73)) (-2218 (($ $) 63)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-1267 (($ $ $) 44)) (-2943 (($) 35 T CONST)) (-1552 (($ $ $) 47)) (-2955 (($) 36 T CONST)) (-2437 (((-1082) $) 21) (((-1082) $ (-110)) 23) (((-1186) (-770) $) 24) (((-1186) (-770) $ (-110)) 25)) (-1562 (($ $) 45)) (-3286 (($ $ (-719)) NIL) (($ $) NIL)) (-1541 (($ $ $) 46)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 40)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 49)) (-1256 (($ $ $) 43)) (-2245 (($ $) 52) (($ $ $) 54)) (-2234 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 55)))
-(((-1046) (-13 (-515) (-612) (-776) (-10 -8 (-6 -4257) (-6 -4262) (-6 -4258) (-15 -1757 ($)) (-15 -4194 ($)) (-15 -3694 ($ $)) (-15 -2390 ($ $)) (-15 -1256 ($ $ $)) (-15 -1267 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -1562 ($ $)) (-15 -1541 ($ $ $)) (-15 -1552 ($ $ $))))) (T -1046))
-((-1267 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1256 (*1 *1 *1 *1) (-5 *1 (-1046))) (-2390 (*1 *1 *1) (-5 *1 (-1046))) (-1757 (*1 *1) (-5 *1 (-1046))) (-4194 (*1 *1) (-5 *1 (-1046))) (-3694 (*1 *1 *1) (-5 *1 (-1046))) (-2947 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1562 (*1 *1 *1) (-5 *1 (-1046))) (-1541 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1552 (*1 *1 *1 *1) (-5 *1 (-1046))))
-(-13 (-515) (-612) (-776) (-10 -8 (-6 -4257) (-6 -4262) (-6 -4258) (-15 -1757 ($)) (-15 -4194 ($)) (-15 -3694 ($ $)) (-15 -2390 ($ $)) (-15 -1256 ($ $ $)) (-15 -1267 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -1562 ($ $)) (-15 -1541 ($ $ $)) (-15 -1552 ($ $ $))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1596 ((|#1| $) 44)) (-4102 (((-110) $ (-719)) 8)) (-3956 (($) 7 T CONST)) (-2882 ((|#1| |#1| $) 46)) (-2870 ((|#1| $) 45)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-3275 ((|#1| $) 39)) (-3440 (($ |#1| $) 40)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3287 ((|#1| $) 41)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-4219 (((-719) $) 43)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) 42)) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3244 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 37)) (-2438 (((-530) (-1154 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-2037 (((-530) (-1154 |#2| |#1|)) 54)) (-3104 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 45)) (-3670 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-3835 (((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 48)) (-2788 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 53)))
+(((-1041 |#1| |#2|) (-10 -7 (-15 -3244 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3104 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3835 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2788 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2037 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3670 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2438 ((-530) (-1154 |#2| |#1|)))) |%noBranch|)) (-768) (-1099)) (T -1041))
+((-2438 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-3670 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2788 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))) (-3104 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
+(-10 -7 (-15 -3244 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3104 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3835 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2788 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2037 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3670 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2438 ((-530) (-1154 |#2| |#1|)))) |%noBranch|))
+((-1867 (((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)) 17) (((-3 (-530) "failed") |#2| (-1099) (-788 |#2|)) 15) (((-3 (-530) "failed") |#2|) 54)))
+(((-1042 |#1| |#2|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") |#2|)) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|))) (T -1042))
+((-1867 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))))) (-1867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)))) (-1867 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
+(-10 -7 (-15 -1867 ((-3 (-530) "failed") |#2|)) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082))))
+((-1867 (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)) 35) (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|)))) 30) (((-3 (-530) "failed") (-388 (-893 |#1|))) 13)))
+(((-1043 |#1|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)))) (-432)) (T -1043))
+((-1867 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-1867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-1867 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *4)))))
+(-10 -7 (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082))))
+((-2352 (((-110) $ $) NIL)) (-1779 (((-171) $) 8)) (-1722 (((-597 (-171)) $) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 19)) (-2248 (((-110) $ $) 13)))
+(((-1044) (-13 (-1027) (-10 -8 (-15 -1779 ((-171) $)) (-15 -1722 ((-597 (-171)) $))))) (T -1044))
+((-1779 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-597 (-171))) (-5 *1 (-1044)))))
+(-13 (-1027) (-10 -8 (-15 -1779 ((-171) $)) (-15 -1722 ((-597 (-171)) $))))
+((-2251 (((-297 (-530)) (-47)) 12)))
+(((-1045) (-10 -7 (-15 -2251 ((-297 (-530)) (-47))))) (T -1045))
+((-2251 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045)))))
+(-10 -7 (-15 -2251 ((-297 (-530)) (-47))))
+((-2352 (((-110) $ $) NIL)) (-2522 (($ $) 41)) (-1813 (((-110) $) 65)) (-3085 (($ $ $) 48)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) 74)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) 71)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) 59)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 79) (((-637 (-530)) (-637 $)) 28)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) 82) (($ $) 83)) (-3571 (($ $ $) 58)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) 80)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) 66)) (-3457 (((-110) $) 64)) (-3676 (($ $) 42)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) 75)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) 72)) (-2508 (($ $ $) 68) (($) 39)) (-1817 (($ $ $) 67) (($) 38)) (-3103 (($ $) NIL)) (-4109 (($ $) 70)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) 50)) (-2624 (((-1046) $) NIL) (($ $) 69)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) 62) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 61)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) 51)) (-2579 (($ $) NIL)) (-3260 (((-530) $) 32) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL)) (-2366 (((-804) $) 31) (($ (-530)) 81) (($ $) NIL) (($ (-530)) 81)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) 37)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) 73)) (-3934 (($ $) 63)) (-1262 (($ $ $) 44)) (-3080 (($) 35 T CONST)) (-1547 (($ $ $) 47)) (-3093 (($) 36 T CONST)) (-3987 (((-1082) $) 21) (((-1082) $ (-110)) 23) (((-1186) (-770) $) 24) (((-1186) (-770) $ (-110)) 25)) (-1559 (($ $) 45)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-1536 (($ $ $) 46)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 40)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 49)) (-1253 (($ $ $) 43)) (-2351 (($ $) 52) (($ $ $) 54)) (-2339 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 55)))
+(((-1046) (-13 (-515) (-612) (-776) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -1817 ($)) (-15 -2508 ($)) (-15 -3676 ($ $)) (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -1559 ($ $)) (-15 -1536 ($ $ $)) (-15 -1547 ($ $ $))))) (T -1046))
+((-1262 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1253 (*1 *1 *1 *1) (-5 *1 (-1046))) (-2522 (*1 *1 *1) (-5 *1 (-1046))) (-1817 (*1 *1) (-5 *1 (-1046))) (-2508 (*1 *1) (-5 *1 (-1046))) (-3676 (*1 *1 *1) (-5 *1 (-1046))) (-3085 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1559 (*1 *1 *1) (-5 *1 (-1046))) (-1536 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1547 (*1 *1 *1 *1) (-5 *1 (-1046))))
+(-13 (-515) (-612) (-776) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -1817 ($)) (-15 -2508 ($)) (-15 -3676 ($ $)) (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -1559 ($ $)) (-15 -1536 ($ $ $)) (-15 -1547 ($ $ $))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1598 ((|#1| $) 44)) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3684 ((|#1| |#1| $) 46)) (-2176 ((|#1| $) 45)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-4218 (((-719) $) 43)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1047 |#1|) (-133) (-1135)) (T -1047))
-((-2882 (*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4270) (-15 -2882 (|t#1| |t#1| $)) (-15 -2870 (|t#1| $)) (-15 -1596 (|t#1| $)) (-15 -4219 ((-719) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-1380 ((|#3| $) 76)) (-3012 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2446 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#3| $) 37)) (-1298 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 73) (((-637 |#3|) (-637 $)) 65)) (-3211 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-2911 ((|#3| $) 78)) (-2922 ((|#4| $) 32)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#3|) 16)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15) (($ $ (-530)) 82)))
-(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -2911 (|#3| |#1|)) (-15 -1380 (|#3| |#1|)) (-15 -2922 (|#4| |#1|)) (-15 -1298 ((-637 |#3|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -2258 (|#1| |#3|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2258 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2258 ((-804) |#1|))) (-1049 |#2| |#3| |#4| |#5|) (-719) (-984) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1048))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -2911 (|#3| |#1|)) (-15 -1380 (|#3| |#1|)) (-15 -2922 (|#4| |#1|)) (-15 -1298 ((-637 |#3|) (-637 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -1298 ((-637 (-530)) (-637 |#1|))) (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -2258 (|#1| |#3|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-530) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3211 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2258 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1380 ((|#2| $) 72)) (-1623 (((-110) $) 112)) (-3618 (((-3 $ "failed") $ $) 19)) (-1645 (((-110) $) 110)) (-4102 (((-110) $ (-719)) 102)) (-2944 (($ |#2|) 75)) (-3956 (($) 17 T CONST)) (-1543 (($ $) 129 (|has| |#2| (-289)))) (-1564 ((|#3| $ (-530)) 124)) (-3012 (((-3 (-530) "failed") $) 86 (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 84 (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) 81)) (-2446 (((-530) $) 87 (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) 85 (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) 80)) (-1298 (((-637 (-530)) (-637 $)) 79 (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 78 (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 77) (((-637 |#2|) (-637 $)) 76)) (-1673 (((-3 $ "failed") $) 34)) (-4113 (((-719) $) 130 (|has| |#2| (-522)))) (-2787 ((|#2| $ (-530) (-530)) 122)) (-2456 (((-597 |#2|) $) 95 (|has| $ (-6 -4270)))) (-3150 (((-110) $) 31)) (-1532 (((-719) $) 131 (|has| |#2| (-522)))) (-1522 (((-597 |#4|) $) 132 (|has| |#2| (-522)))) (-3531 (((-719) $) 118)) (-3544 (((-719) $) 119)) (-2014 (((-110) $ (-719)) 103)) (-2892 ((|#2| $) 67 (|has| |#2| (-6 (-4272 "*"))))) (-1604 (((-530) $) 114)) (-1583 (((-530) $) 116)) (-3252 (((-597 |#2|) $) 94 (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) 92 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-1593 (((-530) $) 115)) (-1574 (((-530) $) 117)) (-2162 (($ (-597 (-597 |#2|))) 109)) (-2847 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3285 (((-597 (-597 |#2|)) $) 120)) (-1987 (((-110) $ (-719)) 104)) (-3443 (((-1082) $) 9)) (-3248 (((-3 $ "failed") $) 66 (|has| |#2| (-344)))) (-2485 (((-1046) $) 10)) (-3562 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-522)))) (-1505 (((-110) (-1 (-110) |#2|) $) 97 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) 91 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 90 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) 108)) (-1262 (((-110) $) 105)) (-4227 (($) 106)) (-1832 ((|#2| $ (-530) (-530) |#2|) 123) ((|#2| $ (-530) (-530)) 121)) (-3211 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-719)) 51) (($ $ (-597 (-1099)) (-597 (-719))) 44 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 43 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 42 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 41 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 39 (|has| |#2| (-216))) (($ $) 37 (|has| |#2| (-216)))) (-2911 ((|#2| $) 71)) (-2933 (($ (-597 |#2|)) 74)) (-1635 (((-110) $) 111)) (-2922 ((|#3| $) 73)) (-2900 ((|#2| $) 68 (|has| |#2| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4270))) (((-719) |#2| $) 93 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 107)) (-1554 ((|#4| $ (-530)) 125)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 83 (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) 82)) (-1667 (((-719)) 29)) (-1515 (((-110) (-1 (-110) |#2|) $) 98 (|has| $ (-6 -4270)))) (-1614 (((-110) $) 113)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 48 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 47 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 46 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 45 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 40 (|has| |#2| (-216))) (($ $) 38 (|has| |#2| (-216)))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#2|) 128 (|has| |#2| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 65 (|has| |#2| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2167 (((-719) $) 101 (|has| $ (-6 -4270)))))
+((-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3684 (|t#1| |t#1| $)) (-15 -2176 (|t#1| $)) (-15 -1598 (|t#1| $)) (-15 -4218 ((-719) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-1367 ((|#3| $) 76)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#3| $) 37)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 73) (((-637 |#3|) (-637 $)) 65)) (-3289 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-3896 ((|#3| $) 78)) (-3614 ((|#4| $) 32)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#3|) 16)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15) (($ $ (-530)) 82)))
+(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -3896 (|#3| |#1|)) (-15 -1367 (|#3| |#1|)) (-15 -3614 (|#4| |#1|)) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2366 ((-804) |#1|))) (-1049 |#2| |#3| |#4| |#5|) (-719) (-984) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1048))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -3896 (|#3| |#1|)) (-15 -1367 (|#3| |#1|)) (-15 -3614 (|#4| |#1|)) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1367 ((|#2| $) 70)) (-3053 (((-110) $) 110)) (-1889 (((-3 $ "failed") $ $) 19)) (-4040 (((-110) $) 108)) (-3186 (((-110) $ (-719)) 100)) (-1570 (($ |#2|) 73)) (-2350 (($) 17 T CONST)) (-1583 (($ $) 127 (|has| |#2| (-289)))) (-1325 ((|#3| $ (-530)) 122)) (-3139 (((-3 (-530) "failed") $) 84 (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 82 (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) 79)) (-2585 (((-530) $) 85 (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) 83 (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) 78)) (-2329 (((-637 (-530)) (-637 $)) 77 (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 76 (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 75) (((-637 |#2|) (-637 $)) 74)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-719) $) 128 (|has| |#2| (-522)))) (-3532 ((|#2| $ (-530) (-530)) 120)) (-3779 (((-597 |#2|) $) 93 (|has| $ (-6 -4269)))) (-2731 (((-110) $) 30)) (-1791 (((-719) $) 129 (|has| |#2| (-522)))) (-2515 (((-597 |#4|) $) 130 (|has| |#2| (-522)))) (-1796 (((-719) $) 116)) (-1810 (((-719) $) 117)) (-4027 (((-110) $ (-719)) 101)) (-2714 ((|#2| $) 65 (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) 112)) (-3643 (((-530) $) 114)) (-2395 (((-597 |#2|) $) 92 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 90 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 113)) (-3909 (((-530) $) 115)) (-2263 (($ (-597 (-597 |#2|))) 107)) (-3583 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-2654 (((-597 (-597 |#2|)) $) 118)) (-2763 (((-110) $ (-719)) 102)) (-1424 (((-1082) $) 9)) (-1991 (((-3 $ "failed") $) 64 (|has| |#2| (-344)))) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) 95 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 106)) (-3250 (((-110) $) 103)) (-3958 (($) 104)) (-1902 ((|#2| $ (-530) (-530) |#2|) 121) ((|#2| $ (-530) (-530)) 119)) (-3289 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 42 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 41 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 40 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 39 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 37 (|has| |#2| (-216))) (($ $) 35 (|has| |#2| (-216)))) (-3896 ((|#2| $) 69)) (-2128 (($ (-597 |#2|)) 72)) (-1362 (((-110) $) 109)) (-3614 ((|#3| $) 71)) (-2338 ((|#2| $) 66 (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) 94 (|has| $ (-6 -4269))) (((-719) |#2| $) 91 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 105)) (-3350 ((|#4| $ (-530)) 123)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 81 (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) 80)) (-3300 (((-719)) 28)) (-3889 (((-110) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 111)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-719)) 47) (($ $ (-597 (-1099)) (-597 (-719))) 46 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 45 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 44 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 43 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 38 (|has| |#2| (-216))) (($ $) 36 (|has| |#2| (-216)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#2|) 126 (|has| |#2| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 63 (|has| |#2| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2267 (((-719) $) 99 (|has| $ (-6 -4269)))))
(((-1049 |#1| |#2| |#3| |#4|) (-133) (-719) (-984) (-221 |t#1| |t#2|) (-221 |t#1| |t#2|)) (T -1049))
-((-2944 (*1 *1 *2) (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-2922 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))) (-3248 (*1 *1 *1) (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))))
-(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-987 |t#1| |t#1| |t#2| |t#3| |t#4|) (-392 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-666 |t#2|)) |%noBranch|) (-15 -2944 ($ |t#2|)) (-15 -2933 ($ (-597 |t#2|))) (-15 -2922 (|t#3| $)) (-15 -1380 (|t#2| $)) (-15 -2911 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4272 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2900 (|t#2| $)) (-15 -2892 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -3248 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4272 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-358 |#2|) . T) ((-392 |#2|) . T) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#2| (-593 (-530))) ((-593 |#2|) . T) ((-666 |#2|) -1476 (|has| |#2| (-162)) (|has| |#2| (-6 (-4272 "*")))) ((-675) . T) ((-841 (-1099)) |has| |#2| (-841 (-1099))) ((-987 |#1| |#1| |#2| |#3| |#4|) . T) ((-975 (-388 (-530))) |has| |#2| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#2| (-975 (-530))) ((-975 |#2|) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T))
-((-1805 ((|#4| |#4|) 70)) (-2956 ((|#4| |#4|) 65)) (-1823 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|) 78)) (-1814 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2968 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1050 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 (|#4| |#4|)) (-15 -2968 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1805 (|#4| |#4|)) (-15 -1814 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1823 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|))) (-289) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1050))
-((-1823 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4)))) (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-1814 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2956 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -2956 (|#4| |#4|)) (-15 -2968 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1805 (|#4| |#4|)) (-15 -1814 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1823 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3853 (-597 |#3|))) |#4| |#3|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 17)) (-2596 (((-597 |#2|) $) 161)) (-2439 (((-1095 $) $ |#2|) 54) (((-1095 |#1|) $) 43)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 110 (|has| |#1| (-522)))) (-3031 (($ $) 112 (|has| |#1| (-522)))) (-3006 (((-110) $) 114 (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 |#2|)) 194)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) 158) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL)) (-2446 ((|#1| $) 156) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL)) (-2330 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2425 (($ $) 198)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) 82)) (-3703 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-502 |#2|) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-3150 (((-110) $) 19)) (-3239 (((-719) $) 26)) (-2586 (($ (-1095 |#1|) |#2|) 48) (($ (-1095 $) |#2|) 64)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) 32)) (-2575 (($ |#1| (-502 |#2|)) 71) (($ $ |#2| (-719)) 52) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ |#2|) NIL)) (-3674 (((-502 |#2|) $) 188) (((-719) $ |#2|) 189) (((-597 (-719)) $ (-597 |#2|)) 190)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) 122)) (-1367 (((-3 |#2| "failed") $) 163)) (-2388 (($ $) 197)) (-2402 ((|#1| $) 37)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| |#2|) (|:| -3059 (-719))) "failed") $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) 33)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 140 (|has| |#1| (-432)))) (-2108 (($ (-597 $)) 145 (|has| |#1| (-432))) (($ $ $) 132 (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3562 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-522)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-597 |#2|) (-597 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-597 |#2|) (-597 $)) 178)) (-2341 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3211 (($ $ |#2|) 196) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3409 (((-502 |#2|) $) 184) (((-719) $ |#2|) 180) (((-597 (-719)) $ (-597 |#2|)) 182)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#1| $) 128 (|has| |#1| (-432))) (($ $ |#2|) 131 (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2258 (((-804) $) 151) (($ (-530)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-1669 (((-597 |#1|) $) 154)) (-2782 ((|#1| $ (-502 |#2|)) 73) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 79)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) 117 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 102) (($ $ (-719)) 104)) (-2943 (($) 12 T CONST)) (-2955 (($) 14 T CONST)) (-3286 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 97)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 126 (|has| |#1| (-344)))) (-2245 (($ $) 85) (($ $ $) 95)) (-2234 (($ $ $) 49)) (** (($ $ (-862)) 103) (($ $ (-719)) 100)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 88) (($ $ $) 65) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+((-1570 (*1 *1 *2) (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-1991 (*1 *1 *1) (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))))
+(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-987 |t#1| |t#1| |t#2| |t#3| |t#4|) (-392 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-666 |t#2|)) |%noBranch|) (-15 -1570 ($ |t#2|)) (-15 -2128 ($ (-597 |t#2|))) (-15 -3614 (|t#3| $)) (-15 -1367 (|t#2| $)) (-15 -3896 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4271 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2338 (|t#2| $)) (-15 -2714 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -1991 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4271 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-358 |#2|) . T) ((-392 |#2|) . T) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#2| (-593 (-530))) ((-593 |#2|) . T) ((-666 |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-6 (-4271 "*")))) ((-675) . T) ((-841 (-1099)) |has| |#2| (-841 (-1099))) ((-987 |#1| |#1| |#2| |#3| |#4|) . T) ((-975 (-388 (-530))) |has| |#2| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#2| (-975 (-530))) ((-975 |#2|) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T))
+((-2571 ((|#4| |#4|) 70)) (-3730 ((|#4| |#4|) 65)) (-1650 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|) 78)) (-3545 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1355 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1050 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 (|#4| |#4|)) (-15 -1355 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2571 (|#4| |#4|)) (-15 -3545 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|))) (-289) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1050))
+((-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-3545 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2571 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-3730 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(-10 -7 (-15 -3730 (|#4| |#4|)) (-15 -1355 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2571 (|#4| |#4|)) (-15 -3545 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 17)) (-2746 (((-597 |#2|) $) 159)) (-2577 (((-1095 $) $ |#2|) 54) (((-1095 |#1|) $) 43)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 108 (|has| |#1| (-522)))) (-3446 (($ $) 110 (|has| |#1| (-522)))) (-1276 (((-110) $) 112 (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#2|)) 192)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 156) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL)) (-2585 ((|#1| $) 154) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2562 (($ $) 196)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 82)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 |#2|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) 19)) (-3579 (((-719) $) 26)) (-2735 (($ (-1095 |#1|) |#2|) 48) (($ (-1095 $) |#2|) 64)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) 32)) (-2725 (($ |#1| (-502 |#2|)) 71) (($ $ |#2| (-719)) 52) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-2944 (((-502 |#2|) $) 186) (((-719) $ |#2|) 187) (((-597 (-719)) $ (-597 |#2|)) 188)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 120)) (-2040 (((-3 |#2| "failed") $) 161)) (-2521 (($ $) 195)) (-2533 ((|#1| $) 37)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 33)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 138 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 143 (|has| |#1| (-432))) (($ $ $) 130 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-597 |#2|) (-597 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-597 |#2|) (-597 $)) 176)) (-3060 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#2|) 194) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) 182) (((-719) $ |#2|) 178) (((-597 (-719)) $ (-597 |#2|)) 180)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#1| $) 126 (|has| |#1| (-432))) (($ $ |#2|) 129 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 149) (($ (-530)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 152)) (-4085 ((|#1| $ (-502 |#2|)) 73) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 79)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) 115 (|has| |#1| (-522)))) (-3080 (($) 12 T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 97)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 124 (|has| |#1| (-344)))) (-2351 (($ $) 85) (($ $ $) 95)) (-2339 (($ $ $) 49)) (** (($ $ (-862)) 102) (($ $ (-719)) 100)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 88) (($ $ $) 65) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
(((-1051 |#1| |#2|) (-890 |#1| (-502 |#2|) |#2|) (-984) (-795)) (T -1051))
NIL
(-890 |#1| (-502 |#2|) |#2|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 |#2|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2297 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3496 (((-893 |#1|) $ (-719)) NIL) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $ |#2|) NIL) (((-719) $ |#2| (-719)) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3327 (((-110) $) NIL)) (-2575 (($ $ (-597 |#2|) (-597 (-502 |#2|))) NIL) (($ $ |#2| (-502 |#2|)) NIL) (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 58) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-1637 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-2772 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-530)))))) (-1312 (($ $ (-719)) 15)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2693 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (($ $ |#2| $) 97) (($ $ (-597 |#2|) (-597 $)) 90) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3211 (($ $ |#2|) 100) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3409 (((-502 |#2|) $) NIL)) (-1831 (((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|))) 79)) (-2308 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 17)) (-2258 (((-804) $) 182) (($ (-530)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#2|) 65) (($ |#3|) 63)) (-2782 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL) ((|#3| $ (-719)) 42)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2339 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2910 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 18 T CONST)) (-2955 (($) 10 T CONST)) (-3286 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 61)) (** (($ $ (-862)) NIL) (($ $ (-719)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 103 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 60) (($ $ (-388 (-530))) 108 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 106 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1052 |#1| |#2| |#3|) (-13 (-689 |#1| |#2|) (-10 -8 (-15 -2782 (|#3| $ (-719))) (-15 -2258 ($ |#2|)) (-15 -2258 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1831 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $ |#2| |#1|)) (-15 -2772 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-984) (-795) (-890 |#1| (-502 |#2|) |#2|)) (T -1052))
-((-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5)) (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795)) (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984)) (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-2772 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5)) (-4 *5 (-890 *4 (-502 *3) *3)))))
-(-13 (-689 |#1| |#2|) (-10 -8 (-15 -2782 (|#3| $ (-719))) (-15 -2258 ($ |#2|)) (-15 -2258 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1831 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $ |#2| |#1|)) (-15 -2772 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2246 (((-110) $ $) 7)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) 85)) (-2844 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) 101) (((-110) $) 97)) (-2906 ((|#4| |#4| $) 92)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 126)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 79)) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2918 (((-3 $ "failed") $) 82)) (-2878 ((|#4| |#4| $) 89)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2856 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) 105)) (-3118 (((-110) |#4| $) 136)) (-3094 (((-110) |#4| $) 133)) (-3129 (((-110) |#4| $) 137) (((-110) $) 134)) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) 104) (((-110) $) 103)) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 127)) (-2294 (((-3 |#4| "failed") $) 83)) (-3060 (((-597 $) |#4| $) 129)) (-3082 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-3418 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-1528 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-3011 (((-597 |#4|) $) 107)) (-2938 (((-110) |#4| $) 99) (((-110) $) 95)) (-2888 ((|#4| |#4| $) 90)) (-1845 (((-110) $ $) 110)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) 100) (((-110) $) 96)) (-2898 ((|#4| |#4| $) 91)) (-2485 (((-1046) $) 10)) (-2907 (((-3 |#4| "failed") $) 84)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2807 (((-3 $ "failed") $ |#4|) 78)) (-1312 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-3409 (((-719) $) 106)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-2866 (($ $) 88)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2795 (((-719) $) 76 (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3025 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) 81)) (-3106 (((-110) |#4| $) 135)) (-3292 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2386 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1761 (((-893 |#1|) $ (-719)) NIL) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ |#2|) NIL) (((-719) $ |#2| (-719)) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) NIL)) (-2725 (($ $ (-597 |#2|) (-597 (-502 |#2|))) NIL) (($ $ |#2| (-502 |#2|)) NIL) (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 58) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-1368 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-530)))))) (-3168 (($ $ (-719)) 15)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ |#2| $) 97) (($ $ (-597 |#2|) (-597 $)) 90) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3289 (($ $ |#2|) 100) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) NIL)) (-2420 (((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|))) 79)) (-2421 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 17)) (-2366 (((-804) $) 182) (($ (-530)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#2|) 65) (($ |#3|) 63)) (-4085 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL) ((|#3| $ (-719)) 42)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2459 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 10 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) NIL) (($ $ (-719)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 103 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 60) (($ $ (-388 (-530))) 108 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 106 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1052 |#1| |#2| |#3|) (-13 (-689 |#1| |#2|) (-10 -8 (-15 -4085 (|#3| $ (-719))) (-15 -2366 ($ |#2|)) (-15 -2366 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2420 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |#2| |#1|)) (-15 -1368 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-984) (-795) (-890 |#1| (-502 |#2|) |#2|)) (T -1052))
+((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5)) (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795)) (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984)) (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))) (-1545 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-1368 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5)) (-4 *5 (-890 *4 (-502 *3) *3)))))
+(-13 (-689 |#1| |#2|) (-10 -8 (-15 -4085 (|#3| $ (-719))) (-15 -2366 ($ |#2|)) (-15 -2366 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2420 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |#2| |#1|)) (-15 -1368 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-1053 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1053))
NIL
(-13 (-1036 |t#1| |t#2| |t#3| |t#4|) (-732 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-732 |#1| |#2| |#3| |#4|) . T) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-3066 (((-597 |#2|) |#1|) 12)) (-1876 (((-597 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-597 |#2|) |#1|) 52)) (-1858 (((-597 |#2|) |#2| |#2| |#2|) 39) (((-597 |#2|) |#1|) 50)) (-1840 ((|#2| |#1|) 46)) (-1849 (((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3472 (((-597 |#2|) |#2| |#2|) 38) (((-597 |#2|) |#1|) 49)) (-1867 (((-597 |#2|) |#2| |#2| |#2| |#2|) 40) (((-597 |#2|) |#1|) 51)) (-1914 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-1895 ((|#2| |#2| |#2| |#2|) 43)) (-1887 ((|#2| |#2| |#2|) 42)) (-1904 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1054 |#1| |#2|) (-10 -7 (-15 -3066 ((-597 |#2|) |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -1849 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3472 ((-597 |#2|) |#1|)) (-15 -1858 ((-597 |#2|) |#1|)) (-15 -1867 ((-597 |#2|) |#1|)) (-15 -1876 ((-597 |#2|) |#1|)) (-15 -3472 ((-597 |#2|) |#2| |#2|)) (-15 -1858 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1867 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1876 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1887 (|#2| |#2| |#2|)) (-15 -1895 (|#2| |#2| |#2| |#2|)) (-15 -1904 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1914 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1157 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (T -1054))
-((-1914 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1904 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1895 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1887 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1876 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1867 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1858 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-3472 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-2 (|:| |solns| (-597 *5)) (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))) (-1840 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3066 ((-597 |#2|) |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -1849 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3472 ((-597 |#2|) |#1|)) (-15 -1858 ((-597 |#2|) |#1|)) (-15 -1867 ((-597 |#2|) |#1|)) (-15 -1876 ((-597 |#2|) |#1|)) (-15 -3472 ((-597 |#2|) |#2| |#2|)) (-15 -1858 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1867 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1876 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1887 (|#2| |#2| |#2|)) (-15 -1895 (|#2| |#2| |#2| |#2|)) (-15 -1904 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1914 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1923 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|))))) 95) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 90) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|)))) 75) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099)) 76) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|))) 70) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 59)) (-1933 (((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 88) (((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 43)) (-1943 (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)) 98) (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 97)))
-(((-1055 |#1|) (-10 -7 (-15 -1923 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -1933 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -1933 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1943 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1943 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)))) (-13 (-289) (-795) (-140))) (T -1055))
-((-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5)))) (-5 *1 (-1055 *5)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5))) (-5 *1 (-1055 *5)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))))
-(-10 -7 (-15 -1923 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1923 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -1923 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -1933 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -1933 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1943 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1943 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099))))
-((-1961 (((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)) 29)) (-1952 (((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|)))) 40)))
-(((-1056 |#1|) (-10 -7 (-15 -1952 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1961 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)))) (-13 (-522) (-795))) (T -1056))
-((-1961 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5))) (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))) (-1952 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795))) (-5 *1 (-1056 *3)))))
-(-10 -7 (-15 -1952 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1961 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530))))
-((-3066 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))) 224) (((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099)) 20) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099)) 26) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|))) 25) (((-597 (-276 (-297 |#1|))) (-297 |#1|)) 21)))
-(((-1057 |#1|) (-10 -7 (-15 -3066 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -3066 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (T -1057))
-((-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5)) (-5 *3 (-597 (-276 (-297 *5)))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-297 *5)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-276 (-297 *5))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-276 (-297 *4))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-297 *4)))))
-(-10 -7 (-15 -3066 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -3066 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -3066 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099)))))
-((-1980 ((|#2| |#2|) 20 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-1971 ((|#2| |#2|) 19 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
-(((-1058 |#1| |#2|) (-10 -7 (-15 -1971 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -1980 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -1971 (|#2| |#2|)) (-15 -1980 (|#2| |#2|))) |%noBranch|)) (-1135) (-13 (-563 (-530) |#1|) (-10 -7 (-6 -4270) (-6 -4271)))) (T -1058))
-((-1980 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4270) (-6 -4271)))))) (-1971 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4270) (-6 -4271)))))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4270) (-6 -4271)))))) (-1971 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4270) (-6 -4271)))))))
-(-10 -7 (-15 -1971 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -1980 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -1971 (|#2| |#2|)) (-15 -1980 (|#2| |#2|))) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-4042 (((-1088 3 |#1|) $) 107)) (-2052 (((-110) $) 72)) (-2061 (($ $ (-597 (-884 |#1|))) 20) (($ $ (-597 (-597 |#1|))) 75) (($ (-597 (-884 |#1|))) 74) (((-597 (-884 |#1|)) $) 73)) (-2118 (((-110) $) 41)) (-4109 (($ $ (-884 |#1|)) 46) (($ $ (-597 |#1|)) 51) (($ $ (-719)) 53) (($ (-884 |#1|)) 47) (((-884 |#1|) $) 45)) (-3243 (((-2 (|:| -3738 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 105)) (-2163 (((-719) $) 26)) (-2176 (((-719) $) 25)) (-4032 (($ $ (-719) (-884 |#1|)) 39)) (-2033 (((-110) $) 82)) (-2043 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 89) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 91) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 85) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 93) (($ (-597 (-597 (-884 |#1|)))) 86) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 87) (((-597 (-597 (-884 |#1|))) $) 84)) (-3842 (($ (-597 $)) 28) (($ $ $) 29)) (-2000 (((-597 (-161)) $) 102)) (-3360 (((-597 (-884 |#1|)) $) 96)) (-2008 (((-597 (-597 (-161))) $) 101)) (-2017 (((-597 (-597 (-597 (-884 |#1|)))) $) NIL)) (-2025 (((-597 (-597 (-597 (-719)))) $) 99)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2129 (((-719) $ (-597 (-884 |#1|))) 37)) (-2094 (((-110) $) 54)) (-2106 (($ $ (-597 (-884 |#1|))) 56) (($ $ (-597 (-597 |#1|))) 62) (($ (-597 (-884 |#1|))) 57) (((-597 (-884 |#1|)) $) 55)) (-2189 (($) 23) (($ (-1088 3 |#1|)) 24)) (-2441 (($ $) 35)) (-2141 (((-597 $) $) 34)) (-2312 (($ (-597 $)) 31)) (-2152 (((-597 $) $) 33)) (-2258 (((-804) $) 111)) (-2069 (((-110) $) 64)) (-2082 (($ $ (-597 (-884 |#1|))) 66) (($ $ (-597 (-597 |#1|))) 69) (($ (-597 (-884 |#1|))) 67) (((-597 (-884 |#1|)) $) 65)) (-1990 (($ $) 106)) (-2148 (((-110) $ $) NIL)))
+((-2688 (((-597 |#2|) |#1|) 12)) (-3789 (((-597 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-597 |#2|) |#1|) 52)) (-3394 (((-597 |#2|) |#2| |#2| |#2|) 39) (((-597 |#2|) |#1|) 50)) (-2057 ((|#2| |#1|) 46)) (-3594 (((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1739 (((-597 |#2|) |#2| |#2|) 38) (((-597 |#2|) |#1|) 49)) (-1977 (((-597 |#2|) |#2| |#2| |#2| |#2|) 40) (((-597 |#2|) |#1|) 51)) (-4234 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-1924 ((|#2| |#2| |#2| |#2|) 43)) (-3402 ((|#2| |#2| |#2|) 42)) (-1552 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1054 |#1| |#2|) (-10 -7 (-15 -2688 ((-597 |#2|) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -3594 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1739 ((-597 |#2|) |#1|)) (-15 -3394 ((-597 |#2|) |#1|)) (-15 -1977 ((-597 |#2|) |#1|)) (-15 -3789 ((-597 |#2|) |#1|)) (-15 -1739 ((-597 |#2|) |#2| |#2|)) (-15 -3394 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1977 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3789 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -1924 (|#2| |#2| |#2| |#2|)) (-15 -1552 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4234 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1157 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (T -1054))
+((-4234 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1552 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1924 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-3402 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-3789 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1977 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-3394 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1739 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1977 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-2 (|:| |solns| (-597 *5)) (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))) (-2057 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -2688 ((-597 |#2|) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -3594 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1739 ((-597 |#2|) |#1|)) (-15 -3394 ((-597 |#2|) |#1|)) (-15 -1977 ((-597 |#2|) |#1|)) (-15 -3789 ((-597 |#2|) |#1|)) (-15 -1739 ((-597 |#2|) |#2| |#2|)) (-15 -3394 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1977 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3789 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -1924 (|#2| |#2| |#2| |#2|)) (-15 -1552 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4234 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2732 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|))))) 95) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 90) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|)))) 75) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099)) 76) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|))) 70) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 59)) (-2253 (((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 88) (((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 43)) (-1351 (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)) 98) (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 97)))
+(((-1055 |#1|) (-10 -7 (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2253 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -2253 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)))) (-13 (-289) (-795) (-140))) (T -1055))
+((-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5)))) (-5 *1 (-1055 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))))
+(-10 -7 (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2253 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -2253 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099))))
+((-1377 (((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)) 29)) (-3834 (((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|)))) 40)))
+(((-1056 |#1|) (-10 -7 (-15 -3834 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1377 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)))) (-13 (-522) (-795))) (T -1056))
+((-1377 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5))) (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))) (-3834 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795))) (-5 *1 (-1056 *3)))))
+(-10 -7 (-15 -3834 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1377 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530))))
+((-2688 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))) 224) (((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099)) 20) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099)) 26) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|))) 25) (((-597 (-276 (-297 |#1|))) (-297 |#1|)) 21)))
+(((-1057 |#1|) (-10 -7 (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -2688 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (T -1057))
+((-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5)) (-5 *3 (-597 (-276 (-297 *5)))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-297 *5)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-276 (-297 *5))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-276 (-297 *4))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-297 *4)))))
+(-10 -7 (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -2688 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099)))))
+((-3414 ((|#2| |#2|) 20 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-3894 ((|#2| |#2|) 19 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
+(((-1058 |#1| |#2|) (-10 -7 (-15 -3894 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3414 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3894 (|#2| |#2|)) (-15 -3414 (|#2| |#2|))) |%noBranch|)) (-1135) (-13 (-563 (-530) |#1|) (-10 -7 (-6 -4269) (-6 -4270)))) (T -1058))
+((-3414 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3414 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270)))))))
+(-10 -7 (-15 -3894 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3414 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3894 (|#2| |#2|)) (-15 -3414 (|#2| |#2|))) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-3082 (((-1088 3 |#1|) $) 107)) (-3530 (((-110) $) 72)) (-1940 (($ $ (-597 (-884 |#1|))) 20) (($ $ (-597 (-597 |#1|))) 75) (($ (-597 (-884 |#1|))) 74) (((-597 (-884 |#1|)) $) 73)) (-3309 (((-110) $) 41)) (-2422 (($ $ (-884 |#1|)) 46) (($ $ (-597 |#1|)) 51) (($ $ (-719)) 53) (($ (-884 |#1|)) 47) (((-884 |#1|) $) 45)) (-1497 (((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 105)) (-2633 (((-719) $) 26)) (-2255 (((-719) $) 25)) (-3405 (($ $ (-719) (-884 |#1|)) 39)) (-1301 (((-110) $) 82)) (-3952 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 89) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 91) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 85) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 93) (($ (-597 (-597 (-884 |#1|)))) 86) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 87) (((-597 (-597 (-884 |#1|))) $) 84)) (-3683 (($ (-597 $)) 28) (($ $ $) 29)) (-1228 (((-597 (-161)) $) 102)) (-3395 (((-597 (-884 |#1|)) $) 96)) (-1719 (((-597 (-597 (-161))) $) 101)) (-3233 (((-597 (-597 (-597 (-884 |#1|)))) $) NIL)) (-2917 (((-597 (-597 (-597 (-719)))) $) 99)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2911 (((-719) $ (-597 (-884 |#1|))) 37)) (-2183 (((-110) $) 54)) (-3663 (($ $ (-597 (-884 |#1|))) 56) (($ $ (-597 (-597 |#1|))) 62) (($ (-597 (-884 |#1|))) 57) (((-597 (-884 |#1|)) $) 55)) (-3767 (($) 23) (($ (-1088 3 |#1|)) 24)) (-2579 (($ $) 35)) (-2440 (((-597 $) $) 34)) (-1331 (($ (-597 $)) 31)) (-1565 (((-597 $) $) 33)) (-2366 (((-804) $) 111)) (-3932 (((-110) $) 64)) (-3563 (($ $ (-597 (-884 |#1|))) 66) (($ $ (-597 (-597 |#1|))) 69) (($ (-597 (-884 |#1|))) 67) (((-597 (-884 |#1|)) $) 65)) (-3015 (($ $) 106)) (-2248 (((-110) $ $) NIL)))
(((-1059 |#1|) (-1060 |#1|) (-984)) (T -1059))
NIL
(-1060 |#1|)
-((-2246 (((-110) $ $) 7)) (-4042 (((-1088 3 |#1|) $) 13)) (-2052 (((-110) $) 29)) (-2061 (($ $ (-597 (-884 |#1|))) 33) (($ $ (-597 (-597 |#1|))) 32) (($ (-597 (-884 |#1|))) 31) (((-597 (-884 |#1|)) $) 30)) (-2118 (((-110) $) 44)) (-4109 (($ $ (-884 |#1|)) 49) (($ $ (-597 |#1|)) 48) (($ $ (-719)) 47) (($ (-884 |#1|)) 46) (((-884 |#1|) $) 45)) (-3243 (((-2 (|:| -3738 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 15)) (-2163 (((-719) $) 58)) (-2176 (((-719) $) 59)) (-4032 (($ $ (-719) (-884 |#1|)) 50)) (-2033 (((-110) $) 21)) (-2043 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 28) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 27) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 26) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 25) (($ (-597 (-597 (-884 |#1|)))) 24) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 23) (((-597 (-597 (-884 |#1|))) $) 22)) (-3842 (($ (-597 $)) 57) (($ $ $) 56)) (-2000 (((-597 (-161)) $) 16)) (-3360 (((-597 (-884 |#1|)) $) 20)) (-2008 (((-597 (-597 (-161))) $) 17)) (-2017 (((-597 (-597 (-597 (-884 |#1|)))) $) 18)) (-2025 (((-597 (-597 (-597 (-719)))) $) 19)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2129 (((-719) $ (-597 (-884 |#1|))) 51)) (-2094 (((-110) $) 39)) (-2106 (($ $ (-597 (-884 |#1|))) 43) (($ $ (-597 (-597 |#1|))) 42) (($ (-597 (-884 |#1|))) 41) (((-597 (-884 |#1|)) $) 40)) (-2189 (($) 61) (($ (-1088 3 |#1|)) 60)) (-2441 (($ $) 52)) (-2141 (((-597 $) $) 53)) (-2312 (($ (-597 $)) 55)) (-2152 (((-597 $) $) 54)) (-2258 (((-804) $) 11)) (-2069 (((-110) $) 34)) (-2082 (($ $ (-597 (-884 |#1|))) 38) (($ $ (-597 (-597 |#1|))) 37) (($ (-597 (-884 |#1|))) 36) (((-597 (-884 |#1|)) $) 35)) (-1990 (($ $) 14)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-3082 (((-1088 3 |#1|) $) 13)) (-3530 (((-110) $) 29)) (-1940 (($ $ (-597 (-884 |#1|))) 33) (($ $ (-597 (-597 |#1|))) 32) (($ (-597 (-884 |#1|))) 31) (((-597 (-884 |#1|)) $) 30)) (-3309 (((-110) $) 44)) (-2422 (($ $ (-884 |#1|)) 49) (($ $ (-597 |#1|)) 48) (($ $ (-719)) 47) (($ (-884 |#1|)) 46) (((-884 |#1|) $) 45)) (-1497 (((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 15)) (-2633 (((-719) $) 58)) (-2255 (((-719) $) 59)) (-3405 (($ $ (-719) (-884 |#1|)) 50)) (-1301 (((-110) $) 21)) (-3952 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 28) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 27) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 26) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 25) (($ (-597 (-597 (-884 |#1|)))) 24) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 23) (((-597 (-597 (-884 |#1|))) $) 22)) (-3683 (($ (-597 $)) 57) (($ $ $) 56)) (-1228 (((-597 (-161)) $) 16)) (-3395 (((-597 (-884 |#1|)) $) 20)) (-1719 (((-597 (-597 (-161))) $) 17)) (-3233 (((-597 (-597 (-597 (-884 |#1|)))) $) 18)) (-2917 (((-597 (-597 (-597 (-719)))) $) 19)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2911 (((-719) $ (-597 (-884 |#1|))) 51)) (-2183 (((-110) $) 39)) (-3663 (($ $ (-597 (-884 |#1|))) 43) (($ $ (-597 (-597 |#1|))) 42) (($ (-597 (-884 |#1|))) 41) (((-597 (-884 |#1|)) $) 40)) (-3767 (($) 61) (($ (-1088 3 |#1|)) 60)) (-2579 (($ $) 52)) (-2440 (((-597 $) $) 53)) (-1331 (($ (-597 $)) 55)) (-1565 (((-597 $) $) 54)) (-2366 (((-804) $) 11)) (-3932 (((-110) $) 34)) (-3563 (($ $ (-597 (-884 |#1|))) 38) (($ $ (-597 (-597 |#1|))) 37) (($ (-597 (-884 |#1|))) 36) (((-597 (-884 |#1|)) $) 35)) (-3015 (($ $) 14)) (-2248 (((-110) $ $) 6)))
(((-1060 |#1|) (-133) (-984)) (T -1060))
-((-2258 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-804)))) (-2189 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2152 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2141 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-2129 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984)) (-5 *2 (-719)))) (-4032 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-4109 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-4109 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-4109 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-2106 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2106 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2082 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-2043 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-2043 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-2043 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-2043 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2043 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984)) (-4 *1 (-1060 *4)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-884 *3)))))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-719))))))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-884 *3))))))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -3738 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719)))))) (-1990 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3)))))
-(-13 (-1027) (-10 -8 (-15 -2189 ($)) (-15 -2189 ($ (-1088 3 |t#1|))) (-15 -2176 ((-719) $)) (-15 -2163 ((-719) $)) (-15 -3842 ($ (-597 $))) (-15 -3842 ($ $ $)) (-15 -2312 ($ (-597 $))) (-15 -2152 ((-597 $) $)) (-15 -2141 ((-597 $) $)) (-15 -2441 ($ $)) (-15 -2129 ((-719) $ (-597 (-884 |t#1|)))) (-15 -4032 ($ $ (-719) (-884 |t#1|))) (-15 -4109 ($ $ (-884 |t#1|))) (-15 -4109 ($ $ (-597 |t#1|))) (-15 -4109 ($ $ (-719))) (-15 -4109 ($ (-884 |t#1|))) (-15 -4109 ((-884 |t#1|) $)) (-15 -2118 ((-110) $)) (-15 -2106 ($ $ (-597 (-884 |t#1|)))) (-15 -2106 ($ $ (-597 (-597 |t#1|)))) (-15 -2106 ($ (-597 (-884 |t#1|)))) (-15 -2106 ((-597 (-884 |t#1|)) $)) (-15 -2094 ((-110) $)) (-15 -2082 ($ $ (-597 (-884 |t#1|)))) (-15 -2082 ($ $ (-597 (-597 |t#1|)))) (-15 -2082 ($ (-597 (-884 |t#1|)))) (-15 -2082 ((-597 (-884 |t#1|)) $)) (-15 -2069 ((-110) $)) (-15 -2061 ($ $ (-597 (-884 |t#1|)))) (-15 -2061 ($ $ (-597 (-597 |t#1|)))) (-15 -2061 ($ (-597 (-884 |t#1|)))) (-15 -2061 ((-597 (-884 |t#1|)) $)) (-15 -2052 ((-110) $)) (-15 -2043 ($ $ (-597 (-597 (-884 |t#1|))) (-597 (-161)) (-161))) (-15 -2043 ($ $ (-597 (-597 (-597 |t#1|))) (-597 (-161)) (-161))) (-15 -2043 ($ $ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -2043 ($ $ (-597 (-597 (-597 |t#1|))) (-110) (-110))) (-15 -2043 ($ (-597 (-597 (-884 |t#1|))))) (-15 -2043 ($ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -2043 ((-597 (-597 (-884 |t#1|))) $)) (-15 -2033 ((-110) $)) (-15 -3360 ((-597 (-884 |t#1|)) $)) (-15 -2025 ((-597 (-597 (-597 (-719)))) $)) (-15 -2017 ((-597 (-597 (-597 (-884 |t#1|)))) $)) (-15 -2008 ((-597 (-597 (-161))) $)) (-15 -2000 ((-597 (-161)) $)) (-15 -3243 ((-2 (|:| -3738 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $)) (-15 -1990 ($ $)) (-15 -4042 ((-1088 3 |t#1|) $)) (-15 -2258 ((-804) $))))
+((-2366 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-804)))) (-3767 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1565 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2579 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984)) (-5 *2 (-719)))) (-3405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3952 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-3952 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-3952 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-3952 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3952 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984)) (-4 *1 (-1060 *4)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-884 *3)))))) (-1301 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-719))))))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-884 *3))))))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))) (-1228 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719)))))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3)))))
+(-13 (-1027) (-10 -8 (-15 -3767 ($)) (-15 -3767 ($ (-1088 3 |t#1|))) (-15 -2255 ((-719) $)) (-15 -2633 ((-719) $)) (-15 -3683 ($ (-597 $))) (-15 -3683 ($ $ $)) (-15 -1331 ($ (-597 $))) (-15 -1565 ((-597 $) $)) (-15 -2440 ((-597 $) $)) (-15 -2579 ($ $)) (-15 -2911 ((-719) $ (-597 (-884 |t#1|)))) (-15 -3405 ($ $ (-719) (-884 |t#1|))) (-15 -2422 ($ $ (-884 |t#1|))) (-15 -2422 ($ $ (-597 |t#1|))) (-15 -2422 ($ $ (-719))) (-15 -2422 ($ (-884 |t#1|))) (-15 -2422 ((-884 |t#1|) $)) (-15 -3309 ((-110) $)) (-15 -3663 ($ $ (-597 (-884 |t#1|)))) (-15 -3663 ($ $ (-597 (-597 |t#1|)))) (-15 -3663 ($ (-597 (-884 |t#1|)))) (-15 -3663 ((-597 (-884 |t#1|)) $)) (-15 -2183 ((-110) $)) (-15 -3563 ($ $ (-597 (-884 |t#1|)))) (-15 -3563 ($ $ (-597 (-597 |t#1|)))) (-15 -3563 ($ (-597 (-884 |t#1|)))) (-15 -3563 ((-597 (-884 |t#1|)) $)) (-15 -3932 ((-110) $)) (-15 -1940 ($ $ (-597 (-884 |t#1|)))) (-15 -1940 ($ $ (-597 (-597 |t#1|)))) (-15 -1940 ($ (-597 (-884 |t#1|)))) (-15 -1940 ((-597 (-884 |t#1|)) $)) (-15 -3530 ((-110) $)) (-15 -3952 ($ $ (-597 (-597 (-884 |t#1|))) (-597 (-161)) (-161))) (-15 -3952 ($ $ (-597 (-597 (-597 |t#1|))) (-597 (-161)) (-161))) (-15 -3952 ($ $ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -3952 ($ $ (-597 (-597 (-597 |t#1|))) (-110) (-110))) (-15 -3952 ($ (-597 (-597 (-884 |t#1|))))) (-15 -3952 ($ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -3952 ((-597 (-597 (-884 |t#1|))) $)) (-15 -1301 ((-110) $)) (-15 -3395 ((-597 (-884 |t#1|)) $)) (-15 -2917 ((-597 (-597 (-597 (-719)))) $)) (-15 -3233 ((-597 (-597 (-597 (-884 |t#1|)))) $)) (-15 -1719 ((-597 (-597 (-161))) $)) (-15 -1228 ((-597 (-161)) $)) (-15 -1497 ((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $)) (-15 -3015 ($ $)) (-15 -3082 ((-1088 3 |t#1|) $)) (-15 -2366 ((-804) $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2988 (((-597 (-1104)) (-1082)) 9)))
-(((-1061) (-10 -7 (-15 -2988 ((-597 (-1104)) (-1082))))) (T -1061))
-((-2988 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-1061)))))
-(-10 -7 (-15 -2988 ((-597 (-1104)) (-1082))))
-((-2209 (((-1186) (-597 (-804))) 23) (((-1186) (-804)) 22)) (-2199 (((-1186) (-597 (-804))) 21) (((-1186) (-804)) 20)) (-3057 (((-1186) (-597 (-804))) 19) (((-1186) (-804)) 11) (((-1186) (-1082) (-804)) 17)))
-(((-1062) (-10 -7 (-15 -3057 ((-1186) (-1082) (-804))) (-15 -3057 ((-1186) (-804))) (-15 -2199 ((-1186) (-804))) (-15 -2209 ((-1186) (-804))) (-15 -3057 ((-1186) (-597 (-804)))) (-15 -2199 ((-1186) (-597 (-804)))) (-15 -2209 ((-1186) (-597 (-804)))))) (T -1062))
-((-2209 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(-10 -7 (-15 -3057 ((-1186) (-1082) (-804))) (-15 -3057 ((-1186) (-804))) (-15 -2199 ((-1186) (-804))) (-15 -2209 ((-1186) (-804))) (-15 -3057 ((-1186) (-597 (-804)))) (-15 -2199 ((-1186) (-597 (-804)))) (-15 -2209 ((-1186) (-597 (-804)))))
-((-2249 (($ $ $) 10)) (-2237 (($ $) 9)) (-2283 (($ $ $) 13)) (-2304 (($ $ $) 15)) (-2271 (($ $ $) 12)) (-2293 (($ $ $) 14)) (-2326 (($ $) 17)) (-2315 (($ $) 16)) (-2218 (($ $) 6)) (-2261 (($ $ $) 11) (($ $) 7)) (-2227 (($ $ $) 8)))
+((-3119 (((-597 (-1104)) (-1082)) 9)))
+(((-1061) (-10 -7 (-15 -3119 ((-597 (-1104)) (-1082))))) (T -1061))
+((-3119 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-1061)))))
+(-10 -7 (-15 -3119 ((-597 (-1104)) (-1082))))
+((-2154 (((-1186) (-597 (-804))) 23) (((-1186) (-804)) 22)) (-2464 (((-1186) (-597 (-804))) 21) (((-1186) (-804)) 20)) (-3176 (((-1186) (-597 (-804))) 19) (((-1186) (-804)) 11) (((-1186) (-1082) (-804)) 17)))
+(((-1062) (-10 -7 (-15 -3176 ((-1186) (-1082) (-804))) (-15 -3176 ((-1186) (-804))) (-15 -2464 ((-1186) (-804))) (-15 -2154 ((-1186) (-804))) (-15 -3176 ((-1186) (-597 (-804)))) (-15 -2464 ((-1186) (-597 (-804)))) (-15 -2154 ((-1186) (-597 (-804)))))) (T -1062))
+((-2154 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))))
+(-10 -7 (-15 -3176 ((-1186) (-1082) (-804))) (-15 -3176 ((-1186) (-804))) (-15 -2464 ((-1186) (-804))) (-15 -2154 ((-1186) (-804))) (-15 -3176 ((-1186) (-597 (-804)))) (-15 -2464 ((-1186) (-597 (-804)))) (-15 -2154 ((-1186) (-597 (-804)))))
+((-1751 (($ $ $) 10)) (-2101 (($ $) 9)) (-2323 (($ $ $) 13)) (-3981 (($ $ $) 15)) (-2790 (($ $ $) 12)) (-1374 (($ $ $) 14)) (-3179 (($ $) 17)) (-1607 (($ $) 16)) (-3934 (($ $) 6)) (-3187 (($ $ $) 11) (($ $) 7)) (-3564 (($ $ $) 8)))
(((-1063) (-133)) (T -1063))
-((-2326 (*1 *1 *1) (-4 *1 (-1063))) (-2315 (*1 *1 *1) (-4 *1 (-1063))) (-2304 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2293 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2283 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2271 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2261 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2249 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2237 (*1 *1 *1) (-4 *1 (-1063))) (-2227 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2261 (*1 *1 *1) (-4 *1 (-1063))) (-2218 (*1 *1 *1) (-4 *1 (-1063))))
-(-13 (-10 -8 (-15 -2218 ($ $)) (-15 -2261 ($ $)) (-15 -2227 ($ $ $)) (-15 -2237 ($ $)) (-15 -2249 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2293 ($ $ $)) (-15 -2304 ($ $ $)) (-15 -2315 ($ $)) (-15 -2326 ($ $))))
-((-2246 (((-110) $ $) 41)) (-3387 ((|#1| $) 15)) (-2334 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2104 (((-110) $) 17)) (-1252 (($ $ |#1|) 28)) (-1230 (($ $ (-110)) 30)) (-2355 (($ $) 31)) (-1241 (($ $ |#2|) 29)) (-3443 (((-1082) $) NIL)) (-2344 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2485 (((-1046) $) NIL)) (-1262 (((-110) $) 14)) (-4227 (($) 10)) (-2441 (($ $) 27)) (-2268 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2350 |#2|))) 21) (((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|)))) 24) (((-597 $) |#1| (-597 |#2|)) 26)) (-1991 ((|#2| $) 16)) (-2258 (((-804) $) 50)) (-2148 (((-110) $ $) 39)))
-(((-1064 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -4227 ($)) (-15 -1262 ((-110) $)) (-15 -3387 (|#1| $)) (-15 -1991 (|#2| $)) (-15 -2104 ((-110) $)) (-15 -2268 ($ |#1| |#2| (-110))) (-15 -2268 ($ |#1| |#2|)) (-15 -2268 ($ (-2 (|:| |val| |#1|) (|:| -2350 |#2|)))) (-15 -2268 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|))))) (-15 -2268 ((-597 $) |#1| (-597 |#2|))) (-15 -2441 ($ $)) (-15 -1252 ($ $ |#1|)) (-15 -1241 ($ $ |#2|)) (-15 -1230 ($ $ (-110))) (-15 -2355 ($ $)) (-15 -2344 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2334 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1064))
-((-4227 (*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-1262 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3387 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-13 (-1027) (-33))))) (-1991 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2268 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2268 (*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2350 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2350 *5)))) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *4 *5))) (-5 *1 (-1064 *4 *5)))) (-2268 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *3 *5))) (-5 *1 (-1064 *3 *5)) (-4 *3 (-13 (-1027) (-33))))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-1252 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-1241 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))) (-4 *2 (-13 (-1027) (-33))))) (-1230 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2344 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))) (-2334 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
-(-13 (-1027) (-10 -8 (-15 -4227 ($)) (-15 -1262 ((-110) $)) (-15 -3387 (|#1| $)) (-15 -1991 (|#2| $)) (-15 -2104 ((-110) $)) (-15 -2268 ($ |#1| |#2| (-110))) (-15 -2268 ($ |#1| |#2|)) (-15 -2268 ($ (-2 (|:| |val| |#1|) (|:| -2350 |#2|)))) (-15 -2268 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|))))) (-15 -2268 ((-597 $) |#1| (-597 |#2|))) (-15 -2441 ($ $)) (-15 -1252 ($ $ |#1|)) (-15 -1241 ($ $ |#2|)) (-15 -1230 ($ $ (-110))) (-15 -2355 ($ $)) (-15 -2344 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2334 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
-((-2246 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-3387 (((-1064 |#1| |#2|) $) 25)) (-1316 (($ $) 76)) (-1294 (((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-1273 (($ $ $ (-597 (-1064 |#1| |#2|))) 90) (($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-4102 (((-110) $ (-719)) NIL)) (-1947 (((-1064 |#1| |#2|) $ (-1064 |#1| |#2|)) 43 (|has| $ (-6 -4271)))) (-2416 (((-1064 |#1| |#2|) $ "value" (-1064 |#1| |#2|)) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-1785 (((-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|))) $) 80)) (-1283 (($ (-1064 |#1| |#2|) $) 39)) (-2272 (($ (-1064 |#1| |#2|) $) 31)) (-2456 (((-597 (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 51)) (-1305 (((-110) (-1064 |#1| |#2|) $) 82)) (-1966 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 (-1064 |#1| |#2|)) $) 55 (|has| $ (-6 -4270)))) (-3455 (((-110) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-1064 |#1| |#2|) (-1027))))) (-2847 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 47 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 46)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 (-1064 |#1| |#2|)) $) 53)) (-3937 (((-110) $) 42)) (-3443 (((-1082) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2485 (((-1046) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-1328 (((-3 $ "failed") $) 75)) (-1505 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-1064 |#1| |#2|)))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-276 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-1064 |#1| |#2|) (-1064 |#1| |#2|)) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-597 (-1064 |#1| |#2|)) (-597 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027))))) (-1439 (((-110) $ $) 50)) (-1262 (((-110) $) 22)) (-4227 (($) 24)) (-1832 (((-1064 |#1| |#2|) $ "value") NIL)) (-1984 (((-530) $ $) NIL)) (-3663 (((-110) $) 44)) (-2494 (((-719) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4270))) (((-719) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-1064 |#1| |#2|) (-1027))))) (-2441 (($ $) 49)) (-2268 (($ (-1064 |#1| |#2|)) 9) (($ |#1| |#2| (-597 $)) 12) (($ |#1| |#2| (-597 (-1064 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-597 |#2|)) 17)) (-2752 (((-597 |#2|) $) 81)) (-2258 (((-804) $) 73 (|has| (-1064 |#1| |#2|) (-571 (-804))))) (-3885 (((-597 $) $) 28)) (-1974 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-1515 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 64 (|has| (-1064 |#1| |#2|) (-1027)))) (-2167 (((-719) $) 58 (|has| $ (-6 -4270)))))
-(((-1065 |#1| |#2|) (-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4271) (-6 -4270) (-15 -1328 ((-3 $ "failed") $)) (-15 -1316 ($ $)) (-15 -2268 ($ (-1064 |#1| |#2|))) (-15 -2268 ($ |#1| |#2| (-597 $))) (-15 -2268 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2268 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2752 ((-597 |#2|) $)) (-15 -1785 ((-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|))) $)) (-15 -1305 ((-110) (-1064 |#1| |#2|) $)) (-15 -1294 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2272 ($ (-1064 |#1| |#2|) $)) (-15 -1283 ($ (-1064 |#1| |#2|) $)) (-15 -1273 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1273 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1065))
-((-1328 (*1 *1 *1) (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-1316 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-2268 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1065 *2 *3))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2268 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1064 *2 *3))) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)))) (-2268 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-597 *4)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4)))) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1305 (*1 *2 *3 *1) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))) (-1294 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1283 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1273 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1273 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *1 (-1065 *4 *5)))))
-(-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4271) (-6 -4270) (-15 -1328 ((-3 $ "failed") $)) (-15 -1316 ($ $)) (-15 -2268 ($ (-1064 |#1| |#2|))) (-15 -2268 ($ |#1| |#2| (-597 $))) (-15 -2268 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2268 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2752 ((-597 |#2|) $)) (-15 -1785 ((-597 (-2 (|:| |val| |#1|) (|:| -2350 |#2|))) $)) (-15 -1305 ((-110) (-1064 |#1| |#2|) $)) (-15 -1294 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2272 ($ (-1064 |#1| |#2|) $)) (-15 -1283 ($ (-1064 |#1| |#2|) $)) (-15 -1273 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1273 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1350 (($ $) NIL)) (-1380 ((|#2| $) NIL)) (-1623 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-1338 (($ (-637 |#2|)) 47)) (-1645 (((-110) $) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2944 (($ |#2|) 9)) (-3956 (($) NIL T CONST)) (-1543 (($ $) 60 (|has| |#2| (-289)))) (-1564 (((-223 |#1| |#2|) $ (-530)) 34)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) 74)) (-4113 (((-719) $) 62 (|has| |#2| (-522)))) (-2787 ((|#2| $ (-530) (-530)) NIL)) (-2456 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3150 (((-110) $) NIL)) (-1532 (((-719) $) 64 (|has| |#2| (-522)))) (-1522 (((-597 (-223 |#1| |#2|)) $) 68 (|has| |#2| (-522)))) (-3531 (((-719) $) NIL)) (-3544 (((-719) $) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-2892 ((|#2| $) 58 (|has| |#2| (-6 (-4272 "*"))))) (-1604 (((-530) $) NIL)) (-1583 (((-530) $) NIL)) (-3252 (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1593 (((-530) $) NIL)) (-1574 (((-530) $) NIL)) (-2162 (($ (-597 (-597 |#2|))) 29)) (-2847 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3285 (((-597 (-597 |#2|)) $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3248 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-2485 (((-1046) $) NIL)) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1505 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) NIL)) (-3211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2911 ((|#2| $) NIL)) (-2933 (($ (-597 |#2|)) 42)) (-1635 (((-110) $) NIL)) (-2922 (((-223 |#1| |#2|) $) NIL)) (-2900 ((|#2| $) 56 (|has| |#2| (-6 (-4272 "*"))))) (-2494 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2441 (($ $) NIL)) (-3173 (((-506) $) 83 (|has| |#2| (-572 (-506))))) (-1554 (((-223 |#1| |#2|) $ (-530)) 36)) (-2258 (((-804) $) 39) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) 44)) (-1667 (((-719)) 17)) (-1515 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-1614 (((-110) $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 11 T CONST)) (-2955 (($) 14 T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) 54) (($ $ (-530)) 73 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) 50) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) 52)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1066 |#1| |#2|) (-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -1350 ($ $)) (-15 -1338 ($ (-637 |#2|))) (-15 -2258 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4272 "*"))) (-6 -4259) |%noBranch|) (IF (|has| |#2| (-6 (-4272 "*"))) (IF (|has| |#2| (-6 -4267)) (-6 -4267) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-719) (-984)) (T -1066))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-637 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)) (-4 *4 (-984)))) (-1350 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)))))
-(-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -1350 ($ $)) (-15 -1338 ($ (-637 |#2|))) (-15 -2258 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4272 "*"))) (-6 -4259) |%noBranch|) (IF (|has| |#2| (-6 (-4272 "*"))) (IF (|has| |#2| (-6 -4267)) (-6 -4267) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-((-1396 (($ $) 19)) (-1363 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-2891 (((-110) $ $) 24)) (-1418 (($ $) 17)) (-1832 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) 29)) (-2258 (($ (-137)) 27) (((-804) $) NIL)))
-(((-1067 |#1|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| (-134))) (-15 -1363 (|#1| |#1| (-137))) (-15 -2258 (|#1| (-137))) (-15 -2891 ((-110) |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -1832 ((-137) |#1| (-530))) (-15 -1832 ((-137) |#1| (-530) (-137)))) (-1068)) (T -1067))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| (-134))) (-15 -1363 (|#1| |#1| (-137))) (-15 -2258 (|#1| (-137))) (-15 -2891 ((-110) |#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -1832 ((-137) |#1| (-530))) (-15 -1832 ((-137) |#1| (-530) (-137))))
-((-2246 (((-110) $ $) 19 (|has| (-137) (-1027)))) (-1386 (($ $) 120)) (-1396 (($ $) 121)) (-1363 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-2869 (((-110) $ $) 118)) (-2850 (((-110) $ $ (-530)) 117)) (-1373 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-4038 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-4017 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4271))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2705 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-3074 (($ $ (-1148 (-530)) $) 114)) (-2939 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4270)))) (-3856 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4270)))) (-2858 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4271)))) (-2787 (((-137) $ (-530)) 51)) (-2891 (((-110) $ $) 119)) (-1944 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-2456 (((-597 (-137)) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) (-137)) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| (-137) (-795)))) (-3842 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-3252 (((-597 (-137)) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| (-137) (-795)))) (-3763 (((-110) $ $ (-137)) 115)) (-2762 (((-719) $ $ (-137)) 116)) (-2847 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1407 (($ $) 122)) (-1418 (($ $) 123)) (-1987 (((-110) $ (-719)) 10)) (-2716 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3443 (((-1082) $) 22 (|has| (-137) (-1027)))) (-4016 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| (-137) (-1027)))) (-2907 (((-137) $) 42 (|has| (-530) (-795)))) (-4221 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1946 (($ $ (-137)) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2002 (((-597 (-137)) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4270))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2268 (($ (-597 (-137))) 70)) (-3476 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (($ (-137)) 111) (((-804) $) 18 (|has| (-137) (-571 (-804))))) (-1515 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2182 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2148 (((-110) $ $) 20 (|has| (-137) (-1027)))) (-2195 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2172 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-3179 (*1 *1 *1) (-4 *1 (-1063))) (-1607 (*1 *1 *1) (-4 *1 (-1063))) (-3981 (*1 *1 *1 *1) (-4 *1 (-1063))) (-1374 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2323 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2790 (*1 *1 *1 *1) (-4 *1 (-1063))) (-3187 (*1 *1 *1 *1) (-4 *1 (-1063))) (-1751 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2101 (*1 *1 *1) (-4 *1 (-1063))) (-3564 (*1 *1 *1 *1) (-4 *1 (-1063))) (-3187 (*1 *1 *1) (-4 *1 (-1063))) (-3934 (*1 *1 *1) (-4 *1 (-1063))))
+(-13 (-10 -8 (-15 -3934 ($ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -2101 ($ $)) (-15 -1751 ($ $ $)) (-15 -3187 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2323 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -1607 ($ $)) (-15 -3179 ($ $))))
+((-2352 (((-110) $ $) 41)) (-3417 ((|#1| $) 15)) (-2616 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2199 (((-110) $) 17)) (-3013 (($ $ |#1|) 28)) (-1668 (($ $ (-110)) 30)) (-1600 (($ $) 31)) (-3375 (($ $ |#2|) 29)) (-1424 (((-1082) $) NIL)) (-2064 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2624 (((-1046) $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 10)) (-2579 (($ $) 27)) (-2377 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) 21) (((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) 24) (((-597 $) |#1| (-597 |#2|)) 26)) (-2078 ((|#2| $) 16)) (-2366 (((-804) $) 50)) (-2248 (((-110) $ $) 39)))
+(((-1064 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -3417 (|#1| $)) (-15 -2078 (|#2| $)) (-15 -2199 ((-110) $)) (-15 -2377 ($ |#1| |#2| (-110))) (-15 -2377 ($ |#1| |#2|)) (-15 -2377 ($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) (-15 -2377 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))))) (-15 -2377 ((-597 $) |#1| (-597 |#2|))) (-15 -2579 ($ $)) (-15 -3013 ($ $ |#1|)) (-15 -3375 ($ $ |#2|)) (-15 -1668 ($ $ (-110))) (-15 -1600 ($ $)) (-15 -2064 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2616 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1064))
+((-3958 (*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3417 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-13 (-1027) (-33))))) (-2078 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2473 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2473 *5)))) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *4 *5))) (-5 *1 (-1064 *4 *5)))) (-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *3 *5))) (-5 *1 (-1064 *3 *5)) (-4 *3 (-13 (-1027) (-33))))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3013 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3375 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))) (-4 *2 (-13 (-1027) (-33))))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2064 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))) (-2616 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
+(-13 (-1027) (-10 -8 (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -3417 (|#1| $)) (-15 -2078 (|#2| $)) (-15 -2199 ((-110) $)) (-15 -2377 ($ |#1| |#2| (-110))) (-15 -2377 ($ |#1| |#2|)) (-15 -2377 ($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) (-15 -2377 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))))) (-15 -2377 ((-597 $) |#1| (-597 |#2|))) (-15 -2579 ($ $)) (-15 -3013 ($ $ |#1|)) (-15 -3375 ($ $ |#2|)) (-15 -1668 ($ $ (-110))) (-15 -1600 ($ $)) (-15 -2064 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2616 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
+((-2352 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-3417 (((-1064 |#1| |#2|) $) 25)) (-4113 (($ $) 76)) (-2321 (((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-1966 (($ $ $ (-597 (-1064 |#1| |#2|))) 90) (($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-3186 (((-110) $ (-719)) NIL)) (-1615 (((-1064 |#1| |#2|) $ (-1064 |#1| |#2|)) 43 (|has| $ (-6 -4270)))) (-2552 (((-1064 |#1| |#2|) $ "value" (-1064 |#1| |#2|)) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-1851 (((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $) 80)) (-1842 (($ (-1064 |#1| |#2|) $) 39)) (-2383 (($ (-1064 |#1| |#2|) $) 31)) (-3779 (((-597 (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 51)) (-2308 (((-110) (-1064 |#1| |#2|) $) 82)) (-1646 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 (-1064 |#1| |#2|)) $) 55 (|has| $ (-6 -4269)))) (-4197 (((-110) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1064 |#1| |#2|) (-1027))))) (-3583 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 47 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 46)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 (-1064 |#1| |#2|)) $) 53)) (-3615 (((-110) $) 42)) (-1424 (((-1082) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2624 (((-1046) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2653 (((-3 $ "failed") $) 75)) (-1533 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-1064 |#1| |#2|)))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-276 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-1064 |#1| |#2|) (-1064 |#1| |#2|)) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-597 (-1064 |#1| |#2|)) (-597 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027))))) (-2391 (((-110) $ $) 50)) (-3250 (((-110) $) 22)) (-3958 (($) 24)) (-1902 (((-1064 |#1| |#2|) $ "value") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) 44)) (-2632 (((-719) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269))) (((-719) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1064 |#1| |#2|) (-1027))))) (-2579 (($ $) 49)) (-2377 (($ (-1064 |#1| |#2|)) 9) (($ |#1| |#2| (-597 $)) 12) (($ |#1| |#2| (-597 (-1064 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-597 |#2|)) 17)) (-2908 (((-597 |#2|) $) 81)) (-2366 (((-804) $) 73 (|has| (-1064 |#1| |#2|) (-571 (-804))))) (-2557 (((-597 $) $) 28)) (-4153 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-3889 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 64 (|has| (-1064 |#1| |#2|) (-1027)))) (-2267 (((-719) $) 58 (|has| $ (-6 -4269)))))
+(((-1065 |#1| |#2|) (-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -2653 ((-3 $ "failed") $)) (-15 -4113 ($ $)) (-15 -2377 ($ (-1064 |#1| |#2|))) (-15 -2377 ($ |#1| |#2| (-597 $))) (-15 -2377 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2377 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2908 ((-597 |#2|) $)) (-15 -1851 ((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $)) (-15 -2308 ((-110) (-1064 |#1| |#2|) $)) (-15 -2321 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2383 ($ (-1064 |#1| |#2|) $)) (-15 -1842 ($ (-1064 |#1| |#2|) $)) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1065))
+((-2653 (*1 *1 *1) (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-4113 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1065 *2 *3))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1064 *2 *3))) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)))) (-2377 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-597 *4)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2308 (*1 *2 *3 *1) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))) (-2321 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1966 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1966 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *1 (-1065 *4 *5)))))
+(-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -2653 ((-3 $ "failed") $)) (-15 -4113 ($ $)) (-15 -2377 ($ (-1064 |#1| |#2|))) (-15 -2377 ($ |#1| |#2| (-597 $))) (-15 -2377 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2377 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2908 ((-597 |#2|) $)) (-15 -1851 ((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $)) (-15 -2308 ((-110) (-1064 |#1| |#2|) $)) (-15 -2321 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2383 ($ (-1064 |#1| |#2|) $)) (-15 -1842 ($ (-1064 |#1| |#2|) $)) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-4114 (($ $) NIL)) (-1367 ((|#2| $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2477 (($ (-637 |#2|)) 47)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1570 (($ |#2|) 9)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 60 (|has| |#2| (-289)))) (-1325 (((-223 |#1| |#2|) $ (-530)) 34)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 74)) (-2426 (((-719) $) 62 (|has| |#2| (-522)))) (-3532 ((|#2| $ (-530) (-530)) NIL)) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL)) (-1791 (((-719) $) 64 (|has| |#2| (-522)))) (-2515 (((-597 (-223 |#1| |#2|)) $) 68 (|has| |#2| (-522)))) (-1796 (((-719) $) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#2| $) 58 (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#2|))) 29)) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2654 (((-597 (-597 |#2|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1991 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) NIL)) (-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3896 ((|#2| $) NIL)) (-2128 (($ (-597 |#2|)) 42)) (-1362 (((-110) $) NIL)) (-3614 (((-223 |#1| |#2|) $) NIL)) (-2338 ((|#2| $) 56 (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 83 (|has| |#2| (-572 (-506))))) (-3350 (((-223 |#1| |#2|) $ (-530)) 36)) (-2366 (((-804) $) 39) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) 44)) (-3300 (((-719)) 17)) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3080 (($) 11 T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) 54) (($ $ (-530)) 73 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) 50) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) 52)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1066 |#1| |#2|) (-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -4114 ($ $)) (-15 -2477 ($ (-637 |#2|))) (-15 -2366 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-719) (-984)) (T -1066))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-637 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)) (-4 *4 (-984)))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)))))
+(-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -4114 ($ $)) (-15 -2477 ($ (-637 |#2|))) (-15 -2366 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
+((-3910 (($ $) 19)) (-2879 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-3034 (((-110) $ $) 24)) (-1502 (($ $) 17)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) 29)) (-2366 (($ (-137)) 27) (((-804) $) NIL)))
+(((-1067 |#1|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| (-134))) (-15 -2879 (|#1| |#1| (-137))) (-15 -2366 (|#1| (-137))) (-15 -3034 ((-110) |#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1902 ((-137) |#1| (-530))) (-15 -1902 ((-137) |#1| (-530) (-137)))) (-1068)) (T -1067))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| (-134))) (-15 -2879 (|#1| |#1| (-137))) (-15 -2366 (|#1| (-137))) (-15 -3034 ((-110) |#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1902 ((-137) |#1| (-530))) (-15 -1902 ((-137) |#1| (-530) (-137))))
+((-2352 (((-110) $ $) 19 (|has| (-137) (-1027)))) (-2289 (($ $) 120)) (-3910 (($ $) 121)) (-2879 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 118)) (-2996 (((-110) $ $ (-530)) 117)) (-1489 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2865 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3782 (($ $ (-1148 (-530)) $) 114)) (-3077 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) 51)) (-3034 (((-110) $ $) 119)) (-2027 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-3779 (((-597 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 115)) (-2918 (((-719) $ $ (-137)) 116)) (-3583 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2794 (($ $) 122)) (-1502 (($ $) 123)) (-2763 (((-110) $ (-719)) 10)) (-2875 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1424 (((-1082) $) 22 (|has| (-137) (-1027)))) (-4028 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| (-137) (-1027)))) (-3048 (((-137) $) 42 (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1522 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) 70)) (-3483 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (($ (-137)) 111) (((-804) $) 18 (|has| (-137) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2284 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2248 (((-110) $ $) 20 (|has| (-137) (-1027)))) (-2297 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2272 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1068) (-133)) (T -1068))
-((-1418 (*1 *1 *1) (-4 *1 (-1068))) (-1407 (*1 *1 *1) (-4 *1 (-1068))) (-1396 (*1 *1 *1) (-4 *1 (-1068))) (-1386 (*1 *1 *1) (-4 *1 (-1068))) (-2891 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-2869 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-2850 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))) (-2762 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-719)))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-110)))) (-3074 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))) (-1944 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)))) (-1944 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)) (-5 *3 (-134)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1068)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-1373 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2705 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2705 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-1832 (*1 *1 *1 *1) (-4 *1 (-1068))))
-(-13 (-19 (-137)) (-10 -8 (-15 -1418 ($ $)) (-15 -1407 ($ $)) (-15 -1396 ($ $)) (-15 -1386 ($ $)) (-15 -2891 ((-110) $ $)) (-15 -2869 ((-110) $ $)) (-15 -2850 ((-110) $ $ (-530))) (-15 -2762 ((-719) $ $ (-137))) (-15 -3763 ((-110) $ $ (-137))) (-15 -3074 ($ $ (-1148 (-530)) $)) (-15 -1944 ((-530) $ $ (-530))) (-15 -1944 ((-530) (-134) $ (-530))) (-15 -2258 ($ (-137))) (-15 -1373 ((-597 $) $ (-137))) (-15 -1373 ((-597 $) $ (-134))) (-15 -1363 ($ $ (-137))) (-15 -1363 ($ $ (-134))) (-15 -2716 ($ $ (-137))) (-15 -2716 ($ $ (-134))) (-15 -2705 ($ $ (-137))) (-15 -2705 ($ $ (-134))) (-15 -1832 ($ $ $))))
-(((-33) . T) ((-99) -1476 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-571 (-804)) -1476 (|has| (-137) (-1027)) (|has| (-137) (-795)) (|has| (-137) (-571 (-804)))) ((-144 #0=(-137)) . T) ((-572 (-506)) |has| (-137) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #0#) . T) ((-19 #0#) . T) ((-795) |has| (-137) (-795)) ((-1027) -1476 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-1135) . T))
-((-1495 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719)) 94)) (-1459 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719)) 54)) (-4131 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719)) 85)) (-1438 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-1471 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719)) 56) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110)) 58)) (-1482 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 77)) (-3173 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) 80)) (-1449 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|) 53)) (-1428 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
-(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1428 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1438 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1449 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -1495 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719))) (-15 -3173 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -4131 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1069))
-((-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1069 *4 *5 *6 *7 *8)))) (-1495 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2350 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2350 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))) (-1482 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-1482 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-1471 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1471 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1471 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-1459 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1459 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1449 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1428 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1438 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -1449 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1459 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5| (-719))) (-15 -1471 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) |#4| |#5|)) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1482 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -1495 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))))) (-719))) (-15 -3173 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|)))) (-15 -4131 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2350 |#5|))) (-719))))
-((-2246 (((-110) $ $) NIL)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) NIL)) (-2844 (((-597 $) (-597 |#4|)) 110) (((-597 $) (-597 |#4|) (-110)) 111) (((-597 $) (-597 |#4|) (-110) (-110)) 109) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2596 (((-597 |#3|) $) NIL)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2906 ((|#4| |#4| $) NIL)) (-1359 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| $) 84)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 62)) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) 26 (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3064 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2446 (($ (-597 |#4|)) NIL)) (-2918 (((-3 $ "failed") $) 39)) (-2878 ((|#4| |#4| $) 65)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2272 (($ |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2856 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) NIL)) (-3118 (((-110) |#4| $) NIL)) (-3094 (((-110) |#4| $) NIL)) (-3129 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1507 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 124)) (-2456 (((-597 |#4|) $) 16 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4167 ((|#3| $) 33)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#4|) $) 17 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2847 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 21)) (-3222 (((-597 |#3|) $) NIL)) (-3209 (((-110) |#3| $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-3049 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-3037 (((-597 (-2 (|:| |val| |#4|) (|:| -2350 $))) |#4| |#4| $) 103)) (-2294 (((-3 |#4| "failed") $) 37)) (-3060 (((-597 $) |#4| $) 88)) (-3082 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3070 (((-597 (-2 (|:| |val| (-110)) (|:| -2350 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-3418 (((-597 $) |#4| $) 107) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 108) (((-597 $) |#4| (-597 $)) NIL)) (-1517 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 119)) (-1528 (($ |#4| $) 75) (($ (-597 |#4|) $) 76) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-3011 (((-597 |#4|) $) NIL)) (-2938 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2888 ((|#4| |#4| $) NIL)) (-1845 (((-110) $ $) NIL)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2898 ((|#4| |#4| $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-3 |#4| "failed") $) 35)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2807 (((-3 $ "failed") $ |#4|) 48)) (-1312 (($ $ |#4|) NIL) (((-597 $) |#4| $) 90) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 86)) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 15)) (-4227 (($) 13)) (-3409 (((-719) $) NIL)) (-2494 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) 12)) (-3173 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 20)) (-3170 (($ $ |#3|) 42)) (-3196 (($ $ |#3|) 44)) (-2866 (($ $) NIL)) (-3183 (($ $ |#3|) NIL)) (-2258 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2795 (((-719) $) NIL (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3025 (((-597 $) |#4| $) 54) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) NIL)) (-3106 (((-110) |#4| $) NIL)) (-3292 (((-110) |#3| $) 61)) (-2148 (((-110) $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1070 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1528 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1517 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1507 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1070))
-((-1528 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-2844 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-2844 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1517 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1507 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-1070 *5 *6 *7 *8))))) (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1528 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -2844 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1517 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1507 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1596 ((|#1| $) 34)) (-3883 (($ (-597 |#1|)) 39)) (-4102 (((-110) $ (-719)) NIL)) (-3956 (($) NIL T CONST)) (-2882 ((|#1| |#1| $) 36)) (-2870 ((|#1| $) 32)) (-2456 (((-597 |#1|) $) 18 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 22)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3275 ((|#1| $) 35)) (-3440 (($ |#1| $) 37)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3287 ((|#1| $) 33)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 31)) (-4227 (($) 38)) (-4219 (((-719) $) 29)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 27)) (-2258 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-3298 (($ (-597 |#1|)) NIL)) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 17 (|has| |#1| (-1027)))) (-2167 (((-719) $) 30 (|has| $ (-6 -4270)))))
-(((-1071 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -3883 ($ (-597 |#1|))))) (-1135)) (T -1071))
-((-3883 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1071 *3)))))
-(-13 (-1047 |#1|) (-10 -8 (-15 -3883 ($ (-597 |#1|)))))
-((-2416 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 44) ((|#2| $ (-530) |#2|) 41)) (-1539 (((-110) $) 12)) (-2847 (($ (-1 |#2| |#2|) $) 39)) (-2907 ((|#2| $) NIL) (($ $ (-719)) 17)) (-1946 (($ $ |#2|) 40)) (-1549 (((-110) $) 11)) (-1832 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1148 (-530))) 31) ((|#2| $ (-530)) 23) ((|#2| $ (-530) |#2|) NIL)) (-1501 (($ $ $) 47) (($ $ |#2|) NIL)) (-3476 (($ $ $) 33) (($ |#2| $) NIL) (($ (-597 $)) 36) (($ $ |#2|) NIL)))
-(((-1072 |#1| |#2|) (-10 -8 (-15 -1539 ((-110) |#1|)) (-15 -1549 ((-110) |#1|)) (-15 -2416 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -1946 (|#1| |#1| |#2|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -3476 (|#1| (-597 |#1|))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -2416 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2416 (|#2| |#1| "last" |#2|)) (-15 -2416 (|#1| |#1| "rest" |#1|)) (-15 -2416 (|#2| |#1| "first" |#2|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1832 (|#2| |#1| "last")) (-15 -1832 (|#1| |#1| "rest")) (-15 -2907 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "first")) (-15 -2907 (|#2| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1832 (|#2| |#1| "value")) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|))) (-1073 |#2|) (-1135)) (T -1072))
-NIL
-(-10 -8 (-15 -1539 ((-110) |#1|)) (-15 -1549 ((-110) |#1|)) (-15 -2416 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530) |#2|)) (-15 -1832 (|#2| |#1| (-530))) (-15 -1946 (|#1| |#1| |#2|)) (-15 -3476 (|#1| |#1| |#2|)) (-15 -3476 (|#1| (-597 |#1|))) (-15 -1832 (|#1| |#1| (-1148 (-530)))) (-15 -2416 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2416 (|#2| |#1| "last" |#2|)) (-15 -2416 (|#1| |#1| "rest" |#1|)) (-15 -2416 (|#2| |#1| "first" |#2|)) (-15 -1501 (|#1| |#1| |#2|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1832 (|#2| |#1| "last")) (-15 -1832 (|#1| |#1| "rest")) (-15 -2907 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "first")) (-15 -2907 (|#2| |#1|)) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1832 (|#2| |#1| "value")) (-15 -2847 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-3165 ((|#1| $) 65)) (-2040 (($ $) 67)) (-1935 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 52 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-1467 (($ $ $) 56 (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 58 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4271))) (($ $ "rest" $) 55 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4270)))) (-3152 ((|#1| $) 66)) (-3956 (($) 7 T CONST)) (-2918 (($ $) 73) (($ $ (-719)) 71)) (-2939 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4270))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2858 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 87)) (-1539 (((-110) $) 83)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) 108)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 95 (|has| (-530) (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 94 (|has| (-530) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2294 ((|#1| $) 70) (($ $ (-719)) 68)) (-4016 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-1983 (((-597 (-530)) $) 92)) (-1993 (((-110) (-530) $) 91)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 76) (($ $ (-719)) 74)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1946 (($ $ |#1|) 96 (|has| $ (-6 -4271)))) (-1549 (((-110) $) 84)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 90)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-1984 (((-530) $ $) 44)) (-1778 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-3663 (((-110) $) 46)) (-1513 (($ $) 62)) (-1489 (($ $) 59 (|has| $ (-6 -4271)))) (-1524 (((-719) $) 63)) (-1534 (($ $) 64)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-3173 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 107)) (-1501 (($ $ $) 61 (|has| $ (-6 -4271))) (($ $ |#1|) 60 (|has| $ (-6 -4271)))) (-3476 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-1502 (*1 *1 *1) (-4 *1 (-1068))) (-2794 (*1 *1 *1) (-4 *1 (-1068))) (-3910 (*1 *1 *1) (-4 *1 (-1068))) (-2289 (*1 *1 *1) (-4 *1 (-1068))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-2996 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))) (-2918 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-719)))) (-3754 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-110)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))) (-2027 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)) (-5 *3 (-134)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1068)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2865 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2865 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-1902 (*1 *1 *1 *1) (-4 *1 (-1068))))
+(-13 (-19 (-137)) (-10 -8 (-15 -1502 ($ $)) (-15 -2794 ($ $)) (-15 -3910 ($ $)) (-15 -2289 ($ $)) (-15 -3034 ((-110) $ $)) (-15 -3014 ((-110) $ $)) (-15 -2996 ((-110) $ $ (-530))) (-15 -2918 ((-719) $ $ (-137))) (-15 -3754 ((-110) $ $ (-137))) (-15 -3782 ($ $ (-1148 (-530)) $)) (-15 -2027 ((-530) $ $ (-530))) (-15 -2027 ((-530) (-134) $ (-530))) (-15 -2366 ($ (-137))) (-15 -1489 ((-597 $) $ (-137))) (-15 -1489 ((-597 $) $ (-134))) (-15 -2879 ($ $ (-137))) (-15 -2879 ($ $ (-134))) (-15 -2875 ($ $ (-137))) (-15 -2875 ($ $ (-134))) (-15 -2865 ($ $ (-137))) (-15 -2865 ($ $ (-134))) (-15 -1902 ($ $ $))))
+(((-33) . T) ((-99) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-571 (-804)) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795)) (|has| (-137) (-571 (-804)))) ((-144 #0=(-137)) . T) ((-572 (-506)) |has| (-137) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #0#) . T) ((-19 #0#) . T) ((-795) |has| (-137) (-795)) ((-1027) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-1135) . T))
+((-2500 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719)) 94)) (-2535 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 54)) (-4141 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)) 85)) (-2249 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-2280 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 56) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110)) 58)) (-3850 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 77)) (-3260 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 80)) (-3920 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 53)) (-3204 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
+(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1069))
+((-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1069 *4 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))) (-3850 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2280 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3920 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719))))
+((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 110) (((-597 $) (-597 |#4|) (-110)) 111) (((-597 $) (-597 |#4|) (-110) (-110)) 109) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 84)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 62)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) 65)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3131 (((-110) |#4| $) NIL)) (-2747 (((-110) |#4| $) NIL)) (-2984 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1767 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 124)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 103)) (-2407 (((-3 |#4| "failed") $) 37)) (-3274 (((-597 $) |#4| $) 88)) (-1404 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-4033 (((-597 $) |#4| $) 107) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 108) (((-597 $) |#4| (-597 $)) NIL)) (-1801 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 119)) (-2721 (($ |#4| $) 75) (($ (-597 |#4|) $) 76) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 48)) (-3168 (($ $ |#4|) NIL) (((-597 $) |#4| $) 90) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 86)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-4208 (((-597 $) |#4| $) 54) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-1321 (((-110) |#4| $) NIL)) (-2856 (((-110) |#3| $) 61)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1070 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1070))
+((-2721 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1512 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1801 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1767 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-1070 *5 *6 *7 *8))))) (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1598 ((|#1| $) 34)) (-3887 (($ (-597 |#1|)) 39)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3684 ((|#1| |#1| $) 36)) (-2176 ((|#1| $) 32)) (-3779 (((-597 |#1|) $) 18 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 35)) (-2441 (($ |#1| $) 37)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 33)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 31)) (-3958 (($) 38)) (-4218 (((-719) $) 29)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 27)) (-2366 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 17 (|has| |#1| (-1027)))) (-2267 (((-719) $) 30 (|has| $ (-6 -4269)))))
+(((-1071 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -3887 ($ (-597 |#1|))))) (-1135)) (T -1071))
+((-3887 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1071 *3)))))
+(-13 (-1047 |#1|) (-10 -8 (-15 -3887 ($ (-597 |#1|)))))
+((-2552 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 44) ((|#2| $ (-530) |#2|) 41)) (-1230 (((-110) $) 12)) (-3583 (($ (-1 |#2| |#2|) $) 39)) (-3048 ((|#2| $) NIL) (($ $ (-719)) 17)) (-1522 (($ $ |#2|) 40)) (-4083 (((-110) $) 11)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1148 (-530))) 31) ((|#2| $ (-530)) 23) ((|#2| $ (-530) |#2|) NIL)) (-1328 (($ $ $) 47) (($ $ |#2|) NIL)) (-3483 (($ $ $) 33) (($ |#2| $) NIL) (($ (-597 $)) 36) (($ $ |#2|) NIL)))
+(((-1072 |#1| |#2|) (-10 -8 (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| "last")) (-15 -1902 (|#1| |#1| "rest")) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|))) (-1073 |#2|) (-1135)) (T -1072))
+NIL
+(-10 -8 (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| "last")) (-15 -1902 (|#1| |#1| "rest")) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-4083 (((-110) $) 84)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1073 |#1|) (-133) (-1135)) (T -1073))
-((-1549 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(-13 (-1169 |t#1|) (-602 |t#1|) (-10 -8 (-15 -1549 ((-110) $)) (-15 -1539 ((-110) $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T) ((-1169 |#1|) . T))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) NIL)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) NIL)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-4083 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1230 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
+(-13 (-1169 |t#1|) (-602 |t#1|) (-10 -8 (-15 -4083 ((-110) $)) (-15 -1230 ((-110) $))))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T) ((-1169 |#1|) . T))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-1074 |#1| |#2| |#3|) (-1112 |#1| |#2|) (-1027) (-1027) |#2|) (T -1074))
NIL
(-1112 |#1| |#2|)
-((-2246 (((-110) $ $) 7)) (-1560 (((-3 $ "failed") $) 13)) (-3443 (((-1082) $) 9)) (-3677 (($) 14 T CONST)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11)) (-2148 (((-110) $ $) 6)))
+((-2352 (((-110) $ $) 7)) (-2972 (((-3 $ "failed") $) 13)) (-1424 (((-1082) $) 9)) (-3657 (($) 14 T CONST)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
(((-1075) (-133)) (T -1075))
-((-3677 (*1 *1) (-4 *1 (-1075))) (-1560 (*1 *1 *1) (|partial| -4 *1 (-1075))))
-(-13 (-1027) (-10 -8 (-15 -3677 ($) -2562) (-15 -1560 ((-3 $ "failed") $))))
+((-3657 (*1 *1) (-4 *1 (-1075))) (-2972 (*1 *1 *1) (|partial| -4 *1 (-1075))))
+(-13 (-1027) (-10 -8 (-15 -3657 ($) -2708) (-15 -2972 ((-3 $ "failed") $))))
(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1590 (((-1080 |#1|) (-1080 |#1|)) 17)) (-1571 (((-1080 |#1|) (-1080 |#1|)) 13)) (-1600 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 20)) (-1580 (((-1080 |#1|) (-1080 |#1|)) 15)))
-(((-1076 |#1|) (-10 -7 (-15 -1571 ((-1080 |#1|) (-1080 |#1|))) (-15 -1580 ((-1080 |#1|) (-1080 |#1|))) (-15 -1590 ((-1080 |#1|) (-1080 |#1|))) (-15 -1600 ((-1080 |#1|) (-1080 |#1|) (-530) (-530)))) (-13 (-522) (-140))) (T -1076))
-((-1600 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1076 *4)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-1571 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))))
-(-10 -7 (-15 -1571 ((-1080 |#1|) (-1080 |#1|))) (-15 -1580 ((-1080 |#1|) (-1080 |#1|))) (-15 -1590 ((-1080 |#1|) (-1080 |#1|))) (-15 -1600 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))))
-((-3476 (((-1080 |#1|) (-1080 (-1080 |#1|))) 15)))
-(((-1077 |#1|) (-10 -7 (-15 -3476 ((-1080 |#1|) (-1080 (-1080 |#1|))))) (-1135)) (T -1077))
-((-3476 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -3476 ((-1080 |#1|) (-1080 (-1080 |#1|)))))
-((-1802 (((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 25)) (-3856 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 26)) (-3114 (((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)) 16)))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -3114 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -1802 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -3856 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)))) (-1135) (-1135)) (T -1078))
-((-3856 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135)) (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6)))))
-(-10 -7 (-15 -3114 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -1802 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -3856 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))))
-((-3114 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)) 21)))
-(((-1079 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -1079))
-((-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-1079 *6 *7 *8)))))
-(-10 -7 (-15 -3114 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) NIL)) (-3165 ((|#1| $) NIL)) (-2040 (($ $) 51)) (-1935 (((-1186) $ (-530) (-530)) 76 (|has| $ (-6 -4271)))) (-1445 (($ $ (-530)) 110 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-1620 (((-804) $) 41 (|has| |#1| (-1027)))) (-1611 (((-110)) 40 (|has| |#1| (-1027)))) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4271)))) (-1467 (($ $ $) 98 (|has| $ (-6 -4271))) (($ $ (-530) $) 122)) (-1455 ((|#1| $ |#1|) 107 (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 102 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4271))) (($ $ "rest" $) 106 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 89 (|has| $ (-6 -4271))) ((|#1| $ (-530) |#1|) 55 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 58)) (-3152 ((|#1| $) NIL)) (-3956 (($) NIL T CONST)) (-1582 (($ $) 14)) (-2918 (($ $) 29) (($ $ (-719)) 88)) (-1651 (((-110) (-597 |#1|) $) 116 (|has| |#1| (-1027)))) (-1662 (($ (-597 |#1|)) 112)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) 57)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1539 (((-110) $) NIL)) (-2456 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2092 (((-1186) (-530) $) 121 (|has| |#1| (-1027)))) (-1573 (((-719) $) 118)) (-1994 (((-597 $) $) NIL)) (-1966 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-1987 (((-110) $ (-719)) NIL)) (-3353 (((-597 |#1|) $) NIL)) (-3937 (((-110) $) NIL)) (-1602 (($ $) 90)) (-1613 (((-110) $) 13)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2294 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-4016 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) 74)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2112 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1592 ((|#1| $) 10)) (-2907 ((|#1| $) 28) (($ $ (-719)) 49)) (-1641 (((-2 (|:| |cycle?| (-110)) (|:| -3852 (-719)) (|:| |period| (-719))) (-719) $) 25)) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2157 (($ (-1 (-110) |#1|) $) 126)) (-2168 (($ (-1 (-110) |#1|) $) 127)) (-1946 (($ $ |#1|) 68 (|has| $ (-6 -4271)))) (-1312 (($ $ (-530)) 32)) (-1549 (((-110) $) 72)) (-1622 (((-110) $) 12)) (-1634 (((-110) $) 117)) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 20)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) 15)) (-4227 (($) 43)) (-1832 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 54) ((|#1| $ (-530) |#1|) NIL)) (-1984 (((-530) $ $) 48)) (-1778 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1630 (($ (-1 $)) 47)) (-3663 (((-110) $) 69)) (-1513 (($ $) 70)) (-1489 (($ $) 99 (|has| $ (-6 -4271)))) (-1524 (((-719) $) NIL)) (-1534 (($ $) NIL)) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 44)) (-3173 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 53)) (-1631 (($ |#1| $) 97)) (-1501 (($ $ $) 100 (|has| $ (-6 -4271))) (($ $ |#1|) 101 (|has| $ (-6 -4271)))) (-3476 (($ $ $) 78) (($ |#1| $) 45) (($ (-597 $)) 83) (($ $ |#1|) 77)) (-3021 (($ $) 50)) (-2258 (($ (-597 |#1|)) 111) (((-804) $) 42 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) NIL)) (-1974 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 114 (|has| |#1| (-1027)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1080 |#1|) (-13 (-624 |#1|) (-10 -8 (-6 -4271) (-15 -2258 ($ (-597 |#1|))) (-15 -1662 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1651 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1641 ((-2 (|:| |cycle?| (-110)) (|:| -3852 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -1630 ($ (-1 $))) (-15 -1631 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2092 ((-1186) (-530) $)) (-15 -1620 ((-804) $)) (-15 -1611 ((-110)))) |%noBranch|) (-15 -1467 ($ $ (-530) $)) (-15 -2112 ($ (-1 |#1|))) (-15 -2112 ($ (-1 |#1| |#1|) |#1|)) (-15 -2157 ($ (-1 (-110) |#1|) $)) (-15 -2168 ($ (-1 (-110) |#1|) $)))) (-1135)) (T -1080))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-1651 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)) (-5 *1 (-1080 *4)))) (-1641 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -3852 (-719)) (|:| |period| (-719)))) (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))) (-1630 (*1 *1 *2) (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))) (-2092 (*1 *2 *3 *1) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1080 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-1611 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-1467 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2112 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2157 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2168 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(-13 (-624 |#1|) (-10 -8 (-6 -4271) (-15 -2258 ($ (-597 |#1|))) (-15 -1662 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1651 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1641 ((-2 (|:| |cycle?| (-110)) (|:| -3852 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -1630 ($ (-1 $))) (-15 -1631 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2092 ((-1186) (-530) $)) (-15 -1620 ((-804) $)) (-15 -1611 ((-110)))) |%noBranch|) (-15 -1467 ($ $ (-530) $)) (-15 -2112 ($ (-1 |#1|))) (-15 -2112 ($ (-1 |#1| |#1|) |#1|)) (-15 -2157 ($ (-1 (-110) |#1|) $)) (-15 -2168 ($ (-1 (-110) |#1|) $))))
-((-2246 (((-110) $ $) 19)) (-1386 (($ $) 120)) (-1396 (($ $) 121)) (-1363 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-2869 (((-110) $ $) 118)) (-2850 (((-110) $ $ (-530)) 117)) (-3045 (($ (-530)) 127)) (-1373 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-4038 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-4017 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4271))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-2705 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-3074 (($ $ (-1148 (-530)) $) 114)) (-2939 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4270)))) (-3856 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4270)))) (-2858 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4271)))) (-2787 (((-137) $ (-530)) 51)) (-2891 (((-110) $ $) 119)) (-1944 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-2456 (((-597 (-137)) $) 30 (|has| $ (-6 -4270)))) (-3547 (($ (-719) (-137)) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| (-137) (-795)))) (-3842 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-3252 (((-597 (-137)) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| (-137) (-795)))) (-3763 (((-110) $ $ (-137)) 115)) (-2762 (((-719) $ $ (-137)) 116)) (-2847 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1407 (($ $) 122)) (-1418 (($ $) 123)) (-1987 (((-110) $ (-719)) 10)) (-2716 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-3443 (((-1082) $) 22)) (-4016 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21)) (-2907 (((-137) $) 42 (|has| (-530) (-795)))) (-4221 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1946 (($ $ (-137)) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2002 (((-597 (-137)) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2494 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4270))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2268 (($ (-597 (-137))) 70)) (-3476 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (($ (-137)) 111) (((-804) $) 18)) (-1515 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4270)))) (-2437 (((-1082) $) 131) (((-1082) $ (-110)) 130) (((-1186) (-770) $) 129) (((-1186) (-770) $ (-110)) 128)) (-2204 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2182 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2172 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-1976 (((-1080 |#1|) (-1080 |#1|)) 17)) (-1858 (((-1080 |#1|) (-1080 |#1|)) 13)) (-1740 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 20)) (-3348 (((-1080 |#1|) (-1080 |#1|)) 15)))
+(((-1076 |#1|) (-10 -7 (-15 -1858 ((-1080 |#1|) (-1080 |#1|))) (-15 -3348 ((-1080 |#1|) (-1080 |#1|))) (-15 -1976 ((-1080 |#1|) (-1080 |#1|))) (-15 -1740 ((-1080 |#1|) (-1080 |#1|) (-530) (-530)))) (-13 (-522) (-140))) (T -1076))
+((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1076 *4)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-3348 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))))
+(-10 -7 (-15 -1858 ((-1080 |#1|) (-1080 |#1|))) (-15 -3348 ((-1080 |#1|) (-1080 |#1|))) (-15 -1976 ((-1080 |#1|) (-1080 |#1|))) (-15 -1740 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))))
+((-3483 (((-1080 |#1|) (-1080 (-1080 |#1|))) 15)))
+(((-1077 |#1|) (-10 -7 (-15 -3483 ((-1080 |#1|) (-1080 (-1080 |#1|))))) (-1135)) (T -1077))
+((-3483 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-1135)))))
+(-10 -7 (-15 -3483 ((-1080 |#1|) (-1080 (-1080 |#1|)))))
+((-2753 (((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 25)) (-2134 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 26)) (-3217 (((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)) 16)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -2753 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -2134 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)))) (-1135) (-1135)) (T -1078))
+((-2134 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135)) (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6)))))
+(-10 -7 (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -2753 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -2134 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))))
+((-3217 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)) 21)))
+(((-1079 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -1079))
+((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-1079 *6 *7 *8)))))
+(-10 -7 (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) 51)) (-2097 (((-1186) $ (-530) (-530)) 76 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 110 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-3063 (((-804) $) 41 (|has| |#1| (-1027)))) (-3327 (((-110)) 40 (|has| |#1| (-1027)))) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 98 (|has| $ (-6 -4270))) (($ $ (-530) $) 122)) (-3312 ((|#1| $ |#1|) 107 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 102 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4270))) (($ $ "rest" $) 106 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 89 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 55 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 58)) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3552 (($ $) 14)) (-3057 (($ $) 29) (($ $ (-719)) 88)) (-1408 (((-110) (-597 |#1|) $) 116 (|has| |#1| (-1027)))) (-4095 (($ (-597 |#1|)) 112)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) 57)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2187 (((-1186) (-530) $) 121 (|has| |#1| (-1027)))) (-3811 (((-719) $) 118)) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-3746 (($ $) 90)) (-3504 (((-110) $) 13)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) 74)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2208 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2195 ((|#1| $) 10)) (-3048 ((|#1| $) 28) (($ $ (-719)) 49)) (-1894 (((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $) 25)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2257 (($ (-1 (-110) |#1|) $) 126)) (-2271 (($ (-1 (-110) |#1|) $) 127)) (-1522 (($ $ |#1|) 68 (|has| $ (-6 -4270)))) (-3168 (($ $ (-530)) 32)) (-4083 (((-110) $) 72)) (-2002 (((-110) $) 12)) (-1296 (((-110) $) 117)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 20)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 43)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 54) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) 48)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2313 (($ (-1 $)) 47)) (-4246 (((-110) $) 69)) (-3697 (($ $) 70)) (-3301 (($ $) 99 (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 44)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 53)) (-1640 (($ |#1| $) 97)) (-1328 (($ $ $) 100 (|has| $ (-6 -4270))) (($ $ |#1|) 101 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 45) (($ (-597 $)) 83) (($ $ |#1|) 77)) (-4050 (($ $) 50)) (-2366 (($ (-597 |#1|)) 111) (((-804) $) 42 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 114 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1080 |#1|) (-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -2366 ($ (-597 |#1|))) (-15 -4095 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1408 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1894 ((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -2313 ($ (-1 $))) (-15 -1640 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2187 ((-1186) (-530) $)) (-15 -3063 ((-804) $)) (-15 -3327 ((-110)))) |%noBranch|) (-15 -1886 ($ $ (-530) $)) (-15 -2208 ($ (-1 |#1|))) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)))) (-1135)) (T -1080))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-1408 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)) (-5 *1 (-1080 *4)))) (-1894 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719)))) (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))) (-2313 (*1 *1 *2) (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))) (-2187 (*1 *2 *3 *1) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1080 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-3327 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-1886 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
+(-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -2366 ($ (-597 |#1|))) (-15 -4095 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1408 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1894 ((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -2313 ($ (-1 $))) (-15 -1640 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2187 ((-1186) (-530) $)) (-15 -3063 ((-804) $)) (-15 -3327 ((-110)))) |%noBranch|) (-15 -1886 ($ $ (-530) $)) (-15 -2208 ($ (-1 |#1|))) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $))))
+((-2352 (((-110) $ $) 19)) (-2289 (($ $) 120)) (-3910 (($ $) 121)) (-2879 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 118)) (-2996 (((-110) $ $ (-530)) 117)) (-3166 (($ (-530)) 127)) (-1489 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2865 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3782 (($ $ (-1148 (-530)) $) 114)) (-3077 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) 51)) (-3034 (((-110) $ $) 119)) (-2027 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-3779 (((-597 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 115)) (-2918 (((-719) $ $ (-137)) 116)) (-3583 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2794 (($ $) 122)) (-1502 (($ $) 123)) (-2763 (((-110) $ (-719)) 10)) (-2875 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1424 (((-1082) $) 22)) (-4028 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21)) (-3048 (((-137) $) 42 (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1522 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) 70)) (-3483 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (($ (-137)) 111) (((-804) $) 18)) (-3889 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 131) (((-1082) $ (-110)) 130) (((-1186) (-770) $) 129) (((-1186) (-770) $ (-110)) 128)) (-2306 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2284 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2272 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1081) (-133)) (T -1081))
-((-3045 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1081)))))
-(-13 (-1068) (-1027) (-776) (-10 -8 (-15 -3045 ($ (-530)))))
+((-3166 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1081)))))
+(-13 (-1068) (-1027) (-776) (-10 -8 (-15 -3166 ($ (-530)))))
(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 #0=(-137)) . T) ((-572 (-506)) |has| (-137) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #0#) . T) ((-19 #0#) . T) ((-776) . T) ((-795) |has| (-137) (-795)) ((-1027) . T) ((-1068) . T) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-1386 (($ $) NIL)) (-1396 (($ $) NIL)) (-1363 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-2869 (((-110) $ $) NIL)) (-2850 (((-110) $ $ (-530)) NIL)) (-3045 (($ (-530)) 7)) (-1373 (((-597 $) $ (-137)) NIL) (((-597 $) $ (-134)) NIL)) (-4038 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-4017 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| (-137) (-795))))) (-1317 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4271))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-2705 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-3074 (($ $ (-1148 (-530)) $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2272 (($ (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4270))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2858 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4271)))) (-2787 (((-137) $ (-530)) NIL)) (-2891 (((-110) $ $) NIL)) (-1944 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) NIL (|has| (-137) (-1027))) (((-530) $ $ (-530)) NIL) (((-530) (-134) $ (-530)) NIL)) (-2456 (((-597 (-137)) $) NIL (|has| $ (-6 -4270)))) (-3547 (($ (-719) (-137)) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| (-137) (-795)))) (-3842 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-3252 (((-597 (-137)) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| (-137) (-795)))) (-3763 (((-110) $ $ (-137)) NIL)) (-2762 (((-719) $ $ (-137)) NIL)) (-2847 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1407 (($ $) NIL)) (-1418 (($ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-2716 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3443 (((-1082) $) NIL)) (-4016 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-137) $) NIL (|has| (-530) (-795)))) (-4221 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1946 (($ $ (-137)) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-2002 (((-597 (-137)) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) NIL)) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2494 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2268 (($ (-597 (-137))) NIL)) (-3476 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (($ (-137)) NIL) (((-804) $) NIL)) (-1515 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4270)))) (-2437 (((-1082) $) 18) (((-1082) $ (-110)) 20) (((-1186) (-770) $) 21) (((-1186) (-770) $ (-110)) 22)) (-2204 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2182 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2172 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-2289 (($ $) NIL)) (-3910 (($ $) NIL)) (-2879 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) NIL)) (-2996 (((-110) $ $ (-530)) NIL)) (-3166 (($ (-530)) 7)) (-1489 (((-597 $) $ (-137)) NIL) (((-597 $) $ (-134)) NIL)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2865 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3782 (($ $ (-1148 (-530)) $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2383 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) NIL)) (-3034 (((-110) $ $) NIL)) (-2027 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) NIL (|has| (-137) (-1027))) (((-530) $ $ (-530)) NIL) (((-530) (-134) $ (-530)) NIL)) (-3779 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) NIL)) (-2918 (((-719) $ $ (-137)) NIL)) (-3583 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2794 (($ $) NIL)) (-1502 (($ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-2875 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-137) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1522 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) NIL)) (-3483 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (($ (-137)) NIL) (((-804) $) NIL)) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 18) (((-1082) $ (-110)) 20) (((-1186) (-770) $) 21) (((-1186) (-770) $ (-110)) 22)) (-2306 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
(((-1082) (-1081)) (T -1082))
NIL
(-1081)
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-1935 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-1082) |#1|) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#1| "failed") (-1082) $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#1| "failed") (-1082) $) NIL)) (-2272 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-1082)) NIL)) (-2456 (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3252 (((-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3202 (((-597 (-1082)) $) NIL)) (-2010 (((-110) (-1082) $) NIL)) (-3275 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-1983 (((-597 (-1082)) $) NIL)) (-1993 (((-110) (-1082) $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-2907 ((|#1| $) NIL (|has| (-1082) (-795)))) (-4221 (((-3 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) "failed") (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL (-12 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-291 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-1082)) NIL) ((|#1| $ (-1082) |#1|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-571 (-804))) (|has| |#1| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 (-1082)) (|:| -1806 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1083 |#1|) (-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4270))) (-1027)) (T -1083))
-NIL
-(-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4270)))
-((-1566 (((-1080 |#1|) (-1080 |#1|)) 77)) (-1673 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 37)) (-1765 (((-1080 |#1|) (-388 (-530)) (-1080 |#1|)) 121 (|has| |#1| (-37 (-388 (-530)))))) (-1791 (((-1080 |#1|) |#1| (-1080 |#1|)) 127 (|has| |#1| (-344)))) (-1595 (((-1080 |#1|) (-1080 |#1|)) 90)) (-1689 (((-1080 (-530)) (-530)) 57)) (-1755 (((-1080 |#1|) (-1080 (-1080 |#1|))) 109 (|has| |#1| (-37 (-388 (-530)))))) (-1556 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 95)) (-3931 (((-1080 |#1|) |#1| (-530)) 45)) (-1707 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 60)) (-1771 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 124 (|has| |#1| (-344)))) (-1747 (((-1080 |#1|) |#1| (-1 (-1080 |#1|))) 108 (|has| |#1| (-37 (-388 (-530)))))) (-1781 (((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|))) 125 (|has| |#1| (-344)))) (-1606 (((-1080 |#1|) (-1080 |#1|)) 89)) (-1616 (((-1080 |#1|) (-1080 |#1|)) 76)) (-1545 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 96)) (-1637 (((-1080 |#1|) |#1| (-1080 |#1|)) 105 (|has| |#1| (-37 (-388 (-530)))))) (-1681 (((-1080 (-530)) (-530)) 56)) (-1699 (((-1080 |#1|) |#1|) 59)) (-1576 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 92)) (-1722 (((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|)) 66)) (-3562 (((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|)) 35)) (-1586 (((-1080 |#1|) (-1080 |#1|)) 91)) (-4084 (((-1080 |#1|) (-1080 |#1|) |#1|) 71)) (-1714 (((-1080 |#1|) (-1080 |#1|)) 62)) (-1731 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 72)) (-2258 (((-1080 |#1|) |#1|) 67)) (-1739 (((-1080 |#1|) (-1080 (-1080 |#1|))) 82)) (-2257 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 36)) (-2245 (((-1080 |#1|) (-1080 |#1|)) 21) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 23)) (-2234 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 17)) (* (((-1080 |#1|) (-1080 |#1|) |#1|) 29) (((-1080 |#1|) |#1| (-1080 |#1|)) 26) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 27)))
-(((-1084 |#1|) (-10 -7 (-15 -2234 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2245 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2245 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3562 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2257 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1673 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3931 ((-1080 |#1|) |#1| (-530))) (-15 -1681 ((-1080 (-530)) (-530))) (-15 -1689 ((-1080 (-530)) (-530))) (-15 -1699 ((-1080 |#1|) |#1|)) (-15 -1707 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1714 ((-1080 |#1|) (-1080 |#1|))) (-15 -1722 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2258 ((-1080 |#1|) |#1|)) (-15 -4084 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1731 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1616 ((-1080 |#1|) (-1080 |#1|))) (-15 -1566 ((-1080 |#1|) (-1080 |#1|))) (-15 -1739 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -1606 ((-1080 |#1|) (-1080 |#1|))) (-15 -1595 ((-1080 |#1|) (-1080 |#1|))) (-15 -1586 ((-1080 |#1|) (-1080 |#1|))) (-15 -1576 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -1556 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -1545 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1747 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -1755 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -1765 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1771 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1781 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -1791 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|)) (-984)) (T -1084))
-((-1791 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))) (-1771 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1765 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984)) (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-1637 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1545 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-1556 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-1576 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1595 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-984)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-4084 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1722 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1707 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1699 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1689 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-1681 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1673 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3562 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2245 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2234 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(-10 -7 (-15 -2234 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2245 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2245 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3562 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2257 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1673 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3931 ((-1080 |#1|) |#1| (-530))) (-15 -1681 ((-1080 (-530)) (-530))) (-15 -1689 ((-1080 (-530)) (-530))) (-15 -1699 ((-1080 |#1|) |#1|)) (-15 -1707 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1714 ((-1080 |#1|) (-1080 |#1|))) (-15 -1722 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2258 ((-1080 |#1|) |#1|)) (-15 -4084 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1731 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1616 ((-1080 |#1|) (-1080 |#1|))) (-15 -1566 ((-1080 |#1|) (-1080 |#1|))) (-15 -1739 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -1606 ((-1080 |#1|) (-1080 |#1|))) (-15 -1595 ((-1080 |#1|) (-1080 |#1|))) (-15 -1586 ((-1080 |#1|) (-1080 |#1|))) (-15 -1576 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -1556 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -1545 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1747 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -1755 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -1765 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1771 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1781 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -1791 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|))
-((-2276 (((-1080 |#1|) (-1080 |#1|)) 57)) (-2144 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2253 (((-1080 |#1|) (-1080 |#1|)) 53)) (-2121 (((-1080 |#1|) (-1080 |#1|)) 35)) (-2297 (((-1080 |#1|) (-1080 |#1|)) 60)) (-2169 (((-1080 |#1|) (-1080 |#1|)) 42)) (-2070 (((-1080 |#1|) (-1080 |#1|)) 31)) (-2693 (((-1080 |#1|) (-1080 |#1|)) 27)) (-2308 (((-1080 |#1|) (-1080 |#1|)) 61)) (-2181 (((-1080 |#1|) (-1080 |#1|)) 43)) (-2287 (((-1080 |#1|) (-1080 |#1|)) 58)) (-2155 (((-1080 |#1|) (-1080 |#1|)) 40)) (-2263 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2133 (((-1080 |#1|) (-1080 |#1|)) 37)) (-2339 (((-1080 |#1|) (-1080 |#1|)) 65)) (-2211 (((-1080 |#1|) (-1080 |#1|)) 47)) (-2318 (((-1080 |#1|) (-1080 |#1|)) 63)) (-2192 (((-1080 |#1|) (-1080 |#1|)) 45)) (-2361 (((-1080 |#1|) (-1080 |#1|)) 68)) (-2230 (((-1080 |#1|) (-1080 |#1|)) 50)) (-2910 (((-1080 |#1|) (-1080 |#1|)) 69)) (-2241 (((-1080 |#1|) (-1080 |#1|)) 51)) (-2349 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2220 (((-1080 |#1|) (-1080 |#1|)) 49)) (-2328 (((-1080 |#1|) (-1080 |#1|)) 66)) (-2202 (((-1080 |#1|) (-1080 |#1|)) 48)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 33)))
-(((-1085 |#1|) (-10 -7 (-15 -2693 ((-1080 |#1|) (-1080 |#1|))) (-15 -2070 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2121 ((-1080 |#1|) (-1080 |#1|))) (-15 -2133 ((-1080 |#1|) (-1080 |#1|))) (-15 -2144 ((-1080 |#1|) (-1080 |#1|))) (-15 -2155 ((-1080 |#1|) (-1080 |#1|))) (-15 -2169 ((-1080 |#1|) (-1080 |#1|))) (-15 -2181 ((-1080 |#1|) (-1080 |#1|))) (-15 -2192 ((-1080 |#1|) (-1080 |#1|))) (-15 -2202 ((-1080 |#1|) (-1080 |#1|))) (-15 -2211 ((-1080 |#1|) (-1080 |#1|))) (-15 -2220 ((-1080 |#1|) (-1080 |#1|))) (-15 -2230 ((-1080 |#1|) (-1080 |#1|))) (-15 -2241 ((-1080 |#1|) (-1080 |#1|))) (-15 -2253 ((-1080 |#1|) (-1080 |#1|))) (-15 -2263 ((-1080 |#1|) (-1080 |#1|))) (-15 -2276 ((-1080 |#1|) (-1080 |#1|))) (-15 -2287 ((-1080 |#1|) (-1080 |#1|))) (-15 -2297 ((-1080 |#1|) (-1080 |#1|))) (-15 -2308 ((-1080 |#1|) (-1080 |#1|))) (-15 -2318 ((-1080 |#1|) (-1080 |#1|))) (-15 -2328 ((-1080 |#1|) (-1080 |#1|))) (-15 -2339 ((-1080 |#1|) (-1080 |#1|))) (-15 -2349 ((-1080 |#1|) (-1080 |#1|))) (-15 -2361 ((-1080 |#1|) (-1080 |#1|))) (-15 -2910 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1085))
-((-2910 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2133 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))))
-(-10 -7 (-15 -2693 ((-1080 |#1|) (-1080 |#1|))) (-15 -2070 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2121 ((-1080 |#1|) (-1080 |#1|))) (-15 -2133 ((-1080 |#1|) (-1080 |#1|))) (-15 -2144 ((-1080 |#1|) (-1080 |#1|))) (-15 -2155 ((-1080 |#1|) (-1080 |#1|))) (-15 -2169 ((-1080 |#1|) (-1080 |#1|))) (-15 -2181 ((-1080 |#1|) (-1080 |#1|))) (-15 -2192 ((-1080 |#1|) (-1080 |#1|))) (-15 -2202 ((-1080 |#1|) (-1080 |#1|))) (-15 -2211 ((-1080 |#1|) (-1080 |#1|))) (-15 -2220 ((-1080 |#1|) (-1080 |#1|))) (-15 -2230 ((-1080 |#1|) (-1080 |#1|))) (-15 -2241 ((-1080 |#1|) (-1080 |#1|))) (-15 -2253 ((-1080 |#1|) (-1080 |#1|))) (-15 -2263 ((-1080 |#1|) (-1080 |#1|))) (-15 -2276 ((-1080 |#1|) (-1080 |#1|))) (-15 -2287 ((-1080 |#1|) (-1080 |#1|))) (-15 -2297 ((-1080 |#1|) (-1080 |#1|))) (-15 -2308 ((-1080 |#1|) (-1080 |#1|))) (-15 -2318 ((-1080 |#1|) (-1080 |#1|))) (-15 -2328 ((-1080 |#1|) (-1080 |#1|))) (-15 -2339 ((-1080 |#1|) (-1080 |#1|))) (-15 -2349 ((-1080 |#1|) (-1080 |#1|))) (-15 -2361 ((-1080 |#1|) (-1080 |#1|))) (-15 -2910 ((-1080 |#1|) (-1080 |#1|))))
-((-2276 (((-1080 |#1|) (-1080 |#1|)) 100)) (-2144 (((-1080 |#1|) (-1080 |#1|)) 64)) (-3687 (((-2 (|:| -2253 (-1080 |#1|)) (|:| -2263 (-1080 |#1|))) (-1080 |#1|)) 96)) (-2253 (((-1080 |#1|) (-1080 |#1|)) 97)) (-3679 (((-2 (|:| -2121 (-1080 |#1|)) (|:| -2133 (-1080 |#1|))) (-1080 |#1|)) 53)) (-2121 (((-1080 |#1|) (-1080 |#1|)) 54)) (-2297 (((-1080 |#1|) (-1080 |#1|)) 102)) (-2169 (((-1080 |#1|) (-1080 |#1|)) 71)) (-2070 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2693 (((-1080 |#1|) (-1080 |#1|)) 36)) (-2308 (((-1080 |#1|) (-1080 |#1|)) 103)) (-2181 (((-1080 |#1|) (-1080 |#1|)) 72)) (-2287 (((-1080 |#1|) (-1080 |#1|)) 101)) (-2155 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2263 (((-1080 |#1|) (-1080 |#1|)) 98)) (-2133 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2339 (((-1080 |#1|) (-1080 |#1|)) 111)) (-2211 (((-1080 |#1|) (-1080 |#1|)) 86)) (-2318 (((-1080 |#1|) (-1080 |#1|)) 105)) (-2192 (((-1080 |#1|) (-1080 |#1|)) 82)) (-2361 (((-1080 |#1|) (-1080 |#1|)) 115)) (-2230 (((-1080 |#1|) (-1080 |#1|)) 90)) (-2910 (((-1080 |#1|) (-1080 |#1|)) 117)) (-2241 (((-1080 |#1|) (-1080 |#1|)) 92)) (-2349 (((-1080 |#1|) (-1080 |#1|)) 113)) (-2220 (((-1080 |#1|) (-1080 |#1|)) 88)) (-2328 (((-1080 |#1|) (-1080 |#1|)) 107)) (-2202 (((-1080 |#1|) (-1080 |#1|)) 84)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 40)))
-(((-1086 |#1|) (-10 -7 (-15 -2693 ((-1080 |#1|) (-1080 |#1|))) (-15 -2070 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3679 ((-2 (|:| -2121 (-1080 |#1|)) (|:| -2133 (-1080 |#1|))) (-1080 |#1|))) (-15 -2121 ((-1080 |#1|) (-1080 |#1|))) (-15 -2133 ((-1080 |#1|) (-1080 |#1|))) (-15 -2144 ((-1080 |#1|) (-1080 |#1|))) (-15 -2155 ((-1080 |#1|) (-1080 |#1|))) (-15 -2169 ((-1080 |#1|) (-1080 |#1|))) (-15 -2181 ((-1080 |#1|) (-1080 |#1|))) (-15 -2192 ((-1080 |#1|) (-1080 |#1|))) (-15 -2202 ((-1080 |#1|) (-1080 |#1|))) (-15 -2211 ((-1080 |#1|) (-1080 |#1|))) (-15 -2220 ((-1080 |#1|) (-1080 |#1|))) (-15 -2230 ((-1080 |#1|) (-1080 |#1|))) (-15 -2241 ((-1080 |#1|) (-1080 |#1|))) (-15 -3687 ((-2 (|:| -2253 (-1080 |#1|)) (|:| -2263 (-1080 |#1|))) (-1080 |#1|))) (-15 -2253 ((-1080 |#1|) (-1080 |#1|))) (-15 -2263 ((-1080 |#1|) (-1080 |#1|))) (-15 -2276 ((-1080 |#1|) (-1080 |#1|))) (-15 -2287 ((-1080 |#1|) (-1080 |#1|))) (-15 -2297 ((-1080 |#1|) (-1080 |#1|))) (-15 -2308 ((-1080 |#1|) (-1080 |#1|))) (-15 -2318 ((-1080 |#1|) (-1080 |#1|))) (-15 -2328 ((-1080 |#1|) (-1080 |#1|))) (-15 -2339 ((-1080 |#1|) (-1080 |#1|))) (-15 -2349 ((-1080 |#1|) (-1080 |#1|))) (-15 -2361 ((-1080 |#1|) (-1080 |#1|))) (-15 -2910 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1086))
-((-2910 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2253 (-1080 *4)) (|:| -2263 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2133 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2121 (-1080 *4)) (|:| -2133 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))))
-(-10 -7 (-15 -2693 ((-1080 |#1|) (-1080 |#1|))) (-15 -2070 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3679 ((-2 (|:| -2121 (-1080 |#1|)) (|:| -2133 (-1080 |#1|))) (-1080 |#1|))) (-15 -2121 ((-1080 |#1|) (-1080 |#1|))) (-15 -2133 ((-1080 |#1|) (-1080 |#1|))) (-15 -2144 ((-1080 |#1|) (-1080 |#1|))) (-15 -2155 ((-1080 |#1|) (-1080 |#1|))) (-15 -2169 ((-1080 |#1|) (-1080 |#1|))) (-15 -2181 ((-1080 |#1|) (-1080 |#1|))) (-15 -2192 ((-1080 |#1|) (-1080 |#1|))) (-15 -2202 ((-1080 |#1|) (-1080 |#1|))) (-15 -2211 ((-1080 |#1|) (-1080 |#1|))) (-15 -2220 ((-1080 |#1|) (-1080 |#1|))) (-15 -2230 ((-1080 |#1|) (-1080 |#1|))) (-15 -2241 ((-1080 |#1|) (-1080 |#1|))) (-15 -3687 ((-2 (|:| -2253 (-1080 |#1|)) (|:| -2263 (-1080 |#1|))) (-1080 |#1|))) (-15 -2253 ((-1080 |#1|) (-1080 |#1|))) (-15 -2263 ((-1080 |#1|) (-1080 |#1|))) (-15 -2276 ((-1080 |#1|) (-1080 |#1|))) (-15 -2287 ((-1080 |#1|) (-1080 |#1|))) (-15 -2297 ((-1080 |#1|) (-1080 |#1|))) (-15 -2308 ((-1080 |#1|) (-1080 |#1|))) (-15 -2318 ((-1080 |#1|) (-1080 |#1|))) (-15 -2328 ((-1080 |#1|) (-1080 |#1|))) (-15 -2339 ((-1080 |#1|) (-1080 |#1|))) (-15 -2349 ((-1080 |#1|) (-1080 |#1|))) (-15 -2361 ((-1080 |#1|) (-1080 |#1|))) (-15 -2910 ((-1080 |#1|) (-1080 |#1|))))
-((-3696 (((-899 |#2|) |#2| |#2|) 35)) (-3703 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289)))))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -3696 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -3703 (|#2| |#2| |#1|)) |%noBranch|)) (-522) (-1157 |#1|)) (T -1087))
-((-3703 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2)) (-4 *2 (-1157 *3)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3696 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -3703 (|#2| |#2| |#1|)) |%noBranch|))
-((-2246 (((-110) $ $) NIL)) (-3772 (($ $ (-597 (-719))) 67)) (-4042 (($) 26)) (-3865 (($ $) 42)) (-2280 (((-597 $) $) 51)) (-3927 (((-110) $) 16)) (-3712 (((-597 (-884 |#2|)) $) 74)) (-3724 (($ $) 68)) (-3875 (((-719) $) 37)) (-3547 (($) 25)) (-3802 (($ $ (-597 (-719)) (-884 |#2|)) 60) (($ $ (-597 (-719)) (-719)) 61) (($ $ (-719) (-884 |#2|)) 63)) (-3842 (($ $ $) 48) (($ (-597 $)) 50)) (-1660 (((-719) $) 75)) (-3937 (((-110) $) 15)) (-3443 (((-1082) $) NIL)) (-3916 (((-110) $) 18)) (-2485 (((-1046) $) NIL)) (-3733 (((-161) $) 73)) (-3762 (((-884 |#2|) $) 69)) (-3752 (((-719) $) 70)) (-3742 (((-110) $) 72)) (-3784 (($ $ (-597 (-719)) (-161)) 66)) (-3855 (($ $) 43)) (-2258 (((-804) $) 86)) (-3793 (($ $ (-597 (-719)) (-110)) 65)) (-3885 (((-597 $) $) 11)) (-3895 (($ $ (-719)) 36)) (-3905 (($ $) 32)) (-3812 (($ $ $ (-884 |#2|) (-719)) 56)) (-3822 (($ $ (-884 |#2|)) 55)) (-3832 (($ $ (-597 (-719)) (-884 |#2|)) 54) (($ $ (-597 (-719)) (-719)) 58) (((-719) $ (-884 |#2|)) 59)) (-2148 (((-110) $ $) 80)))
-(((-1088 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3937 ((-110) $)) (-15 -3927 ((-110) $)) (-15 -3916 ((-110) $)) (-15 -3547 ($)) (-15 -4042 ($)) (-15 -3905 ($ $)) (-15 -3895 ($ $ (-719))) (-15 -3885 ((-597 $) $)) (-15 -3875 ((-719) $)) (-15 -3865 ($ $)) (-15 -3855 ($ $)) (-15 -3842 ($ $ $)) (-15 -3842 ($ (-597 $))) (-15 -2280 ((-597 $) $)) (-15 -3832 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3822 ($ $ (-884 |#2|))) (-15 -3812 ($ $ $ (-884 |#2|) (-719))) (-15 -3802 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3832 ($ $ (-597 (-719)) (-719))) (-15 -3802 ($ $ (-597 (-719)) (-719))) (-15 -3832 ((-719) $ (-884 |#2|))) (-15 -3802 ($ $ (-719) (-884 |#2|))) (-15 -3793 ($ $ (-597 (-719)) (-110))) (-15 -3784 ($ $ (-597 (-719)) (-161))) (-15 -3772 ($ $ (-597 (-719)))) (-15 -3762 ((-884 |#2|) $)) (-15 -3752 ((-719) $)) (-15 -3742 ((-110) $)) (-15 -3733 ((-161) $)) (-15 -1660 ((-719) $)) (-15 -3724 ($ $)) (-15 -3712 ((-597 (-884 |#2|)) $)))) (-862) (-984)) (T -1088))
-((-3937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3547 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-4042 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3822 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)))) (-3812 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3802 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3802 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3832 (*1 *2 *1 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3802 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3793 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3784 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))))
-(-13 (-1027) (-10 -8 (-15 -3937 ((-110) $)) (-15 -3927 ((-110) $)) (-15 -3916 ((-110) $)) (-15 -3547 ($)) (-15 -4042 ($)) (-15 -3905 ($ $)) (-15 -3895 ($ $ (-719))) (-15 -3885 ((-597 $) $)) (-15 -3875 ((-719) $)) (-15 -3865 ($ $)) (-15 -3855 ($ $)) (-15 -3842 ($ $ $)) (-15 -3842 ($ (-597 $))) (-15 -2280 ((-597 $) $)) (-15 -3832 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3822 ($ $ (-884 |#2|))) (-15 -3812 ($ $ $ (-884 |#2|) (-719))) (-15 -3802 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3832 ($ $ (-597 (-719)) (-719))) (-15 -3802 ($ $ (-597 (-719)) (-719))) (-15 -3832 ((-719) $ (-884 |#2|))) (-15 -3802 ($ $ (-719) (-884 |#2|))) (-15 -3793 ($ $ (-597 (-719)) (-110))) (-15 -3784 ($ $ (-597 (-719)) (-161))) (-15 -3772 ($ $ (-597 (-719)))) (-15 -3762 ((-884 |#2|) $)) (-15 -3752 ((-719) $)) (-15 -3742 ((-110) $)) (-15 -3733 ((-161) $)) (-15 -1660 ((-719) $)) (-15 -3724 ($ $)) (-15 -3712 ((-597 (-884 |#2|)) $))))
-((-2246 (((-110) $ $) NIL)) (-1503 ((|#2| $) 11)) (-1491 ((|#1| $) 10)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2268 (($ |#1| |#2|) 9)) (-2258 (((-804) $) 16)) (-2148 (((-110) $ $) NIL)))
-(((-1089 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2268 ($ |#1| |#2|)) (-15 -1491 (|#1| $)) (-15 -1503 (|#2| $)))) (-1027) (-1027)) (T -1089))
-((-2268 (*1 *1 *2 *3) (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1491 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1027)))) (-1503 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2268 ($ |#1| |#2|)) (-15 -1491 (|#1| $)) (-15 -1503 (|#2| $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 11)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3031 (($ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3006 (((-110) $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1323 (($ $ (-530)) NIL) (($ $ (-530) (-530)) 66)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-2089 (((-1097 |#1| |#2| |#3|) $) 36)) (-2066 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 29)) (-2648 (((-1097 |#1| |#2| |#3|) $) 30)) (-2276 (($ $) 107 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) 103 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-3592 (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2446 (((-1097 |#1| |#2| |#3|) $) 131) (((-1099) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2078 (($ $) 34) (($ (-530) $) 35)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-1097 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-1097 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1097 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-1673 (((-3 $ "failed") $) 48)) (-2057 (((-388 (-893 |#1|)) $ (-530)) 65 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 67 (|has| |#1| (-522)))) (-1376 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-2991 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3032 (((-110) $) 25)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-1334 (((-530) $) NIL) (((-530) $ (-530)) 24)) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL (|has| |#1| (-344)))) (-1848 (((-1097 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1560 (((-3 $ "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-3002 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-1382 (($ $ (-862)) NIL)) (-1647 (($ (-1 |#1| (-530)) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-530)) 18) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-4194 (($ $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1757 (($ $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2070 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2659 (($ (-530) (-1097 |#1| |#2| |#3|)) 33)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) 70 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 71 (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1684 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-1702 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-530)) 145)) (-3562 (((-3 $ "failed") $ $) 49 (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1097 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1097 |#1| |#2| |#3|)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-530)) NIL) (($ $ $) 54 (|has| (-530) (-1039))) (($ $ (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-268 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 51) (($ $ (-719)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 50 (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1857 (((-1097 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-3409 (((-530) $) 37)) (-2308 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 109 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 105 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-3173 (((-506) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) 149) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1097 |#1| |#2| |#3|)) 27) (($ (-1177 |#2|)) 23) (($ (-1099)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-2782 ((|#1| $ (-530)) 68)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 12)) (-1709 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2339 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 95 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2318 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 99 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 101 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 97 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 93 (|has| |#1| (-37 (-388 (-530)))))) (-2218 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 20 T CONST)) (-2955 (($) 16 T CONST)) (-3286 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2204 (((-110) $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2182 (((-110) $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2172 (((-110) $ $) NIL (-1476 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) 53) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1097 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1090 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1090))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-3400 ((|#2| |#2| (-1020 |#2|)) 26) ((|#2| |#2| (-1099)) 28)))
-(((-1091 |#1| |#2|) (-10 -7 (-15 -3400 (|#2| |#2| (-1099))) (-15 -3400 (|#2| |#2| (-1020 |#2|)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-411 |#1|) (-151) (-27) (-1121))) (T -1091))
-((-3400 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))))))
-(-10 -7 (-15 -3400 (|#2| |#2| (-1099))) (-15 -3400 (|#2| |#2| (-1020 |#2|))))
-((-3400 (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))) 31) (((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|))) 44) (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 33) (((-388 (-893 |#1|)) (-893 |#1|) (-1099)) 36)))
-(((-1092 |#1|) (-10 -7 (-15 -3400 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3400 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3400 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3400 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))))) (-13 (-522) (-795) (-975 (-530)))) (T -1092))
-((-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 *3 (-297 *5))) (-5 *1 (-1092 *5)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-893 *5))) (-5 *3 (-893 *5)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 *3)) (-5 *1 (-1092 *5)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 (-388 (-893 *5)) (-297 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-388 (-893 *5))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 (-893 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-893 *5)))))
-(-10 -7 (-15 -3400 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3400 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3400 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3400 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|))))))
-((-3114 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 13)))
-(((-1093 |#1| |#2|) (-10 -7 (-15 -3114 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) (-984) (-984)) (T -1093))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-1093 *5 *6)))))
-(-10 -7 (-15 -3114 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))))
-((-3550 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 51)) (-2473 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 52)))
-(((-1094 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3550 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))))) (-741) (-795) (-432) (-890 |#3| |#1| |#2|)) (T -1094))
-((-3550 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))))
-(-10 -7 (-15 -2473 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3550 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))))
-((-2246 (((-110) $ $) 139)) (-3015 (((-110) $) 30)) (-1301 (((-1181 |#1|) $ (-719)) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-1279 (($ (-1095 |#1|)) NIL)) (-2439 (((-1095 $) $ (-1012)) 60) (((-1095 |#1|) $) 49)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) 134 (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2322 (($ $ $) 128 (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) 73 (|has| |#1| (-850)))) (-1359 (($ $) NIL (|has| |#1| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 93 (|has| |#1| (-850)))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2370 (($ $ (-719)) 42)) (-2363 (($ $ (-719)) 43)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2446 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-2330 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 130 (|has| |#1| (-162)))) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) 58)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2352 (($ $ $) 106)) (-2301 (($ $ $) NIL (|has| |#1| (-522)))) (-2291 (((-2 (|:| -1981 |#1|) (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3703 (($ $) 135 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-719) $) 47)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-3946 (((-804) $ (-804)) 119)) (-1334 (((-719) $ $) NIL (|has| |#1| (-522)))) (-3150 (((-110) $) 32)) (-3239 (((-719) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2586 (($ (-1095 |#1|) (-1012)) 51) (($ (-1095 $) (-1012)) 67)) (-1382 (($ $ (-719)) 34)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) 65) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1012)) NIL) (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 123)) (-3674 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2107 (($ (-1 (-719) (-719)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-1289 (((-1095 |#1|) $) NIL)) (-1367 (((-3 (-1012) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) 54)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3443 (((-1082) $) NIL)) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) 41)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1012)) (|:| -3059 (-719))) "failed") $) NIL)) (-1637 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) NIL (|has| |#1| (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) 33)) (-2375 ((|#1| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 81 (|has| |#1| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 137 (|has| |#1| (-432)))) (-2137 (($ $ (-719) |#1| $) 101)) (-1818 (((-399 (-1095 $)) (-1095 $)) 79 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 78 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 86 (|has| |#1| (-850)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-1269 (((-3 $ "failed") $ (-719)) 37)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 140 (|has| |#1| (-344)))) (-2341 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) 126 (|has| |#1| (-162)))) (-3211 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3409 (((-719) $) 56) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) 132 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2312 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2258 (((-804) $) 120) (($ (-530)) NIL) (($ |#1|) 55) (($ (-1012)) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) 28 (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 15) (($ $ (-719)) 16)) (-2943 (($) 17 T CONST)) (-2955 (($) 18 T CONST)) (-3286 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 98)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 141 (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 68)) (** (($ $ (-862)) 14) (($ $ (-719)) 12)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 27) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
-(((-1095 |#1|) (-13 (-1157 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-804))) (-15 -2137 ($ $ (-719) |#1| $)))) (-984)) (T -1095))
-((-3946 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))) (-2137 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
-(-13 (-1157 |#1|) (-10 -8 (-15 -3946 ((-804) $ (-804))) (-15 -2137 ($ $ (-719) |#1| $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 11)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 36)) (-2446 (((-1090 |#1| |#2| |#3|) $) NIL) (((-1097 |#1| |#2| |#3|) $) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1413 (((-388 (-530)) $) 55)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2338 (($ (-388 (-530)) (-1090 |#1| |#2| |#3|)) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-388 (-530))) 20) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1402 (((-1090 |#1| |#2| |#3|) $) 41)) (-1392 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) NIL)) (-2659 (((-1090 |#1| |#2| |#3|) $) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-3409 (((-388 (-530)) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) 58) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1090 |#1| |#2| |#3|)) 30) (($ (-1097 |#1| |#2| |#3|)) 31) (($ (-1177 |#2|)) 26) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 12)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 22 T CONST)) (-2955 (($) 16 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 24)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1096 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1096))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 125)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 116)) (-1625 (((-1154 |#2| |#1|) $ (-719)) 63)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-719)) 79) (($ $ (-719) (-719)) 76)) (-1344 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 102)) (-2276 (($ $) 169 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) 165 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 115) (($ (-1080 |#1|)) 110)) (-2297 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) 23)) (-1657 (($ $) 26)) (-3496 (((-893 |#1|) $ (-719)) 75) (((-893 |#1|) $ (-719) (-719)) 77)) (-3032 (((-110) $) 120)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $) 122) (((-719) $ (-719)) 124)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) NIL)) (-1647 (($ (-1 |#1| (-530)) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) 13) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-1637 (($ $) 129 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-1312 (($ $ (-719)) 15)) (-3562 (((-3 $ "failed") $ $) 24 (|has| |#1| (-522)))) (-2693 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1832 ((|#1| $ (-719)) 119) (($ $ $) 128 (|has| (-719) (-1039)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 29)) (-3409 (((-719) $) NIL)) (-2308 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 167 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) 201) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 51) (($ (-1177 |#2|)) 32)) (-1669 (((-1080 |#1|) $) 98)) (-2782 ((|#1| $ (-719)) 118)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 54)) (-2339 (($ $) 181 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 185 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-719)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 183 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 17 T CONST)) (-2955 (($) 19 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) 194)) (-2234 (($ $ $) 31)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 137 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1097 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2258 ($ (-1154 |#2| |#1|))) (-15 -1625 ((-1154 |#2| |#1|) $ (-719))) (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1097))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1097 *3 *4 *5)))) (-1625 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1172 |#1|) (-10 -8 (-15 -2258 ($ (-1154 |#2| |#1|))) (-15 -1625 ((-1154 |#2| |#1|) $ (-719))) (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2258 (((-804) $) 27) (($ (-1099)) 29)) (-1476 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 40)) (-1465 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 33) (($ $) 34)) (-2995 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 35)) (-2983 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 37)) (-2972 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 36)) (-2959 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 38)) (-3806 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 39)))
-(((-1098) (-13 (-571 (-804)) (-10 -8 (-15 -2258 ($ (-1099))) (-15 -2995 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2972 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2983 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2959 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1476 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3806 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1465 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1465 ($ $))))) (T -1098))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1098)))) (-2995 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-2972 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-2983 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-2959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1476 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3806 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1465 (*1 *1 *1) (-5 *1 (-1098))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2258 ($ (-1099))) (-15 -2995 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2972 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2983 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -2959 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1476 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3806 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1465 ($ (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1465 ($ $))))
-((-2246 (((-110) $ $) NIL)) (-3977 (($ $ (-597 (-804))) 59)) (-3986 (($ $ (-597 (-804))) 57)) (-3045 (((-1082) $) 84)) (-2184 (((-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804)))) $) 87)) (-3996 (((-110) $) 22)) (-3179 (($ $ (-597 (-597 (-804)))) 56) (($ $ (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804))))) 82)) (-3956 (($) 124 T CONST)) (-4006 (((-1186)) 106)) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 66) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 73)) (-3547 (($) 95) (($ $) 101)) (-3901 (($ $) 83)) (-4194 (($ $ $) NIL)) (-1757 (($ $ $) NIL)) (-2783 (((-597 $) $) 107)) (-3443 (((-1082) $) 90)) (-2485 (((-1046) $) NIL)) (-1832 (($ $ (-597 (-804))) 58)) (-3173 (((-506) $) 46) (((-1099) $) 47) (((-833 (-530)) $) 77) (((-833 (-360)) $) 75)) (-2258 (((-804) $) 53) (($ (-1082)) 48)) (-3967 (($ $ (-597 (-804))) 60)) (-2437 (((-1082) $) 33) (((-1082) $ (-110)) 34) (((-1186) (-770) $) 35) (((-1186) (-770) $ (-110)) 36)) (-2204 (((-110) $ $) NIL)) (-2182 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 49)) (-2195 (((-110) $ $) NIL)) (-2172 (((-110) $ $) 50)))
-(((-1099) (-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3547 ($)) (-15 -3547 ($ $)) (-15 -4006 ((-1186))) (-15 -2258 ($ (-1082))) (-15 -3901 ($ $)) (-15 -3996 ((-110) $)) (-15 -2184 ((-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3179 ($ $ (-597 (-597 (-804))))) (-15 -3179 ($ $ (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -3986 ($ $ (-597 (-804)))) (-15 -3977 ($ $ (-597 (-804)))) (-15 -3967 ($ $ (-597 (-804)))) (-15 -1832 ($ $ (-597 (-804)))) (-15 -3045 ((-1082) $)) (-15 -2783 ((-597 $) $)) (-15 -3956 ($) -2562)))) (T -1099))
-((-3547 (*1 *1) (-5 *1 (-1099))) (-3547 (*1 *1 *1) (-5 *1 (-1099))) (-4006 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-3901 (*1 *1 *1) (-5 *1 (-1099))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-3179 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-1099)))) (-3179 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))) (-3956 (*1 *1) (-5 *1 (-1099))))
-(-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3547 ($)) (-15 -3547 ($ $)) (-15 -4006 ((-1186))) (-15 -2258 ($ (-1082))) (-15 -3901 ($ $)) (-15 -3996 ((-110) $)) (-15 -2184 ((-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3179 ($ $ (-597 (-597 (-804))))) (-15 -3179 ($ $ (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -3986 ($ $ (-597 (-804)))) (-15 -3977 ($ $ (-597 (-804)))) (-15 -3967 ($ $ (-597 (-804)))) (-15 -1832 ($ $ (-597 (-804)))) (-15 -3045 ((-1082) $)) (-15 -2783 ((-597 $) $)) (-15 -3956 ($) -2562)))
-((-4015 (((-1181 |#1|) |#1| (-862)) 16) (((-1181 |#1|) (-597 |#1|)) 20)))
-(((-1100 |#1|) (-10 -7 (-15 -4015 ((-1181 |#1|) (-597 |#1|))) (-15 -4015 ((-1181 |#1|) |#1| (-862)))) (-984)) (T -1100))
-((-4015 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-984)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)) (-5 *1 (-1100 *4)))))
-(-10 -7 (-15 -4015 ((-1181 |#1|) (-597 |#1|))) (-15 -4015 ((-1181 |#1|) |#1| (-862))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2446 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3703 (($ $) NIL (|has| |#1| (-432)))) (-2097 (($ $ |#1| (-911) $) NIL)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-911)) NIL)) (-3674 (((-911) $) NIL)) (-2107 (($ (-1 (-911) (-911)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#1| $) NIL)) (-2137 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-128)) (|has| |#1| (-522))))) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-3409 (((-911) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1476 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ (-911)) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 9 T CONST)) (-2955 (($) 14 T CONST)) (-2148 (((-110) $ $) 16)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1101 |#1|) (-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -2137 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|))) (-984)) (T -1101))
-((-2137 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -2137 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|)))
-((-4026 (((-1103) (-1099) $) 25)) (-4139 (($) 29)) (-4046 (((-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-1099) $) 22)) (-4068 (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")) $) 41) (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) 42) (((-1186) (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) 43)) (-4152 (((-1186) (-1099)) 58)) (-4057 (((-1186) (-1099) $) 55) (((-1186) (-1099)) 56) (((-1186)) 57)) (-4112 (((-1186) (-1099)) 37)) (-4090 (((-1099)) 36)) (-4227 (($) 34)) (-2255 (((-418) (-1099) (-418) (-1099) $) 45) (((-418) (-597 (-1099)) (-418) (-1099) $) 49) (((-418) (-1099) (-418)) 46) (((-418) (-1099) (-418) (-1099)) 50)) (-4100 (((-1099)) 35)) (-2258 (((-804) $) 28)) (-4124 (((-1186)) 30) (((-1186) (-1099)) 33)) (-4036 (((-597 (-1099)) (-1099) $) 24)) (-4077 (((-1186) (-1099) (-597 (-1099)) $) 38) (((-1186) (-1099) (-597 (-1099))) 39) (((-1186) (-597 (-1099))) 40)))
-(((-1102) (-13 (-571 (-804)) (-10 -8 (-15 -4139 ($)) (-15 -4124 ((-1186))) (-15 -4124 ((-1186) (-1099))) (-15 -2255 ((-418) (-1099) (-418) (-1099) $)) (-15 -2255 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2255 ((-418) (-1099) (-418))) (-15 -2255 ((-418) (-1099) (-418) (-1099))) (-15 -4112 ((-1186) (-1099))) (-15 -4100 ((-1099))) (-15 -4090 ((-1099))) (-15 -4077 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -4077 ((-1186) (-1099) (-597 (-1099)))) (-15 -4077 ((-1186) (-597 (-1099)))) (-15 -4068 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")) $)) (-15 -4068 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")))) (-15 -4068 ((-1186) (-3 (|:| |fst| (-415)) (|:| -2875 "void")))) (-15 -4057 ((-1186) (-1099) $)) (-15 -4057 ((-1186) (-1099))) (-15 -4057 ((-1186))) (-15 -4152 ((-1186) (-1099))) (-15 -4227 ($)) (-15 -4046 ((-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-1099) $)) (-15 -4036 ((-597 (-1099)) (-1099) $)) (-15 -4026 ((-1103) (-1099) $))))) (T -1102))
-((-4139 (*1 *1) (-5 *1 (-1102))) (-4124 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2255 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2255 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *4 (-1099)) (-5 *1 (-1102)))) (-2255 (*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2255 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4100 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-4090 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-4077 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4068 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4057 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4057 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4227 (*1 *1) (-5 *1 (-1102))) (-4046 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *1 (-1102)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))) (-4026 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -4139 ($)) (-15 -4124 ((-1186))) (-15 -4124 ((-1186) (-1099))) (-15 -2255 ((-418) (-1099) (-418) (-1099) $)) (-15 -2255 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2255 ((-418) (-1099) (-418))) (-15 -2255 ((-418) (-1099) (-418) (-1099))) (-15 -4112 ((-1186) (-1099))) (-15 -4100 ((-1099))) (-15 -4090 ((-1099))) (-15 -4077 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -4077 ((-1186) (-1099) (-597 (-1099)))) (-15 -4077 ((-1186) (-597 (-1099)))) (-15 -4068 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")) $)) (-15 -4068 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -2875 "void")))) (-15 -4068 ((-1186) (-3 (|:| |fst| (-415)) (|:| -2875 "void")))) (-15 -4057 ((-1186) (-1099) $)) (-15 -4057 ((-1186) (-1099))) (-15 -4057 ((-1186))) (-15 -4152 ((-1186) (-1099))) (-15 -4227 ($)) (-15 -4046 ((-3 (|:| |fst| (-415)) (|:| -2875 "void")) (-1099) $)) (-15 -4036 ((-597 (-1099)) (-1099) $)) (-15 -4026 ((-1103) (-1099) $))))
-((-4174 (((-597 (-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $) 59)) (-4196 (((-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $) 43)) (-3010 (($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-418))))) 17)) (-4152 (((-1186) $) 67)) (-4208 (((-597 (-1099)) $) 22)) (-4163 (((-1031) $) 55)) (-4218 (((-418) (-1099) $) 27)) (-4184 (((-597 (-1099)) $) 30)) (-4227 (($) 19)) (-2255 (((-418) (-597 (-1099)) (-418) $) 25) (((-418) (-1099) (-418) $) 24)) (-2258 (((-804) $) 9) (((-1109 (-1099) (-418)) $) 13)))
-(((-1103) (-13 (-571 (-804)) (-10 -8 (-15 -2258 ((-1109 (-1099) (-418)) $)) (-15 -4227 ($)) (-15 -2255 ((-418) (-597 (-1099)) (-418) $)) (-15 -2255 ((-418) (-1099) (-418) $)) (-15 -4218 ((-418) (-1099) $)) (-15 -4208 ((-597 (-1099)) $)) (-15 -4196 ((-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -4184 ((-597 (-1099)) $)) (-15 -4174 ((-597 (-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -4163 ((-1031) $)) (-15 -4152 ((-1186) $)) (-15 -3010 ($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-418))))))))) (T -1103))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-1109 (-1099) (-418))) (-5 *1 (-1103)))) (-4227 (*1 *1) (-5 *1 (-1103))) (-2255 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *1 (-1103)))) (-2255 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1103)))) (-4218 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-4196 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) (-5 *1 (-1103)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))) (-5 *1 (-1103)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-418))))) (-5 *1 (-1103)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2258 ((-1109 (-1099) (-418)) $)) (-15 -4227 ($)) (-15 -2255 ((-418) (-597 (-1099)) (-418) $)) (-15 -2255 ((-418) (-1099) (-418) $)) (-15 -4218 ((-418) (-1099) $)) (-15 -4208 ((-597 (-1099)) $)) (-15 -4196 ((-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -4184 ((-597 (-1099)) $)) (-15 -4174 ((-597 (-597 (-3 (|:| -3901 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -4163 ((-1031) $)) (-15 -4152 ((-1186) $)) (-15 -3010 ($ (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-418))))))))
-((-2246 (((-110) $ $) NIL)) (-3046 (((-110) $) 42)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3034 (((-3 (-530) (-208) (-1099) (-1082) $) $) 50)) (-4250 (((-597 $) $) 55)) (-3173 (((-1031) $) 24) (($ (-1031)) 25)) (-4238 (((-110) $) 52)) (-2258 (((-804) $) NIL) (($ (-530)) 26) (((-530) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1099)) 32) (((-1099) $) 34) (($ (-1082)) 35) (((-1082) $) 37)) (-2934 (((-110) $ (|[\|\|]| (-530))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1099))) 23) (((-110) $ (|[\|\|]| (-1082))) 19)) (-3056 (($ (-1099) (-597 $)) 39) (($ $ (-597 $)) 40)) (-2474 (((-530) $) 27) (((-208) $) 30) (((-1099) $) 33) (((-1082) $) 36)) (-2148 (((-110) $ $) 7)))
-(((-1104) (-13 (-1176) (-1027) (-10 -8 (-15 -3173 ((-1031) $)) (-15 -3173 ($ (-1031))) (-15 -2258 ($ (-530))) (-15 -2258 ((-530) $)) (-15 -2474 ((-530) $)) (-15 -2258 ($ (-208))) (-15 -2258 ((-208) $)) (-15 -2474 ((-208) $)) (-15 -2258 ($ (-1099))) (-15 -2258 ((-1099) $)) (-15 -2474 ((-1099) $)) (-15 -2258 ($ (-1082))) (-15 -2258 ((-1082) $)) (-15 -2474 ((-1082) $)) (-15 -3056 ($ (-1099) (-597 $))) (-15 -3056 ($ $ (-597 $))) (-15 -3046 ((-110) $)) (-15 -3034 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -4250 ((-597 $) $)) (-15 -4238 ((-110) $)) (-15 -2934 ((-110) $ (|[\|\|]| (-530)))) (-15 -2934 ((-110) $ (|[\|\|]| (-208)))) (-15 -2934 ((-110) $ (|[\|\|]| (-1099)))) (-15 -2934 ((-110) $ (|[\|\|]| (-1082))))))) (T -1104))
-((-3173 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-3056 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104))) (-5 *1 (-1104)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-110)) (-5 *1 (-1104)))))
-(-13 (-1176) (-1027) (-10 -8 (-15 -3173 ((-1031) $)) (-15 -3173 ($ (-1031))) (-15 -2258 ($ (-530))) (-15 -2258 ((-530) $)) (-15 -2474 ((-530) $)) (-15 -2258 ($ (-208))) (-15 -2258 ((-208) $)) (-15 -2474 ((-208) $)) (-15 -2258 ($ (-1099))) (-15 -2258 ((-1099) $)) (-15 -2474 ((-1099) $)) (-15 -2258 ($ (-1082))) (-15 -2258 ((-1082) $)) (-15 -2474 ((-1082) $)) (-15 -3056 ($ (-1099) (-597 $))) (-15 -3056 ($ $ (-597 $))) (-15 -3046 ((-110) $)) (-15 -3034 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -4250 ((-597 $) $)) (-15 -4238 ((-110) $)) (-15 -2934 ((-110) $ (|[\|\|]| (-530)))) (-15 -2934 ((-110) $ (|[\|\|]| (-208)))) (-15 -2934 ((-110) $ (|[\|\|]| (-1099)))) (-15 -2934 ((-110) $ (|[\|\|]| (-1082))))))
-((-3078 (((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 57)) (-3066 (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|)))) 69) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|))) 65) (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 70) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 64) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|))))) 93) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 91)))
-(((-1105 |#1|) (-10 -7 (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -3078 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))))) (-522)) (T -1105))
-((-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-276 (-388 (-893 *5)))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-388 (-893 *5))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4))))))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)) (-5 *3 (-597 (-276 (-388 (-893 *5))))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)))))
-(-10 -7 (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -3066 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -3066 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -3078 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))))
-((-3090 (((-1082)) 7)) (-3113 (((-1082)) 9)) (-2816 (((-1186) (-1082)) 11)) (-3101 (((-1082)) 8)))
-(((-1106) (-10 -7 (-15 -3090 ((-1082))) (-15 -3101 ((-1082))) (-15 -3113 ((-1082))) (-15 -2816 ((-1186) (-1082))))) (T -1106))
-((-2816 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1106)))) (-3113 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-3101 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-3090 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(-10 -7 (-15 -3090 ((-1082))) (-15 -3101 ((-1082))) (-15 -3113 ((-1082))) (-15 -2816 ((-1186) (-1082))))
-((-3160 (((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 38)) (-3197 (((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|))) 24)) (-3210 (((-1108 (-597 |#1|)) (-597 |#1|)) 34)) (-3236 (((-597 (-597 |#1|)) (-597 |#1|)) 30)) (-1348 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))) 37)) (-3261 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|)))) 36)) (-3224 (((-597 (-597 |#1|)) (-597 (-597 |#1|))) 28)) (-3248 (((-597 |#1|) (-597 |#1|)) 31)) (-3147 (((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 18)) (-3136 (((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 16)) (-3125 (((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|))) 14)) (-3172 (((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 39)) (-3185 (((-597 (-597 |#1|)) (-1108 (-597 |#1|))) 41)))
-(((-1107 |#1|) (-10 -7 (-15 -3125 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -3136 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3147 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3160 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3172 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3185 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -3197 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3210 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -3224 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3236 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -3248 ((-597 |#1|) (-597 |#1|))) (-15 -3261 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1348 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))))) (-795)) (T -1107))
-((-1348 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-2 (|:| |f1| (-597 *4)) (|:| |f2| (-597 (-597 (-597 *4)))) (|:| |f3| (-597 (-597 *4))) (|:| |f4| (-597 (-597 (-597 *4)))))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 (-597 *4)))))) (-3261 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5) (|:| |f4| (-597 *5)))) (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3236 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-3224 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-4 *4 (-795)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-3136 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4)))) (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
-(-10 -7 (-15 -3125 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -3136 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3147 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3160 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3172 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3185 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -3197 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3210 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -3224 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3236 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -3248 ((-597 |#1|) (-597 |#1|))) (-15 -3261 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1348 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|))))))
-((-3273 (($ (-597 (-597 |#1|))) 10)) (-3285 (((-597 (-597 |#1|)) $) 11)) (-2258 (((-804) $) 26)))
-(((-1108 |#1|) (-10 -8 (-15 -3273 ($ (-597 (-597 |#1|)))) (-15 -3285 ((-597 (-597 |#1|)) $)) (-15 -2258 ((-804) $))) (-1027)) (T -1108))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-3273 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
-(-10 -8 (-15 -3273 ($ (-597 (-597 |#1|)))) (-15 -3285 ((-597 (-597 |#1|)) $)) (-15 -2258 ((-804) $)))
-((-2246 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3534 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1935 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#2| $ |#1| |#2|) NIL)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) NIL)) (-3956 (($) NIL T CONST)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) NIL)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) NIL)) (-1954 ((|#1| $) NIL (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-597 |#2|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-1965 ((|#1| $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3202 (((-597 |#1|) $) NIL)) (-2010 (((-110) |#1| $) NIL)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1983 (((-597 |#1|) $) NIL)) (-1993 (((-110) |#1| $) NIL)) (-2485 (((-1046) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2907 ((|#2| $) NIL (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL)) (-1946 (($ $ |#2|) NIL (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3839 (($) NIL) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-2258 (((-804) $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) NIL)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) NIL (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) NIL (-1476 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1109 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270))) (-1027) (-1027)) (T -1109))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4270)))
-((-3297 ((|#1| (-597 |#1|)) 32)) (-3320 ((|#1| |#1| (-530)) 18)) (-3308 (((-1095 |#1|) |#1| (-862)) 15)))
-(((-1110 |#1|) (-10 -7 (-15 -3297 (|#1| (-597 |#1|))) (-15 -3308 ((-1095 |#1|) |#1| (-862))) (-15 -3320 (|#1| |#1| (-530)))) (-344)) (T -1110))
-((-3320 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-344)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
-(-10 -7 (-15 -3297 (|#1| (-597 |#1|))) (-15 -3308 ((-1095 |#1|) |#1| (-862))) (-15 -3320 (|#1| |#1| (-530))))
-((-3534 (($) 10) (($ (-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)))) 14)) (-1283 (($ (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2456 (((-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) 39) (((-597 |#3|) $) 41)) (-2847 (($ (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3114 (($ (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3275 (((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) 54)) (-3440 (($ (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) 16)) (-1983 (((-597 |#2|) $) 19)) (-1993 (((-110) |#2| $) 59)) (-4221 (((-3 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) "failed") (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) 58)) (-3287 (((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) 63)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-2002 (((-597 |#3|) $) 43)) (-1832 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) NIL) (((-719) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) $) NIL) (((-719) |#3| $) NIL) (((-719) (-1 (-110) |#3|) $) 68)) (-2258 (((-804) $) 27)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2148 (((-110) $ $) 49)))
-(((-1111 |#1| |#2| |#3|) (-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3534 (|#1| (-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))))) (-15 -3534 (|#1|)) (-15 -3114 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -2456 ((-597 |#3|) |#1|)) (-15 -2494 ((-719) |#3| |#1|)) (-15 -1832 (|#3| |#1| |#2| |#3|)) (-15 -1832 (|#3| |#1| |#2|)) (-15 -2002 ((-597 |#3|) |#1|)) (-15 -1993 ((-110) |#2| |#1|)) (-15 -1983 ((-597 |#2|) |#1|)) (-15 -1283 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1283 (|#1| (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1283 (|#1| (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -4221 ((-3 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) "failed") (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -3275 ((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -3440 (|#1| (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -3287 ((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -2494 ((-719) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -2456 ((-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -2494 ((-719) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1505 ((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1515 ((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -2847 (|#1| (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -3114 (|#1| (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|))) (-1112 |#2| |#3|) (-1027) (-1027)) (T -1111))
-NIL
-(-10 -8 (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3114 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3534 (|#1| (-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))))) (-15 -3534 (|#1|)) (-15 -3114 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2847 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1515 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1505 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2494 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -2456 ((-597 |#3|) |#1|)) (-15 -2494 ((-719) |#3| |#1|)) (-15 -1832 (|#3| |#1| |#2| |#3|)) (-15 -1832 (|#3| |#1| |#2|)) (-15 -2002 ((-597 |#3|) |#1|)) (-15 -1993 ((-110) |#2| |#1|)) (-15 -1983 ((-597 |#2|) |#1|)) (-15 -1283 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1283 (|#1| (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1283 (|#1| (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -4221 ((-3 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) "failed") (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -3275 ((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -3440 (|#1| (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -3287 ((-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -2494 ((-719) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) |#1|)) (-15 -2456 ((-597 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -2494 ((-719) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1505 ((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -1515 ((-110) (-1 (-110) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -2847 (|#1| (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)) (-15 -3114 (|#1| (-1 (-2 (|:| -2940 |#2|) (|:| -1806 |#3|)) (-2 (|:| -2940 |#2|) (|:| -1806 |#3|))) |#1|)))
-((-2246 (((-110) $ $) 19 (-1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-3534 (($) 72) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 71)) (-1935 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#2| $ |#1| |#2|) 73)) (-2421 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 45 (|has| $ (-6 -4270)))) (-2180 (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 55 (|has| $ (-6 -4270)))) (-2614 (((-3 |#2| "failed") |#1| $) 61)) (-3956 (($) 7 T CONST)) (-2939 (($ $) 58 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270))))) (-1283 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 47 (|has| $ (-6 -4270))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 46 (|has| $ (-6 -4270))) (((-3 |#2| "failed") |#1| $) 62)) (-2272 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 54 (|has| $ (-6 -4270)))) (-3856 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 56 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 53 (|has| $ (-6 -4270))) (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 52 (|has| $ (-6 -4270)))) (-2858 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4271)))) (-2787 ((|#2| $ |#1|) 88)) (-2456 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 30 (|has| $ (-6 -4270))) (((-597 |#2|) $) 79 (|has| $ (-6 -4270)))) (-2014 (((-110) $ (-719)) 9)) (-1954 ((|#1| $) 96 (|has| |#1| (-795)))) (-3252 (((-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 29 (|has| $ (-6 -4270))) (((-597 |#2|) $) 80 (|has| $ (-6 -4270)))) (-3455 (((-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270))))) (-1965 ((|#1| $) 95 (|has| |#1| (-795)))) (-2847 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 34 (|has| $ (-6 -4271))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4271)))) (-3114 (($ (-1 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1987 (((-110) $ (-719)) 10)) (-3443 (((-1082) $) 22 (-1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-3202 (((-597 |#1|) $) 63)) (-2010 (((-110) |#1| $) 64)) (-3275 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 39)) (-3440 (($ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 40)) (-1983 (((-597 |#1|) $) 93)) (-1993 (((-110) |#1| $) 92)) (-2485 (((-1046) $) 21 (-1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2907 ((|#2| $) 97 (|has| |#1| (-795)))) (-4221 (((-3 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) "failed") (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 51)) (-1946 (($ $ |#2|) 98 (|has| $ (-6 -4271)))) (-3287 (((-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 41)) (-1505 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 32 (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))))) 26 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 25 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) 24 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 23 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4270)) (|has| |#2| (-1027))))) (-2002 (((-597 |#2|) $) 91)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3839 (($) 49) (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 48)) (-2494 (((-719) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 31 (|has| $ (-6 -4270))) (((-719) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| $ (-6 -4270)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4270)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 59 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))))) (-2268 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 50)) (-2258 (((-804) $) 18 (-1476 (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804)))))) (-3298 (($ (-597 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) 42)) (-1515 (((-110) (-1 (-110) (-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) $) 33 (|has| $ (-6 -4270))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (-1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-1082) |#1|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#1| "failed") (-1082) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#1| "failed") (-1082) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-1082)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3282 (((-597 (-1082)) $) NIL)) (-3718 (((-110) (-1082) $) NIL)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3048 ((|#1| $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-1082)) NIL) ((|#1| $ (-1082) |#1|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-571 (-804))) (|has| |#1| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1083 |#1|) (-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4269))) (-1027)) (T -1083))
+NIL
+(-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4269)))
+((-1494 (((-1080 |#1|) (-1080 |#1|)) 77)) (-2707 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 37)) (-2455 (((-1080 |#1|) (-388 (-530)) (-1080 |#1|)) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4003 (((-1080 |#1|) |#1| (-1080 |#1|)) 127 (|has| |#1| (-344)))) (-1273 (((-1080 |#1|) (-1080 |#1|)) 90)) (-1294 (((-1080 (-530)) (-530)) 57)) (-4058 (((-1080 |#1|) (-1080 (-1080 |#1|))) 109 (|has| |#1| (-37 (-388 (-530)))))) (-2427 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 95)) (-3940 (((-1080 |#1|) |#1| (-530)) 45)) (-3617 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 60)) (-1852 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 124 (|has| |#1| (-344)))) (-1530 (((-1080 |#1|) |#1| (-1 (-1080 |#1|))) 108 (|has| |#1| (-37 (-388 (-530)))))) (-1378 (((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|))) 125 (|has| |#1| (-344)))) (-4078 (((-1080 |#1|) (-1080 |#1|)) 89)) (-2677 (((-1080 |#1|) (-1080 |#1|)) 76)) (-3635 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 96)) (-1545 (((-1080 |#1|) |#1| (-1080 |#1|)) 105 (|has| |#1| (-37 (-388 (-530)))))) (-2146 (((-1080 (-530)) (-530)) 56)) (-3967 (((-1080 |#1|) |#1|) 59)) (-4090 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 92)) (-1703 (((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|)) 66)) (-3551 (((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|)) 35)) (-2795 (((-1080 |#1|) (-1080 |#1|)) 91)) (-4098 (((-1080 |#1|) (-1080 |#1|) |#1|) 71)) (-2018 (((-1080 |#1|) (-1080 |#1|)) 62)) (-1225 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 72)) (-2366 (((-1080 |#1|) |#1|) 67)) (-2642 (((-1080 |#1|) (-1080 (-1080 |#1|))) 82)) (-2364 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 36)) (-2351 (((-1080 |#1|) (-1080 |#1|)) 21) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 23)) (-2339 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 17)) (* (((-1080 |#1|) (-1080 |#1|) |#1|) 29) (((-1080 |#1|) |#1| (-1080 |#1|)) 26) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 27)))
+(((-1084 |#1|) (-10 -7 (-15 -2339 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3551 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2364 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2707 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3940 ((-1080 |#1|) |#1| (-530))) (-15 -2146 ((-1080 (-530)) (-530))) (-15 -1294 ((-1080 (-530)) (-530))) (-15 -3967 ((-1080 |#1|) |#1|)) (-15 -3617 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2018 ((-1080 |#1|) (-1080 |#1|))) (-15 -1703 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2366 ((-1080 |#1|) |#1|)) (-15 -4098 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1225 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2677 ((-1080 |#1|) (-1080 |#1|))) (-15 -1494 ((-1080 |#1|) (-1080 |#1|))) (-15 -2642 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -4078 ((-1080 |#1|) (-1080 |#1|))) (-15 -1273 ((-1080 |#1|) (-1080 |#1|))) (-15 -2795 ((-1080 |#1|) (-1080 |#1|))) (-15 -4090 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -2427 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -3635 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1530 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -4058 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -2455 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1852 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1378 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -4003 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|)) (-984)) (T -1084))
+((-4003 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2455 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984)) (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3635 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2427 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-4090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-984)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1225 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3617 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1294 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-2707 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3551 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2339 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+(-10 -7 (-15 -2339 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3551 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2364 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2707 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3940 ((-1080 |#1|) |#1| (-530))) (-15 -2146 ((-1080 (-530)) (-530))) (-15 -1294 ((-1080 (-530)) (-530))) (-15 -3967 ((-1080 |#1|) |#1|)) (-15 -3617 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2018 ((-1080 |#1|) (-1080 |#1|))) (-15 -1703 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2366 ((-1080 |#1|) |#1|)) (-15 -4098 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1225 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2677 ((-1080 |#1|) (-1080 |#1|))) (-15 -1494 ((-1080 |#1|) (-1080 |#1|))) (-15 -2642 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -4078 ((-1080 |#1|) (-1080 |#1|))) (-15 -1273 ((-1080 |#1|) (-1080 |#1|))) (-15 -2795 ((-1080 |#1|) (-1080 |#1|))) (-15 -4090 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -2427 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -3635 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1530 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -4058 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -2455 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1852 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1378 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -4003 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|))
+((-2386 (((-1080 |#1|) (-1080 |#1|)) 57)) (-2244 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2360 (((-1080 |#1|) (-1080 |#1|)) 53)) (-2219 (((-1080 |#1|) (-1080 |#1|)) 35)) (-2409 (((-1080 |#1|) (-1080 |#1|)) 60)) (-2269 (((-1080 |#1|) (-1080 |#1|)) 42)) (-2168 (((-1080 |#1|) (-1080 |#1|)) 31)) (-2853 (((-1080 |#1|) (-1080 |#1|)) 27)) (-2421 (((-1080 |#1|) (-1080 |#1|)) 61)) (-2281 (((-1080 |#1|) (-1080 |#1|)) 43)) (-2398 (((-1080 |#1|) (-1080 |#1|)) 58)) (-2254 (((-1080 |#1|) (-1080 |#1|)) 40)) (-2373 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2231 (((-1080 |#1|) (-1080 |#1|)) 37)) (-2459 (((-1080 |#1|) (-1080 |#1|)) 65)) (-2314 (((-1080 |#1|) (-1080 |#1|)) 47)) (-2434 (((-1080 |#1|) (-1080 |#1|)) 63)) (-2293 (((-1080 |#1|) (-1080 |#1|)) 45)) (-2485 (((-1080 |#1|) (-1080 |#1|)) 68)) (-2334 (((-1080 |#1|) (-1080 |#1|)) 50)) (-3632 (((-1080 |#1|) (-1080 |#1|)) 69)) (-2347 (((-1080 |#1|) (-1080 |#1|)) 51)) (-2472 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2324 (((-1080 |#1|) (-1080 |#1|)) 49)) (-2446 (((-1080 |#1|) (-1080 |#1|)) 66)) (-2304 (((-1080 |#1|) (-1080 |#1|)) 48)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 33)))
+(((-1085 |#1|) (-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1085))
+((-3632 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2421 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))))
+(-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|))))
+((-2386 (((-1080 |#1|) (-1080 |#1|)) 100)) (-2244 (((-1080 |#1|) (-1080 |#1|)) 64)) (-1603 (((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|)) 96)) (-2360 (((-1080 |#1|) (-1080 |#1|)) 97)) (-2087 (((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|)) 53)) (-2219 (((-1080 |#1|) (-1080 |#1|)) 54)) (-2409 (((-1080 |#1|) (-1080 |#1|)) 102)) (-2269 (((-1080 |#1|) (-1080 |#1|)) 71)) (-2168 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2853 (((-1080 |#1|) (-1080 |#1|)) 36)) (-2421 (((-1080 |#1|) (-1080 |#1|)) 103)) (-2281 (((-1080 |#1|) (-1080 |#1|)) 72)) (-2398 (((-1080 |#1|) (-1080 |#1|)) 101)) (-2254 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2373 (((-1080 |#1|) (-1080 |#1|)) 98)) (-2231 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2459 (((-1080 |#1|) (-1080 |#1|)) 111)) (-2314 (((-1080 |#1|) (-1080 |#1|)) 86)) (-2434 (((-1080 |#1|) (-1080 |#1|)) 105)) (-2293 (((-1080 |#1|) (-1080 |#1|)) 82)) (-2485 (((-1080 |#1|) (-1080 |#1|)) 115)) (-2334 (((-1080 |#1|) (-1080 |#1|)) 90)) (-3632 (((-1080 |#1|) (-1080 |#1|)) 117)) (-2347 (((-1080 |#1|) (-1080 |#1|)) 92)) (-2472 (((-1080 |#1|) (-1080 |#1|)) 113)) (-2324 (((-1080 |#1|) (-1080 |#1|)) 88)) (-2446 (((-1080 |#1|) (-1080 |#1|)) 107)) (-2304 (((-1080 |#1|) (-1080 |#1|)) 84)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 40)))
+(((-1086 |#1|) (-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2087 ((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -1603 ((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1086))
+((-3632 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2421 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2360 (-1080 *4)) (|:| -2373 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2219 (-1080 *4)) (|:| -2231 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))))
+(-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2087 ((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -1603 ((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|))))
+((-1875 (((-899 |#2|) |#2| |#2|) 35)) (-1239 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289)))))
+(((-1087 |#1| |#2|) (-10 -7 (-15 -1875 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -1239 (|#2| |#2| |#1|)) |%noBranch|)) (-522) (-1157 |#1|)) (T -1087))
+((-1239 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2)) (-4 *2 (-1157 *3)))) (-1875 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -1875 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -1239 (|#2| |#2| |#1|)) |%noBranch|))
+((-2352 (((-110) $ $) NIL)) (-2102 (($ $ (-597 (-719))) 67)) (-3082 (($) 26)) (-1873 (($ $) 42)) (-2026 (((-597 $) $) 51)) (-2073 (((-110) $) 16)) (-3733 (((-597 (-884 |#2|)) $) 74)) (-3360 (($ $) 68)) (-1601 (((-719) $) 37)) (-3538 (($) 25)) (-3044 (($ $ (-597 (-719)) (-884 |#2|)) 60) (($ $ (-597 (-719)) (-719)) 61) (($ $ (-719) (-884 |#2|)) 63)) (-3683 (($ $ $) 48) (($ (-597 $)) 50)) (-1679 (((-719) $) 75)) (-3615 (((-110) $) 15)) (-1424 (((-1082) $) NIL)) (-3386 (((-110) $) 18)) (-2624 (((-1046) $) NIL)) (-3035 (((-161) $) 73)) (-3507 (((-884 |#2|) $) 69)) (-3739 (((-719) $) 70)) (-1316 (((-110) $) 72)) (-1879 (($ $ (-597 (-719)) (-161)) 66)) (-3404 (($ $) 43)) (-2366 (((-804) $) 86)) (-3389 (($ $ (-597 (-719)) (-110)) 65)) (-2557 (((-597 $) $) 11)) (-1838 (($ $ (-719)) 36)) (-1628 (($ $) 32)) (-2572 (($ $ $ (-884 |#2|) (-719)) 56)) (-3497 (($ $ (-884 |#2|)) 55)) (-2100 (($ $ (-597 (-719)) (-884 |#2|)) 54) (($ $ (-597 (-719)) (-719)) 58) (((-719) $ (-884 |#2|)) 59)) (-2248 (((-110) $ $) 80)))
+(((-1088 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3615 ((-110) $)) (-15 -2073 ((-110) $)) (-15 -3386 ((-110) $)) (-15 -3538 ($)) (-15 -3082 ($)) (-15 -1628 ($ $)) (-15 -1838 ($ $ (-719))) (-15 -2557 ((-597 $) $)) (-15 -1601 ((-719) $)) (-15 -1873 ($ $)) (-15 -3404 ($ $)) (-15 -3683 ($ $ $)) (-15 -3683 ($ (-597 $))) (-15 -2026 ((-597 $) $)) (-15 -2100 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3497 ($ $ (-884 |#2|))) (-15 -2572 ($ $ $ (-884 |#2|) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -2100 ($ $ (-597 (-719)) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-719))) (-15 -2100 ((-719) $ (-884 |#2|))) (-15 -3044 ($ $ (-719) (-884 |#2|))) (-15 -3389 ($ $ (-597 (-719)) (-110))) (-15 -1879 ($ $ (-597 (-719)) (-161))) (-15 -2102 ($ $ (-597 (-719)))) (-15 -3507 ((-884 |#2|) $)) (-15 -3739 ((-719) $)) (-15 -1316 ((-110) $)) (-15 -3035 ((-161) $)) (-15 -1679 ((-719) $)) (-15 -3360 ($ $)) (-15 -3733 ((-597 (-884 |#2|)) $)))) (-862) (-984)) (T -1088))
+((-3615 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3538 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3082 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-1628 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3404 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3683 (*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)))) (-2572 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-1879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-2102 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3360 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))))
+(-13 (-1027) (-10 -8 (-15 -3615 ((-110) $)) (-15 -2073 ((-110) $)) (-15 -3386 ((-110) $)) (-15 -3538 ($)) (-15 -3082 ($)) (-15 -1628 ($ $)) (-15 -1838 ($ $ (-719))) (-15 -2557 ((-597 $) $)) (-15 -1601 ((-719) $)) (-15 -1873 ($ $)) (-15 -3404 ($ $)) (-15 -3683 ($ $ $)) (-15 -3683 ($ (-597 $))) (-15 -2026 ((-597 $) $)) (-15 -2100 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3497 ($ $ (-884 |#2|))) (-15 -2572 ($ $ $ (-884 |#2|) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -2100 ($ $ (-597 (-719)) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-719))) (-15 -2100 ((-719) $ (-884 |#2|))) (-15 -3044 ($ $ (-719) (-884 |#2|))) (-15 -3389 ($ $ (-597 (-719)) (-110))) (-15 -1879 ($ $ (-597 (-719)) (-161))) (-15 -2102 ($ $ (-597 (-719)))) (-15 -3507 ((-884 |#2|) $)) (-15 -3739 ((-719) $)) (-15 -1316 ((-110) $)) (-15 -3035 ((-161) $)) (-15 -1679 ((-719) $)) (-15 -3360 ($ $)) (-15 -3733 ((-597 (-884 |#2|)) $))))
+((-2352 (((-110) $ $) NIL)) (-1491 ((|#2| $) 11)) (-1478 ((|#1| $) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2377 (($ |#1| |#2|) 9)) (-2366 (((-804) $) 16)) (-2248 (((-110) $ $) NIL)))
+(((-1089 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2377 ($ |#1| |#2|)) (-15 -1478 (|#1| $)) (-15 -1491 (|#2| $)))) (-1027) (-1027)) (T -1089))
+((-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1478 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1027)))) (-1491 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1027)))))
+(-13 (-1027) (-10 -8 (-15 -2377 ($ |#1| |#2|)) (-15 -1478 (|#1| $)) (-15 -1491 (|#2| $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1951 (($ $ (-530)) NIL) (($ $ (-530) (-530)) 66)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-3045 (((-1097 |#1| |#2| |#3|) $) 36)) (-3666 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 29)) (-2805 (((-1097 |#1| |#2| |#3|) $) 30)) (-2386 (($ $) 107 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 103 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2585 (((-1097 |#1| |#2| |#3|) $) 131) (((-1099) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-3239 (($ $) 34) (($ (-530) $) 35)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-1097 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-1097 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1097 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 48)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 65 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 67 (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 25)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-2031 (((-530) $) NIL) (((-530) $ (-530)) 24)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 (((-1097 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 18) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) (-1097 |#1| |#2| |#3|)) 33)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 70 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 71 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3175 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 145)) (-3551 (((-3 $ "failed") $ $) 49 (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1097 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1097 |#1| |#2| |#3|)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) NIL) (($ $ $) 54 (|has| (-530) (-1039))) (($ $ (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-268 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 51) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 50 (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 (((-1097 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-1429 (((-530) $) 37)) (-2421 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 109 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 105 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-506) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 149) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1097 |#1| |#2| |#3|)) 27) (($ (-1177 |#2|)) 23) (($ (-1099)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-4085 ((|#1| $ (-530)) 68)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2748 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 95 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2434 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 99 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 101 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 97 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 93 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3080 (($) 20 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2272 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) 53) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1097 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1090 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1090))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-3426 ((|#2| |#2| (-1020 |#2|)) 26) ((|#2| |#2| (-1099)) 28)))
+(((-1091 |#1| |#2|) (-10 -7 (-15 -3426 (|#2| |#2| (-1099))) (-15 -3426 (|#2| |#2| (-1020 |#2|)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-411 |#1|) (-151) (-27) (-1121))) (T -1091))
+((-3426 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)))) (-3426 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))))))
+(-10 -7 (-15 -3426 (|#2| |#2| (-1099))) (-15 -3426 (|#2| |#2| (-1020 |#2|))))
+((-3426 (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))) 31) (((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|))) 44) (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 33) (((-388 (-893 |#1|)) (-893 |#1|) (-1099)) 36)))
+(((-1092 |#1|) (-10 -7 (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))))) (-13 (-522) (-795) (-975 (-530)))) (T -1092))
+((-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 *3 (-297 *5))) (-5 *1 (-1092 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-893 *5))) (-5 *3 (-893 *5)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 *3)) (-5 *1 (-1092 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 (-388 (-893 *5)) (-297 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-388 (-893 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 (-893 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-893 *5)))))
+(-10 -7 (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|))))))
+((-3217 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 13)))
+(((-1093 |#1| |#2|) (-10 -7 (-15 -3217 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) (-984) (-984)) (T -1093))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-1093 *5 *6)))))
+(-10 -7 (-15 -3217 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))))
+((-3272 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 51)) (-2611 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 52)))
+(((-1094 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3272 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))))) (-741) (-795) (-432) (-890 |#3| |#1| |#2|)) (T -1094))
+((-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))))
+(-10 -7 (-15 -2611 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3272 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))))
+((-2352 (((-110) $ $) 137)) (-1813 (((-110) $) 28)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) 58) (((-1095 |#1|) $) 47)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) 132 (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) 126 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 71 (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 91 (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3269 (($ $ (-719)) 40)) (-3778 (($ $ (-719)) 41)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 128 (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 56)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) 104)) (-1903 (($ $ $) NIL (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) 133 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) 45)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2589 (((-804) $ (-804)) 117)) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) 49) (($ (-1095 $) (-1012)) 65)) (-3081 (($ $ (-719)) 32)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 63) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 121)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) 52)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 39)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 31)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 79 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 135 (|has| |#1| (-432)))) (-1641 (($ $ (-719) |#1| $) 99)) (-3845 (((-399 (-1095 $)) (-1095 $)) 77 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 76 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 84 (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) 35)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 138 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) 124 (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) 54) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 130 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) 118) (($ (-530)) NIL) (($ |#1|) 53) (($ (-1012)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) 26 (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 15 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 96)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 139 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 66)) (** (($ $ (-862)) 14) (($ $ (-719)) 12)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 25) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1095 |#1|) (-13 (-1157 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))) (-15 -1641 ($ $ (-719) |#1| $)))) (-984)) (T -1095))
+((-2589 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))) (-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
+(-13 (-1157 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))) (-15 -1641 ($ $ (-719) |#1| $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 36)) (-2585 (((-1090 |#1| |#2| |#3|) $) NIL) (((-1097 |#1| |#2| |#3|) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2185 (((-388 (-530)) $) 55)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) (-1090 |#1| |#2| |#3|)) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 20) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 (((-1090 |#1| |#2| |#3|) $) 41)) (-1707 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) NIL)) (-2817 (((-1090 |#1| |#2| |#3|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 58) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1090 |#1| |#2| |#3|)) 30) (($ (-1097 |#1| |#2| |#3|)) 31) (($ (-1177 |#2|)) 26) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 22 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 24)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1096 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1096))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 125)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 116)) (-1971 (((-1154 |#2| |#1|) $ (-719)) 63)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 79) (($ $ (-719) (-719)) 76)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 102)) (-2386 (($ $) 169 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 165 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 115) (($ (-1080 |#1|)) 110)) (-2409 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 23)) (-3745 (($ $) 26)) (-1761 (((-893 |#1|) $ (-719)) 75) (((-893 |#1|) $ (-719) (-719)) 77)) (-3555 (((-110) $) 120)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) 122) (((-719) $ (-719)) 124)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 13) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $) 129 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-3168 (($ $ (-719)) 15)) (-3551 (((-3 $ "failed") $ $) 24 (|has| |#1| (-522)))) (-2853 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 119) (($ $ $) 128 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 29)) (-1429 (((-719) $) NIL)) (-2421 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 167 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 201) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 51) (($ (-1177 |#2|)) 32)) (-3441 (((-1080 |#1|) $) 98)) (-4085 ((|#1| $ (-719)) 118)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 54)) (-2459 (($ $) 181 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 185 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 183 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 17 T CONST)) (-3093 (($) 19 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 194)) (-2339 (($ $ $) 31)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 137 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1097 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1097))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1097 *3 *4 *5)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-2366 (((-804) $) 27) (($ (-1099)) 29)) (-1461 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 40)) (-1451 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 33) (($ $) 34)) (-3125 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 35)) (-3115 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 37)) (-3107 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 36)) (-3096 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 38)) (-3805 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 39)))
+(((-1098) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3125 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3107 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3115 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3096 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1461 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3805 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ $))))) (T -1098))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1098)))) (-3125 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3107 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3115 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3096 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1461 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3805 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1451 (*1 *1 *1) (-5 *1 (-1098))))
+(-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3125 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3107 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3115 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3096 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1461 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3805 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ $))))
+((-2352 (((-110) $ $) NIL)) (-3620 (($ $ (-597 (-804))) 59)) (-2139 (($ $ (-597 (-804))) 57)) (-3166 (((-1082) $) 84)) (-4119 (((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $) 87)) (-1815 (((-110) $) 22)) (-3266 (($ $ (-597 (-597 (-804)))) 56) (($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) 82)) (-2350 (($) 124 T CONST)) (-3911 (((-1186)) 106)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 66) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 73)) (-3538 (($) 95) (($ $) 101)) (-3907 (($ $) 83)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2939 (((-597 $) $) 107)) (-1424 (((-1082) $) 90)) (-2624 (((-1046) $) NIL)) (-1902 (($ $ (-597 (-804))) 58)) (-3260 (((-506) $) 46) (((-1099) $) 47) (((-833 (-530)) $) 77) (((-833 (-360)) $) 75)) (-2366 (((-804) $) 53) (($ (-1082)) 48)) (-3906 (($ $ (-597 (-804))) 60)) (-3987 (((-1082) $) 33) (((-1082) $ (-110)) 34) (((-1186) (-770) $) 35) (((-1186) (-770) $ (-110)) 36)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 49)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 50)))
+(((-1099) (-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3538 ($)) (-15 -3538 ($ $)) (-15 -3911 ((-1186))) (-15 -2366 ($ (-1082))) (-15 -3907 ($ $)) (-15 -1815 ((-110) $)) (-15 -4119 ((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3266 ($ $ (-597 (-597 (-804))))) (-15 -3266 ($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -2139 ($ $ (-597 (-804)))) (-15 -3620 ($ $ (-597 (-804)))) (-15 -3906 ($ $ (-597 (-804)))) (-15 -1902 ($ $ (-597 (-804)))) (-15 -3166 ((-1082) $)) (-15 -2939 ((-597 $) $)) (-15 -2350 ($) -2708)))) (T -1099))
+((-3538 (*1 *1) (-5 *1 (-1099))) (-3538 (*1 *1 *1) (-5 *1 (-1099))) (-3911 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-3907 (*1 *1 *1) (-5 *1 (-1099))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-1099)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))) (-2350 (*1 *1) (-5 *1 (-1099))))
+(-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3538 ($)) (-15 -3538 ($ $)) (-15 -3911 ((-1186))) (-15 -2366 ($ (-1082))) (-15 -3907 ($ $)) (-15 -1815 ((-110) $)) (-15 -4119 ((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3266 ($ $ (-597 (-597 (-804))))) (-15 -3266 ($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -2139 ($ $ (-597 (-804)))) (-15 -3620 ($ $ (-597 (-804)))) (-15 -3906 ($ $ (-597 (-804)))) (-15 -1902 ($ $ (-597 (-804)))) (-15 -3166 ((-1082) $)) (-15 -2939 ((-597 $) $)) (-15 -2350 ($) -2708)))
+((-1538 (((-1181 |#1|) |#1| (-862)) 16) (((-1181 |#1|) (-597 |#1|)) 20)))
+(((-1100 |#1|) (-10 -7 (-15 -1538 ((-1181 |#1|) (-597 |#1|))) (-15 -1538 ((-1181 |#1|) |#1| (-862)))) (-984)) (T -1100))
+((-1538 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-984)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)) (-5 *1 (-1100 *4)))))
+(-10 -7 (-15 -1538 ((-1181 |#1|) (-597 |#1|))) (-15 -1538 ((-1181 |#1|) |#1| (-862))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2410 (($ $ |#1| (-911) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-911)) NIL)) (-2944 (((-911) $) NIL)) (-3756 (($ (-1 (-911) (-911)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-1641 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-128)) (|has| |#1| (-522))))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1429 (((-911) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-911)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 9 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) 16)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1101 |#1|) (-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -1641 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984)) (T -1101))
+((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+(-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -1641 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-4140 (((-1103) (-1099) $) 25)) (-3542 (($) 29)) (-2178 (((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $) 22)) (-4217 (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $) 41) (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) 42) (((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) 43)) (-2142 (((-1186) (-1099)) 58)) (-1720 (((-1186) (-1099) $) 55) (((-1186) (-1099)) 56) (((-1186)) 57)) (-2864 (((-1186) (-1099)) 37)) (-1380 (((-1099)) 36)) (-3958 (($) 34)) (-2363 (((-418) (-1099) (-418) (-1099) $) 45) (((-418) (-597 (-1099)) (-418) (-1099) $) 49) (((-418) (-1099) (-418)) 46) (((-418) (-1099) (-418) (-1099)) 50)) (-4111 (((-1099)) 35)) (-2366 (((-804) $) 28)) (-2432 (((-1186)) 30) (((-1186) (-1099)) 33)) (-2641 (((-597 (-1099)) (-1099) $) 24)) (-2888 (((-1186) (-1099) (-597 (-1099)) $) 38) (((-1186) (-1099) (-597 (-1099))) 39) (((-1186) (-597 (-1099))) 40)))
+(((-1102) (-13 (-571 (-804)) (-10 -8 (-15 -3542 ($)) (-15 -2432 ((-1186))) (-15 -2432 ((-1186) (-1099))) (-15 -2363 ((-418) (-1099) (-418) (-1099) $)) (-15 -2363 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2363 ((-418) (-1099) (-418))) (-15 -2363 ((-418) (-1099) (-418) (-1099))) (-15 -2864 ((-1186) (-1099))) (-15 -4111 ((-1099))) (-15 -1380 ((-1099))) (-15 -2888 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -2888 ((-1186) (-1099) (-597 (-1099)))) (-15 -2888 ((-1186) (-597 (-1099)))) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -4217 ((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -1720 ((-1186) (-1099) $)) (-15 -1720 ((-1186) (-1099))) (-15 -1720 ((-1186))) (-15 -2142 ((-1186) (-1099))) (-15 -3958 ($)) (-15 -2178 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $)) (-15 -2641 ((-597 (-1099)) (-1099) $)) (-15 -4140 ((-1103) (-1099) $))))) (T -1102))
+((-3542 (*1 *1) (-5 *1 (-1102))) (-2432 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *4 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4111 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-1380 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-3958 (*1 *1) (-5 *1 (-1102))) (-2178 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-1102)))) (-2641 (*1 *2 *3 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))) (-4140 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -3542 ($)) (-15 -2432 ((-1186))) (-15 -2432 ((-1186) (-1099))) (-15 -2363 ((-418) (-1099) (-418) (-1099) $)) (-15 -2363 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2363 ((-418) (-1099) (-418))) (-15 -2363 ((-418) (-1099) (-418) (-1099))) (-15 -2864 ((-1186) (-1099))) (-15 -4111 ((-1099))) (-15 -1380 ((-1099))) (-15 -2888 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -2888 ((-1186) (-1099) (-597 (-1099)))) (-15 -2888 ((-1186) (-597 (-1099)))) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -4217 ((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -1720 ((-1186) (-1099) $)) (-15 -1720 ((-1186) (-1099))) (-15 -1720 ((-1186))) (-15 -2142 ((-1186) (-1099))) (-15 -3958 ($)) (-15 -2178 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $)) (-15 -2641 ((-597 (-1099)) (-1099) $)) (-15 -4140 ((-1103) (-1099) $))))
+((-3611 (((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $) 59)) (-3812 (((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $) 43)) (-3137 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))) 17)) (-2142 (((-1186) $) 67)) (-2586 (((-597 (-1099)) $) 22)) (-3828 (((-1031) $) 55)) (-1213 (((-418) (-1099) $) 27)) (-2147 (((-597 (-1099)) $) 30)) (-3958 (($) 19)) (-2363 (((-418) (-597 (-1099)) (-418) $) 25) (((-418) (-1099) (-418) $) 24)) (-2366 (((-804) $) 9) (((-1109 (-1099) (-418)) $) 13)))
+(((-1103) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ((-1109 (-1099) (-418)) $)) (-15 -3958 ($)) (-15 -2363 ((-418) (-597 (-1099)) (-418) $)) (-15 -2363 ((-418) (-1099) (-418) $)) (-15 -1213 ((-418) (-1099) $)) (-15 -2586 ((-597 (-1099)) $)) (-15 -3812 ((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -2147 ((-597 (-1099)) $)) (-15 -3611 ((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -3828 ((-1031) $)) (-15 -2142 ((-1186) $)) (-15 -3137 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))))))) (T -1103))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-1109 (-1099) (-418))) (-5 *1 (-1103)))) (-3958 (*1 *1) (-5 *1 (-1103))) (-2363 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *1 (-1103)))) (-2363 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1103)))) (-1213 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-3812 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) (-5 *1 (-1103)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))) (-5 *1 (-1103)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))) (-5 *1 (-1103)))))
+(-13 (-571 (-804)) (-10 -8 (-15 -2366 ((-1109 (-1099) (-418)) $)) (-15 -3958 ($)) (-15 -2363 ((-418) (-597 (-1099)) (-418) $)) (-15 -2363 ((-418) (-1099) (-418) $)) (-15 -1213 ((-418) (-1099) $)) (-15 -2586 ((-597 (-1099)) $)) (-15 -3812 ((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -2147 ((-597 (-1099)) $)) (-15 -3611 ((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -3828 ((-1031) $)) (-15 -2142 ((-1186) $)) (-15 -3137 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))))))
+((-2352 (((-110) $ $) NIL)) (-1272 (((-110) $) 42)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2671 (((-3 (-530) (-208) (-1099) (-1082) $) $) 50)) (-1566 (((-597 $) $) 55)) (-3260 (((-1031) $) 24) (($ (-1031)) 25)) (-2951 (((-110) $) 52)) (-2366 (((-804) $) NIL) (($ (-530)) 26) (((-530) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1099)) 32) (((-1099) $) 34) (($ (-1082)) 35) (((-1082) $) 37)) (-3071 (((-110) $ (|[\|\|]| (-530))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1099))) 23) (((-110) $ (|[\|\|]| (-1082))) 19)) (-4121 (($ (-1099) (-597 $)) 39) (($ $ (-597 $)) 40)) (-2612 (((-530) $) 27) (((-208) $) 30) (((-1099) $) 33) (((-1082) $) 36)) (-2248 (((-110) $ $) 7)))
+(((-1104) (-13 (-1176) (-1027) (-10 -8 (-15 -3260 ((-1031) $)) (-15 -3260 ($ (-1031))) (-15 -2366 ($ (-530))) (-15 -2366 ((-530) $)) (-15 -2612 ((-530) $)) (-15 -2366 ($ (-208))) (-15 -2366 ((-208) $)) (-15 -2612 ((-208) $)) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2612 ((-1099) $)) (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -2612 ((-1082) $)) (-15 -4121 ($ (-1099) (-597 $))) (-15 -4121 ($ $ (-597 $))) (-15 -1272 ((-110) $)) (-15 -2671 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -1566 ((-597 $) $)) (-15 -2951 ((-110) $)) (-15 -3071 ((-110) $ (|[\|\|]| (-530)))) (-15 -3071 ((-110) $ (|[\|\|]| (-208)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1099)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1082))))))) (T -1104))
+((-3260 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-1272 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104))) (-5 *1 (-1104)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-110)) (-5 *1 (-1104)))))
+(-13 (-1176) (-1027) (-10 -8 (-15 -3260 ((-1031) $)) (-15 -3260 ($ (-1031))) (-15 -2366 ($ (-530))) (-15 -2366 ((-530) $)) (-15 -2612 ((-530) $)) (-15 -2366 ($ (-208))) (-15 -2366 ((-208) $)) (-15 -2612 ((-208) $)) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2612 ((-1099) $)) (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -2612 ((-1082) $)) (-15 -4121 ($ (-1099) (-597 $))) (-15 -4121 ($ $ (-597 $))) (-15 -1272 ((-110) $)) (-15 -2671 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -1566 ((-597 $) $)) (-15 -2951 ((-110) $)) (-15 -3071 ((-110) $ (|[\|\|]| (-530)))) (-15 -3071 ((-110) $ (|[\|\|]| (-208)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1099)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1082))))))
+((-2333 (((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 57)) (-2688 (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|)))) 69) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|))) 65) (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 70) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 64) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|))))) 93) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 91)))
+(((-1105 |#1|) (-10 -7 (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -2333 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))))) (-522)) (T -1105))
+((-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-276 (-388 (-893 *5)))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-388 (-893 *5))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4))))))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)) (-5 *3 (-597 (-276 (-388 (-893 *5))))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)))))
+(-10 -7 (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -2333 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))))
+((-3463 (((-1082)) 7)) (-3838 (((-1082)) 9)) (-2967 (((-1186) (-1082)) 11)) (-2151 (((-1082)) 8)))
+(((-1106) (-10 -7 (-15 -3463 ((-1082))) (-15 -2151 ((-1082))) (-15 -3838 ((-1082))) (-15 -2967 ((-1186) (-1082))))) (T -1106))
+((-2967 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1106)))) (-3838 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-2151 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-3463 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
+(-10 -7 (-15 -3463 ((-1082))) (-15 -2151 ((-1082))) (-15 -3838 ((-1082))) (-15 -2967 ((-1186) (-1082))))
+((-1885 (((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 38)) (-1577 (((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|))) 24)) (-3624 (((-1108 (-597 |#1|)) (-597 |#1|)) 34)) (-3319 (((-597 (-597 |#1|)) (-597 |#1|)) 30)) (-1336 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))) 37)) (-3716 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|)))) 36)) (-1356 (((-597 (-597 |#1|)) (-597 (-597 |#1|))) 28)) (-1991 (((-597 |#1|) (-597 |#1|)) 31)) (-3456 (((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 18)) (-1248 (((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 16)) (-2604 (((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|))) 14)) (-3731 (((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 39)) (-2840 (((-597 (-597 |#1|)) (-1108 (-597 |#1|))) 41)))
+(((-1107 |#1|) (-10 -7 (-15 -2604 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -1248 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3456 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -1885 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3731 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -2840 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -1577 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3624 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -1356 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3319 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -1991 ((-597 |#1|) (-597 |#1|))) (-15 -3716 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))))) (-795)) (T -1107))
+((-1336 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-2 (|:| |f1| (-597 *4)) (|:| |f2| (-597 (-597 (-597 *4)))) (|:| |f3| (-597 (-597 *4))) (|:| |f4| (-597 (-597 (-597 *4)))))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 (-597 *4)))))) (-3716 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5) (|:| |f4| (-597 *5)))) (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3624 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-4 *4 (-795)))) (-1885 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-1248 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))) (-2604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4)))) (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
+(-10 -7 (-15 -2604 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -1248 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3456 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -1885 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3731 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -2840 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -1577 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3624 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -1356 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3319 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -1991 ((-597 |#1|) (-597 |#1|))) (-15 -3716 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|))))))
+((-1632 (($ (-597 (-597 |#1|))) 10)) (-2654 (((-597 (-597 |#1|)) $) 11)) (-2366 (((-804) $) 26)))
+(((-1108 |#1|) (-10 -8 (-15 -1632 ($ (-597 (-597 |#1|)))) (-15 -2654 ((-597 (-597 |#1|)) $)) (-15 -2366 ((-804) $))) (-1027)) (T -1108))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
+(-10 -8 (-15 -1632 ($ (-597 (-597 |#1|)))) (-15 -2654 ((-597 (-597 |#1|)) $)) (-15 -2366 ((-804) $)))
+((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1109 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -1109))
+NIL
+(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
+((-2129 ((|#1| (-597 |#1|)) 32)) (-1946 ((|#1| |#1| (-530)) 18)) (-3992 (((-1095 |#1|) |#1| (-862)) 15)))
+(((-1110 |#1|) (-10 -7 (-15 -2129 (|#1| (-597 |#1|))) (-15 -3992 ((-1095 |#1|) |#1| (-862))) (-15 -1946 (|#1| |#1| (-530)))) (-344)) (T -1110))
+((-1946 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))) (-3992 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-344)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
+(-10 -7 (-15 -2129 (|#1| (-597 |#1|))) (-15 -3992 ((-1095 |#1|) |#1| (-862))) (-15 -1946 (|#1| |#1| (-530))))
+((-3527 (($) 10) (($ (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)))) 14)) (-1842 (($ (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 39) (((-597 |#3|) $) 41)) (-3583 (($ (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3217 (($ (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1723 (((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 54)) (-2441 (($ (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 16)) (-3567 (((-597 |#2|) $) 19)) (-1927 (((-110) |#2| $) 59)) (-1437 (((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 58)) (-2738 (((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 63)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-2261 (((-597 |#3|) $) 43)) (-1902 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) NIL) (((-719) |#3| $) NIL) (((-719) (-1 (-110) |#3|) $) 68)) (-2366 (((-804) $) 27)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2248 (((-110) $ $) 49)))
+(((-1111 |#1| |#2| |#3|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3527 (|#1| (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))))) (-15 -3527 (|#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -3779 ((-597 |#3|) |#1|)) (-15 -2632 ((-719) |#3| |#1|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1927 ((-110) |#2| |#1|)) (-15 -3567 ((-597 |#2|) |#1|)) (-15 -1842 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1842 (|#1| (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1842 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -1437 ((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1723 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2441 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2738 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2632 ((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -3779 ((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -2632 ((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1533 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3889 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3583 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3217 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|))) (-1112 |#2| |#3|) (-1027) (-1027)) (T -1111))
+NIL
+(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3527 (|#1| (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))))) (-15 -3527 (|#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -3779 ((-597 |#3|) |#1|)) (-15 -2632 ((-719) |#3| |#1|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1927 ((-110) |#2| |#1|)) (-15 -3567 ((-597 |#2|) |#1|)) (-15 -1842 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1842 (|#1| (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1842 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -1437 ((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1723 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2441 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2738 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2632 ((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -3779 ((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -2632 ((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1533 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3889 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3583 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3217 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)))
+((-2352 (((-110) $ $) 19 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3527 (($) 72) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 71)) (-2097 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#2| $ |#1| |#2|) 73)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 88)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-597 |#2|) $) 79 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 96 (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-597 |#2|) $) 80 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 95 (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40)) (-3567 (((-597 |#1|) $) 93)) (-1927 (((-110) |#1| $) 92)) (-2624 (((-1046) $) 21 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3048 ((|#2| $) 97 (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51)) (-1522 (($ $ |#2|) 98 (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 91)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50)) (-2366 (((-804) $) 18 (-1461 (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1112 |#1| |#2|) (-133) (-1027) (-1027)) (T -1112))
-((-2416 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3534 (*1 *1) (-12 (-4 *1 (-1112 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2940 *3) (|:| -1806 *4)))) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1112 *3 *4)))) (-3114 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
-(-13 (-568 |t#1| |t#2|) (-563 |t#1| |t#2|) (-10 -8 (-15 -2416 (|t#2| $ |t#1| |t#2|)) (-15 -3534 ($)) (-15 -3534 ($ (-597 (-2 (|:| -2940 |t#1|) (|:| -1806 |t#2|))))) (-15 -3114 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -2940 |#1|) (|:| -1806 |#2|))) . T) ((-99) -1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-571 (-804)) -1476 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #0#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 #0#) . T) ((-468 |#2|) . T) ((-563 |#1| |#2|) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-291 (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)))) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-1027) -1476 (|has| |#2| (-1027)) (|has| (-2 (|:| -2940 |#1|) (|:| -1806 |#2|)) (-1027))) ((-1135) . T))
-((-3392 (((-110)) 24)) (-3358 (((-1186) (-1082)) 26)) (-3404 (((-110)) 36)) (-3369 (((-1186)) 34)) (-3346 (((-1186) (-1082) (-1082)) 25)) (-3415 (((-110)) 37)) (-3440 (((-1186) |#1| |#2|) 44)) (-3333 (((-1186)) 20)) (-3427 (((-3 |#2| "failed") |#1|) 42)) (-3379 (((-1186)) 35)))
-(((-1113 |#1| |#2|) (-10 -7 (-15 -3333 ((-1186))) (-15 -3346 ((-1186) (-1082) (-1082))) (-15 -3358 ((-1186) (-1082))) (-15 -3369 ((-1186))) (-15 -3379 ((-1186))) (-15 -3392 ((-110))) (-15 -3404 ((-110))) (-15 -3415 ((-110))) (-15 -3427 ((-3 |#2| "failed") |#1|)) (-15 -3440 ((-1186) |#1| |#2|))) (-1027) (-1027)) (T -1113))
-((-3440 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3427 (*1 *2 *3) (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))) (-3415 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3404 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3392 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3379 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3369 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3346 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3333 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
-(-10 -7 (-15 -3333 ((-1186))) (-15 -3346 ((-1186) (-1082) (-1082))) (-15 -3358 ((-1186) (-1082))) (-15 -3369 ((-1186))) (-15 -3379 ((-1186))) (-15 -3392 ((-110))) (-15 -3404 ((-110))) (-15 -3415 ((-110))) (-15 -3427 ((-3 |#2| "failed") |#1|)) (-15 -3440 ((-1186) |#1| |#2|)))
-((-3463 (((-1082) (-1082)) 18)) (-3452 (((-51) (-1082)) 21)))
-(((-1114) (-10 -7 (-15 -3452 ((-51) (-1082))) (-15 -3463 ((-1082) (-1082))))) (T -1114))
-((-3463 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
-(-10 -7 (-15 -3452 ((-51) (-1082))) (-15 -3463 ((-1082) (-1082))))
-((-2258 (((-1116) |#1|) 11)))
-(((-1115 |#1|) (-10 -7 (-15 -2258 ((-1116) |#1|))) (-1027)) (T -1115))
-((-2258 (*1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *1 (-1115 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -2258 ((-1116) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3218 (((-597 (-1082)) $) 34)) (-3487 (((-597 (-1082)) $ (-597 (-1082))) 37)) (-3475 (((-597 (-1082)) $ (-597 (-1082))) 36)) (-3499 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-3509 (((-597 (-1082)) $) 33)) (-3547 (($) 22)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3520 (((-597 (-1082)) $) 35)) (-2278 (((-1186) $ (-530)) 29) (((-1186) $) 30)) (-3173 (($ (-804) (-530)) 26) (($ (-804) (-530) (-804)) NIL)) (-2258 (((-804) $) 40) (($ (-804)) 24)) (-2148 (((-110) $ $) NIL)))
-(((-1116) (-13 (-1027) (-10 -8 (-15 -2258 ($ (-804))) (-15 -3173 ($ (-804) (-530))) (-15 -3173 ($ (-804) (-530) (-804))) (-15 -2278 ((-1186) $ (-530))) (-15 -2278 ((-1186) $)) (-15 -3520 ((-597 (-1082)) $)) (-15 -3218 ((-597 (-1082)) $)) (-15 -3547 ($)) (-15 -3509 ((-597 (-1082)) $)) (-15 -3499 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3487 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3475 ((-597 (-1082)) $ (-597 (-1082))))))) (T -1116))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1116)))) (-3173 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-3173 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-2278 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1116)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1116)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3547 (*1 *1) (-5 *1 (-1116))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3499 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3487 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3475 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(-13 (-1027) (-10 -8 (-15 -2258 ($ (-804))) (-15 -3173 ($ (-804) (-530))) (-15 -3173 ($ (-804) (-530) (-804))) (-15 -2278 ((-1186) $ (-530))) (-15 -2278 ((-1186) $)) (-15 -3520 ((-597 (-1082)) $)) (-15 -3218 ((-597 (-1082)) $)) (-15 -3547 ($)) (-15 -3509 ((-597 (-1082)) $)) (-15 -3499 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3487 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3475 ((-597 (-1082)) $ (-597 (-1082))))))
-((-2246 (((-110) $ $) NIL)) (-3579 (((-1082) $ (-1082)) 17) (((-1082) $) 16)) (-3697 (((-1082) $ (-1082)) 15)) (-3734 (($ $ (-1082)) NIL)) (-3555 (((-3 (-1082) "failed") $) 11)) (-3566 (((-1082) $) 8)) (-3542 (((-3 (-1082) "failed") $) 12)) (-3704 (((-1082) $) 9)) (-2415 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3901 (((-369) $) NIL)) (-3443 (((-1082) $) NIL)) (-3713 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3529 (((-110) $) 18)) (-2258 (((-804) $) NIL)) (-3725 (($ $) NIL)) (-2148 (((-110) $ $) NIL)))
-(((-1117) (-13 (-345 (-369) (-1082)) (-10 -8 (-15 -3579 ((-1082) $ (-1082))) (-15 -3579 ((-1082) $)) (-15 -3566 ((-1082) $)) (-15 -3555 ((-3 (-1082) "failed") $)) (-15 -3542 ((-3 (-1082) "failed") $)) (-15 -3529 ((-110) $))))) (T -1117))
-((-3579 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3555 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
-(-13 (-345 (-369) (-1082)) (-10 -8 (-15 -3579 ((-1082) $ (-1082))) (-15 -3579 ((-1082) $)) (-15 -3566 ((-1082) $)) (-15 -3555 ((-3 (-1082) "failed") $)) (-15 -3542 ((-3 (-1082) "failed") $)) (-15 -3529 ((-110) $))))
-((-3592 (((-3 (-530) "failed") |#1|) 19)) (-3601 (((-3 (-530) "failed") |#1|) 14)) (-3609 (((-530) (-1082)) 28)))
-(((-1118 |#1|) (-10 -7 (-15 -3592 ((-3 (-530) "failed") |#1|)) (-15 -3601 ((-3 (-530) "failed") |#1|)) (-15 -3609 ((-530) (-1082)))) (-984)) (T -1118))
-((-3609 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4)) (-4 *4 (-984)))) (-3601 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))) (-3592 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(-10 -7 (-15 -3592 ((-3 (-530) "failed") |#1|)) (-15 -3601 ((-3 (-530) "failed") |#1|)) (-15 -3609 ((-530) (-1082))))
-((-3617 (((-1059 (-208))) 9)))
-(((-1119) (-10 -7 (-15 -3617 ((-1059 (-208)))))) (T -1119))
-((-3617 (*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
-(-10 -7 (-15 -3617 ((-1059 (-208)))))
-((-1877 (($) 11)) (-2339 (($ $) 35)) (-2318 (($ $) 33)) (-2192 (($ $) 25)) (-2361 (($ $) 17)) (-2910 (($ $) 15)) (-2349 (($ $) 19)) (-2220 (($ $) 30)) (-2328 (($ $) 34)) (-2202 (($ $) 29)))
-(((-1120 |#1|) (-10 -8 (-15 -1877 (|#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2202 (|#1| |#1|))) (-1121)) (T -1120))
-NIL
-(-10 -8 (-15 -1877 (|#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2202 (|#1| |#1|)))
-((-2276 (($ $) 26)) (-2144 (($ $) 11)) (-2253 (($ $) 27)) (-2121 (($ $) 10)) (-2297 (($ $) 28)) (-2169 (($ $) 9)) (-1877 (($) 16)) (-2070 (($ $) 19)) (-2693 (($ $) 18)) (-2308 (($ $) 29)) (-2181 (($ $) 8)) (-2287 (($ $) 30)) (-2155 (($ $) 7)) (-2263 (($ $) 31)) (-2133 (($ $) 6)) (-2339 (($ $) 20)) (-2211 (($ $) 32)) (-2318 (($ $) 21)) (-2192 (($ $) 33)) (-2361 (($ $) 22)) (-2230 (($ $) 34)) (-2910 (($ $) 23)) (-2241 (($ $) 35)) (-2349 (($ $) 24)) (-2220 (($ $) 36)) (-2328 (($ $) 25)) (-2202 (($ $) 37)) (** (($ $ $) 17)))
+((-2552 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3527 (*1 *1) (-12 (-4 *1 (-1112 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 *3) (|:| -1874 *4)))) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1112 *3 *4)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(-13 (-568 |t#1| |t#2|) (-563 |t#1| |t#2|) (-10 -8 (-15 -2552 (|t#2| $ |t#1| |t#2|)) (-15 -3527 ($)) (-15 -3527 ($ (-597 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))))) (-15 -3217 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 #0#) . T) ((-468 |#2|) . T) ((-563 |#1| |#2|) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-1027) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-1135) . T))
+((-1385 (((-110)) 24)) (-1763 (((-1186) (-1082)) 26)) (-4150 (((-110)) 36)) (-3425 (((-1186)) 34)) (-3022 (((-1186) (-1082) (-1082)) 25)) (-3769 (((-110)) 37)) (-2441 (((-1186) |#1| |#2|) 44)) (-4135 (((-1186)) 20)) (-3612 (((-3 |#2| "failed") |#1|) 42)) (-2014 (((-1186)) 35)))
+(((-1113 |#1| |#2|) (-10 -7 (-15 -4135 ((-1186))) (-15 -3022 ((-1186) (-1082) (-1082))) (-15 -1763 ((-1186) (-1082))) (-15 -3425 ((-1186))) (-15 -2014 ((-1186))) (-15 -1385 ((-110))) (-15 -4150 ((-110))) (-15 -3769 ((-110))) (-15 -3612 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-1186) |#1| |#2|))) (-1027) (-1027)) (T -1113))
+((-2441 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3612 (*1 *2 *3) (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))) (-3769 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-4150 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-1385 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2014 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3425 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3022 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-4135 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
+(-10 -7 (-15 -4135 ((-1186))) (-15 -3022 ((-1186) (-1082) (-1082))) (-15 -1763 ((-1186) (-1082))) (-15 -3425 ((-1186))) (-15 -2014 ((-1186))) (-15 -1385 ((-110))) (-15 -4150 ((-110))) (-15 -3769 ((-110))) (-15 -3612 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-1186) |#1| |#2|)))
+((-2759 (((-1082) (-1082)) 18)) (-3888 (((-51) (-1082)) 21)))
+(((-1114) (-10 -7 (-15 -3888 ((-51) (-1082))) (-15 -2759 ((-1082) (-1082))))) (T -1114))
+((-2759 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
+(-10 -7 (-15 -3888 ((-51) (-1082))) (-15 -2759 ((-1082) (-1082))))
+((-2366 (((-1116) |#1|) 11)))
+(((-1115 |#1|) (-10 -7 (-15 -2366 ((-1116) |#1|))) (-1027)) (T -1115))
+((-2366 (*1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *1 (-1115 *3)) (-4 *3 (-1027)))))
+(-10 -7 (-15 -2366 ((-1116) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-3294 (((-597 (-1082)) $) 34)) (-3256 (((-597 (-1082)) $ (-597 (-1082))) 37)) (-1464 (((-597 (-1082)) $ (-597 (-1082))) 36)) (-2998 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-3897 (((-597 (-1082)) $) 33)) (-3538 (($) 22)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2484 (((-597 (-1082)) $) 35)) (-2388 (((-1186) $ (-530)) 29) (((-1186) $) 30)) (-3260 (($ (-804) (-530)) 26) (($ (-804) (-530) (-804)) NIL)) (-2366 (((-804) $) 40) (($ (-804)) 24)) (-2248 (((-110) $ $) NIL)))
+(((-1116) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -3260 ($ (-804) (-530) (-804))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -3294 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3256 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))) (T -1116))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1116)))) (-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-3260 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1116)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1116)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3538 (*1 *1) (-5 *1 (-1116))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-2998 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3256 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+(-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -3260 ($ (-804) (-530) (-804))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -3294 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3256 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))
+((-2352 (((-110) $ $) NIL)) (-1891 (((-1082) $ (-1082)) 17) (((-1082) $) 16)) (-3753 (((-1082) $ (-1082)) 15)) (-3102 (($ $ (-1082)) NIL)) (-2583 (((-3 (-1082) "failed") $) 11)) (-2369 (((-1082) $) 8)) (-3806 (((-3 (-1082) "failed") $) 12)) (-1214 (((-1082) $) 9)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2130 (((-110) $) 18)) (-2366 (((-804) $) NIL)) (-3422 (($ $) NIL)) (-2248 (((-110) $ $) NIL)))
+(((-1117) (-13 (-345 (-369) (-1082)) (-10 -8 (-15 -1891 ((-1082) $ (-1082))) (-15 -1891 ((-1082) $)) (-15 -2369 ((-1082) $)) (-15 -2583 ((-3 (-1082) "failed") $)) (-15 -3806 ((-3 (-1082) "failed") $)) (-15 -2130 ((-110) $))))) (T -1117))
+((-1891 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2583 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3806 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
+(-13 (-345 (-369) (-1082)) (-10 -8 (-15 -1891 ((-1082) $ (-1082))) (-15 -1891 ((-1082) $)) (-15 -2369 ((-1082) $)) (-15 -2583 ((-3 (-1082) "failed") $)) (-15 -3806 ((-3 (-1082) "failed") $)) (-15 -2130 ((-110) $))))
+((-1867 (((-3 (-530) "failed") |#1|) 19)) (-1671 (((-3 (-530) "failed") |#1|) 14)) (-3183 (((-530) (-1082)) 28)))
+(((-1118 |#1|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") |#1|)) (-15 -1671 ((-3 (-530) "failed") |#1|)) (-15 -3183 ((-530) (-1082)))) (-984)) (T -1118))
+((-3183 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4)) (-4 *4 (-984)))) (-1671 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))) (-1867 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
+(-10 -7 (-15 -1867 ((-3 (-530) "failed") |#1|)) (-15 -1671 ((-3 (-530) "failed") |#1|)) (-15 -3183 ((-530) (-1082))))
+((-1797 (((-1059 (-208))) 9)))
+(((-1119) (-10 -7 (-15 -1797 ((-1059 (-208)))))) (T -1119))
+((-1797 (*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
+(-10 -7 (-15 -1797 ((-1059 (-208)))))
+((-1948 (($) 11)) (-2459 (($ $) 35)) (-2434 (($ $) 33)) (-2293 (($ $) 25)) (-2485 (($ $) 17)) (-3632 (($ $) 15)) (-2472 (($ $) 19)) (-2324 (($ $) 30)) (-2446 (($ $) 34)) (-2304 (($ $) 29)))
+(((-1120 |#1|) (-10 -8 (-15 -1948 (|#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2304 (|#1| |#1|))) (-1121)) (T -1120))
+NIL
+(-10 -8 (-15 -1948 (|#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)))
+((-2386 (($ $) 26)) (-2244 (($ $) 11)) (-2360 (($ $) 27)) (-2219 (($ $) 10)) (-2409 (($ $) 28)) (-2269 (($ $) 9)) (-1948 (($) 16)) (-2168 (($ $) 19)) (-2853 (($ $) 18)) (-2421 (($ $) 29)) (-2281 (($ $) 8)) (-2398 (($ $) 30)) (-2254 (($ $) 7)) (-2373 (($ $) 31)) (-2231 (($ $) 6)) (-2459 (($ $) 20)) (-2314 (($ $) 32)) (-2434 (($ $) 21)) (-2293 (($ $) 33)) (-2485 (($ $) 22)) (-2334 (($ $) 34)) (-3632 (($ $) 23)) (-2347 (($ $) 35)) (-2472 (($ $) 24)) (-2324 (($ $) 36)) (-2446 (($ $) 25)) (-2304 (($ $) 37)) (** (($ $ $) 17)))
(((-1121) (-133)) (T -1121))
-((-1877 (*1 *1) (-4 *1 (-1121))))
-(-13 (-1124) (-93) (-471) (-34) (-266) (-10 -8 (-15 -1877 ($))))
+((-1948 (*1 *1) (-4 *1 (-1121))))
+(-13 (-1124) (-93) (-471) (-34) (-266) (-10 -8 (-15 -1948 ($))))
(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-1124) . T))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3387 ((|#1| $) 17)) (-1629 (($ |#1| (-597 $)) 23) (($ (-597 |#1|)) 27) (($ |#1|) 25)) (-4102 (((-110) $ (-719)) 48)) (-1947 ((|#1| $ |#1|) 14 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 13 (|has| $ (-6 -4271)))) (-3956 (($) NIL T CONST)) (-2456 (((-597 |#1|) $) 52 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 43)) (-1966 (((-110) $ $) 33 (|has| |#1| (-1027)))) (-2014 (((-110) $ (-719)) 41)) (-3252 (((-597 |#1|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2847 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 22)) (-1987 (((-110) $ (-719)) 40)) (-3353 (((-597 |#1|) $) 37)) (-3937 (((-110) $) 36)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1505 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 74)) (-1262 (((-110) $) 9)) (-4227 (($) 10)) (-1832 ((|#1| $ "value") NIL)) (-1984 (((-530) $ $) 32)) (-3626 (((-597 $) $) 59)) (-3636 (((-110) $ $) 77)) (-3644 (((-597 $) $) 72)) (-3653 (($ $) 73)) (-3663 (((-110) $) 56)) (-2494 (((-719) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4270))) (((-719) |#1| $) 16 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2441 (($ $) 58)) (-2258 (((-804) $) 61 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 12)) (-1974 (((-110) $ $) 29 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 28 (|has| |#1| (-1027)))) (-2167 (((-719) $) 39 (|has| $ (-6 -4270)))))
-(((-1122 |#1|) (-13 (-949 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -1629 ($ |#1| (-597 $))) (-15 -1629 ($ (-597 |#1|))) (-15 -1629 ($ |#1|)) (-15 -3663 ((-110) $)) (-15 -3653 ($ $)) (-15 -3644 ((-597 $) $)) (-15 -3636 ((-110) $ $)) (-15 -3626 ((-597 $) $)))) (-1027)) (T -1122))
-((-3663 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-1629 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3)))) (-1629 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-3653 (*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-3636 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(-13 (-949 |#1|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -1629 ($ |#1| (-597 $))) (-15 -1629 ($ (-597 |#1|))) (-15 -1629 ($ |#1|)) (-15 -3663 ((-110) $)) (-15 -3653 ($ $)) (-15 -3644 ((-597 $) $)) (-15 -3636 ((-110) $ $)) (-15 -3626 ((-597 $) $))))
-((-2144 (($ $) 15)) (-2169 (($ $) 12)) (-2181 (($ $) 10)) (-2155 (($ $) 17)))
-(((-1123 |#1|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2169 (|#1| |#1|)) (-15 -2144 (|#1| |#1|))) (-1124)) (T -1123))
-NIL
-(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2169 (|#1| |#1|)) (-15 -2144 (|#1| |#1|)))
-((-2144 (($ $) 11)) (-2121 (($ $) 10)) (-2169 (($ $) 9)) (-2181 (($ $) 8)) (-2155 (($ $) 7)) (-2133 (($ $) 6)))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 17)) (-1638 (($ |#1| (-597 $)) 23) (($ (-597 |#1|)) 27) (($ |#1|) 25)) (-3186 (((-110) $ (-719)) 48)) (-1615 ((|#1| $ |#1|) 14 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 13 (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3779 (((-597 |#1|) $) 52 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 43)) (-1646 (((-110) $ $) 33 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 41)) (-2395 (((-597 |#1|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2763 (((-110) $ (-719)) 40)) (-3390 (((-597 |#1|) $) 37)) (-3615 (((-110) $) 36)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 74)) (-3250 (((-110) $) 9)) (-3958 (($) 10)) (-1902 ((|#1| $ "value") NIL)) (-2539 (((-530) $ $) 32)) (-1553 (((-597 $) $) 59)) (-3516 (((-110) $ $) 77)) (-1944 (((-597 $) $) 72)) (-1575 (($ $) 73)) (-4246 (((-110) $) 56)) (-2632 (((-719) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4269))) (((-719) |#1| $) 16 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 58)) (-2366 (((-804) $) 61 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 12)) (-4153 (((-110) $ $) 29 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 28 (|has| |#1| (-1027)))) (-2267 (((-719) $) 39 (|has| $ (-6 -4269)))))
+(((-1122 |#1|) (-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1638 ($ |#1| (-597 $))) (-15 -1638 ($ (-597 |#1|))) (-15 -1638 ($ |#1|)) (-15 -4246 ((-110) $)) (-15 -1575 ($ $)) (-15 -1944 ((-597 $) $)) (-15 -3516 ((-110) $ $)) (-15 -1553 ((-597 $) $)))) (-1027)) (T -1122))
+((-4246 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-1638 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3)))) (-1638 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-3516 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
+(-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1638 ($ |#1| (-597 $))) (-15 -1638 ($ (-597 |#1|))) (-15 -1638 ($ |#1|)) (-15 -4246 ((-110) $)) (-15 -1575 ($ $)) (-15 -1944 ((-597 $) $)) (-15 -3516 ((-110) $ $)) (-15 -1553 ((-597 $) $))))
+((-2244 (($ $) 15)) (-2269 (($ $) 12)) (-2281 (($ $) 10)) (-2254 (($ $) 17)))
+(((-1123 |#1|) (-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2244 (|#1| |#1|))) (-1124)) (T -1123))
+NIL
+(-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)))
+((-2244 (($ $) 11)) (-2219 (($ $) 10)) (-2269 (($ $) 9)) (-2281 (($ $) 8)) (-2254 (($ $) 7)) (-2231 (($ $) 6)))
(((-1124) (-133)) (T -1124))
-((-2144 (*1 *1 *1) (-4 *1 (-1124))) (-2121 (*1 *1 *1) (-4 *1 (-1124))) (-2169 (*1 *1 *1) (-4 *1 (-1124))) (-2181 (*1 *1 *1) (-4 *1 (-1124))) (-2155 (*1 *1 *1) (-4 *1 (-1124))) (-2133 (*1 *1 *1) (-4 *1 (-1124))))
-(-13 (-10 -8 (-15 -2133 ($ $)) (-15 -2155 ($ $)) (-15 -2181 ($ $)) (-15 -2169 ($ $)) (-15 -2121 ($ $)) (-15 -2144 ($ $))))
-((-2438 ((|#2| |#2|) 88)) (-2451 (((-110) |#2|) 26)) (-2499 ((|#2| |#2|) 30)) (-2510 ((|#2| |#2|) 32)) (-2414 ((|#2| |#2| (-1099)) 83) ((|#2| |#2|) 84)) (-2463 (((-159 |#2|) |#2|) 28)) (-2428 ((|#2| |#2| (-1099)) 85) ((|#2| |#2|) 86)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -2414 (|#2| |#2|)) (-15 -2414 (|#2| |#2| (-1099))) (-15 -2428 (|#2| |#2|)) (-15 -2428 (|#2| |#2| (-1099))) (-15 -2438 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -2451 ((-110) |#2|)) (-15 -2463 ((-159 |#2|) |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -1125))
-((-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2510 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2428 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(-10 -7 (-15 -2414 (|#2| |#2|)) (-15 -2414 (|#2| |#2| (-1099))) (-15 -2428 (|#2| |#2|)) (-15 -2428 (|#2| |#2| (-1099))) (-15 -2438 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -2451 ((-110) |#2|)) (-15 -2463 ((-159 |#2|) |#2|)))
-((-2472 ((|#4| |#4| |#1|) 27)) (-2486 ((|#4| |#4| |#1|) 28)))
-(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2472 (|#4| |#4| |#1|)) (-15 -2486 (|#4| |#4| |#1|))) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1126))
-((-2486 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2472 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -2472 (|#4| |#4| |#1|)) (-15 -2486 (|#4| |#4| |#1|)))
-((-2671 ((|#2| |#2|) 133)) (-2689 ((|#2| |#2|) 130)) (-2662 ((|#2| |#2|) 121)) (-2680 ((|#2| |#2|) 118)) (-2651 ((|#2| |#2|) 126)) (-2641 ((|#2| |#2|) 114)) (-2530 ((|#2| |#2|) 43)) (-2521 ((|#2| |#2|) 94)) (-2498 ((|#2| |#2|) 74)) (-2631 ((|#2| |#2|) 128)) (-2620 ((|#2| |#2|) 116)) (-2751 ((|#2| |#2|) 138)) (-2732 ((|#2| |#2|) 136)) (-2742 ((|#2| |#2|) 137)) (-2721 ((|#2| |#2|) 135)) (-2509 ((|#2| |#2|) 148)) (-2761 ((|#2| |#2|) 30 (-12 (|has| |#2| (-572 (-833 |#1|))) (|has| |#2| (-827 |#1|)) (|has| |#1| (-572 (-833 |#1|))) (|has| |#1| (-827 |#1|))))) (-2540 ((|#2| |#2|) 75)) (-2549 ((|#2| |#2|) 139)) (-2147 ((|#2| |#2|) 140)) (-2608 ((|#2| |#2|) 127)) (-2599 ((|#2| |#2|) 115)) (-2589 ((|#2| |#2|) 134)) (-2710 ((|#2| |#2|) 132)) (-2578 ((|#2| |#2|) 122)) (-2699 ((|#2| |#2|) 120)) (-2568 ((|#2| |#2|) 124)) (-2558 ((|#2| |#2|) 112)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -2147 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2540 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2671 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2742 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2761 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-795) (-432)) (-13 (-411 |#1|) (-1121))) (T -1127))
-((-2761 (*1 *2 *2) (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3)) (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2742 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2671 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2620 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2589 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2578 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2540 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))))
-(-10 -7 (-15 -2147 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2540 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2620 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2671 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2742 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2761 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2963 (((-110) |#5| $) 60) (((-110) $) 102)) (-2906 ((|#5| |#5| $) 75)) (-2180 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2917 (((-597 |#5|) (-597 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3012 (((-3 $ "failed") (-597 |#5|)) 126)) (-2918 (((-3 $ "failed") $) 112)) (-2878 ((|#5| |#5| $) 94)) (-2976 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-2856 ((|#5| |#5| $) 98)) (-3856 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-2999 (((-2 (|:| -2252 (-597 |#5|)) (|:| -2415 (-597 |#5|))) $) 55)) (-2987 (((-110) |#5| $) 58) (((-110) $) 103)) (-4167 ((|#4| $) 108)) (-2294 (((-3 |#5| "failed") $) 110)) (-3011 (((-597 |#5|) $) 49)) (-2938 (((-110) |#5| $) 67) (((-110) $) 107)) (-2888 ((|#5| |#5| $) 81)) (-1845 (((-110) $ $) 27)) (-2951 (((-110) |#5| $) 63) (((-110) $) 105)) (-2898 ((|#5| |#5| $) 78)) (-2907 (((-3 |#5| "failed") $) 109)) (-1312 (($ $ |#5|) 127)) (-3409 (((-719) $) 52)) (-2268 (($ (-597 |#5|)) 124)) (-3170 (($ $ |#4|) 122)) (-3196 (($ $ |#4|) 121)) (-2866 (($ $) 120)) (-2258 (((-804) $) NIL) (((-597 |#5|) $) 113)) (-2795 (((-719) $) 130)) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-2929 (((-110) $ (-1 (-110) |#5| (-597 |#5|))) 100)) (-2820 (((-597 |#4|) $) 115)) (-3292 (((-110) |#4| $) 118)) (-2148 (((-110) $ $) 19)))
-(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2795 ((-719) |#1|)) (-15 -1312 (|#1| |#1| |#5|)) (-15 -2180 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3292 ((-110) |#4| |#1|)) (-15 -2820 ((-597 |#4|) |#1|)) (-15 -2918 ((-3 |#1| "failed") |#1|)) (-15 -2294 ((-3 |#5| "failed") |#1|)) (-15 -2907 ((-3 |#5| "failed") |#1|)) (-15 -2856 (|#5| |#5| |#1|)) (-15 -2866 (|#1| |#1|)) (-15 -2878 (|#5| |#5| |#1|)) (-15 -2888 (|#5| |#5| |#1|)) (-15 -2898 (|#5| |#5| |#1|)) (-15 -2906 (|#5| |#5| |#1|)) (-15 -2917 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -3856 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2938 ((-110) |#1|)) (-15 -2951 ((-110) |#1|)) (-15 -2963 ((-110) |#1|)) (-15 -2929 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2938 ((-110) |#5| |#1|)) (-15 -2951 ((-110) |#5| |#1|)) (-15 -2963 ((-110) |#5| |#1|)) (-15 -2976 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -2987 ((-110) |#1|)) (-15 -2987 ((-110) |#5| |#1|)) (-15 -2999 ((-2 (|:| -2252 (-597 |#5|)) (|:| -2415 (-597 |#5|))) |#1|)) (-15 -3409 ((-719) |#1|)) (-15 -3011 ((-597 |#5|) |#1|)) (-15 -1837 ((-3 (-2 (|:| |bas| |#1|) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1837 ((-3 (-2 (|:| |bas| |#1|) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1845 ((-110) |#1| |#1|)) (-15 -3170 (|#1| |#1| |#4|)) (-15 -3196 (|#1| |#1| |#4|)) (-15 -4167 (|#4| |#1|)) (-15 -3012 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2258 ((-597 |#5|) |#1|)) (-15 -2268 (|#1| (-597 |#5|))) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2180 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-522) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1128))
-NIL
-(-10 -8 (-15 -2795 ((-719) |#1|)) (-15 -1312 (|#1| |#1| |#5|)) (-15 -2180 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3292 ((-110) |#4| |#1|)) (-15 -2820 ((-597 |#4|) |#1|)) (-15 -2918 ((-3 |#1| "failed") |#1|)) (-15 -2294 ((-3 |#5| "failed") |#1|)) (-15 -2907 ((-3 |#5| "failed") |#1|)) (-15 -2856 (|#5| |#5| |#1|)) (-15 -2866 (|#1| |#1|)) (-15 -2878 (|#5| |#5| |#1|)) (-15 -2888 (|#5| |#5| |#1|)) (-15 -2898 (|#5| |#5| |#1|)) (-15 -2906 (|#5| |#5| |#1|)) (-15 -2917 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -3856 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2938 ((-110) |#1|)) (-15 -2951 ((-110) |#1|)) (-15 -2963 ((-110) |#1|)) (-15 -2929 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2938 ((-110) |#5| |#1|)) (-15 -2951 ((-110) |#5| |#1|)) (-15 -2963 ((-110) |#5| |#1|)) (-15 -2976 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -2987 ((-110) |#1|)) (-15 -2987 ((-110) |#5| |#1|)) (-15 -2999 ((-2 (|:| -2252 (-597 |#5|)) (|:| -2415 (-597 |#5|))) |#1|)) (-15 -3409 ((-719) |#1|)) (-15 -3011 ((-597 |#5|) |#1|)) (-15 -1837 ((-3 (-2 (|:| |bas| |#1|) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1837 ((-3 (-2 (|:| |bas| |#1|) (|:| -1596 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1845 ((-110) |#1| |#1|)) (-15 -3170 (|#1| |#1| |#4|)) (-15 -3196 (|#1| |#1| |#4|)) (-15 -4167 (|#4| |#1|)) (-15 -3012 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2258 ((-597 |#5|) |#1|)) (-15 -2268 (|#1| (-597 |#5|))) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2180 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2258 ((-804) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
-((-2246 (((-110) $ $) 7)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) 85)) (-2844 (((-597 $) (-597 |#4|)) 86)) (-2596 (((-597 |#3|) $) 33)) (-3158 (((-110) $) 26)) (-3055 (((-110) $) 17 (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) 101) (((-110) $) 97)) (-2906 ((|#4| |#4| $) 92)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) 27)) (-4102 (((-110) $ (-719)) 44)) (-2180 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) 79)) (-3956 (($) 45 T CONST)) (-3111 (((-110) $) 22 (|has| |#1| (-522)))) (-3134 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3123 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3145 (((-110) $) 25 (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3064 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) 36)) (-2446 (($ (-597 |#4|)) 35)) (-2918 (((-3 $ "failed") $) 82)) (-2878 ((|#4| |#4| $) 89)) (-2939 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2856 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) 105)) (-2456 (((-597 |#4|) $) 52 (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) 104) (((-110) $) 103)) (-4167 ((|#3| $) 34)) (-2014 (((-110) $ (-719)) 43)) (-3252 (((-597 |#4|) $) 53 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) 47)) (-3222 (((-597 |#3|) $) 32)) (-3209 (((-110) |#3| $) 31)) (-1987 (((-110) $ (-719)) 42)) (-3443 (((-1082) $) 9)) (-2294 (((-3 |#4| "failed") $) 83)) (-3011 (((-597 |#4|) $) 107)) (-2938 (((-110) |#4| $) 99) (((-110) $) 95)) (-2888 ((|#4| |#4| $) 90)) (-1845 (((-110) $ $) 110)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) 100) (((-110) $) 96)) (-2898 ((|#4| |#4| $) 91)) (-2485 (((-1046) $) 10)) (-2907 (((-3 |#4| "failed") $) 84)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2807 (((-3 $ "failed") $ |#4|) 78)) (-1312 (($ $ |#4|) 77)) (-1505 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) 38)) (-1262 (((-110) $) 41)) (-4227 (($) 40)) (-3409 (((-719) $) 106)) (-2494 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4270)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4270)))) (-2441 (($ $) 39)) (-3173 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) 60)) (-3170 (($ $ |#3|) 28)) (-3196 (($ $ |#3|) 30)) (-2866 (($ $) 88)) (-3183 (($ $ |#3|) 29)) (-2258 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2795 (((-719) $) 76 (|has| |#3| (-349)))) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-1515 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) 81)) (-3292 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-719) $) 46 (|has| $ (-6 -4270)))))
+((-2244 (*1 *1 *1) (-4 *1 (-1124))) (-2219 (*1 *1 *1) (-4 *1 (-1124))) (-2269 (*1 *1 *1) (-4 *1 (-1124))) (-2281 (*1 *1 *1) (-4 *1 (-1124))) (-2254 (*1 *1 *1) (-4 *1 (-1124))) (-2231 (*1 *1 *1) (-4 *1 (-1124))))
+(-13 (-10 -8 (-15 -2231 ($ $)) (-15 -2254 ($ $)) (-15 -2281 ($ $)) (-15 -2269 ($ $)) (-15 -2219 ($ $)) (-15 -2244 ($ $))))
+((-4069 ((|#2| |#2|) 88)) (-2597 (((-110) |#2|) 26)) (-2637 ((|#2| |#2|) 30)) (-2649 ((|#2| |#2|) 32)) (-3580 ((|#2| |#2| (-1099)) 83) ((|#2| |#2|) 84)) (-2359 (((-159 |#2|) |#2|) 28)) (-1992 ((|#2| |#2| (-1099)) 85) ((|#2| |#2|) 86)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -4069 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -2359 ((-159 |#2|) |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -1125))
+((-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2649 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-1992 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
+(-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -4069 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -2359 ((-159 |#2|) |#2|)))
+((-3817 ((|#4| |#4| |#1|) 27)) (-3596 ((|#4| |#4| |#1|) 28)))
+(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3817 (|#4| |#4| |#1|)) (-15 -3596 (|#4| |#4| |#1|))) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1126))
+((-3596 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3817 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(-10 -7 (-15 -3817 (|#4| |#4| |#1|)) (-15 -3596 (|#4| |#4| |#1|)))
+((-1949 ((|#2| |#2|) 133)) (-3945 ((|#2| |#2|) 130)) (-3511 ((|#2| |#2|) 121)) (-1482 ((|#2| |#2|) 118)) (-3916 ((|#2| |#2|) 126)) (-1299 ((|#2| |#2|) 114)) (-2193 ((|#2| |#2|) 43)) (-2433 ((|#2| |#2|) 94)) (-2251 ((|#2| |#2|) 74)) (-1884 ((|#2| |#2|) 128)) (-1405 ((|#2| |#2|) 116)) (-3257 ((|#2| |#2|) 138)) (-2710 ((|#2| |#2|) 136)) (-2302 ((|#2| |#2|) 137)) (-4067 ((|#2| |#2|) 135)) (-3969 ((|#2| |#2|) 148)) (-2968 ((|#2| |#2|) 30 (-12 (|has| |#2| (-572 (-833 |#1|))) (|has| |#2| (-827 |#1|)) (|has| |#1| (-572 (-833 |#1|))) (|has| |#1| (-827 |#1|))))) (-3826 ((|#2| |#2|) 75)) (-2684 ((|#2| |#2|) 139)) (-2246 ((|#2| |#2|) 140)) (-2855 ((|#2| |#2|) 127)) (-1218 ((|#2| |#2|) 115)) (-1453 ((|#2| |#2|) 134)) (-2475 ((|#2| |#2|) 132)) (-2981 ((|#2| |#2|) 122)) (-2600 ((|#2| |#2|) 120)) (-3167 ((|#2| |#2|) 124)) (-1226 ((|#2| |#2|) 112)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -2246 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1218 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3511 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2968 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-795) (-432)) (-13 (-411 |#1|) (-1121))) (T -1127))
+((-2968 (*1 *2 *2) (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3)) (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1884 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1218 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))))
+(-10 -7 (-15 -2246 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1218 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3511 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2968 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1212 (((-110) |#5| $) 60) (((-110) $) 102)) (-1785 ((|#5| |#5| $) 75)) (-2283 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3362 (((-597 |#5|) (-597 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3139 (((-3 $ "failed") (-597 |#5|)) 126)) (-3057 (((-3 $ "failed") $) 112)) (-1622 ((|#5| |#5| $) 94)) (-3784 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-3252 ((|#5| |#5| $) 98)) (-2134 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-1919 (((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) $) 55)) (-3397 (((-110) |#5| $) 58) (((-110) $) 103)) (-3122 ((|#4| $) 108)) (-2407 (((-3 |#5| "failed") $) 110)) (-1543 (((-597 |#5|) $) 49)) (-2559 (((-110) |#5| $) 67) (((-110) $) 107)) (-3482 ((|#5| |#5| $) 81)) (-1406 (((-110) $ $) 27)) (-1663 (((-110) |#5| $) 63) (((-110) $) 105)) (-2122 ((|#5| |#5| $) 78)) (-3048 (((-3 |#5| "failed") $) 109)) (-3168 (($ $ |#5|) 127)) (-1429 (((-719) $) 52)) (-2377 (($ (-597 |#5|)) 124)) (-1687 (($ $ |#4|) 122)) (-1442 (($ $ |#4|) 121)) (-1871 (($ $) 120)) (-2366 (((-804) $) NIL) (((-597 |#5|) $) 113)) (-2730 (((-719) $) 130)) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-3095 (((-110) $ (-1 (-110) |#5| (-597 |#5|))) 100)) (-2764 (((-597 |#4|) $) 115)) (-2856 (((-110) |#4| $) 118)) (-2248 (((-110) $ $) 19)))
+(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2730 ((-719) |#1|)) (-15 -3168 (|#1| |#1| |#5|)) (-15 -2283 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2856 ((-110) |#4| |#1|)) (-15 -2764 ((-597 |#4|) |#1|)) (-15 -3057 ((-3 |#1| "failed") |#1|)) (-15 -2407 ((-3 |#5| "failed") |#1|)) (-15 -3048 ((-3 |#5| "failed") |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -1622 (|#5| |#5| |#1|)) (-15 -3482 (|#5| |#5| |#1|)) (-15 -2122 (|#5| |#5| |#1|)) (-15 -1785 (|#5| |#5| |#1|)) (-15 -3362 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2134 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2559 ((-110) |#1|)) (-15 -1663 ((-110) |#1|)) (-15 -1212 ((-110) |#1|)) (-15 -3095 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2559 ((-110) |#5| |#1|)) (-15 -1663 ((-110) |#5| |#1|)) (-15 -1212 ((-110) |#5| |#1|)) (-15 -3784 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3397 ((-110) |#1|)) (-15 -3397 ((-110) |#5| |#1|)) (-15 -1919 ((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) |#1|)) (-15 -1429 ((-719) |#1|)) (-15 -1543 ((-597 |#5|) |#1|)) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1406 ((-110) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3122 (|#4| |#1|)) (-15 -3139 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2366 ((-597 |#5|) |#1|)) (-15 -2377 (|#1| (-597 |#5|))) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2283 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-522) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1128))
+NIL
+(-10 -8 (-15 -2730 ((-719) |#1|)) (-15 -3168 (|#1| |#1| |#5|)) (-15 -2283 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2856 ((-110) |#4| |#1|)) (-15 -2764 ((-597 |#4|) |#1|)) (-15 -3057 ((-3 |#1| "failed") |#1|)) (-15 -2407 ((-3 |#5| "failed") |#1|)) (-15 -3048 ((-3 |#5| "failed") |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -1622 (|#5| |#5| |#1|)) (-15 -3482 (|#5| |#5| |#1|)) (-15 -2122 (|#5| |#5| |#1|)) (-15 -1785 (|#5| |#5| |#1|)) (-15 -3362 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2134 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2559 ((-110) |#1|)) (-15 -1663 ((-110) |#1|)) (-15 -1212 ((-110) |#1|)) (-15 -3095 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2559 ((-110) |#5| |#1|)) (-15 -1663 ((-110) |#5| |#1|)) (-15 -1212 ((-110) |#5| |#1|)) (-15 -3784 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3397 ((-110) |#1|)) (-15 -3397 ((-110) |#5| |#1|)) (-15 -1919 ((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) |#1|)) (-15 -1429 ((-719) |#1|)) (-15 -1543 ((-597 |#5|) |#1|)) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1406 ((-110) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3122 (|#4| |#1|)) (-15 -3139 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2366 ((-597 |#5|) |#1|)) (-15 -2377 (|#1| (-597 |#5|))) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2283 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
+((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-2407 (((-3 |#4| "failed") $) 83)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
(((-1129 |#1| |#2| |#3| |#4|) (-133) (-522) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1129))
-((-1845 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-1837 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1596 (-597 *8)))) (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))) (-1837 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1596 (-597 *9)))) (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-2 (|:| -2252 (-597 *6)) (|:| -2415 (-597 *6)))))) (-2987 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2976 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)))) (-2963 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2951 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2938 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2929 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3856 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7)))) (-2917 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))) (-2906 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2898 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2888 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2878 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2866 (*1 *1 *1) (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-2856 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-2832 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| -2252 *1) (|:| -2415 (-597 *7))))) (-5 *3 (-597 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-2907 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2294 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2918 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-2180 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3)))) (-2807 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1312 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-719)))))
-(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4270) (-6 -4271) (-15 -1845 ((-110) $ $)) (-15 -1837 ((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1837 ((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3011 ((-597 |t#4|) $)) (-15 -3409 ((-719) $)) (-15 -2999 ((-2 (|:| -2252 (-597 |t#4|)) (|:| -2415 (-597 |t#4|))) $)) (-15 -2987 ((-110) |t#4| $)) (-15 -2987 ((-110) $)) (-15 -2976 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -2963 ((-110) |t#4| $)) (-15 -2951 ((-110) |t#4| $)) (-15 -2938 ((-110) |t#4| $)) (-15 -2929 ((-110) $ (-1 (-110) |t#4| (-597 |t#4|)))) (-15 -2963 ((-110) $)) (-15 -2951 ((-110) $)) (-15 -2938 ((-110) $)) (-15 -3856 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -2917 ((-597 |t#4|) (-597 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -2906 (|t#4| |t#4| $)) (-15 -2898 (|t#4| |t#4| $)) (-15 -2888 (|t#4| |t#4| $)) (-15 -2878 (|t#4| |t#4| $)) (-15 -2866 ($ $)) (-15 -2856 (|t#4| |t#4| $)) (-15 -2844 ((-597 $) (-597 |t#4|))) (-15 -2832 ((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |t#4|)))) (-597 |t#4|))) (-15 -2907 ((-3 |t#4| "failed") $)) (-15 -2294 ((-3 |t#4| "failed") $)) (-15 -2918 ((-3 $ "failed") $)) (-15 -2820 ((-597 |t#3|) $)) (-15 -3292 ((-110) |t#3| $)) (-15 -2180 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2807 ((-3 $ "failed") $ |t#4|)) (-15 -1312 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -2795 ((-719) $)) |%noBranch|)))
+((-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2988 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *8)))) (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))) (-2988 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *9)))) (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-2 (|:| -2361 (-597 *6)) (|:| -2551 (-597 *6)))))) (-3397 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3784 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)))) (-1212 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1663 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2559 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2134 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7)))) (-3362 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))) (-1785 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2122 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3482 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1622 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1871 (*1 *1 *1) (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-3252 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| -2361 *1) (|:| -2551 (-597 *7))))) (-5 *3 (-597 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-3048 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2407 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3057 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-2856 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-2283 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3)))) (-1372 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-719)))))
+(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1406 ((-110) $ $)) (-15 -2988 ((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -2988 ((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1543 ((-597 |t#4|) $)) (-15 -1429 ((-719) $)) (-15 -1919 ((-2 (|:| -2361 (-597 |t#4|)) (|:| -2551 (-597 |t#4|))) $)) (-15 -3397 ((-110) |t#4| $)) (-15 -3397 ((-110) $)) (-15 -3784 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -1212 ((-110) |t#4| $)) (-15 -1663 ((-110) |t#4| $)) (-15 -2559 ((-110) |t#4| $)) (-15 -3095 ((-110) $ (-1 (-110) |t#4| (-597 |t#4|)))) (-15 -1212 ((-110) $)) (-15 -1663 ((-110) $)) (-15 -2559 ((-110) $)) (-15 -2134 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3362 ((-597 |t#4|) (-597 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1785 (|t#4| |t#4| $)) (-15 -2122 (|t#4| |t#4| $)) (-15 -3482 (|t#4| |t#4| $)) (-15 -1622 (|t#4| |t#4| $)) (-15 -1871 ($ $)) (-15 -3252 (|t#4| |t#4| $)) (-15 -1512 ((-597 $) (-597 |t#4|))) (-15 -2978 ((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |t#4|)))) (-597 |t#4|))) (-15 -3048 ((-3 |t#4| "failed") $)) (-15 -2407 ((-3 |t#4| "failed") $)) (-15 -3057 ((-3 $ "failed") $)) (-15 -2764 ((-597 |t#3|) $)) (-15 -2856 ((-110) |t#3| $)) (-15 -2283 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1372 ((-3 $ "failed") $ |t#4|)) (-15 -3168 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -2730 ((-719) $)) |%noBranch|)))
(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1135) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1099)) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3496 (((-893 |#1|) $ (-719)) 17) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $ (-1099)) NIL) (((-719) $ (-1099) (-719)) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3327 (((-110) $) NIL)) (-2575 (($ $ (-597 (-1099)) (-597 (-502 (-1099)))) NIL) (($ $ (-1099) (-502 (-1099))) NIL) (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-1637 (($ $ (-1099)) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-2772 (($ (-1 $) (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1312 (($ $ (-719)) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3211 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3409 (((-502 (-1099)) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-1099)) NIL) (($ (-893 |#1|)) NIL)) (-2782 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (((-893 |#1|) $ (-719)) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) NIL T CONST)) (-3286 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1130 |#1|) (-13 (-689 |#1| (-1099)) (-10 -8 (-15 -2782 ((-893 |#1|) $ (-719))) (-15 -2258 ($ (-1099))) (-15 -2258 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $ (-1099) |#1|)) (-15 -2772 ($ (-1 $) (-1099) |#1|))) |%noBranch|))) (-984)) (T -1130))
-((-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4)) (-4 *4 (-984)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-984)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-1130 *3)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-2772 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
-(-13 (-689 |#1| (-1099)) (-10 -8 (-15 -2782 ((-893 |#1|) $ (-719))) (-15 -2258 ($ (-1099))) (-15 -2258 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $ (-1099) |#1|)) (-15 -2772 ($ (-1 $) (-1099) |#1|))) |%noBranch|)))
-((-1901 (($ |#1| (-597 (-597 (-884 (-208)))) (-110)) 19)) (-1892 (((-110) $ (-110)) 18)) (-1882 (((-110) $) 17)) (-1863 (((-597 (-597 (-884 (-208)))) $) 13)) (-1854 ((|#1| $) 8)) (-1872 (((-110) $) 15)))
-(((-1131 |#1|) (-10 -8 (-15 -1854 (|#1| $)) (-15 -1863 ((-597 (-597 (-884 (-208)))) $)) (-15 -1872 ((-110) $)) (-15 -1882 ((-110) $)) (-15 -1892 ((-110) $ (-110))) (-15 -1901 ($ |#1| (-597 (-597 (-884 (-208)))) (-110)))) (-914)) (T -1131))
-((-1901 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110)) (-5 *1 (-1131 *2)) (-4 *2 (-914)))) (-1892 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1854 (*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(-10 -8 (-15 -1854 (|#1| $)) (-15 -1863 ((-597 (-597 (-884 (-208)))) $)) (-15 -1872 ((-110) $)) (-15 -1882 ((-110) $)) (-15 -1892 ((-110) $ (-110))) (-15 -1901 ($ |#1| (-597 (-597 (-884 (-208)))) (-110))))
-((-1909 (((-884 (-208)) (-884 (-208))) 25)) (-4109 (((-884 (-208)) (-208) (-208) (-208) (-208)) 10)) (-1930 (((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208)))) 37)) (-1796 (((-208) (-884 (-208)) (-884 (-208))) 21)) (-1788 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 22)) (-1919 (((-597 (-597 (-208))) (-530)) 31)) (-2245 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 20)) (-2234 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 19)) (* (((-884 (-208)) (-208) (-884 (-208))) 18)))
-(((-1132) (-10 -7 (-15 -4109 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2234 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2245 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -1796 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -1788 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -1909 ((-884 (-208)) (-884 (-208)))) (-15 -1919 ((-597 (-597 (-208))) (-530))) (-15 -1930 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))) (T -1132))
-((-1930 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-1788 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-1796 (*1 *2 *3 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132)))) (-2245 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-2234 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132)))) (-4109 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
-(-10 -7 (-15 -4109 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2234 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2245 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -1796 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -1788 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -1909 ((-884 (-208)) (-884 (-208)))) (-15 -1919 ((-597 (-597 (-208))) (-530))) (-15 -1930 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2180 ((|#1| $ (-719)) 13)) (-2171 (((-719) $) 12)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2258 (((-899 |#1|) $) 10) (($ (-899 |#1|)) 9) (((-804) $) 23 (|has| |#1| (-571 (-804))))) (-2148 (((-110) $ $) 16 (|has| |#1| (-1027)))))
-(((-1133 |#1|) (-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2258 ($ (-899 |#1|))) (-15 -2180 (|#1| $ (-719))) (-15 -2171 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1133))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-899 *3)) (-4 *3 (-1135)) (-5 *1 (-1133 *3)))) (-2180 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135)))))
-(-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2258 ($ (-899 |#1|))) (-15 -2180 (|#1| $ (-719))) (-15 -2171 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-1957 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)) 80)) (-1938 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 74)) (-1949 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 59)))
-(((-1134 |#1|) (-10 -7 (-15 -1938 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1949 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1957 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)))) (-330)) (T -1134))
-((-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(-10 -7 (-15 -1938 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1949 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1957 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1761 (((-893 |#1|) $ (-719)) 17) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $ (-1099) (-719)) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) NIL)) (-2725 (($ $ (-597 (-1099)) (-597 (-502 (-1099)))) NIL) (($ $ (-1099) (-502 (-1099))) NIL) (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $ (-1099)) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-1368 (($ (-1 $) (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3168 (($ $ (-719)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3289 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1429 (((-502 (-1099)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-1099)) NIL) (($ (-893 |#1|)) NIL)) (-4085 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (((-893 |#1|) $ (-719)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1130 |#1|) (-13 (-689 |#1| (-1099)) (-10 -8 (-15 -4085 ((-893 |#1|) $ (-719))) (-15 -2366 ($ (-1099))) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ (-1099) |#1|)) (-15 -1368 ($ (-1 $) (-1099) |#1|))) |%noBranch|))) (-984)) (T -1130))
+((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4)) (-4 *4 (-984)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-1130 *3)))) (-1545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-1368 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
+(-13 (-689 |#1| (-1099)) (-10 -8 (-15 -4085 ((-893 |#1|) $ (-719))) (-15 -2366 ($ (-1099))) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ (-1099) |#1|)) (-15 -1368 ($ (-1 $) (-1099) |#1|))) |%noBranch|)))
+((-2487 (($ |#1| (-597 (-597 (-884 (-208)))) (-110)) 19)) (-2848 (((-110) $ (-110)) 18)) (-4249 (((-110) $) 17)) (-2909 (((-597 (-597 (-884 (-208)))) $) 13)) (-4139 ((|#1| $) 8)) (-1732 (((-110) $) 15)))
+(((-1131 |#1|) (-10 -8 (-15 -4139 (|#1| $)) (-15 -2909 ((-597 (-597 (-884 (-208)))) $)) (-15 -1732 ((-110) $)) (-15 -4249 ((-110) $)) (-15 -2848 ((-110) $ (-110))) (-15 -2487 ($ |#1| (-597 (-597 (-884 (-208)))) (-110)))) (-914)) (T -1131))
+((-2487 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110)) (-5 *1 (-1131 *2)) (-4 *2 (-914)))) (-2848 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-4139 (*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
+(-10 -8 (-15 -4139 (|#1| $)) (-15 -2909 ((-597 (-597 (-884 (-208)))) $)) (-15 -1732 ((-110) $)) (-15 -4249 ((-110) $)) (-15 -2848 ((-110) $ (-110))) (-15 -2487 ($ |#1| (-597 (-597 (-884 (-208)))) (-110))))
+((-3930 (((-884 (-208)) (-884 (-208))) 25)) (-2422 (((-884 (-208)) (-208) (-208) (-208) (-208)) 10)) (-1962 (((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208)))) 37)) (-3334 (((-208) (-884 (-208)) (-884 (-208))) 21)) (-3691 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 22)) (-3550 (((-597 (-597 (-208))) (-530)) 31)) (-2351 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 20)) (-2339 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 19)) (* (((-884 (-208)) (-208) (-884 (-208))) 18)))
+(((-1132) (-10 -7 (-15 -2422 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2339 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2351 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3334 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -3691 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3930 ((-884 (-208)) (-884 (-208)))) (-15 -3550 ((-597 (-597 (-208))) (-530))) (-15 -1962 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))) (T -1132))
+((-1962 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-3691 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-3334 (*1 *2 *3 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-2339 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132)))) (-2422 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
+(-10 -7 (-15 -2422 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2339 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2351 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3334 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -3691 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3930 ((-884 (-208)) (-884 (-208)))) (-15 -3550 ((-597 (-597 (-208))) (-530))) (-15 -1962 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2283 ((|#1| $ (-719)) 13)) (-4109 (((-719) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2366 (((-899 |#1|) $) 10) (($ (-899 |#1|)) 9) (((-804) $) 23 (|has| |#1| (-571 (-804))))) (-2248 (((-110) $ $) 16 (|has| |#1| (-1027)))))
+(((-1133 |#1|) (-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2366 ($ (-899 |#1|))) (-15 -2283 (|#1| $ (-719))) (-15 -4109 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1133))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-899 *3)) (-4 *3 (-1135)) (-5 *1 (-1133 *3)))) (-2283 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135)))))
+(-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2366 ($ (-899 |#1|))) (-15 -2283 (|#1| $ (-719))) (-15 -4109 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
+((-1220 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)) 80)) (-2344 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 74)) (-1780 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 59)))
+(((-1134 |#1|) (-10 -7 (-15 -2344 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1780 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1220 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)))) (-330)) (T -1134))
+((-1220 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))) (-1780 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
+(-10 -7 (-15 -2344 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1780 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1220 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530))))
NIL
(((-1135) (-133)) (T -1135))
NIL
-(-13 (-10 -7 (-6 -4087)))
-((-1997 (((-110)) 15)) (-1968 (((-1186) (-597 |#1|) (-597 |#1|)) 19) (((-1186) (-597 |#1|)) 20)) (-2014 (((-110) |#1| |#1|) 32 (|has| |#1| (-795)))) (-1987 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-2005 ((|#1| (-597 |#1|)) 33 (|has| |#1| (-795))) ((|#1| (-597 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-1977 (((-2 (|:| -3372 (-597 |#1|)) (|:| -3362 (-597 |#1|)))) 17)))
-(((-1136 |#1|) (-10 -7 (-15 -1968 ((-1186) (-597 |#1|))) (-15 -1968 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -1977 ((-2 (|:| -3372 (-597 |#1|)) (|:| -3362 (-597 |#1|))))) (-15 -1987 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1987 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2005 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -1997 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -2005 (|#1| (-597 |#1|))) (-15 -2014 ((-110) |#1| |#1|))) |%noBranch|)) (-1027)) (T -1136))
-((-2014 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-1136 *2)))) (-1997 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2)) (-4 *2 (-1027)))) (-1987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110)) (-5 *1 (-1136 *3)))) (-1987 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-1977 (*1 *2) (-12 (-5 *2 (-2 (|:| -3372 (-597 *3)) (|:| -3362 (-597 *3)))) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-1968 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))))
-(-10 -7 (-15 -1968 ((-1186) (-597 |#1|))) (-15 -1968 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -1977 ((-2 (|:| -3372 (-597 |#1|)) (|:| -3362 (-597 |#1|))))) (-15 -1987 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1987 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2005 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -1997 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -2005 (|#1| (-597 |#1|))) (-15 -2014 ((-110) |#1| |#1|))) |%noBranch|))
-((-2022 (((-1186) (-597 (-1099)) (-597 (-1099))) 13) (((-1186) (-597 (-1099))) 11)) (-2039 (((-1186)) 14)) (-2030 (((-2 (|:| -3362 (-597 (-1099))) (|:| -3372 (-597 (-1099))))) 18)))
-(((-1137) (-10 -7 (-15 -2022 ((-1186) (-597 (-1099)))) (-15 -2022 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2030 ((-2 (|:| -3362 (-597 (-1099))) (|:| -3372 (-597 (-1099)))))) (-15 -2039 ((-1186))))) (T -1137))
-((-2039 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2030 (*1 *2) (-12 (-5 *2 (-2 (|:| -3362 (-597 (-1099))) (|:| -3372 (-597 (-1099))))) (-5 *1 (-1137)))) (-2022 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(-10 -7 (-15 -2022 ((-1186) (-597 (-1099)))) (-15 -2022 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2030 ((-2 (|:| -3362 (-597 (-1099))) (|:| -3372 (-597 (-1099)))))) (-15 -2039 ((-1186))))
-((-1359 (($ $) 17)) (-2049 (((-110) $) 24)))
-(((-1138 |#1|) (-10 -8 (-15 -1359 (|#1| |#1|)) (-15 -2049 ((-110) |#1|))) (-1139)) (T -1138))
-NIL
-(-10 -8 (-15 -1359 (|#1| |#1|)) (-15 -2049 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 51)) (-3550 (((-399 $) $) 52)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-2049 (((-110) $) 53)) (-3150 (((-110) $) 31)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2473 (((-399 $) $) 50)) (-3562 (((-3 $ "failed") $ $) 42)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43)) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+(-13 (-10 -7 (-6 -4100)))
+((-2189 (((-110)) 15)) (-3646 (((-1186) (-597 |#1|) (-597 |#1|)) 19) (((-1186) (-597 |#1|)) 20)) (-4027 (((-110) |#1| |#1|) 32 (|has| |#1| (-795)))) (-2763 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-1349 ((|#1| (-597 |#1|)) 33 (|has| |#1| (-795))) ((|#1| (-597 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-3202 (((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|)))) 17)))
+(((-1136 |#1|) (-10 -7 (-15 -3646 ((-1186) (-597 |#1|))) (-15 -3646 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -3202 ((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|))))) (-15 -2763 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2763 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -1349 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2189 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -1349 (|#1| (-597 |#1|))) (-15 -4027 ((-110) |#1| |#1|))) |%noBranch|)) (-1027)) (T -1136))
+((-4027 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-1136 *2)))) (-2189 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2)) (-4 *2 (-1027)))) (-2763 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110)) (-5 *1 (-1136 *3)))) (-2763 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-3202 (*1 *2) (-12 (-5 *2 (-2 (|:| -2594 (-597 *3)) (|:| -3884 (-597 *3)))) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))))
+(-10 -7 (-15 -3646 ((-1186) (-597 |#1|))) (-15 -3646 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -3202 ((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|))))) (-15 -2763 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2763 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -1349 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2189 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -1349 (|#1| (-597 |#1|))) (-15 -4027 ((-110) |#1| |#1|))) |%noBranch|))
+((-2576 (((-1186) (-597 (-1099)) (-597 (-1099))) 13) (((-1186) (-597 (-1099))) 11)) (-1864 (((-1186)) 14)) (-2196 (((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099))))) 18)))
+(((-1137) (-10 -7 (-15 -2576 ((-1186) (-597 (-1099)))) (-15 -2576 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2196 ((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))) (-15 -1864 ((-1186))))) (T -1137))
+((-1864 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2196 (*1 *2) (-12 (-5 *2 (-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099))))) (-5 *1 (-1137)))) (-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
+(-10 -7 (-15 -2576 ((-1186) (-597 (-1099)))) (-15 -2576 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2196 ((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))) (-15 -1864 ((-1186))))
+((-3544 (($ $) 17)) (-3295 (((-110) $) 24)))
+(((-1138 |#1|) (-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3295 ((-110) |#1|))) (-1139)) (T -1138))
+NIL
+(-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3295 (((-110) $) 51)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 48)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
(((-1139) (-133)) (T -1139))
-((-2049 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))) (-1359 (*1 *1 *1) (-4 *1 (-1139))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))))
-(-13 (-432) (-10 -8 (-15 -2049 ((-110) $)) (-15 -3550 ((-399 $) $)) (-15 -1359 ($ $)) (-15 -2473 ((-399 $) $))))
+((-3295 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))) (-3544 (*1 *1 *1) (-4 *1 (-1139))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))))
+(-13 (-432) (-10 -8 (-15 -3295 ((-110) $)) (-15 -3272 ((-399 $) $)) (-15 -3544 ($ $)) (-15 -2611 ((-399 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3114 (((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)) 23)))
-(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1140))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
-(-10 -7 (-15 -3114 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ (-530)) 98) (($ $ (-530) (-530)) 97)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 105)) (-2276 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 162 (|has| |#1| (-344)))) (-3550 (((-399 $) $) 163 (|has| |#1| (-344)))) (-2487 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) 153 (|has| |#1| (-344)))) (-2253 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 174)) (-2297 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-3607 (($ $ $) 157 (|has| |#1| (-344)))) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-2057 (((-388 (-893 |#1|)) $ (-530)) 172 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 171 (|has| |#1| (-522)))) (-3588 (($ $ $) 156 (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 151 (|has| |#1| (-344)))) (-2049 (((-110) $) 164 (|has| |#1| (-344)))) (-3032 (((-110) $) 73)) (-1877 (($) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-530) $) 100) (((-530) $ (-530)) 99)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) 101)) (-1647 (($ (-1 |#1| (-530)) $) 173)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 160 (|has| |#1| (-344)))) (-3327 (((-110) $) 62)) (-2575 (($ |#1| (-530)) 61) (($ $ (-1012) (-530)) 76) (($ $ (-597 (-1012)) (-597 (-530))) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2070 (($ $) 142 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-2072 (($ (-597 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 165 (|has| |#1| (-344)))) (-1637 (($ $) 170 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 169 (-1476 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 150 (|has| |#1| (-344)))) (-2108 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2473 (((-399 $) $) 161 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 158 (|has| |#1| (-344)))) (-1312 (($ $ (-530)) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 152 (|has| |#1| (-344)))) (-2693 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-1934 (((-719) $) 154 (|has| |#1| (-344)))) (-1832 ((|#1| $ (-530)) 104) (($ $ $) 81 (|has| (-530) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 155 (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-3409 (((-530) $) 64)) (-2308 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522)))) (-2782 ((|#1| $ (-530)) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-2339 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-530)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 166 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 93 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 92 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 115 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-3217 (((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)) 23)))
+(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1140))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
+(-10 -7 (-15 -3217 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 96) (($ $ (-530) (-530)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 171)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 169 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 168 (|has| |#1| (-522)))) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-530) $) 98) (((-530) $ (-530)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 170)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-530)) 59) (($ $ (-1012) (-530)) 74) (($ $ (-597 (-1012)) (-597 (-530))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 102) (($ $ $) 79 (|has| (-530) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-1429 (((-530) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1141 |#1|) (-133) (-984)) (T -1141))
-((-4148 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1141 *3)))) (-1647 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-2057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1637 (*1 *1 *1 *2) (-1476 (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2596 ((-597 *2) *3))) (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-530)) (-10 -8 (-15 -4148 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |t#1|))))) (-15 -1647 ($ (-1 |t#1| (-530)) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -2057 ((-388 (-893 |t#1|)) $ (-530))) (-15 -2057 ((-388 (-893 |t#1|)) $ (-530) (-530)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $)) (IF (|has| |t#1| (-15 -1637 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2596 ((-597 (-1099)) |t#1|))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-530) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
-((-3015 (((-110) $) 12)) (-3012 (((-3 |#3| "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL)) (-2446 ((|#3| $) 14) (((-1099) $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL)))
-(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -3015 ((-110) |#1|))) (-1143 |#2| |#3|) (-984) (-1172 |#2|)) (T -1142))
-NIL
-(-10 -8 (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2446 ((-1099) |#1|)) (-15 -3012 ((-3 (-1099) "failed") |#1|)) (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -3015 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1694 ((|#2| $) 231 (-3340 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ (-530)) 98) (($ $ (-530) (-530)) 97)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 105)) (-2089 ((|#2| $) 267)) (-2066 (((-3 |#2| "failed") $) 263)) (-2648 ((|#2| $) 264)) (-2276 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-3715 (((-399 (-1095 $)) (-1095 $)) 240 (-3340 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1359 (($ $) 162 (|has| |#1| (-344)))) (-3550 (((-399 $) $) 163 (|has| |#1| (-344)))) (-2487 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 237 (-3340 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1945 (((-110) $ $) 153 (|has| |#1| (-344)))) (-2253 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-3592 (((-530) $) 249 (-3340 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 174)) (-2297 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#2| "failed") $) 270) (((-3 (-530) "failed") $) 259 (-3340 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) 257 (-3340 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) 242 (-3340 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2446 ((|#2| $) 269) (((-530) $) 260 (-3340 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) 258 (-3340 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) 243 (-3340 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2078 (($ $) 266) (($ (-530) $) 265)) (-3607 (($ $ $) 157 (|has| |#1| (-344)))) (-2425 (($ $) 60)) (-1298 (((-637 |#2|) (-637 $)) 221 (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 220 (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 219 (-3340 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) 218 (-3340 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-1673 (((-3 $ "failed") $) 34)) (-2057 (((-388 (-893 |#1|)) $ (-530)) 172 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 171 (|has| |#1| (-522)))) (-1376 (($) 233 (-3340 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3588 (($ $ $) 156 (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 151 (|has| |#1| (-344)))) (-2049 (((-110) $) 164 (|has| |#1| (-344)))) (-2991 (((-110) $) 247 (-3340 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3032 (((-110) $) 73)) (-1877 (($) 145 (|has| |#1| (-37 (-388 (-530)))))) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 225 (-3340 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 224 (-3340 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-1334 (((-530) $) 100) (((-530) $ (-530)) 99)) (-3150 (((-110) $) 31)) (-2854 (($ $) 229 (|has| |#1| (-344)))) (-1848 ((|#2| $) 227 (|has| |#1| (-344)))) (-1817 (($ $ (-530)) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1560 (((-3 $ "failed") $) 261 (-3340 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-3002 (((-110) $) 248 (-3340 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-1382 (($ $ (-862)) 101)) (-1647 (($ (-1 |#1| (-530)) $) 173)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 160 (|has| |#1| (-344)))) (-3327 (((-110) $) 62)) (-2575 (($ |#1| (-530)) 61) (($ $ (-1012) (-530)) 76) (($ $ (-597 (-1012)) (-597 (-530))) 75)) (-4194 (($ $ $) 251 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1757 (($ $ $) 252 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3114 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-344)))) (-2070 (($ $) 142 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-2072 (($ (-597 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-2659 (($ (-530) |#2|) 268)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 165 (|has| |#1| (-344)))) (-1637 (($ $) 170 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 169 (-1476 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-3677 (($) 262 (-3340 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 150 (|has| |#1| (-344)))) (-2108 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1684 (($ $) 232 (-3340 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-1702 ((|#2| $) 235 (-3340 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-1818 (((-399 (-1095 $)) (-1095 $)) 238 (-3340 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3707 (((-399 (-1095 $)) (-1095 $)) 239 (-3340 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2473 (((-399 $) $) 161 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 158 (|has| |#1| (-344)))) (-1312 (($ $ (-530)) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 152 (|has| |#1| (-344)))) (-2693 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) 212 (-3340 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) 211 (-3340 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) 210 (-3340 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) 209 (-3340 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 208 (-3340 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) 207 (-3340 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-1934 (((-719) $) 154 (|has| |#1| (-344)))) (-1832 ((|#1| $ (-530)) 104) (($ $ $) 81 (|has| (-530) (-1039))) (($ $ |#2|) 206 (-3340 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 155 (|has| |#1| (-344)))) (-3211 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 216 (|has| |#1| (-344))) (($ $ (-719)) 84 (-1476 (-3340 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 82 (-1476 (-3340 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 89 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 88 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 87 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 86 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-2842 (($ $) 230 (|has| |#1| (-344)))) (-1857 ((|#2| $) 228 (|has| |#1| (-344)))) (-3409 (((-530) $) 64)) (-2308 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3173 (((-208) $) 246 (-3340 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) 245 (-3340 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) 244 (-3340 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) 223 (-3340 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) 222 (-3340 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 236 (-3340 (-3340 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#1| (-344))))) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 271) (($ (-1099)) 241 (-3340 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522)))) (-2782 ((|#1| $ (-530)) 59)) (-1795 (((-3 $ "failed") $) 48 (-1476 (-3340 (-1476 (|has| |#2| (-138)) (-3340 (|has| $ (-138)) (|has| |#2| (-850)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-1709 ((|#2| $) 234 (-3340 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2339 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-530)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2218 (($ $) 250 (-3340 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 166 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 214 (|has| |#1| (-344))) (($ $ (-719)) 85 (-1476 (-3340 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 83 (-1476 (-3340 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 93 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 92 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 91 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 90 (-1476 (-3340 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-2204 (((-110) $ $) 254 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2182 (((-110) $ $) 255 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 253 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2172 (((-110) $ $) 256 (-3340 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344))) (($ |#2| |#2|) 226 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 115 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-344))) (($ |#2| $) 204 (|has| |#1| (-344))) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1141 *3)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984)))) (-2874 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-2874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
+(-13 (-1159 |t#1| (-530)) (-10 -8 (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |t#1|))))) (-15 -4219 ($ (-1 |t#1| (-530)) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -2874 ((-388 (-893 |t#1|)) $ (-530))) (-15 -2874 ((-388 (-893 |t#1|)) $ (-530) (-530)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-530) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
+((-1813 (((-110) $) 12)) (-3139 (((-3 |#3| "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL)) (-2585 ((|#3| $) 14) (((-1099) $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL)))
+(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|))) (-1143 |#2| |#3|) (-984) (-1172 |#2|)) (T -1142))
+NIL
+(-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 ((|#2| $) 228 (-3380 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 96) (($ $ (-530) (-530)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 103)) (-3045 ((|#2| $) 264)) (-3666 (((-3 |#2| "failed") $) 260)) (-2805 ((|#2| $) 261)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 237 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 234 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) 246 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 171)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 267) (((-3 (-530) "failed") $) 256 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) 254 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) 239 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2585 ((|#2| $) 266) (((-530) $) 257 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) 255 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) 240 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-3239 (($ $) 263) (($ (-530) $) 262)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2329 (((-637 |#2|) (-637 $)) 218 (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 217 (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 216 (-3380 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) 215 (-3380 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 32)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 169 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 168 (|has| |#1| (-522)))) (-1364 (($) 230 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-2514 (((-110) $) 244 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 222 (-3380 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 221 (-3380 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-2031 (((-530) $) 98) (((-530) $ (-530)) 97)) (-2731 (((-110) $) 30)) (-4127 (($ $) 226 (|has| |#1| (-344)))) (-1918 ((|#2| $) 224 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) 258 (-3380 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) 245 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 170)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-530)) 59) (($ $ (-1012) (-530)) 74) (($ $ (-597 (-1012)) (-597 (-530))) 73)) (-2508 (($ $ $) 248 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1817 (($ $ $) 249 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3217 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-344)))) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2817 (($ (-530) |#2|) 265)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-3657 (($) 259 (-3380 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-1979 (($ $) 229 (-3380 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3175 ((|#2| $) 232 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) 235 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) 236 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) 209 (-3380 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) 208 (-3380 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) 207 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) 206 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 205 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) 204 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 102) (($ $ $) 79 (|has| (-530) (-1039))) (($ $ |#2|) 203 (-3380 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 213 (|has| |#1| (-344))) (($ $ (-719)) 82 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 80 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 87 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 86 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 85 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 84 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-1269 (($ $) 227 (|has| |#1| (-344)))) (-1928 ((|#2| $) 225 (|has| |#1| (-344)))) (-1429 (((-530) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-208) $) 243 (-3380 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) 242 (-3380 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) 241 (-3380 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) 220 (-3380 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) 219 (-3380 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 233 (-3380 (-3380 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#1| (-344))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 268) (($ (-1099)) 238 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 57)) (-3251 (((-3 $ "failed") $) 46 (-1461 (-3380 (-1461 (|has| |#2| (-138)) (-3380 (|has| $ (-138)) (|has| |#2| (-850)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2748 ((|#2| $) 231 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) 247 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 211 (|has| |#1| (-344))) (($ $ (-719)) 83 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 81 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 91 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 90 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 89 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 88 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-2306 (((-110) $ $) 251 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2284 (((-110) $ $) 252 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 250 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2272 (((-110) $ $) 253 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344))) (($ |#2| |#2|) 223 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-344))) (($ |#2| $) 201 (|has| |#1| (-344))) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1143 |#1| |#2|) (-133) (-984) (-1172 |t#1|)) (T -1143))
-((-3409 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)) (-5 *2 (-530)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-2078 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-2066 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
-(-13 (-1141 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2659 ($ (-530) |t#2|)) (-15 -3409 ((-530) $)) (-15 -2089 (|t#2| $)) (-15 -2078 ($ $)) (-15 -2078 ($ (-530) $)) (-15 -2258 ($ |t#2|)) (-15 -2648 (|t#2| $)) (-15 -2066 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-932 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-506)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-530))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 (-1099) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1099) |#2|))) ((-491 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-522) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 |#2|) |has| |#1| (-344)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-530)))) ((-593 |#2|) |has| |#1| (-344)) ((-666 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 |#2|) |has| |#1| (-344)) ((-666 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-739) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-740) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-743) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-768) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-793) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-795) -1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-795))) (-12 (|has| |#1| (-344)) (|has| |#2| (-768)))) ((-841 (-1099)) -1476 (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099)))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) ((-827 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-530)))) ((-825 |#2|) |has| |#1| (-344)) ((-850) -12 (|has| |#1| (-344)) (|has| |#2| (-850))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-932 |#2|) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-960) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-975 (-388 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-1099)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1099)))) ((-975 |#2|) . T) ((-990 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 |#2|) |has| |#1| (-344)) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) -12 (|has| |#1| (-344)) (|has| |#2| (-1075))) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1135) |has| |#1| (-344)) ((-1139) |has| |#1| (-344)) ((-1141 |#1|) . T) ((-1159 |#1| #0#) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 70)) (-1694 ((|#2| $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 88)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-530)) 97) (($ $ (-530) (-530)) 99)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 47)) (-2089 ((|#2| $) 11)) (-2066 (((-3 |#2| "failed") $) 30)) (-2648 ((|#2| $) 31)) (-2276 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-3592 (((-530) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 57)) (-2297 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) 144) (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2446 ((|#2| $) 143) (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2078 (($ $) 61) (($ (-530) $) 24)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1298 (((-637 |#2|) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-1673 (((-3 $ "failed") $) 77)) (-2057 (((-388 (-893 |#1|)) $ (-530)) 112 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 114 (|has| |#1| (-522)))) (-1376 (($) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-2991 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3032 (((-110) $) 64)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-1334 (((-530) $) 93) (((-530) $ (-530)) 95)) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL (|has| |#1| (-344)))) (-1848 ((|#2| $) 151 (|has| |#1| (-344)))) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1560 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-3002 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-1382 (($ $ (-862)) 136)) (-1647 (($ (-1 |#1| (-530)) $) 132)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-530)) 19) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-4194 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1757 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3114 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-2070 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2659 (($ (-530) |#2|) 10)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 145 (|has| |#1| (-344)))) (-1637 (($ $) 214 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 219 (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-3677 (($) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1684 (($ $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-1702 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-530)) 126)) (-3562 (((-3 $ "failed") $ $) 116 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-530)) 91) (($ $ $) 79 (|has| (-530) (-1039))) (($ $ |#2|) NIL (-12 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 137 (-1476 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) 140 (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1857 ((|#2| $) 152 (|has| |#1| (-344)))) (-3409 (((-530) $) 12)) (-2308 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-3173 (((-208) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) NIL (-12 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3021 (($ $) 124)) (-2258 (((-804) $) 245) (($ (-530)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1099)) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 155 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-530)) 74)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))) (-12 (|has| |#2| (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-1667 (((-719)) 142)) (-3721 ((|#1| $) 90)) (-1709 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2339 (($ $) 204 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) 200 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 208 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-530)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 210 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 206 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 202 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-2218 (($ $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 13 T CONST)) (-2955 (($) 17 T CONST)) (-3286 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1476 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1476 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2204 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2182 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 63)) (-2195 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2172 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-2245 (($ $) 213) (($ $ $) 68)) (-2234 (($ $ $) 66)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73) (($ $ (-530)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+((-1429 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)) (-5 *2 (-530)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3)))) (-2817 (*1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-3666 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
+(-13 (-1141 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2817 ($ (-530) |t#2|)) (-15 -1429 ((-530) $)) (-15 -3045 (|t#2| $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)) (-15 -2366 ($ |t#2|)) (-15 -2805 (|t#2| $)) (-15 -3666 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-932 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-506)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-530))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 (-1099) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1099) |#2|))) ((-491 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 |#2|) |has| |#1| (-344)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-530)))) ((-593 |#2|) |has| |#1| (-344)) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 |#2|) |has| |#1| (-344)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-739) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-740) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-743) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-768) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-793) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-795) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-795))) (-12 (|has| |#1| (-344)) (|has| |#2| (-768)))) ((-841 (-1099)) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099)))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) ((-827 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-530)))) ((-825 |#2|) |has| |#1| (-344)) ((-850) -12 (|has| |#1| (-344)) (|has| |#2| (-850))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-932 |#2|) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-960) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-975 (-388 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-1099)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1099)))) ((-975 |#2|) . T) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 |#2|) |has| |#1| (-344)) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) -12 (|has| |#1| (-344)) (|has| |#2| (-1075))) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1135) |has| |#1| (-344)) ((-1139) |has| |#1| (-344)) ((-1141 |#1|) . T) ((-1159 |#1| #0#) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 70)) (-1612 ((|#2| $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 88)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 97) (($ $ (-530) (-530)) 99)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 47)) (-3045 ((|#2| $) 11)) (-3666 (((-3 |#2| "failed") $) 30)) (-2805 ((|#2| $) 31)) (-2386 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 57)) (-2409 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 144) (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2585 ((|#2| $) 143) (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-3239 (($ $) 61) (($ (-530) $) 24)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 |#2|) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 77)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 112 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 114 (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 64)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-2031 (((-530) $) 93) (((-530) $ (-530)) 95)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 ((|#2| $) 151 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) 136)) (-4219 (($ (-1 |#1| (-530)) $) 132)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 19) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1817 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3217 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) |#2|) 10)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 145 (|has| |#1| (-344)))) (-1545 (($ $) 214 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 219 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-3657 (($) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3175 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 126)) (-3551 (((-3 $ "failed") $ $) 116 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 91) (($ $ $) 79 (|has| (-530) (-1039))) (($ $ |#2|) NIL (-12 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 137 (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) 140 (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 ((|#2| $) 152 (|has| |#1| (-344)))) (-1429 (((-530) $) 12)) (-2421 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-208) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) NIL (-12 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))))) (-4050 (($ $) 124)) (-2366 (((-804) $) 245) (($ (-530)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1099)) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 155 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 74)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))) (-12 (|has| |#2| (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) 142)) (-3705 ((|#1| $) 90)) (-2748 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 204 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 200 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 208 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 210 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 206 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 202 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3080 (($) 13 T CONST)) (-3093 (($) 17 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2284 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2248 (((-110) $ $) 63)) (-2297 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2272 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-2351 (($ $) 213) (($ $ $) 68)) (-2339 (($ $ $) 66)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73) (($ $ (-530)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-984) (-1172 |#1|)) (T -1144))
NIL
(-1143 |#1| |#2|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1694 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 10)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3031 (($ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3006 (((-110) $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1323 (($ $ (-530)) NIL) (($ $ (-530) (-530)) NIL)) (-1344 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-2089 (((-1173 |#1| |#2| |#3|) $) NIL)) (-2066 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL)) (-2648 (((-1173 |#1| |#2| |#3|) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3592 (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-4148 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2446 (((-1173 |#1| |#2| |#3|) $) NIL) (((-1099) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2078 (($ $) NIL) (($ (-530) $) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-1173 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1173 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-1673 (((-3 $ "failed") $) NIL)) (-2057 (((-388 (-893 |#1|)) $ (-530)) NIL (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) NIL (|has| |#1| (-522)))) (-1376 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-2991 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3431 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-1334 (((-530) $) NIL) (((-530) $ (-530)) NIL)) (-3150 (((-110) $) NIL)) (-2854 (($ $) NIL (|has| |#1| (-344)))) (-1848 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1560 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-3002 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-1382 (($ $ (-862)) NIL)) (-1647 (($ (-1 |#1| (-530)) $) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-530)) 17) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-4194 (($ $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1757 (($ $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2659 (($ (-530) (-1173 |#1| |#2| |#3|)) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) 25 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 26 (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1684 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-1702 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-530)) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1173 |#1| |#2| |#3|)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-530)) NIL) (($ $ $) NIL (|has| (-530) (-1039))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-268 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 24) (($ $ (-719)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 23 (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1857 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-3409 (((-530) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3173 (((-506) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1173 |#1| |#2| |#3|)) NIL) (($ (-1177 |#2|)) 22) (($ (-1099)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-2782 ((|#1| $ (-530)) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 11)) (-1709 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2218 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 19 T CONST)) (-2955 (($) 15 T CONST)) (-3286 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2204 (((-110) $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2182 (((-110) $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2172 (((-110) $ $) NIL (-1476 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1145 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1145))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2114 (((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110)) 12)) (-2101 (((-399 |#1|) |#1|) 22)) (-2473 (((-399 |#1|) |#1|) 21)))
-(((-1146 |#1|) (-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1|)) (-15 -2114 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110)))) (-1157 (-530))) (T -1146))
-((-2114 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-2101 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -2473 ((-399 |#1|) |#1|)) (-15 -2101 ((-399 |#1|) |#1|)) (-15 -2114 ((-2 (|:| |contp| (-530)) (|:| -4162 (-597 (-2 (|:| |irr| |#1|) (|:| -3001 (-530)))))) |#1| (-110))))
-((-3114 (((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 23 (|has| |#1| (-793))) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 17)))
-(((-1147 |#1| |#2|) (-10 -7 (-15 -3114 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3114 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1147))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1147 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1148 *6)) (-5 *1 (-1147 *5 *6)))))
-(-10 -7 (-15 -3114 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3114 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2392 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3114 (((-1080 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-793)))) (-3372 ((|#1| $) 14)) (-1975 ((|#1| $) 10)) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1985 (((-530) $) 18)) (-3362 ((|#1| $) 17)) (-1995 ((|#1| $) 11)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2125 (((-110) $) 16)) (-2147 (((-1080 |#1|) $) 38 (|has| |#1| (-793))) (((-1080 |#1|) (-597 $)) 37 (|has| |#1| (-793)))) (-3173 (($ |#1|) 25)) (-2258 (($ (-1022 |#1|)) 24) (((-804) $) 34 (|has| |#1| (-1027)))) (-3846 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1941 (($ $ (-530)) 13)) (-2148 (((-110) $ $) 27 (|has| |#1| (-1027)))))
-(((-1148 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -3846 ($ |#1|)) (-15 -2392 ($ |#1|)) (-15 -2258 ($ (-1022 |#1|))) (-15 -2125 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|))) (-1135)) (T -1148))
-((-3846 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2392 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1022 *3)) (-4 *3 (-1135)) (-5 *1 (-1148 *3)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
-(-13 (-1021 |#1|) (-10 -8 (-15 -3846 ($ |#1|)) (-15 -2392 ($ |#1|)) (-15 -2258 ($ (-1022 |#1|))) (-15 -2125 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|)))
-((-3114 (((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)) 15)))
-(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)))) (-1099) (-984) (-1099) (-984)) (T -1149))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1154 *5 *6)) (-14 *5 (-1099)) (-4 *6 (-984)) (-4 *8 (-984)) (-5 *2 (-1154 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1099)))))
-(-10 -7 (-15 -3114 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|))))
-((-2173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2149 ((|#1| |#3|) 13)) (-2159 ((|#3| |#3|) 19)))
-(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -2149 (|#1| |#3|)) (-15 -2159 (|#3| |#3|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-1157 |#2|)) (T -1150))
-((-2173 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1157 *4)))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2149 (|#1| |#3|)) (-15 -2159 (|#3| |#3|)) (-15 -2173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2196 (((-3 |#2| "failed") |#2| (-719) |#1|) 29)) (-2186 (((-3 |#2| "failed") |#2| (-719)) 30)) (-2215 (((-3 (-2 (|:| -3648 |#2|) (|:| -3657 |#2|)) "failed") |#2|) 43)) (-2224 (((-597 |#2|) |#2|) 45)) (-2206 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1151 |#1| |#2|) (-10 -7 (-15 -2186 ((-3 |#2| "failed") |#2| (-719))) (-15 -2196 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -2206 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2215 ((-3 (-2 (|:| -3648 |#2|) (|:| -3657 |#2|)) "failed") |#2|)) (-15 -2224 ((-597 |#2|) |#2|))) (-13 (-522) (-140)) (-1157 |#1|)) (T -1151))
-((-2224 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-2215 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-2 (|:| -3648 *3) (|:| -3657 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-2206 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1157 *3)))) (-2196 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))) (-2186 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
-(-10 -7 (-15 -2186 ((-3 |#2| "failed") |#2| (-719))) (-15 -2196 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -2206 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2215 ((-3 (-2 (|:| -3648 |#2|) (|:| -3657 |#2|)) "failed") |#2|)) (-15 -2224 ((-597 |#2|) |#2|)))
-((-2233 (((-3 (-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -2233 ((-3 (-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) "failed") |#2| |#2|))) (-522) (-1157 |#1|)) (T -1152))
-((-2233 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2233 ((-3 (-2 (|:| -3624 |#2|) (|:| -3088 |#2|)) "failed") |#2| |#2|)))
-((-2244 ((|#2| |#2| |#2|) 19)) (-2256 ((|#2| |#2| |#2|) 30)) (-2267 ((|#2| |#2| |#2| (-719) (-719)) 36)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -2244 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2|)) (-15 -2267 (|#2| |#2| |#2| (-719) (-719)))) (-984) (-1157 |#1|)) (T -1153))
-((-2267 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4)))) (-2256 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))) (-2244 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -2244 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2|)) (-15 -2267 (|#2| |#2| |#2| (-719) (-719))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-1301 (((-1181 |#2|) $ (-719)) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-1279 (($ (-1095 |#2|)) NIL)) (-2439 (((-1095 $) $ (-1012)) NIL) (((-1095 |#2|) $) NIL)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3031 (($ $) NIL (|has| |#2| (-522)))) (-3006 (((-110) $) NIL (|has| |#2| (-522)))) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2322 (($ $ $) NIL (|has| |#2| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1359 (($ $) NIL (|has| |#2| (-432)))) (-3550 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1945 (((-110) $ $) NIL (|has| |#2| (-344)))) (-2370 (($ $ (-719)) NIL)) (-2363 (($ $ (-719)) NIL)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2446 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-1012) $) NIL)) (-2330 (($ $ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3607 (($ $ $) NIL (|has| |#2| (-344)))) (-2425 (($ $) NIL)) (-1298 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3588 (($ $ $) NIL (|has| |#2| (-344)))) (-2352 (($ $ $) NIL)) (-2301 (($ $ $) NIL (|has| |#2| (-522)))) (-2291 (((-2 (|:| -1981 |#2|) (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-3703 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-2411 (((-597 $) $) NIL)) (-2049 (((-110) $) NIL (|has| |#2| (-850)))) (-2097 (($ $ |#2| (-719) $) NIL)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-1334 (((-719) $ $) NIL (|has| |#2| (-522)))) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-1560 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-2586 (($ (-1095 |#2|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-1382 (($ $ (-719)) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-2575 (($ |#2| (-719)) 17) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1012)) NIL) (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL)) (-3674 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-4194 (($ $ $) NIL (|has| |#2| (-795)))) (-1757 (($ $ $) NIL (|has| |#2| (-795)))) (-2107 (($ (-1 (-719) (-719)) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-1289 (((-1095 |#2|) $) NIL)) (-1367 (((-3 (-1012) "failed") $) NIL)) (-2388 (($ $) NIL)) (-2402 ((|#2| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3443 (((-1082) $) NIL)) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) NIL)) (-2457 (((-3 (-597 $) "failed") $) NIL)) (-3691 (((-3 (-597 $) "failed") $) NIL)) (-2467 (((-3 (-2 (|:| |var| (-1012)) (|:| -3059 (-719))) "failed") $) NIL)) (-1637 (($ $) NIL (|has| |#2| (-37 (-388 (-530)))))) (-3677 (($) NIL (|has| |#2| (-1075)) CONST)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 ((|#2| $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2108 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-2137 (($ $ (-719) |#2| $) NIL)) (-1818 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2473 (((-399 $) $) NIL (|has| |#2| (-850)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#2| (-344)))) (-3562 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-4084 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) NIL) (($ $ (-597 (-1012)) (-597 |#2|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-1934 (((-719) $) NIL (|has| |#2| (-344)))) (-1832 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-522))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-522)))) (-1269 (((-3 $ "failed") $ (-719)) NIL)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#2| (-344)))) (-2341 (($ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3211 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3409 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3173 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2312 (((-3 $ "failed") $ $) NIL (|has| |#2| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#2| (-522)))) (-2258 (((-804) $) 13) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) NIL) (($ (-1177 |#1|)) 19) (($ (-388 (-530))) NIL (-1476 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1795 (((-3 $ "failed") $) NIL (-1476 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3020 (((-110) $ $) NIL (|has| |#2| (-522)))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-2955 (($) 14 T CONST)) (-3286 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2204 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2257 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1154 |#1| |#2|) (-13 (-1157 |#2|) (-10 -8 (-15 -2258 ($ (-1177 |#1|))) (-15 -2137 ($ $ (-719) |#2| $)))) (-1099) (-984)) (T -1154))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-1154 *3 *4)) (-4 *4 (-984)))) (-2137 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099)) (-4 *3 (-984)))))
-(-13 (-1157 |#2|) (-10 -8 (-15 -2258 ($ (-1177 |#1|))) (-15 -2137 ($ $ (-719) |#2| $))))
-((-3114 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|))) (-984) (-1157 |#1|) (-984) (-1157 |#3|)) (T -1155))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1157 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1301 (((-1181 |#2|) $ (-719)) 114)) (-2596 (((-597 (-1012)) $) 15)) (-1279 (($ (-1095 |#2|)) 67)) (-3667 (((-719) $) NIL) (((-719) $ (-597 (-1012))) 18)) (-3715 (((-399 (-1095 $)) (-1095 $)) 185)) (-1359 (($ $) 175)) (-3550 (((-399 $) $) 173)) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 82)) (-2370 (($ $ (-719)) 71)) (-2363 (($ $ (-719)) 73)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3012 (((-3 |#2| "failed") $) 117) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-1012) "failed") $) NIL)) (-2446 ((|#2| $) 115) (((-388 (-530)) $) NIL) (((-530) $) NIL) (((-1012) $) NIL)) (-2301 (($ $ $) 151)) (-2291 (((-2 (|:| -1981 |#2|) (|:| -3624 $) (|:| -3088 $)) $ $) 153)) (-1334 (((-719) $ $) 170)) (-1560 (((-3 $ "failed") $) 123)) (-2575 (($ |#2| (-719)) NIL) (($ $ (-1012) (-719)) 47) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3674 (((-719) $) NIL) (((-719) $ (-1012)) 42) (((-597 (-719)) $ (-597 (-1012))) 43)) (-1289 (((-1095 |#2|) $) 59)) (-1367 (((-3 (-1012) "failed") $) 40)) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) 70)) (-1637 (($ $) 197)) (-3677 (($) 119)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 182)) (-1818 (((-399 (-1095 $)) (-1095 $)) 88)) (-3707 (((-399 (-1095 $)) (-1095 $)) 86)) (-2473 (((-399 $) $) 107)) (-4084 (($ $ (-597 (-276 $))) 39) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) 31) (($ $ (-597 (-1012)) (-597 |#2|)) 28) (($ $ (-1012) $) 25) (($ $ (-597 (-1012)) (-597 $)) 23)) (-1934 (((-719) $) 188)) (-1832 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 191)) (-3211 (($ $ (-1012)) 140) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) 138) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3409 (((-719) $) NIL) (((-719) $ (-1012)) 16) (((-597 (-719)) $ (-597 (-1012))) 20)) (-3658 ((|#2| $) NIL) (($ $ (-1012)) 125)) (-2312 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) 51) (($ (-388 (-530))) NIL) (($ $) NIL)))
-(((-1156 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -1832 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -1934 ((-719) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1832 (|#2| (-388 |#1|) |#2|)) (-15 -2280 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2291 ((-2 (|:| -1981 |#2|) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -2301 (|#1| |#1| |#1|)) (-15 -2312 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1334 ((-719) |#1| |#1|)) (-15 -1832 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2363 (|#1| |#1| (-719))) (-15 -2370 (|#1| |#1| (-719))) (-15 -2380 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| (-719))) (-15 -1279 (|#1| (-1095 |#2|))) (-15 -1289 ((-1095 |#2|) |#1|)) (-15 -1301 ((-1181 |#2|) |#1| (-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1832 (|#2| |#1| |#2|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3715 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3658 (|#1| |#1| (-1012))) (-15 -2596 ((-597 (-1012)) |#1|)) (-15 -3667 ((-719) |#1| (-597 (-1012)))) (-15 -3667 ((-719) |#1|)) (-15 -2575 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2575 (|#1| |#1| (-1012) (-719))) (-15 -3674 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -3674 ((-719) |#1| (-1012))) (-15 -1367 ((-3 (-1012) "failed") |#1|)) (-15 -3409 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -3409 ((-719) |#1| (-1012))) (-15 -2446 ((-1012) |#1|)) (-15 -3012 ((-3 (-1012) "failed") |#1|)) (-15 -2258 (|#1| (-1012))) (-15 -4084 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-1012) |#1|)) (-15 -4084 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4084 (|#1| |#1| (-1012) |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3409 ((-719) |#1|)) (-15 -2575 (|#1| |#2| (-719))) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3674 ((-719) |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3211 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1012) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1012)))) (-15 -3211 (|#1| |#1| (-1012))) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|))) (-1157 |#2|) (-984)) (T -1156))
-NIL
-(-10 -8 (-15 -2258 (|#1| |#1|)) (-15 -3728 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3550 ((-399 |#1|) |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -3677 (|#1|)) (-15 -1560 ((-3 |#1| "failed") |#1|)) (-15 -1832 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -1934 ((-719) |#1|)) (-15 -3017 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -1637 (|#1| |#1|)) (-15 -1832 (|#2| (-388 |#1|) |#2|)) (-15 -2280 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2291 ((-2 (|:| -1981 |#2|) (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| |#1|)) (-15 -2301 (|#1| |#1| |#1|)) (-15 -2312 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1334 ((-719) |#1| |#1|)) (-15 -1832 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2363 (|#1| |#1| (-719))) (-15 -2370 (|#1| |#1| (-719))) (-15 -2380 ((-2 (|:| -3624 |#1|) (|:| -3088 |#1|)) |#1| (-719))) (-15 -1279 (|#1| (-1095 |#2|))) (-15 -1289 ((-1095 |#2|) |#1|)) (-15 -1301 ((-1181 |#2|) |#1| (-719))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3211 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1099) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1099)))) (-15 -3211 (|#1| |#1| (-1099))) (-15 -3211 (|#1| |#1|)) (-15 -3211 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1832 (|#2| |#1| |#2|)) (-15 -2473 ((-399 |#1|) |#1|)) (-15 -3715 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3707 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1818 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1810 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3658 (|#1| |#1| (-1012))) (-15 -2596 ((-597 (-1012)) |#1|)) (-15 -3667 ((-719) |#1| (-597 (-1012)))) (-15 -3667 ((-719) |#1|)) (-15 -2575 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2575 (|#1| |#1| (-1012) (-719))) (-15 -3674 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -3674 ((-719) |#1| (-1012))) (-15 -1367 ((-3 (-1012) "failed") |#1|)) (-15 -3409 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -3409 ((-719) |#1| (-1012))) (-15 -2446 ((-1012) |#1|)) (-15 -3012 ((-3 (-1012) "failed") |#1|)) (-15 -2258 (|#1| (-1012))) (-15 -4084 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4084 (|#1| |#1| (-1012) |#1|)) (-15 -4084 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4084 (|#1| |#1| (-1012) |#2|)) (-15 -4084 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4084 (|#1| |#1| |#1| |#1|)) (-15 -4084 (|#1| |#1| (-276 |#1|))) (-15 -4084 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -3409 ((-719) |#1|)) (-15 -2575 (|#1| |#2| (-719))) (-15 -2446 ((-530) |#1|)) (-15 -3012 ((-3 (-530) "failed") |#1|)) (-15 -2446 ((-388 (-530)) |#1|)) (-15 -3012 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2258 (|#1| |#2|)) (-15 -3012 ((-3 |#2| "failed") |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -3674 ((-719) |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3211 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3211 (|#1| |#1| (-1012) (-719))) (-15 -3211 (|#1| |#1| (-597 (-1012)))) (-15 -3211 (|#1| |#1| (-1012))) (-15 -2258 (|#1| (-530))) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-1301 (((-1181 |#1|) $ (-719)) 238)) (-2596 (((-597 (-1012)) $) 110)) (-1279 (($ (-1095 |#1|)) 236)) (-2439 (((-1095 $) $ (-1012)) 125) (((-1095 |#1|) $) 124)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 87 (|has| |#1| (-522)))) (-3031 (($ $) 88 (|has| |#1| (-522)))) (-3006 (((-110) $) 90 (|has| |#1| (-522)))) (-3667 (((-719) $) 112) (((-719) $ (-597 (-1012))) 111)) (-3618 (((-3 $ "failed") $ $) 19)) (-2322 (($ $ $) 223 (|has| |#1| (-522)))) (-3715 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1359 (($ $) 98 (|has| |#1| (-432)))) (-3550 (((-399 $) $) 97 (|has| |#1| (-432)))) (-1810 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 103 (|has| |#1| (-850)))) (-1945 (((-110) $ $) 208 (|has| |#1| (-344)))) (-2370 (($ $ (-719)) 231)) (-2363 (($ $ (-719)) 230)) (-2280 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-432)))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 164) (((-3 (-388 (-530)) "failed") $) 162 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 160 (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) 136)) (-2446 ((|#1| $) 165) (((-388 (-530)) $) 161 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 159 (|has| |#1| (-975 (-530)))) (((-1012) $) 135)) (-2330 (($ $ $ (-1012)) 108 (|has| |#1| (-162))) ((|#1| $ $) 226 (|has| |#1| (-162)))) (-3607 (($ $ $) 212 (|has| |#1| (-344)))) (-2425 (($ $) 154)) (-1298 (((-637 (-530)) (-637 $)) 134 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (|has| |#1| (-593 (-530)))) (((-2 (|:| -1896 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132) (((-637 |#1|) (-637 $)) 131)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 211 (|has| |#1| (-344)))) (-2352 (($ $ $) 229)) (-2301 (($ $ $) 220 (|has| |#1| (-522)))) (-2291 (((-2 (|:| -1981 |#1|) (|:| -3624 $) (|:| -3088 $)) $ $) 219 (|has| |#1| (-522)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 206 (|has| |#1| (-344)))) (-3703 (($ $) 176 (|has| |#1| (-432))) (($ $ (-1012)) 105 (|has| |#1| (-432)))) (-2411 (((-597 $) $) 109)) (-2049 (((-110) $) 96 (|has| |#1| (-850)))) (-2097 (($ $ |#1| (-719) $) 172)) (-3431 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84 (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 83 (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-1334 (((-719) $ $) 224 (|has| |#1| (-522)))) (-3150 (((-110) $) 31)) (-3239 (((-719) $) 169)) (-1560 (((-3 $ "failed") $) 204 (|has| |#1| (-1075)))) (-2586 (($ (-1095 |#1|) (-1012)) 117) (($ (-1095 $) (-1012)) 116)) (-1382 (($ $ (-719)) 235)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 215 (|has| |#1| (-344)))) (-3683 (((-597 $) $) 126)) (-3327 (((-110) $) 152)) (-2575 (($ |#1| (-719)) 153) (($ $ (-1012) (-719)) 119) (($ $ (-597 (-1012)) (-597 (-719))) 118)) (-2393 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $ (-1012)) 120) (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 233)) (-3674 (((-719) $) 170) (((-719) $ (-1012)) 122) (((-597 (-719)) $ (-597 (-1012))) 121)) (-4194 (($ $ $) 79 (|has| |#1| (-795)))) (-1757 (($ $ $) 78 (|has| |#1| (-795)))) (-2107 (($ (-1 (-719) (-719)) $) 171)) (-3114 (($ (-1 |#1| |#1|) $) 151)) (-1289 (((-1095 |#1|) $) 237)) (-1367 (((-3 (-1012) "failed") $) 123)) (-2388 (($ $) 149)) (-2402 ((|#1| $) 148)) (-2072 (($ (-597 $)) 94 (|has| |#1| (-432))) (($ $ $) 93 (|has| |#1| (-432)))) (-3443 (((-1082) $) 9)) (-2380 (((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719)) 232)) (-2457 (((-3 (-597 $) "failed") $) 114)) (-3691 (((-3 (-597 $) "failed") $) 115)) (-2467 (((-3 (-2 (|:| |var| (-1012)) (|:| -3059 (-719))) "failed") $) 113)) (-1637 (($ $) 216 (|has| |#1| (-37 (-388 (-530)))))) (-3677 (($) 203 (|has| |#1| (-1075)) CONST)) (-2485 (((-1046) $) 10)) (-2366 (((-110) $) 166)) (-2375 ((|#1| $) 167)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 95 (|has| |#1| (-432)))) (-2108 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1818 (((-399 (-1095 $)) (-1095 $)) 102 (|has| |#1| (-850)))) (-3707 (((-399 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2473 (((-399 $) $) 99 (|has| |#1| (-850)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 213 (|has| |#1| (-344)))) (-3562 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 207 (|has| |#1| (-344)))) (-4084 (($ $ (-597 (-276 $))) 145) (($ $ (-276 $)) 144) (($ $ $ $) 143) (($ $ (-597 $) (-597 $)) 142) (($ $ (-1012) |#1|) 141) (($ $ (-597 (-1012)) (-597 |#1|)) 140) (($ $ (-1012) $) 139) (($ $ (-597 (-1012)) (-597 $)) 138)) (-1934 (((-719) $) 209 (|has| |#1| (-344)))) (-1832 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-388 $) (-388 $) (-388 $)) 225 (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) 217 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 205 (|has| |#1| (-522)))) (-1269 (((-3 $ "failed") $ (-719)) 234)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 210 (|has| |#1| (-344)))) (-2341 (($ $ (-1012)) 107 (|has| |#1| (-162))) ((|#1| $) 227 (|has| |#1| (-162)))) (-3211 (($ $ (-1012)) 42) (($ $ (-597 (-1012))) 41) (($ $ (-1012) (-719)) 40) (($ $ (-597 (-1012)) (-597 (-719))) 39) (($ $ (-719)) 253) (($ $) 251) (($ $ (-1099)) 250 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 249 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 248 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 247 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3409 (((-719) $) 150) (((-719) $ (-1012)) 130) (((-597 (-719)) $ (-597 (-1012))) 129)) (-3173 (((-833 (-360)) $) 82 (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 81 (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 80 (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-432))) (($ $ (-1012)) 106 (|has| |#1| (-432)))) (-1801 (((-3 (-1181 $) "failed") (-637 $)) 104 (-3340 (|has| $ (-138)) (|has| |#1| (-850))))) (-2312 (((-3 $ "failed") $ $) 222 (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) 221 (|has| |#1| (-522)))) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 163) (($ (-1012)) 137) (($ (-388 (-530))) 72 (-1476 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 85 (|has| |#1| (-522)))) (-1669 (((-597 |#1|) $) 168)) (-2782 ((|#1| $ (-719)) 155) (($ $ (-1012) (-719)) 128) (($ $ (-597 (-1012)) (-597 (-719))) 127)) (-1795 (((-3 $ "failed") $) 73 (-1476 (-3340 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1667 (((-719)) 29)) (-2084 (($ $ $ (-719)) 173 (|has| |#1| (-162)))) (-3020 (((-110) $ $) 89 (|has| |#1| (-522)))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-1012)) 38) (($ $ (-597 (-1012))) 37) (($ $ (-1012) (-719)) 36) (($ $ (-597 (-1012)) (-597 (-719))) 35) (($ $ (-719)) 254) (($ $) 252) (($ $ (-1099)) 246 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 245 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 244 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 243 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2204 (((-110) $ $) 76 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 77 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2257 (($ $ |#1|) 156 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 157 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 10)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1951 (($ $ (-530)) NIL) (($ $ (-530) (-530)) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-3045 (((-1173 |#1| |#2| |#3|) $) NIL)) (-3666 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL)) (-2805 (((-1173 |#1| |#2| |#3|) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2585 (((-1173 |#1| |#2| |#3|) $) NIL) (((-1099) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-1173 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1173 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) NIL)) (-2874 (((-388 (-893 |#1|)) $ (-530)) NIL (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) NIL (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-2031 (((-530) $) NIL) (((-530) $ (-530)) NIL)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 17) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) (-1173 |#1| |#2| |#3|)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 25 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 26 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3175 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1173 |#1| |#2| |#3|)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) NIL) (($ $ $) NIL (|has| (-530) (-1039))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-268 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 24) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 23 (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-1429 (((-530) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-506) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1173 |#1| |#2| |#3|)) NIL) (($ (-1177 |#2|)) 22) (($ (-1099)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-4085 ((|#1| $ (-530)) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 11)) (-2748 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3080 (($) 19 T CONST)) (-3093 (($) 15 T CONST)) (-3340 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2272 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1145 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1145))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-4163 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)) 12)) (-1550 (((-399 |#1|) |#1|) 22)) (-2611 (((-399 |#1|) |#1|) 21)))
+(((-1146 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)))) (-1157 (-530))) (T -1146))
+((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
+(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))))
+((-3217 (((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 23 (|has| |#1| (-793))) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 17)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -3217 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1147))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1147 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1148 *6)) (-5 *1 (-1147 *5 *6)))))
+(-10 -7 (-15 -3217 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2525 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3217 (((-1080 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-793)))) (-2594 ((|#1| $) 14)) (-2059 ((|#1| $) 10)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2070 (((-530) $) 18)) (-3884 ((|#1| $) 17)) (-2081 ((|#1| $) 11)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2629 (((-110) $) 16)) (-2246 (((-1080 |#1|) $) 38 (|has| |#1| (-793))) (((-1080 |#1|) (-597 $)) 37 (|has| |#1| (-793)))) (-3260 (($ |#1|) 25)) (-2366 (($ (-1022 |#1|)) 24) (((-804) $) 34 (|has| |#1| (-1027)))) (-3848 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2022 (($ $ (-530)) 13)) (-2248 (((-110) $ $) 27 (|has| |#1| (-1027)))))
+(((-1148 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2525 ($ |#1|)) (-15 -2366 ($ (-1022 |#1|))) (-15 -2629 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|))) (-1135)) (T -1148))
+((-3848 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2525 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1022 *3)) (-4 *3 (-1135)) (-5 *1 (-1148 *3)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
+(-13 (-1021 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2525 ($ |#1|)) (-15 -2366 ($ (-1022 |#1|))) (-15 -2629 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|)))
+((-3217 (((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)) 15)))
+(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)))) (-1099) (-984) (-1099) (-984)) (T -1149))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1154 *5 *6)) (-14 *5 (-1099)) (-4 *6 (-984)) (-4 *8 (-984)) (-5 *2 (-1154 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1099)))))
+(-10 -7 (-15 -3217 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|))))
+((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3912 ((|#1| |#3|) 13)) (-2765 ((|#3| |#3|) 19)))
+(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-1157 |#2|)) (T -1150))
+((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1157 *4)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3243 (((-3 |#2| "failed") |#2| (-719) |#1|) 29)) (-1593 (((-3 |#2| "failed") |#2| (-719)) 30)) (-3659 (((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|) 43)) (-3276 (((-597 |#2|) |#2|) 45)) (-1857 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -1593 ((-3 |#2| "failed") |#2| (-719))) (-15 -3243 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -1857 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3659 ((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|)) (-15 -3276 ((-597 |#2|) |#2|))) (-13 (-522) (-140)) (-1157 |#1|)) (T -1151))
+((-3276 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-3659 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-1857 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1157 *3)))) (-3243 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))) (-1593 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
+(-10 -7 (-15 -1593 ((-3 |#2| "failed") |#2| (-719))) (-15 -3243 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -1857 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3659 ((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|)) (-15 -3276 ((-597 |#2|) |#2|)))
+((-3031 (((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -3031 ((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|))) (-522) (-1157 |#1|)) (T -1152))
+((-3031 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1157 *4)))))
+(-10 -7 (-15 -3031 ((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|)))
+((-1400 ((|#2| |#2| |#2|) 19)) (-3996 ((|#2| |#2| |#2|) 30)) (-3606 ((|#2| |#2| |#2| (-719) (-719)) 36)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -1400 (|#2| |#2| |#2|)) (-15 -3996 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2| (-719) (-719)))) (-984) (-1157 |#1|)) (T -1153))
+((-3606 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4)))) (-3996 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))) (-1400 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -1400 (|#2| |#2| |#2|)) (-15 -3996 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2| (-719) (-719))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1825 (((-1181 |#2|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#2|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) NIL (|has| |#2| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3590 (($ $ $) NIL (|has| |#2| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#2| (-522)))) (-2504 (((-2 (|:| -2065 |#2|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#2| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-2735 (($ (-1095 |#2|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) 17) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2609 (((-1095 |#2|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#2| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#2| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1641 (($ $ (-719) |#2| $) NIL)) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) NIL) (($ $ (-597 (-1012)) (-597 |#2|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#2| (-344)))) (-1902 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-522))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#2| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#2| (-522)))) (-2366 (((-804) $) 13) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) NIL) (($ (-1177 |#1|)) 19) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1154 |#1| |#2|) (-13 (-1157 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))) (-15 -1641 ($ $ (-719) |#2| $)))) (-1099) (-984)) (T -1154))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-1154 *3 *4)) (-4 *4 (-984)))) (-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099)) (-4 *3 (-984)))))
+(-13 (-1157 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))) (-15 -1641 ($ $ (-719) |#2| $))))
+((-3217 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|))) (-984) (-1157 |#1|) (-984) (-1157 |#3|)) (T -1155))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1157 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1825 (((-1181 |#2|) $ (-719)) 114)) (-2746 (((-597 (-1012)) $) 15)) (-1370 (($ (-1095 |#2|)) 67)) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) 18)) (-4002 (((-399 (-1095 $)) (-1095 $)) 185)) (-3544 (($ $) 175)) (-3272 (((-399 $) $) 173)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 82)) (-3269 (($ $ (-719)) 71)) (-3778 (($ $ (-719)) 73)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3139 (((-3 |#2| "failed") $) 117) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#2| $) 115) (((-388 (-530)) $) NIL) (((-530) $) NIL) (((-1012) $) NIL)) (-1903 (($ $ $) 151)) (-2504 (((-2 (|:| -2065 |#2|) (|:| -1324 $) (|:| -3304 $)) $ $) 153)) (-2031 (((-719) $ $) 170)) (-2972 (((-3 $ "failed") $) 123)) (-2725 (($ |#2| (-719)) NIL) (($ $ (-1012) (-719)) 47) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) 42) (((-597 (-719)) $ (-597 (-1012))) 43)) (-2609 (((-1095 |#2|) $) 59)) (-2040 (((-3 (-1012) "failed") $) 40)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 70)) (-1545 (($ $) 197)) (-3657 (($) 119)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 182)) (-3845 (((-399 (-1095 $)) (-1095 $)) 88)) (-1473 (((-399 (-1095 $)) (-1095 $)) 86)) (-2611 (((-399 $) $) 107)) (-4098 (($ $ (-597 (-276 $))) 39) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) 31) (($ $ (-597 (-1012)) (-597 |#2|)) 28) (($ $ (-1012) $) 25) (($ $ (-597 (-1012)) (-597 $)) 23)) (-2356 (((-719) $) 188)) (-1902 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 191)) (-3289 (($ $ (-1012)) 140) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) 138) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) 16) (((-597 (-719)) $ (-597 (-1012))) 20)) (-3829 ((|#2| $) NIL) (($ $ (-1012)) 125)) (-1331 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) 51) (($ (-388 (-530))) NIL) (($ $) NIL)))
+(((-1156 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1902 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1902 (|#2| (-388 |#1|) |#2|)) (-15 -2026 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2504 ((-2 (|:| -2065 |#2|) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1331 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -1331 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2031 ((-719) |#1| |#1|)) (-15 -1902 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3778 (|#1| |#1| (-719))) (-15 -3269 (|#1| |#1| (-719))) (-15 -2970 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| (-719))) (-15 -1370 (|#1| (-1095 |#2|))) (-15 -2609 ((-1095 |#2|) |#1|)) (-15 -1825 ((-1181 |#2|) |#1| (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| |#2|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -4002 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3829 (|#1| |#1| (-1012))) (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -3471 ((-719) |#1| (-597 (-1012)))) (-15 -3471 ((-719) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2725 (|#1| |#1| (-1012) (-719))) (-15 -2944 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -2944 ((-719) |#1| (-1012))) (-15 -2040 ((-3 (-1012) "failed") |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -1429 ((-719) |#1| (-1012))) (-15 -2585 ((-1012) |#1|)) (-15 -3139 ((-3 (-1012) "failed") |#1|)) (-15 -2366 (|#1| (-1012))) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-1012) |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1012) |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 ((-719) |#1|)) (-15 -2725 (|#1| |#2| (-719))) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2944 ((-719) |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3289 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1012) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1012)))) (-15 -3289 (|#1| |#1| (-1012))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-1157 |#2|) (-984)) (T -1156))
+NIL
+(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1902 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1902 (|#2| (-388 |#1|) |#2|)) (-15 -2026 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2504 ((-2 (|:| -2065 |#2|) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1331 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -1331 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2031 ((-719) |#1| |#1|)) (-15 -1902 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3778 (|#1| |#1| (-719))) (-15 -3269 (|#1| |#1| (-719))) (-15 -2970 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| (-719))) (-15 -1370 (|#1| (-1095 |#2|))) (-15 -2609 ((-1095 |#2|) |#1|)) (-15 -1825 ((-1181 |#2|) |#1| (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| |#2|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -4002 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3829 (|#1| |#1| (-1012))) (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -3471 ((-719) |#1| (-597 (-1012)))) (-15 -3471 ((-719) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2725 (|#1| |#1| (-1012) (-719))) (-15 -2944 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -2944 ((-719) |#1| (-1012))) (-15 -2040 ((-3 (-1012) "failed") |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -1429 ((-719) |#1| (-1012))) (-15 -2585 ((-1012) |#1|)) (-15 -3139 ((-3 (-1012) "failed") |#1|)) (-15 -2366 (|#1| (-1012))) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-1012) |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1012) |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 ((-719) |#1|)) (-15 -2725 (|#1| |#2| (-719))) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2944 ((-719) |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3289 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1012) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1012)))) (-15 -3289 (|#1| |#1| (-1012))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1825 (((-1181 |#1|) $ (-719)) 236)) (-2746 (((-597 (-1012)) $) 108)) (-1370 (($ (-1095 |#1|)) 234)) (-2577 (((-1095 $) $ (-1012)) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 (-1012))) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-3950 (($ $ $) 221 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-1426 (((-110) $ $) 206 (|has| |#1| (-344)))) (-3269 (($ $ (-719)) 229)) (-3778 (($ $ (-719)) 228)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-432)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) 134)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) (((-1012) $) 133)) (-3388 (($ $ $ (-1012)) 106 (|has| |#1| (-162))) ((|#1| $ $) 224 (|has| |#1| (-162)))) (-3590 (($ $ $) 210 (|has| |#1| (-344)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 209 (|has| |#1| (-344)))) (-1350 (($ $ $) 227)) (-1903 (($ $ $) 218 (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) 217 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 204 (|has| |#1| (-344)))) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ (-1012)) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) 222 (|has| |#1| (-522)))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2972 (((-3 $ "failed") $) 202 (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) 115) (($ (-1095 $) (-1012)) 114)) (-3081 (($ $ (-719)) 233)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 213 (|has| |#1| (-344)))) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| (-719)) 151) (($ $ (-1012) (-719)) 117) (($ $ (-597 (-1012)) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) 118) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 231)) (-2944 (((-719) $) 168) (((-719) $ (-1012)) 120) (((-597 (-719)) $ (-597 (-1012))) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2609 (((-1095 |#1|) $) 235)) (-2040 (((-3 (-1012) "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 230)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) 111)) (-1545 (($ $) 214 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) 201 (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 211 (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 205 (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ (-1012) |#1|) 139) (($ $ (-597 (-1012)) (-597 |#1|)) 138) (($ $ (-1012) $) 137) (($ $ (-597 (-1012)) (-597 $)) 136)) (-2356 (((-719) $) 207 (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-388 $) (-388 $) (-388 $)) 223 (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) 215 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 203 (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) 232)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 208 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) 105 (|has| |#1| (-162))) ((|#1| $) 225 (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) 40) (($ $ (-597 (-1012))) 39) (($ $ (-1012) (-719)) 38) (($ $ (-597 (-1012)) (-597 (-719))) 37) (($ $ (-719)) 251) (($ $) 249) (($ $ (-1099)) 248 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 247 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 246 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 245 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-1429 (((-719) $) 148) (((-719) $ (-1012)) 128) (((-597 (-719)) $ (-597 (-1012))) 127)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ (-1012)) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) 220 (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) 219 (|has| |#1| (-522)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ (-1012)) 135) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ (-719)) 153) (($ $ (-1012) (-719)) 126) (($ $ (-597 (-1012)) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1012)) 36) (($ $ (-597 (-1012))) 35) (($ $ (-1012) (-719)) 34) (($ $ (-597 (-1012)) (-597 (-719))) 33) (($ $ (-719)) 252) (($ $) 250) (($ $ (-1099)) 244 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 243 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 242 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 241 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
(((-1157 |#1|) (-133) (-984)) (T -1157))
-((-1301 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))) (-1382 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-1269 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2393 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-1157 *3)))) (-2380 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-1157 *4)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2363 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))) (-3211 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-1832 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-1334 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719)))) (-2322 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2312 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2312 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-2301 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2291 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1981 *3) (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-1157 *3)))) (-2280 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3)))) (-1832 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))))
-(-13 (-890 |t#1| (-719) (-1012)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -1301 ((-1181 |t#1|) $ (-719))) (-15 -1289 ((-1095 |t#1|) $)) (-15 -1279 ($ (-1095 |t#1|))) (-15 -1382 ($ $ (-719))) (-15 -1269 ((-3 $ "failed") $ (-719))) (-15 -2393 ((-2 (|:| -3624 $) (|:| -3088 $)) $ $)) (-15 -2380 ((-2 (|:| -3624 $) (|:| -3088 $)) $ (-719))) (-15 -2370 ($ $ (-719))) (-15 -2363 ($ $ (-719))) (-15 -2352 ($ $ $)) (-15 -3211 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -2341 (|t#1| $)) (-15 -2330 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -1832 ((-388 $) (-388 $) (-388 $))) (-15 -1334 ((-719) $ $)) (-15 -2322 ($ $ $)) (-15 -2312 ((-3 $ "failed") $ $)) (-15 -2312 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -2301 ($ $ $)) (-15 -2291 ((-2 (|:| -1981 |t#1|) (|:| -3624 $) (|:| -3088 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -2280 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4266) (-15 -1832 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-15 -1637 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-522)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #0#) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1476 (|has| |#1| (-850)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-491 #2=(-1012) |#1|) . T) ((-491 #2# $) . T) ((-491 $ $) . T) ((-522) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 #2#) . T) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) -12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360)))) ((-827 (-530)) -12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))) ((-890 |#1| #0# #2#) . T) ((-850) |has| |#1| (-850)) ((-861) |has| |#1| (-344)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 #2#) . T) ((-975 |#1|) . T) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1139) |has| |#1| (-850)))
-((-2596 (((-597 (-1012)) $) 28)) (-2425 (($ $) 25)) (-2575 (($ |#2| |#3|) NIL) (($ $ (-1012) |#3|) 22) (($ $ (-597 (-1012)) (-597 |#3|)) 21)) (-2388 (($ $) 14)) (-2402 ((|#2| $) 12)) (-3409 ((|#3| $) 10)))
-(((-1158 |#1| |#2| |#3|) (-10 -8 (-15 -2596 ((-597 (-1012)) |#1|)) (-15 -2575 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2575 (|#1| |#1| (-1012) |#3|)) (-15 -2425 (|#1| |#1|)) (-15 -2575 (|#1| |#2| |#3|)) (-15 -3409 (|#3| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2402 (|#2| |#1|))) (-1159 |#2| |#3|) (-984) (-740)) (T -1158))
-NIL
-(-10 -8 (-15 -2596 ((-597 (-1012)) |#1|)) (-15 -2575 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2575 (|#1| |#1| (-1012) |#3|)) (-15 -2425 (|#1| |#1|)) (-15 -2575 (|#1| |#2| |#3|)) (-15 -3409 (|#3| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2402 (|#2| |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-1344 (((-1080 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-3032 (((-110) $) 73)) (-1334 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3150 (((-110) $) 31)) (-1382 (($ $ (-862)) 101)) (-3327 (((-110) $) 62)) (-2575 (($ |#1| |#2|) 61) (($ $ (-1012) |#2|) 76) (($ $ (-597 (-1012)) (-597 |#2|)) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-1312 (($ $ |#2|) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1832 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1039)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3409 ((|#2| $) 64)) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522))) (($ |#1|) 47 (|has| |#1| (-162)))) (-2782 ((|#1| $ |#2|) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-4125 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 93 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 92 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))) (-1370 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2783 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-1357 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *3)))) (-2970 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *4)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-1350 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))) (-3289 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-2031 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719)))) (-3950 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-1331 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-1331 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-1903 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2065 *3) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *3)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3)))) (-1902 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))))
+(-13 (-890 |t#1| (-719) (-1012)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -1825 ((-1181 |t#1|) $ (-719))) (-15 -2609 ((-1095 |t#1|) $)) (-15 -1370 ($ (-1095 |t#1|))) (-15 -3081 ($ $ (-719))) (-15 -2783 ((-3 $ "failed") $ (-719))) (-15 -1357 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -2970 ((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719))) (-15 -3269 ($ $ (-719))) (-15 -3778 ($ $ (-719))) (-15 -1350 ($ $ $)) (-15 -3289 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3060 (|t#1| $)) (-15 -3388 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -1902 ((-388 $) (-388 $) (-388 $))) (-15 -2031 ((-719) $ $)) (-15 -3950 ($ $ $)) (-15 -1331 ((-3 $ "failed") $ $)) (-15 -1331 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -1903 ($ $ $)) (-15 -2504 ((-2 (|:| -2065 |t#1|) (|:| -1324 $) (|:| -3304 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -2026 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4265) (-15 -1902 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-15 -1545 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-522)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #0#) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-491 #2=(-1012) |#1|) . T) ((-491 #2# $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 #2#) . T) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) -12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360)))) ((-827 (-530)) -12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))) ((-890 |#1| #0# #2#) . T) ((-850) |has| |#1| (-850)) ((-861) |has| |#1| (-344)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 #2#) . T) ((-975 |#1|) . T) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1139) |has| |#1| (-850)))
+((-2746 (((-597 (-1012)) $) 28)) (-2562 (($ $) 25)) (-2725 (($ |#2| |#3|) NIL) (($ $ (-1012) |#3|) 22) (($ $ (-597 (-1012)) (-597 |#3|)) 21)) (-2521 (($ $) 14)) (-2533 ((|#2| $) 12)) (-1429 ((|#3| $) 10)))
+(((-1158 |#1| |#2| |#3|) (-10 -8 (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2725 (|#1| |#1| (-1012) |#3|)) (-15 -2562 (|#1| |#1|)) (-15 -2725 (|#1| |#2| |#3|)) (-15 -1429 (|#3| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2533 (|#2| |#1|))) (-1159 |#2| |#3|) (-984) (-740)) (T -1158))
+NIL
+(-10 -8 (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2725 (|#1| |#1| (-1012) |#3|)) (-15 -2562 (|#1| |#1|)) (-15 -2725 (|#1| |#2| |#3|)) (-15 -1429 (|#3| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2533 (|#2| |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-3678 (((-1080 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3555 (((-110) $) 71)) (-2031 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2731 (((-110) $) 30)) (-3081 (($ $ (-862)) 99)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59) (($ $ (-1012) |#2|) 74) (($ $ (-597 (-1012)) (-597 |#2|)) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3168 (($ $ |#2|) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1902 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1429 ((|#2| $) 62)) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-4136 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1159 |#1| |#2|) (-133) (-984) (-740)) (T -1159))
-((-1344 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1832 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1099)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-1382 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1334 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1323 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1323 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4125 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2258 (*2 (-1099)))) (-4 *2 (-984)))) (-1312 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1080 *3)))))
-(-13 (-913 |t#1| |t#2| (-1012)) (-10 -8 (-15 -1344 ((-1080 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1832 (|t#1| $ |t#2|)) (-15 -3994 ((-1099) $)) (-15 -3721 (|t#1| $)) (-15 -1382 ($ $ (-862))) (-15 -1334 (|t#2| $)) (-15 -1334 (|t#2| $ |t#2|)) (-15 -1323 ($ $ |t#2|)) (-15 -1323 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2258 (|t#1| (-1099)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4125 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1312 ($ $ |t#2|)) (IF (|has| |t#2| (-1039)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4084 ((-1080 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1039)) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| |#2| (-1012)) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1359 ((|#2| |#2|) 12)) (-3550 (((-399 |#2|) |#2|) 14)) (-1369 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))) 30)))
-(((-1160 |#1| |#2|) (-10 -7 (-15 -3550 ((-399 |#2|) |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))))) (-522) (-13 (-1157 |#1|) (-522) (-10 -8 (-15 -2108 ($ $ $))))) (T -1160))
-((-1369 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-530)))) (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2108 ($ $ $))))) (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2108 ($ $ $))))))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2108 ($ $ $))))))))
-(-10 -7 (-15 -3550 ((-399 |#2|) |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))))))
-((-3114 (((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)) 24)))
-(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1161))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1166 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
-(-10 -7 (-15 -3114 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) 98) (($ $ (-388 (-530)) (-388 (-530))) 97)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 105)) (-2276 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 162 (|has| |#1| (-344)))) (-3550 (((-399 $) $) 163 (|has| |#1| (-344)))) (-2487 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) 153 (|has| |#1| (-344)))) (-2253 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 172)) (-2297 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-3607 (($ $ $) 157 (|has| |#1| (-344)))) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 156 (|has| |#1| (-344)))) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 151 (|has| |#1| (-344)))) (-2049 (((-110) $) 164 (|has| |#1| (-344)))) (-3032 (((-110) $) 73)) (-1877 (($) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) 100) (((-388 (-530)) $ (-388 (-530))) 99)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) 101) (($ $ (-388 (-530))) 171)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 160 (|has| |#1| (-344)))) (-3327 (((-110) $) 62)) (-2575 (($ |#1| (-388 (-530))) 61) (($ $ (-1012) (-388 (-530))) 76) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2070 (($ $) 142 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-2072 (($ (-597 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-3443 (((-1082) $) 9)) (-2359 (($ $) 165 (|has| |#1| (-344)))) (-1637 (($ $) 170 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 169 (-1476 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 150 (|has| |#1| (-344)))) (-2108 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2473 (((-399 $) $) 161 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 158 (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 152 (|has| |#1| (-344)))) (-2693 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) 154 (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) 104) (($ $ $) 81 (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 155 (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-3409 (((-388 (-530)) $) 64)) (-2308 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-2339 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 166 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 93 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 92 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 115 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-3678 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1902 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1099)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-2031 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1951 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1951 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2366 (*2 (-1099)))) (-4 *2 (-984)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1080 *3)))))
+(-13 (-913 |t#1| |t#2| (-1012)) (-10 -8 (-15 -3678 ((-1080 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1902 (|t#1| $ |t#2|)) (-15 -4007 ((-1099) $)) (-15 -3705 (|t#1| $)) (-15 -3081 ($ $ (-862))) (-15 -2031 (|t#2| $)) (-15 -2031 (|t#2| $ |t#2|)) (-15 -1951 ($ $ |t#2|)) (-15 -1951 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2366 (|t#1| (-1099)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4136 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3168 ($ $ |t#2|)) (IF (|has| |t#2| (-1039)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4098 ((-1080 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1039)) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| |#2| (-1012)) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
+((-3544 ((|#2| |#2|) 12)) (-3272 (((-399 |#2|) |#2|) 14)) (-2286 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))) 30)))
+(((-1160 |#1| |#2|) (-10 -7 (-15 -3272 ((-399 |#2|) |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -2286 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))))) (-522) (-13 (-1157 |#1|) (-522) (-10 -8 (-15 -2204 ($ $ $))))) (T -1160))
+((-2286 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-530)))) (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))) (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))) (-3544 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2204 ($ $ $))))))))
+(-10 -7 (-15 -3272 ((-399 |#2|) |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -2286 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))))))
+((-3217 (((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)) 24)))
+(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1161))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1166 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
+(-10 -7 (-15 -3217 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 96) (($ $ (-388 (-530)) (-388 (-530))) 95)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 169)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 98) (((-388 (-530)) $ (-388 (-530))) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99) (($ $ (-388 (-530))) 168)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-388 (-530))) 59) (($ $ (-1012) (-388 (-530))) 74) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 102) (($ $ $) 79 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1162 |#1|) (-133) (-984)) (T -1162))
-((-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))) (-4 *4 (-984)) (-4 *1 (-1162 *4)))) (-1382 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1637 (*1 *1 *1 *2) (-1476 (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2596 ((-597 *2) *3))) (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-388 (-530))) (-10 -8 (-15 -4148 ($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |t#1|))))) (-15 -1382 ($ $ (-388 (-530)))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $)) (IF (|has| |t#1| (-15 -1637 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2596 ((-597 (-1099)) |t#1|))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
-((-3015 (((-110) $) 12)) (-3012 (((-3 |#3| "failed") $) 17)) (-2446 ((|#3| $) 14)))
-(((-1163 |#1| |#2| |#3|) (-10 -8 (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -3015 ((-110) |#1|))) (-1164 |#2| |#3|) (-984) (-1141 |#2|)) (T -1163))
-NIL
-(-10 -8 (-15 -2446 (|#3| |#1|)) (-15 -3012 ((-3 |#3| "failed") |#1|)) (-15 -3015 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) 98) (($ $ (-388 (-530)) (-388 (-530))) 97)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 105)) (-2276 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 162 (|has| |#1| (-344)))) (-3550 (((-399 $) $) 163 (|has| |#1| (-344)))) (-2487 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) 153 (|has| |#1| (-344)))) (-2253 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 172)) (-2297 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#2| "failed") $) 183)) (-2446 ((|#2| $) 182)) (-3607 (($ $ $) 157 (|has| |#1| (-344)))) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-1413 (((-388 (-530)) $) 180)) (-3588 (($ $ $) 156 (|has| |#1| (-344)))) (-2338 (($ (-388 (-530)) |#2|) 181)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 151 (|has| |#1| (-344)))) (-2049 (((-110) $) 164 (|has| |#1| (-344)))) (-3032 (((-110) $) 73)) (-1877 (($) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) 100) (((-388 (-530)) $ (-388 (-530))) 99)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) 101) (($ $ (-388 (-530))) 171)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 160 (|has| |#1| (-344)))) (-3327 (((-110) $) 62)) (-2575 (($ |#1| (-388 (-530))) 61) (($ $ (-1012) (-388 (-530))) 76) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2070 (($ $) 142 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-2072 (($ (-597 $)) 149 (|has| |#1| (-344))) (($ $ $) 148 (|has| |#1| (-344)))) (-1402 ((|#2| $) 179)) (-1392 (((-3 |#2| "failed") $) 177)) (-2659 ((|#2| $) 178)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 165 (|has| |#1| (-344)))) (-1637 (($ $) 170 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 169 (-1476 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 150 (|has| |#1| (-344)))) (-2108 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2473 (((-399 $) $) 161 (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 158 (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 152 (|has| |#1| (-344)))) (-2693 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) 154 (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) 104) (($ $ $) 81 (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 155 (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-3409 (((-388 (-530)) $) 64)) (-2308 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 47 (|has| |#1| (-162))) (($ |#2|) 184) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-2339 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 166 (|has| |#1| (-344)))) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 93 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 92 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344))) (($ $ $) 168 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 167 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 115 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-2460 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))) (-4 *4 (-984)) (-4 *1 (-1162 *4)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
+(-13 (-1159 |t#1| (-388 (-530))) (-10 -8 (-15 -2460 ($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |t#1|))))) (-15 -3081 ($ $ (-388 (-530)))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
+((-1813 (((-110) $) 12)) (-3139 (((-3 |#3| "failed") $) 17)) (-2585 ((|#3| $) 14)))
+(((-1163 |#1| |#2| |#3|) (-10 -8 (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|))) (-1164 |#2| |#3|) (-984) (-1141 |#2|)) (T -1163))
+NIL
+(-10 -8 (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 96) (($ $ (-388 (-530)) (-388 (-530))) 95)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 169)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 180)) (-2585 ((|#2| $) 179)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2185 (((-388 (-530)) $) 177)) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) |#2|) 178)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 98) (((-388 (-530)) $ (-388 (-530))) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99) (($ $ (-388 (-530))) 168)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-388 (-530))) 59) (($ $ (-1012) (-388 (-530))) 74) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-3393 ((|#2| $) 176)) (-1707 (((-3 |#2| "failed") $) 174)) (-2817 ((|#2| $) 175)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 102) (($ $ $) 79 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 181) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1164 |#1| |#2|) (-133) (-984) (-1141 |t#1|)) (T -1164))
-((-3409 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3)))) (-2338 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-1392 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
-(-13 (-1162 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2338 ($ (-388 (-530)) |t#2|)) (-15 -1413 ((-388 (-530)) $)) (-15 -1402 (|t#2| $)) (-15 -3409 ((-388 (-530)) $)) (-15 -2258 ($ |t#2|)) (-15 -2659 (|t#2| $)) (-15 -1392 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-975 |#2|) . T) ((-990 #1#) -1476 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T) ((-1162 |#1|) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 96)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) 106) (($ $ (-388 (-530)) (-388 (-530))) 108)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 51)) (-2276 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 156 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 152 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 61)) (-2297 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL)) (-2446 ((|#2| $) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) 79)) (-1413 (((-388 (-530)) $) 13)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2338 (($ (-388 (-530)) |#2|) 11)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-3032 (((-110) $) 68)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) 103) (((-388 (-530)) $ (-388 (-530))) 104)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) 120) (($ $ (-388 (-530))) 118)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-388 (-530))) 31) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) 115)) (-2070 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1402 ((|#2| $) 12)) (-1392 (((-3 |#2| "failed") $) 41)) (-2659 ((|#2| $) 42)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) 93 (|has| |#1| (-344)))) (-1637 (($ $) 135 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 140 (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) 112)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) 148 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) 100) (($ $ $) 86 (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 127 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-3409 (((-388 (-530)) $) 16)) (-2308 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 154 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 110)) (-2258 (((-804) $) NIL) (($ (-530)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) 99)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) 117)) (-3721 ((|#1| $) 98)) (-2339 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 21 T CONST)) (-2955 (($) 17 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) 66)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-2245 (($ $) 131) (($ $ $) 72)) (-2234 (($ $ $) 70)) (** (($ $ (-862)) NIL) (($ $ (-719)) 76) (($ $ (-530)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 146 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+((-1429 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3)))) (-2457 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-1707 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
+(-13 (-1162 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2457 ($ (-388 (-530)) |t#2|)) (-15 -2185 ((-388 (-530)) $)) (-15 -3393 (|t#2| $)) (-15 -1429 ((-388 (-530)) $)) (-15 -2366 ($ |t#2|)) (-15 -2817 (|t#2| $)) (-15 -1707 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-975 |#2|) . T) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T) ((-1162 |#1|) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 96)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 106) (($ $ (-388 (-530)) (-388 (-530))) 108)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 51)) (-2386 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 156 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 152 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 61)) (-2409 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL)) (-2585 ((|#2| $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 79)) (-2185 (((-388 (-530)) $) 13)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) |#2|) 11)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) 68)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 103) (((-388 (-530)) $ (-388 (-530))) 104)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 120) (($ $ (-388 (-530))) 118)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 31) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 115)) (-2168 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 ((|#2| $) 12)) (-1707 (((-3 |#2| "failed") $) 41)) (-2817 ((|#2| $) 42)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 93 (|has| |#1| (-344)))) (-1545 (($ $) 135 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 140 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 112)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 148 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 100) (($ $ $) 86 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 127 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 16)) (-2421 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 154 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 110)) (-2366 (((-804) $) NIL) (($ (-530)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 99)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 117)) (-3705 ((|#1| $) 98)) (-2459 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 21 T CONST)) (-3093 (($) 17 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 66)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-2351 (($ $) 131) (($ $ $) 72)) (-2339 (($ $ $) 70)) (** (($ $ (-862)) NIL) (($ $ (-719)) 76) (($ $ (-530)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 146 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-984) (-1141 |#1|)) (T -1165))
NIL
(-1164 |#1| |#2|)
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 11)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) NIL (|has| |#1| (-522)))) (-1323 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-1344 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-1359 (($ $) NIL (|has| |#1| (-344)))) (-3550 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1945 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 22)) (-2446 (((-1145 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-344)))) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1413 (((-388 (-530)) $) 57)) (-3588 (($ $ $) NIL (|has| |#1| (-344)))) (-2338 (($ (-388 (-530)) (-1145 |#1| |#2| |#3|)) NIL)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2049 (((-110) $) NIL (|has| |#1| (-344)))) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-3150 (((-110) $) NIL)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-388 (-530))) 30) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-2072 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1402 (((-1145 |#1| |#2| |#3|) $) 60)) (-1392 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) NIL)) (-2659 (((-1145 |#1| |#2| |#3|) $) NIL)) (-3443 (((-1082) $) NIL)) (-2359 (($ $) NIL (|has| |#1| (-344)))) (-1637 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2108 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2473 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1925 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) NIL (|has| |#1| (-344)))) (-1312 (($ $ (-388 (-530))) NIL)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4051 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-1934 (((-719) $) NIL (|has| |#1| (-344)))) (-1832 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) NIL (|has| |#1| (-344)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-3409 (((-388 (-530)) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) NIL)) (-2258 (((-804) $) 89) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1145 |#1| |#2| |#3|)) 16) (($ (-1173 |#1| |#2| |#3|)) 17) (($ (-1177 |#2|)) 36) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-2782 ((|#1| $ (-388 (-530))) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 12)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-388 (-530))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (-2943 (($) 32 T CONST)) (-2955 (($) 26 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1166 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1166))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 34)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL)) (-3031 (($ $) NIL)) (-3006 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 (-530) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 20)) (-2446 (((-530) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-2425 (($ $) 35)) (-1673 (((-3 $ "failed") $) 25)) (-3703 (($ $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2097 (($ $ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) 11)) (-3327 (((-110) $) NIL)) (-2575 (($ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-3674 (((-300 |#2| |#3| |#4|) $) NIL)) (-2107 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-3114 (($ (-1 (-1166 |#2| |#3| |#4|) (-1166 |#2| |#3| |#4|)) $) NIL)) (-1434 (((-3 (-788 |#2|) "failed") $) 75)) (-2388 (($ $) NIL)) (-2402 (((-1166 |#2| |#3| |#4|) $) 18)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2366 (((-110) $) NIL)) (-2375 (((-1166 |#2| |#3| |#4|) $) NIL)) (-3562 (((-3 $ "failed") $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-522))) (((-3 $ "failed") $ $) NIL)) (-1424 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $) 58)) (-3409 (((-300 |#2| |#3| |#4|) $) 14)) (-3658 (((-1166 |#2| |#3| |#4|) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ (-1166 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL (-1476 (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))) (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))))) (-1669 (((-597 (-1166 |#2| |#3| |#4|)) $) NIL)) (-2782 (((-1166 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-1795 (((-3 $ "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-138)))) (-1667 (((-719)) NIL)) (-2084 (($ $ $ (-719)) NIL (|has| (-1166 |#2| |#3| |#4|) (-162)))) (-3020 (((-110) $ $) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 63 T CONST)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-1166 |#2| |#3| |#4|)) NIL) (($ (-1166 |#2| |#3| |#4|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))))))
-(((-1167 |#1| |#2| |#3| |#4|) (-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -1434 ((-3 (-788 |#2|) "failed") $)) (-15 -1424 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $)))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -1167))
-((-1434 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))) (-1424 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))))) (|:| |%type| (-1082)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
-(-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -1434 ((-3 (-788 |#2|) "failed") $)) (-15 -1424 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $))))
-((-3387 ((|#2| $) 29)) (-3165 ((|#2| $) 18)) (-2040 (($ $) 36)) (-1445 (($ $ (-530)) 64)) (-4102 (((-110) $ (-719)) 33)) (-1947 ((|#2| $ |#2|) 61)) (-1455 ((|#2| $ |#2|) 59)) (-2416 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1955 (($ $ (-597 $)) 60)) (-3152 ((|#2| $) 17)) (-2918 (($ $) NIL) (($ $ (-719)) 42)) (-1994 (((-597 $) $) 26)) (-1966 (((-110) $ $) 50)) (-2014 (((-110) $ (-719)) 32)) (-1987 (((-110) $ (-719)) 31)) (-3937 (((-110) $) 28)) (-2294 ((|#2| $) 24) (($ $ (-719)) 46)) (-1832 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3663 (((-110) $) 22)) (-1513 (($ $) 39)) (-1489 (($ $) 65)) (-1524 (((-719) $) 41)) (-1534 (($ $) 40)) (-3476 (($ $ $) 58) (($ |#2| $) NIL)) (-3885 (((-597 $) $) 27)) (-2148 (((-110) $ $) 48)) (-2167 (((-719) $) 35)))
-(((-1168 |#1| |#2|) (-10 -8 (-15 -1445 (|#1| |#1| (-530))) (-15 -2416 (|#2| |#1| "last" |#2|)) (-15 -1455 (|#2| |#1| |#2|)) (-15 -2416 (|#1| |#1| "rest" |#1|)) (-15 -2416 (|#2| |#1| "first" |#2|)) (-15 -1489 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1524 ((-719) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -3165 (|#2| |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "last")) (-15 -2294 (|#2| |#1|)) (-15 -2918 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| "rest")) (-15 -2918 (|#1| |#1|)) (-15 -1832 (|#2| |#1| "first")) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -1947 (|#2| |#1| |#2|)) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1955 (|#1| |#1| (-597 |#1|))) (-15 -1966 ((-110) |#1| |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719)))) (-1169 |#2|) (-1135)) (T -1168))
-NIL
-(-10 -8 (-15 -1445 (|#1| |#1| (-530))) (-15 -2416 (|#2| |#1| "last" |#2|)) (-15 -1455 (|#2| |#1| |#2|)) (-15 -2416 (|#1| |#1| "rest" |#1|)) (-15 -2416 (|#2| |#1| "first" |#2|)) (-15 -1489 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1524 ((-719) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -3165 (|#2| |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-719))) (-15 -1832 (|#2| |#1| "last")) (-15 -2294 (|#2| |#1|)) (-15 -2918 (|#1| |#1| (-719))) (-15 -1832 (|#1| |#1| "rest")) (-15 -2918 (|#1| |#1|)) (-15 -1832 (|#2| |#1| "first")) (-15 -3476 (|#1| |#2| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -1947 (|#2| |#1| |#2|)) (-15 -2416 (|#2| |#1| "value" |#2|)) (-15 -1955 (|#1| |#1| (-597 |#1|))) (-15 -1966 ((-110) |#1| |#1|)) (-15 -3663 ((-110) |#1|)) (-15 -1832 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -3937 ((-110) |#1|)) (-15 -1994 ((-597 |#1|) |#1|)) (-15 -3885 ((-597 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-719) |#1|)) (-15 -4102 ((-110) |#1| (-719))) (-15 -2014 ((-110) |#1| (-719))) (-15 -1987 ((-110) |#1| (-719))))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3387 ((|#1| $) 48)) (-3165 ((|#1| $) 65)) (-2040 (($ $) 67)) (-1445 (($ $ (-530)) 52 (|has| $ (-6 -4271)))) (-4102 (((-110) $ (-719)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4271)))) (-1467 (($ $ $) 56 (|has| $ (-6 -4271)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4271)))) (-1478 ((|#1| $ |#1|) 58 (|has| $ (-6 -4271)))) (-2416 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4271))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4271))) (($ $ "rest" $) 55 (|has| $ (-6 -4271))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4271)))) (-1955 (($ $ (-597 $)) 41 (|has| $ (-6 -4271)))) (-3152 ((|#1| $) 66)) (-3956 (($) 7 T CONST)) (-2918 (($ $) 73) (($ $ (-719)) 71)) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-1994 (((-597 $) $) 50)) (-1966 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-2014 (((-110) $ (-719)) 9)) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35)) (-1987 (((-110) $ (-719)) 10)) (-3353 (((-597 |#1|) $) 45)) (-3937 (((-110) $) 49)) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2294 ((|#1| $) 70) (($ $ (-719)) 68)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 76) (($ $ (-719)) 74)) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1984 (((-530) $ $) 44)) (-3663 (((-110) $) 46)) (-1513 (($ $) 62)) (-1489 (($ $) 59 (|has| $ (-6 -4271)))) (-1524 (((-719) $) 63)) (-1534 (($ $) 64)) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2441 (($ $) 13)) (-1501 (($ $ $) 61 (|has| $ (-6 -4271))) (($ $ |#1|) 60 (|has| $ (-6 -4271)))) (-3476 (($ $ $) 78) (($ |#1| $) 77)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3885 (((-597 $) $) 51)) (-1974 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 22)) (-2585 (((-1145 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2185 (((-388 (-530)) $) 57)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) (-1145 |#1| |#2| |#3|)) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 30) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 (((-1145 |#1| |#2| |#3|) $) 60)) (-1707 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) NIL)) (-2817 (((-1145 |#1| |#2| |#3|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 89) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1145 |#1| |#2| |#3|)) 16) (($ (-1173 |#1| |#2| |#3|)) 17) (($ (-1177 |#2|)) 36) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 32 T CONST)) (-3093 (($) 26 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1166 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1166))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 34)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 20)) (-2585 (((-530) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-2562 (($ $) 35)) (-2707 (((-3 $ "failed") $) 25)) (-1239 (($ $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2410 (($ $ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 11)) (-3668 (((-110) $) NIL)) (-2725 (($ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-2944 (((-300 |#2| |#3| |#4|) $) NIL)) (-3756 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-3217 (($ (-1 (-1166 |#2| |#3| |#4|) (-1166 |#2| |#3| |#4|)) $) NIL)) (-2595 (((-3 (-788 |#2|) "failed") $) 75)) (-2521 (($ $) NIL)) (-2533 (((-1166 |#2| |#3| |#4|) $) 18)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 (((-1166 |#2| |#3| |#4|) $) NIL)) (-3551 (((-3 $ "failed") $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-522))) (((-3 $ "failed") $ $) NIL)) (-3942 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $) 58)) (-1429 (((-300 |#2| |#3| |#4|) $) 14)) (-3829 (((-1166 |#2| |#3| |#4|) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-1166 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))) (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))))) (-3441 (((-597 (-1166 |#2| |#3| |#4|)) $) NIL)) (-4085 (((-1166 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-138)))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| (-1166 |#2| |#3| |#4|) (-162)))) (-3944 (((-110) $ $) NIL)) (-3080 (($) 63 T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-1166 |#2| |#3| |#4|)) NIL) (($ (-1166 |#2| |#3| |#4|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))))))
+(((-1167 |#1| |#2| |#3| |#4|) (-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -3942 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $)))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -1167))
+((-2595 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))) (-3942 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))))) (|:| |%type| (-1082)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
+(-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -3942 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $))))
+((-3417 ((|#2| $) 29)) (-3254 ((|#2| $) 18)) (-2133 (($ $) 36)) (-1776 (($ $ (-530)) 64)) (-3186 (((-110) $ (-719)) 33)) (-1615 ((|#2| $ |#2|) 61)) (-3312 ((|#2| $ |#2|) 59)) (-2552 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4091 (($ $ (-597 $)) 60)) (-3245 ((|#2| $) 17)) (-3057 (($ $) NIL) (($ $ (-719)) 42)) (-2011 (((-597 $) $) 26)) (-1646 (((-110) $ $) 50)) (-4027 (((-110) $ (-719)) 32)) (-2763 (((-110) $ (-719)) 31)) (-3615 (((-110) $) 28)) (-2407 ((|#2| $) 24) (($ $ (-719)) 46)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4246 (((-110) $) 22)) (-3697 (($ $) 39)) (-3301 (($ $) 65)) (-2754 (((-719) $) 41)) (-2004 (($ $) 40)) (-3483 (($ $ $) 58) (($ |#2| $) NIL)) (-2557 (((-597 $) $) 27)) (-2248 (((-110) $ $) 48)) (-2267 (((-719) $) 35)))
+(((-1168 |#1| |#2|) (-10 -8 (-15 -1776 (|#1| |#1| (-530))) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -3312 (|#2| |#1| |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -3301 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3245 (|#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -1902 (|#2| |#1| "first")) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -1615 (|#2| |#1| |#2|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4091 (|#1| |#1| (-597 |#1|))) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719)))) (-1169 |#2|) (-1135)) (T -1168))
+NIL
+(-10 -8 (-15 -1776 (|#1| |#1| (-530))) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -3312 (|#2| |#1| |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -3301 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3245 (|#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -1902 (|#2| |#1| "first")) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -1615 (|#2| |#1| |#2|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4091 (|#1| |#1| (-597 |#1|))) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1169 |#1|) (-133) (-1135)) (T -1169))
-((-3476 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3476 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2918 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1832 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2918 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1832 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2294 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-1513 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1501 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1501 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1489 (*1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1478 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1467 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2416 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-1455 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2416 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1445 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4271)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -3476 ($ $ $)) (-15 -3476 ($ |t#1| $)) (-15 -2907 (|t#1| $)) (-15 -1832 (|t#1| $ "first")) (-15 -2907 ($ $ (-719))) (-15 -2918 ($ $)) (-15 -1832 ($ $ "rest")) (-15 -2918 ($ $ (-719))) (-15 -2294 (|t#1| $)) (-15 -1832 (|t#1| $ "last")) (-15 -2294 ($ $ (-719))) (-15 -2040 ($ $)) (-15 -3152 (|t#1| $)) (-15 -3165 (|t#1| $)) (-15 -1534 ($ $)) (-15 -1524 ((-719) $)) (-15 -1513 ($ $)) (IF (|has| $ (-6 -4271)) (PROGN (-15 -1501 ($ $ $)) (-15 -1501 ($ $ |t#1|)) (-15 -1489 ($ $)) (-15 -1478 (|t#1| $ |t#1|)) (-15 -2416 (|t#1| $ "first" |t#1|)) (-15 -1467 ($ $ $)) (-15 -2416 ($ $ "rest" $)) (-15 -1455 (|t#1| $ |t#1|)) (-15 -2416 (|t#1| $ "last" |t#1|)) (-15 -1445 ($ $ (-530)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3114 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#4| (-1 |#2| |#1|) |#3|))) (-984) (-984) (-1172 |#1|) (-1172 |#2|)) (T -1170))
-((-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
-(-10 -7 (-15 -3114 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3015 (((-110) $) 15)) (-2276 (($ $) 92)) (-2144 (($ $) 68)) (-2253 (($ $) 88)) (-2121 (($ $) 64)) (-2297 (($ $) 96)) (-2169 (($ $) 72)) (-2070 (($ $) 62)) (-2693 (($ $) 60)) (-2308 (($ $) 98)) (-2181 (($ $) 74)) (-2287 (($ $) 94)) (-2155 (($ $) 70)) (-2263 (($ $) 90)) (-2133 (($ $) 66)) (-2258 (((-804) $) 48) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2339 (($ $) 104)) (-2211 (($ $) 80)) (-2318 (($ $) 100)) (-2192 (($ $) 76)) (-2361 (($ $) 108)) (-2230 (($ $) 84)) (-2910 (($ $) 110)) (-2241 (($ $) 86)) (-2349 (($ $) 106)) (-2220 (($ $) 82)) (-2328 (($ $) 102)) (-2202 (($ $) 78)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-530))) 58)))
-(((-1171 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2144 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2169 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -3015 ((-110) |#1|)) (-15 -2258 ((-804) |#1|))) (-1172 |#2|) (-984)) (T -1171))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2144 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2169 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2263 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2361 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2258 (|#1| |#2|)) (-15 -2258 (|#1| |#1|)) (-15 -2258 (|#1| (-388 (-530)))) (-15 -2258 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -3015 ((-110) |#1|)) (-15 -2258 ((-804) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-2596 (((-597 (-1012)) $) 74)) (-3994 (((-1099) $) 103)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 51 (|has| |#1| (-522)))) (-3031 (($ $) 52 (|has| |#1| (-522)))) (-3006 (((-110) $) 54 (|has| |#1| (-522)))) (-1323 (($ $ (-719)) 98) (($ $ (-719) (-719)) 97)) (-1344 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 105)) (-2276 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) 19)) (-2487 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 155) (($ (-1080 |#1|)) 153)) (-2297 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) 17 T CONST)) (-2425 (($ $) 60)) (-1673 (((-3 $ "failed") $) 34)) (-1657 (($ $) 152)) (-3496 (((-893 |#1|) $ (-719)) 150) (((-893 |#1|) $ (-719) (-719)) 149)) (-3032 (((-110) $) 73)) (-1877 (($) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $) 100) (((-719) $ (-719)) 99)) (-3150 (((-110) $) 31)) (-1817 (($ $ (-530)) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1382 (($ $ (-862)) 101)) (-1647 (($ (-1 |#1| (-530)) $) 151)) (-3327 (((-110) $) 62)) (-2575 (($ |#1| (-719)) 61) (($ $ (-1012) (-719)) 76) (($ $ (-597 (-1012)) (-597 (-719))) 75)) (-3114 (($ (-1 |#1| |#1|) $) 63)) (-2070 (($ $) 142 (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) 65)) (-2402 ((|#1| $) 66)) (-3443 (((-1082) $) 9)) (-1637 (($ $) 147 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 146 (-1476 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2485 (((-1046) $) 10)) (-1312 (($ $ (-719)) 95)) (-3562 (((-3 $ "failed") $ $) 50 (|has| |#1| (-522)))) (-2693 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4084 (((-1080 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1832 ((|#1| $ (-719)) 104) (($ $ $) 81 (|has| (-719) (-1039)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 84 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-3409 (((-719) $) 64)) (-2308 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 72)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ (-388 (-530))) 57 (|has| |#1| (-37 (-388 (-530))))) (($ $) 49 (|has| |#1| (-522))) (($ |#1|) 47 (|has| |#1| (-162)))) (-1669 (((-1080 |#1|) $) 154)) (-2782 ((|#1| $ (-719)) 59)) (-1795 (((-3 $ "failed") $) 48 (|has| |#1| (-138)))) (-1667 (((-719)) 29)) (-3721 ((|#1| $) 102)) (-2339 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) 53 (|has| |#1| (-522)))) (-2318 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-719)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) 93 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 92 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 85 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 58 (|has| |#1| (-344)))) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ |#1|) 148 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 115 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-388 (-530)) $) 56 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530)))))))
+((-3483 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3057 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2004 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3697 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3301 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1886 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3312 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))))
+(-13 (-949 |t#1|) (-10 -8 (-15 -3483 ($ $ $)) (-15 -3483 ($ |t#1| $)) (-15 -3048 (|t#1| $)) (-15 -1902 (|t#1| $ "first")) (-15 -3048 ($ $ (-719))) (-15 -3057 ($ $)) (-15 -1902 ($ $ "rest")) (-15 -3057 ($ $ (-719))) (-15 -2407 (|t#1| $)) (-15 -1902 (|t#1| $ "last")) (-15 -2407 ($ $ (-719))) (-15 -2133 ($ $)) (-15 -3245 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -2004 ($ $)) (-15 -2754 ((-719) $)) (-15 -3697 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1328 ($ $ $)) (-15 -1328 ($ $ |t#1|)) (-15 -3301 ($ $)) (-15 -1647 (|t#1| $ |t#1|)) (-15 -2552 (|t#1| $ "first" |t#1|)) (-15 -1886 ($ $ $)) (-15 -2552 ($ $ "rest" $)) (-15 -3312 (|t#1| $ |t#1|)) (-15 -2552 (|t#1| $ "last" |t#1|)) (-15 -1776 ($ $ (-530)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((-3217 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|))) (-984) (-984) (-1172 |#1|) (-1172 |#2|)) (T -1170))
+((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
+(-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1813 (((-110) $) 15)) (-2386 (($ $) 92)) (-2244 (($ $) 68)) (-2360 (($ $) 88)) (-2219 (($ $) 64)) (-2409 (($ $) 96)) (-2269 (($ $) 72)) (-2168 (($ $) 62)) (-2853 (($ $) 60)) (-2421 (($ $) 98)) (-2281 (($ $) 74)) (-2398 (($ $) 94)) (-2254 (($ $) 70)) (-2373 (($ $) 90)) (-2231 (($ $) 66)) (-2366 (((-804) $) 48) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2459 (($ $) 104)) (-2314 (($ $) 80)) (-2434 (($ $) 100)) (-2293 (($ $) 76)) (-2485 (($ $) 108)) (-2334 (($ $) 84)) (-3632 (($ $) 110)) (-2347 (($ $) 86)) (-2472 (($ $) 106)) (-2324 (($ $) 82)) (-2446 (($ $) 102)) (-2304 (($ $) 78)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-530))) 58)))
+(((-1171 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -1813 ((-110) |#1|)) (-15 -2366 ((-804) |#1|))) (-1172 |#2|) (-984)) (T -1171))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -1813 ((-110) |#1|)) (-15 -2366 ((-804) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 96) (($ $ (-719) (-719)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 153) (($ (-1080 |#1|)) 151)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3745 (($ $) 150)) (-1761 (((-893 |#1|) $ (-719)) 148) (((-893 |#1|) $ (-719) (-719)) 147)) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) 98) (((-719) $ (-719)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 149)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-719)) 59) (($ $ (-1012) (-719)) 74) (($ $ (-597 (-1012)) (-597 (-719))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-1545 (($ $) 145 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 144 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-3168 (($ $ (-719)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 102) (($ $ $) 79 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-1429 (((-719) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3441 (((-1080 |#1|) $) 152)) (-4085 ((|#1| $ (-719)) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ |#1|) 146 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
(((-1172 |#1|) (-133) (-984)) (T -1172))
-((-4148 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))) (-1647 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (-3496 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1637 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1637 (*1 *1 *1 *2) (-1476 (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2596 ((-597 *2) *3))) (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-719)) (-10 -8 (-15 -4148 ($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |t#1|))))) (-15 -1669 ((-1080 |t#1|) $)) (-15 -4148 ($ (-1080 |t#1|))) (-15 -1657 ($ $)) (-15 -1647 ($ (-1 |t#1| (-530)) $)) (-15 -3496 ((-893 |t#1|) $ (-719))) (-15 -3496 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1637 ($ $)) (IF (|has| |t#1| (-15 -1637 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2596 ((-597 (-1099)) |t#1|))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1637 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-719) |#1|))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-719) (-1039)) ((-272) |has| |#1| (-522)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1476 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1159 |#1| #0#) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-2596 (((-597 (-1012)) $) NIL)) (-3994 (((-1099) $) 87)) (-1625 (((-1154 |#2| |#1|) $ (-719)) 73)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3031 (($ $) NIL (|has| |#1| (-522)))) (-3006 (((-110) $) 137 (|has| |#1| (-522)))) (-1323 (($ $ (-719)) 122) (($ $ (-719) (-719)) 124)) (-1344 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 42)) (-2276 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2144 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3618 (((-3 $ "failed") $ $) NIL)) (-2487 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2121 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4148 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 53) (($ (-1080 |#1|)) NIL)) (-2297 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2169 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3956 (($) NIL T CONST)) (-1566 (($ $) 128)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-1657 (($ $) 135)) (-3496 (((-893 |#1|) $ (-719)) 63) (((-893 |#1|) $ (-719) (-719)) 65)) (-3032 (((-110) $) NIL)) (-1877 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1334 (((-719) $) NIL) (((-719) $ (-719)) NIL)) (-3150 (((-110) $) NIL)) (-1595 (($ $) 112)) (-1817 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1556 (($ (-530) (-530) $) 130)) (-1382 (($ $ (-862)) 134)) (-1647 (($ (-1 |#1| (-530)) $) 106)) (-3327 (((-110) $) NIL)) (-2575 (($ |#1| (-719)) 15) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3114 (($ (-1 |#1| |#1|) $) 94)) (-2070 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2388 (($ $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-1606 (($ $) 110)) (-1616 (($ $) 108)) (-1545 (($ (-530) (-530) $) 132)) (-1637 (($ $) 145 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 151 (-1476 (-12 (|has| |#1| (-15 -1637 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2596 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 146 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (((-1046) $) NIL)) (-1576 (($ $ (-530) (-530)) 116)) (-1312 (($ $ (-719)) 118)) (-3562 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2693 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1586 (($ $) 114)) (-4084 (((-1080 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1832 ((|#1| $ (-719)) 91) (($ $ $) 126 (|has| (-719) (-1039)))) (-3211 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 103 (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 99)) (-3409 (((-719) $) NIL)) (-2308 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2181 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2155 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2263 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2133 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3021 (($ $) 120)) (-2258 (((-804) $) NIL) (($ (-530)) 24) (($ (-388 (-530))) 143 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 80) (($ (-1177 |#2|)) 20)) (-1669 (((-1080 |#1|) $) NIL)) (-2782 ((|#1| $ (-719)) 90)) (-1795 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1667 (((-719)) NIL)) (-3721 ((|#1| $) 88)) (-2339 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2211 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3020 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2192 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2361 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2230 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4125 ((|#1| $ (-719)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2258 (|#1| (-1099))))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2349 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2220 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2328 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2202 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 17 T CONST)) (-2955 (($) 13 T CONST)) (-3286 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2257 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) 102)) (-2234 (($ $ $) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1173 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2258 ($ (-1154 |#2| |#1|))) (-15 -1625 ((-1154 |#2| |#1|) $ (-719))) (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (-15 -1616 ($ $)) (-15 -1606 ($ $)) (-15 -1595 ($ $)) (-15 -1586 ($ $)) (-15 -1576 ($ $ (-530) (-530))) (-15 -1566 ($ $)) (-15 -1556 ($ (-530) (-530) $)) (-15 -1545 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1173))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-1625 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1606 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1576 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1566 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1556 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1545 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1637 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1172 |#1|) (-10 -8 (-15 -2258 ($ (-1154 |#2| |#1|))) (-15 -1625 ((-1154 |#2| |#1|) $ (-719))) (-15 -2258 ($ (-1177 |#2|))) (-15 -3211 ($ $ (-1177 |#2|))) (-15 -1616 ($ $)) (-15 -1606 ($ $)) (-15 -1595 ($ $)) (-15 -1586 ($ $)) (-15 -1576 ($ $ (-530) (-530))) (-15 -1566 ($ $)) (-15 -1556 ($ (-530) (-530) $)) (-15 -1545 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1637 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-1696 (((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|))) 24)) (-1686 (((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1678 (((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|)) 13)) (-1719 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1711 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1727 ((|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|)) 54)) (-1737 (((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))) 61)) (-1704 ((|#2| |#2| |#2|) 43)))
-(((-1174 |#1| |#2|) (-10 -7 (-15 -1678 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -1686 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1696 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -1704 (|#2| |#2| |#2|)) (-15 -1711 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1719 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1727 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -1737 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))))) (-37 (-388 (-530))) (-1172 |#1|)) (T -1174))
-((-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6)))) (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6)) (-5 *1 (-1174 *5 *6)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5)) (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5)) (-5 *1 (-1174 *5 *2)))) (-1719 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-1711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-1704 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1172 *3)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
-(-10 -7 (-15 -1678 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -1686 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1696 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -1704 (|#2| |#2| |#2|)) (-15 -1711 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1719 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1727 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -1737 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|))))))
-((-1752 ((|#2| |#4| (-719)) 30)) (-1744 ((|#4| |#2|) 25)) (-1768 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-522)))) (-1762 (((-1 |#4| (-597 |#4|)) |#3|) 46)))
-(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1744 (|#4| |#2|)) (-15 -1752 (|#2| |#4| (-719))) (-15 -1762 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -1768 (|#4| (-388 |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-607 |#2|) (-1172 |#1|)) (T -1175))
-((-1768 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522)) (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-607 *5)))) (-1762 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))) (-1752 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))) (-1744 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
-(-10 -7 (-15 -1744 (|#4| |#2|)) (-15 -1752 (|#2| |#4| (-719))) (-15 -1762 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -1768 (|#4| (-388 |#2|))) |%noBranch|))
+((-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (-1761 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
+(-13 (-1159 |t#1| (-719)) (-10 -8 (-15 -2460 ($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |t#1|))))) (-15 -3441 ((-1080 |t#1|) $)) (-15 -2460 ($ (-1080 |t#1|))) (-15 -3745 ($ $)) (-15 -4219 ($ (-1 |t#1| (-530)) $)) (-15 -1761 ((-893 |t#1|) $ (-719))) (-15 -1761 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-719) |#1|))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-719) (-1039)) ((-272) |has| |#1| (-522)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1159 |#1| #0#) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 87)) (-1971 (((-1154 |#2| |#1|) $ (-719)) 73)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) 137 (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 122) (($ $ (-719) (-719)) 124)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 42)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 53) (($ (-1080 |#1|)) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-1494 (($ $) 128)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3745 (($ $) 135)) (-1761 (((-893 |#1|) $ (-719)) 63) (((-893 |#1|) $ (-719) (-719)) 65)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) NIL) (((-719) $ (-719)) NIL)) (-2731 (((-110) $) NIL)) (-1273 (($ $) 112)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2427 (($ (-530) (-530) $) 130)) (-3081 (($ $ (-862)) 134)) (-4219 (($ (-1 |#1| (-530)) $) 106)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 15) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 94)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-4078 (($ $) 110)) (-2677 (($ $) 108)) (-3635 (($ (-530) (-530) $) 132)) (-1545 (($ $) 145 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 151 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 146 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-4090 (($ $ (-530) (-530)) 116)) (-3168 (($ $ (-719)) 118)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2795 (($ $) 114)) (-4098 (((-1080 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 91) (($ $ $) 126 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 103 (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 99)) (-1429 (((-719) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 120)) (-2366 (((-804) $) NIL) (($ (-530)) 24) (($ (-388 (-530))) 143 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 80) (($ (-1177 |#2|)) 20)) (-3441 (((-1080 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) 90)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 88)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 17 T CONST)) (-3093 (($) 13 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 102)) (-2339 (($ $ $) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
+(((-1173 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (-15 -2677 ($ $)) (-15 -4078 ($ $)) (-15 -1273 ($ $)) (-15 -2795 ($ $)) (-15 -4090 ($ $ (-530) (-530))) (-15 -1494 ($ $)) (-15 -2427 ($ (-530) (-530) $)) (-15 -3635 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1173))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-4078 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1273 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-4090 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1494 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-2427 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-3635 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
+(-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (-15 -2677 ($ $)) (-15 -4078 ($ $)) (-15 -1273 ($ $)) (-15 -2795 ($ $)) (-15 -4090 ($ $ (-530) (-530))) (-15 -1494 ($ $)) (-15 -2427 ($ (-530) (-530) $)) (-15 -3635 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
+((-1859 (((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|))) 24)) (-2201 (((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1893 (((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|)) 13)) (-1333 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2949 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3986 ((|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|)) 54)) (-3560 (((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))) 61)) (-3349 ((|#2| |#2| |#2|) 43)))
+(((-1174 |#1| |#2|) (-10 -7 (-15 -1893 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -2201 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1859 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -3349 (|#2| |#2| |#2|)) (-15 -2949 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1333 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -3560 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))))) (-37 (-388 (-530))) (-1172 |#1|)) (T -1174))
+((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6)))) (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6)) (-5 *1 (-1174 *5 *6)))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5)) (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5)) (-5 *1 (-1174 *5 *2)))) (-1333 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-2949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-3349 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1172 *3)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
+(-10 -7 (-15 -1893 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -2201 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1859 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -3349 (|#2| |#2| |#2|)) (-15 -2949 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1333 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -3560 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|))))))
+((-3810 ((|#2| |#4| (-719)) 30)) (-4235 ((|#4| |#2|) 25)) (-2804 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-522)))) (-3347 (((-1 |#4| (-597 |#4|)) |#3|) 46)))
+(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4235 (|#4| |#2|)) (-15 -3810 (|#2| |#4| (-719))) (-15 -3347 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -2804 (|#4| (-388 |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-607 |#2|) (-1172 |#1|)) (T -1175))
+((-2804 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522)) (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-607 *5)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
+(-10 -7 (-15 -4235 (|#4| |#2|)) (-15 -3810 (|#2| |#4| (-719))) (-15 -3347 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -2804 (|#4| (-388 |#2|))) |%noBranch|))
NIL
(((-1176) (-133)) (T -1176))
NIL
-(-13 (-10 -7 (-6 -4087)))
-((-2246 (((-110) $ $) NIL)) (-3994 (((-1099)) 12)) (-3443 (((-1082) $) 17)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 11) (((-1099) $) 8)) (-2148 (((-110) $ $) 14)))
-(((-1177 |#1|) (-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2258 ((-1099) $)) (-15 -3994 ((-1099))))) (-1099)) (T -1177))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-3994 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
-(-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2258 ((-1099) $)) (-15 -3994 ((-1099)))))
-((-1520 (($ (-719)) 18)) (-4172 (((-637 |#2|) $ $) 40)) (-1777 ((|#2| $) 48)) (-2171 ((|#2| $) 47)) (-1796 ((|#2| $ $) 35)) (-1788 (($ $ $) 44)) (-2245 (($ $) 22) (($ $ $) 28)) (-2234 (($ $ $) 15)) (* (($ (-530) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1178 |#1| |#2|) (-10 -8 (-15 -1777 (|#2| |#1|)) (-15 -2171 (|#2| |#1|)) (-15 -1788 (|#1| |#1| |#1|)) (-15 -4172 ((-637 |#2|) |#1| |#1|)) (-15 -1796 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -1520 (|#1| (-719))) (-15 -2234 (|#1| |#1| |#1|))) (-1179 |#2|) (-1135)) (T -1178))
+(-13 (-10 -7 (-6 -4100)))
+((-2352 (((-110) $ $) NIL)) (-4007 (((-1099)) 12)) (-1424 (((-1082) $) 17)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11) (((-1099) $) 8)) (-2248 (((-110) $ $) 14)))
+(((-1177 |#1|) (-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2366 ((-1099) $)) (-15 -4007 ((-1099))))) (-1099)) (T -1177))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-4007 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
+(-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2366 ((-1099) $)) (-15 -4007 ((-1099)))))
+((-1511 (($ (-719)) 18)) (-4176 (((-637 |#2|) $ $) 40)) (-2337 ((|#2| $) 48)) (-4109 ((|#2| $) 47)) (-3334 ((|#2| $ $) 35)) (-3691 (($ $ $) 44)) (-2351 (($ $) 22) (($ $ $) 28)) (-2339 (($ $ $) 15)) (* (($ (-530) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1178 |#1| |#2|) (-10 -8 (-15 -2337 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -4176 ((-637 |#2|) |#1| |#1|)) (-15 -3334 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1511 (|#1| (-719))) (-15 -2339 (|#1| |#1| |#1|))) (-1179 |#2|) (-1135)) (T -1178))
NIL
-(-10 -8 (-15 -1777 (|#2| |#1|)) (-15 -2171 (|#2| |#1|)) (-15 -1788 (|#1| |#1| |#1|)) (-15 -4172 ((-637 |#2|) |#1| |#1|)) (-15 -1796 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2245 (|#1| |#1| |#1|)) (-15 -2245 (|#1| |#1|)) (-15 -1520 (|#1| (-719))) (-15 -2234 (|#1| |#1| |#1|)))
-((-2246 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1520 (($ (-719)) 112 (|has| |#1| (-23)))) (-1935 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4271))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4271))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) 8)) (-2416 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4270)))) (-3956 (($) 7 T CONST)) (-1389 (($ $) 90 (|has| $ (-6 -4271)))) (-4093 (($ $) 100)) (-2939 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-2272 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) 51)) (-1944 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) 30 (|has| $ (-6 -4270)))) (-4172 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3547 (($ (-719) |#1|) 69)) (-2014 (((-110) $ (-719)) 9)) (-1954 (((-530) $) 43 (|has| (-530) (-795)))) (-4194 (($ $ $) 87 (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-1965 (((-530) $) 44 (|has| (-530) (-795)))) (-1757 (($ $ $) 86 (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1777 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1987 (((-110) $ (-719)) 10)) (-2171 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-3443 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-1983 (((-597 (-530)) $) 46)) (-1993 (((-110) (-530) $) 47)) (-2485 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2907 ((|#1| $) 42 (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1946 (($ $ |#1|) 41 (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) 14)) (-1973 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) 48)) (-1262 (((-110) $) 11)) (-4227 (($) 12)) (-1832 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1796 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-1778 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-1788 (($ $ $) 104 (|has| |#1| (-984)))) (-2494 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4270))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4270))))) (-4027 (($ $ $ (-530)) 91 (|has| $ (-6 -4271)))) (-2441 (($ $) 13)) (-3173 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 70)) (-3476 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2258 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2182 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2172 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2245 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2234 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2167 (((-719) $) 6 (|has| $ (-6 -4270)))))
+(-10 -8 (-15 -2337 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -4176 ((-637 |#2|) |#1| |#1|)) (-15 -3334 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1511 (|#1| (-719))) (-15 -2339 (|#1| |#1| |#1|)))
+((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719)) 112 (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2337 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-2763 (((-110) $ (-719)) 10)) (-4109 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3334 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-3691 (($ $ $) 104 (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2351 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2339 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
(((-1179 |#1|) (-133) (-1135)) (T -1179))
-((-2234 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-25)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1135)))) (-2245 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (-1796 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-4172 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-984)) (-5 *2 (-637 *3)))) (-1788 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2234 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1520 ($ (-719))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2245 ($ $)) (-15 -2245 ($ $ $)) (-15 * ($ (-530) $))) |%noBranch|) (IF (|has| |t#1| (-675)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-15 -1796 (|t#1| $ $)) (-15 -4172 ((-637 |t#1|) $ $)) (-15 -1788 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-984)) (PROGN (-15 -2171 (|t#1| $)) (-15 -1777 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-99) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1476 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-1802 (((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 13)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 15)) (-3114 (((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)) 28) (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 18)))
-(((-1180 |#1| |#2|) (-10 -7 (-15 -1802 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3114 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3114 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)))) (-1135) (-1135)) (T -1180))
-((-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
-(-10 -7 (-15 -1802 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3114 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3114 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|))))
-((-2246 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1520 (($ (-719)) NIL (|has| |#1| (-23)))) (-3198 (($ (-597 |#1|)) 9)) (-1935 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4271)))) (-4038 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-4017 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4271))) (($ $) NIL (-12 (|has| $ (-6 -4271)) (|has| |#1| (-795))))) (-1317 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-4102 (((-110) $ (-719)) NIL)) (-2416 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4271)))) (-2180 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3956 (($) NIL T CONST)) (-1389 (($ $) NIL (|has| $ (-6 -4271)))) (-4093 (($ $) NIL)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2272 (($ |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4270))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-2858 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4271)))) (-2787 ((|#1| $ (-530)) NIL)) (-1944 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2456 (((-597 |#1|) $) 15 (|has| $ (-6 -4270)))) (-4172 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3547 (($ (-719) |#1|) NIL)) (-2014 (((-110) $ (-719)) NIL)) (-1954 (((-530) $) NIL (|has| (-530) (-795)))) (-4194 (($ $ $) NIL (|has| |#1| (-795)))) (-3842 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-3252 (((-597 |#1|) $) NIL (|has| $ (-6 -4270)))) (-3455 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-1965 (((-530) $) NIL (|has| (-530) (-795)))) (-1757 (($ $ $) NIL (|has| |#1| (-795)))) (-2847 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1777 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1987 (((-110) $ (-719)) NIL)) (-2171 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-3443 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4016 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-1983 (((-597 (-530)) $) NIL)) (-1993 (((-110) (-530) $) NIL)) (-2485 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2907 ((|#1| $) NIL (|has| (-530) (-795)))) (-4221 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1946 (($ $ |#1|) NIL (|has| $ (-6 -4271)))) (-1505 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1973 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-2002 (((-597 |#1|) $) NIL)) (-1262 (((-110) $) NIL)) (-4227 (($) NIL)) (-1832 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1796 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1778 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1788 (($ $ $) NIL (|has| |#1| (-984)))) (-2494 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-1027))))) (-4027 (($ $ $ (-530)) NIL (|has| $ (-6 -4271)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) 19 (|has| |#1| (-572 (-506))))) (-2268 (($ (-597 |#1|)) 8)) (-3476 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2258 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-1515 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4270)))) (-2204 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2182 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2172 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2245 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2234 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1181 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3198 ($ (-597 |#1|))))) (-1135)) (T -1181))
-((-3198 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1181 *3)))))
-(-13 (-1179 |#1|) (-10 -8 (-15 -3198 ($ (-597 |#1|)))))
-((-2246 (((-110) $ $) NIL)) (-2506 (((-1082) $ (-1082)) 90) (((-1082) $ (-1082) (-1082)) 88) (((-1082) $ (-1082) (-597 (-1082))) 87)) (-3808 (($) 59)) (-3086 (((-1186) $ (-448) (-862)) 45)) (-1786 (((-1186) $ (-862) (-1082)) 73) (((-1186) $ (-862) (-815)) 74)) (-2126 (((-1186) $ (-862) (-360) (-360)) 48)) (-1291 (((-1186) $ (-1082)) 69)) (-1357 (((-1186) $ (-862) (-1082)) 78)) (-3708 (((-1186) $ (-862) (-360) (-360)) 49)) (-4011 (((-1186) $ (-862) (-862)) 46)) (-2483 (((-1186) $) 70)) (-3729 (((-1186) $ (-862) (-1082)) 77)) (-3757 (((-1186) $ (-448) (-862)) 31)) (-3738 (((-1186) $ (-862) (-1082)) 76)) (-4239 (((-597 (-245)) $) 23) (($ $ (-597 (-245))) 24)) (-4022 (((-1186) $ (-719) (-719)) 43)) (-3798 (($ $) 60) (($ (-448) (-597 (-245))) 61)) (-3443 (((-1082) $) NIL)) (-2940 (((-530) $) 38)) (-2485 (((-1046) $) NIL)) (-3768 (((-1181 (-3 (-448) "undefined")) $) 37)) (-3777 (((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -3738 (-530)) (|:| -3718 (-530)) (|:| |spline| (-530)) (|:| -3973 (-530)) (|:| |axesColor| (-815)) (|:| -1786 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $) 36)) (-3789 (((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530)) 68)) (-3817 (((-597 (-884 (-208))) $) NIL)) (-3747 (((-448) $ (-862)) 33)) (-4002 (((-1186) $ (-719) (-719) (-862) (-862)) 40)) (-3982 (((-1186) $ (-1082)) 79)) (-3718 (((-1186) $ (-862) (-1082)) 75)) (-2258 (((-804) $) 85)) (-2252 (((-1186) $) 80)) (-3973 (((-1186) $ (-862) (-1082)) 71) (((-1186) $ (-862) (-815)) 72)) (-2148 (((-110) $ $) NIL)))
-(((-1182) (-13 (-1027) (-10 -8 (-15 -3817 ((-597 (-884 (-208))) $)) (-15 -3808 ($)) (-15 -3798 ($ $)) (-15 -4239 ((-597 (-245)) $)) (-15 -4239 ($ $ (-597 (-245)))) (-15 -3798 ($ (-448) (-597 (-245)))) (-15 -3789 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -3777 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -3738 (-530)) (|:| -3718 (-530)) (|:| |spline| (-530)) (|:| -3973 (-530)) (|:| |axesColor| (-815)) (|:| -1786 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -3768 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1291 ((-1186) $ (-1082))) (-15 -3757 ((-1186) $ (-448) (-862))) (-15 -3747 ((-448) $ (-862))) (-15 -3973 ((-1186) $ (-862) (-1082))) (-15 -3973 ((-1186) $ (-862) (-815))) (-15 -1786 ((-1186) $ (-862) (-1082))) (-15 -1786 ((-1186) $ (-862) (-815))) (-15 -3738 ((-1186) $ (-862) (-1082))) (-15 -3729 ((-1186) $ (-862) (-1082))) (-15 -3718 ((-1186) $ (-862) (-1082))) (-15 -3982 ((-1186) $ (-1082))) (-15 -2252 ((-1186) $)) (-15 -4002 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -3708 ((-1186) $ (-862) (-360) (-360))) (-15 -2126 ((-1186) $ (-862) (-360) (-360))) (-15 -1357 ((-1186) $ (-862) (-1082))) (-15 -4022 ((-1186) $ (-719) (-719))) (-15 -3086 ((-1186) $ (-448) (-862))) (-15 -4011 ((-1186) $ (-862) (-862))) (-15 -2506 ((-1082) $ (-1082))) (-15 -2506 ((-1082) $ (-1082) (-1082))) (-15 -2506 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2483 ((-1186) $)) (-15 -2940 ((-530) $)) (-15 -2258 ((-804) $))))) (T -1182))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1182)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))) (-3808 (*1 *1) (-5 *1 (-1182))) (-3798 (*1 *1 *1) (-5 *1 (-1182))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-3798 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182)))) (-3789 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -3738 (-530)) (|:| -3718 (-530)) (|:| |spline| (-530)) (|:| -3973 (-530)) (|:| |axesColor| (-815)) (|:| -1786 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530))))) (-5 *1 (-1182)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3757 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3747 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))) (-3973 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3973 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1786 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1786 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3738 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3729 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3718 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4002 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3708 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2126 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1357 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4022 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3086 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2506 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2506 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2506 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1182)))))
-(-13 (-1027) (-10 -8 (-15 -3817 ((-597 (-884 (-208))) $)) (-15 -3808 ($)) (-15 -3798 ($ $)) (-15 -4239 ((-597 (-245)) $)) (-15 -4239 ($ $ (-597 (-245)))) (-15 -3798 ($ (-448) (-597 (-245)))) (-15 -3789 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -3777 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -3738 (-530)) (|:| -3718 (-530)) (|:| |spline| (-530)) (|:| -3973 (-530)) (|:| |axesColor| (-815)) (|:| -1786 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -3768 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1291 ((-1186) $ (-1082))) (-15 -3757 ((-1186) $ (-448) (-862))) (-15 -3747 ((-448) $ (-862))) (-15 -3973 ((-1186) $ (-862) (-1082))) (-15 -3973 ((-1186) $ (-862) (-815))) (-15 -1786 ((-1186) $ (-862) (-1082))) (-15 -1786 ((-1186) $ (-862) (-815))) (-15 -3738 ((-1186) $ (-862) (-1082))) (-15 -3729 ((-1186) $ (-862) (-1082))) (-15 -3718 ((-1186) $ (-862) (-1082))) (-15 -3982 ((-1186) $ (-1082))) (-15 -2252 ((-1186) $)) (-15 -4002 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -3708 ((-1186) $ (-862) (-360) (-360))) (-15 -2126 ((-1186) $ (-862) (-360) (-360))) (-15 -1357 ((-1186) $ (-862) (-1082))) (-15 -4022 ((-1186) $ (-719) (-719))) (-15 -3086 ((-1186) $ (-448) (-862))) (-15 -4011 ((-1186) $ (-862) (-862))) (-15 -2506 ((-1082) $ (-1082))) (-15 -2506 ((-1082) $ (-1082) (-1082))) (-15 -2506 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2483 ((-1186) $)) (-15 -2940 ((-530) $)) (-15 -2258 ((-804) $))))
-((-2246 (((-110) $ $) NIL)) (-3922 (((-1186) $ (-360)) 140) (((-1186) $ (-360) (-360) (-360)) 141)) (-2506 (((-1082) $ (-1082)) 148) (((-1082) $ (-1082) (-1082)) 146) (((-1082) $ (-1082) (-597 (-1082))) 145)) (-4064 (($) 50)) (-3991 (((-1186) $ (-360) (-360) (-360) (-360) (-360)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1186) $ (-530) (-530) (-360) (-360) (-360)) 117) (((-1186) $ (-360) (-360)) 118) (((-1186) $ (-360) (-360) (-360)) 125)) (-4097 (((-360)) 97) (((-360) (-360)) 98)) (-4120 (((-360)) 92) (((-360) (-360)) 94)) (-4107 (((-360)) 95) (((-360) (-360)) 96)) (-4073 (((-360)) 101) (((-360) (-360)) 102)) (-4083 (((-360)) 99) (((-360) (-360)) 100)) (-2126 (((-1186) $ (-360) (-360)) 142)) (-1291 (((-1186) $ (-1082)) 126)) (-4042 (((-1059 (-208)) $) 51) (($ $ (-1059 (-208))) 52)) (-3880 (((-1186) $ (-1082)) 154)) (-3871 (((-1186) $ (-1082)) 155)) (-3933 (((-1186) $ (-360) (-360)) 124) (((-1186) $ (-530) (-530)) 139)) (-4011 (((-1186) $ (-862) (-862)) 132)) (-2483 (((-1186) $) 112)) (-3911 (((-1186) $ (-1082)) 153)) (-3951 (((-1186) $ (-1082)) 109)) (-4239 (((-597 (-245)) $) 53) (($ $ (-597 (-245))) 54)) (-4022 (((-1186) $ (-719) (-719)) 131)) (-4032 (((-1186) $ (-719) (-884 (-208))) 160)) (-4052 (($ $) 56) (($ (-1059 (-208)) (-1082)) 57) (($ (-1059 (-208)) (-597 (-245))) 58)) (-3850 (((-1186) $ (-360) (-360) (-360)) 106)) (-3443 (((-1082) $) NIL)) (-2940 (((-530) $) 103)) (-3838 (((-1186) $ (-360)) 143)) (-3891 (((-1186) $ (-360)) 158)) (-2485 (((-1046) $) NIL)) (-3900 (((-1186) $ (-360)) 157)) (-3942 (((-1186) $ (-1082)) 111)) (-4002 (((-1186) $ (-719) (-719) (-862) (-862)) 130)) (-3963 (((-1186) $ (-1082)) 108)) (-3982 (((-1186) $ (-1082)) 110)) (-3828 (((-1186) $ (-148) (-148)) 129)) (-2258 (((-804) $) 137)) (-2252 (((-1186) $) 113)) (-3861 (((-1186) $ (-1082)) 156)) (-3973 (((-1186) $ (-1082)) 107)) (-2148 (((-110) $ $) NIL)))
-(((-1183) (-13 (-1027) (-10 -8 (-15 -4120 ((-360))) (-15 -4120 ((-360) (-360))) (-15 -4107 ((-360))) (-15 -4107 ((-360) (-360))) (-15 -4097 ((-360))) (-15 -4097 ((-360) (-360))) (-15 -4083 ((-360))) (-15 -4083 ((-360) (-360))) (-15 -4073 ((-360))) (-15 -4073 ((-360) (-360))) (-15 -4064 ($)) (-15 -4052 ($ $)) (-15 -4052 ($ (-1059 (-208)) (-1082))) (-15 -4052 ($ (-1059 (-208)) (-597 (-245)))) (-15 -4042 ((-1059 (-208)) $)) (-15 -4042 ($ $ (-1059 (-208)))) (-15 -4032 ((-1186) $ (-719) (-884 (-208)))) (-15 -4239 ((-597 (-245)) $)) (-15 -4239 ($ $ (-597 (-245)))) (-15 -4022 ((-1186) $ (-719) (-719))) (-15 -4011 ((-1186) $ (-862) (-862))) (-15 -1291 ((-1186) $ (-1082))) (-15 -4002 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -3991 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -3991 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -3991 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -3991 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -3991 ((-1186) $ (-360) (-360))) (-15 -3991 ((-1186) $ (-360) (-360) (-360))) (-15 -3982 ((-1186) $ (-1082))) (-15 -3973 ((-1186) $ (-1082))) (-15 -3963 ((-1186) $ (-1082))) (-15 -3951 ((-1186) $ (-1082))) (-15 -3942 ((-1186) $ (-1082))) (-15 -3933 ((-1186) $ (-360) (-360))) (-15 -3933 ((-1186) $ (-530) (-530))) (-15 -3922 ((-1186) $ (-360))) (-15 -3922 ((-1186) $ (-360) (-360) (-360))) (-15 -2126 ((-1186) $ (-360) (-360))) (-15 -3911 ((-1186) $ (-1082))) (-15 -3900 ((-1186) $ (-360))) (-15 -3891 ((-1186) $ (-360))) (-15 -3880 ((-1186) $ (-1082))) (-15 -3871 ((-1186) $ (-1082))) (-15 -3861 ((-1186) $ (-1082))) (-15 -3850 ((-1186) $ (-360) (-360) (-360))) (-15 -3838 ((-1186) $ (-360))) (-15 -2483 ((-1186) $)) (-15 -3828 ((-1186) $ (-148) (-148))) (-15 -2506 ((-1082) $ (-1082))) (-15 -2506 ((-1082) $ (-1082) (-1082))) (-15 -2506 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2252 ((-1186) $)) (-15 -2940 ((-530) $))))) (T -1183))
-((-4120 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4120 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4107 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4097 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4083 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4073 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-4064 (*1 *1) (-5 *1 (-1183))) (-4052 (*1 *1 *1) (-5 *1 (-1183))) (-4052 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183)))) (-4052 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-4032 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-4022 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4002 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3991 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1183)))) (-3991 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3991 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3991 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3963 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3951 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3933 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3933 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3922 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3922 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2126 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3900 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3891 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3828 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2506 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2506 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2506 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1183)))))
-(-13 (-1027) (-10 -8 (-15 -4120 ((-360))) (-15 -4120 ((-360) (-360))) (-15 -4107 ((-360))) (-15 -4107 ((-360) (-360))) (-15 -4097 ((-360))) (-15 -4097 ((-360) (-360))) (-15 -4083 ((-360))) (-15 -4083 ((-360) (-360))) (-15 -4073 ((-360))) (-15 -4073 ((-360) (-360))) (-15 -4064 ($)) (-15 -4052 ($ $)) (-15 -4052 ($ (-1059 (-208)) (-1082))) (-15 -4052 ($ (-1059 (-208)) (-597 (-245)))) (-15 -4042 ((-1059 (-208)) $)) (-15 -4042 ($ $ (-1059 (-208)))) (-15 -4032 ((-1186) $ (-719) (-884 (-208)))) (-15 -4239 ((-597 (-245)) $)) (-15 -4239 ($ $ (-597 (-245)))) (-15 -4022 ((-1186) $ (-719) (-719))) (-15 -4011 ((-1186) $ (-862) (-862))) (-15 -1291 ((-1186) $ (-1082))) (-15 -4002 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -3991 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -3991 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -3991 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -3991 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -3991 ((-1186) $ (-360) (-360))) (-15 -3991 ((-1186) $ (-360) (-360) (-360))) (-15 -3982 ((-1186) $ (-1082))) (-15 -3973 ((-1186) $ (-1082))) (-15 -3963 ((-1186) $ (-1082))) (-15 -3951 ((-1186) $ (-1082))) (-15 -3942 ((-1186) $ (-1082))) (-15 -3933 ((-1186) $ (-360) (-360))) (-15 -3933 ((-1186) $ (-530) (-530))) (-15 -3922 ((-1186) $ (-360))) (-15 -3922 ((-1186) $ (-360) (-360) (-360))) (-15 -2126 ((-1186) $ (-360) (-360))) (-15 -3911 ((-1186) $ (-1082))) (-15 -3900 ((-1186) $ (-360))) (-15 -3891 ((-1186) $ (-360))) (-15 -3880 ((-1186) $ (-1082))) (-15 -3871 ((-1186) $ (-1082))) (-15 -3861 ((-1186) $ (-1082))) (-15 -3850 ((-1186) $ (-360) (-360) (-360))) (-15 -3838 ((-1186) $ (-360))) (-15 -2483 ((-1186) $)) (-15 -3828 ((-1186) $ (-148) (-148))) (-15 -2506 ((-1082) $ (-1082))) (-15 -2506 ((-1082) $ (-1082) (-1082))) (-15 -2506 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2252 ((-1186) $)) (-15 -2940 ((-530) $))))
-((-4223 (((-597 (-1082)) (-597 (-1082))) 94) (((-597 (-1082))) 90)) (-4234 (((-597 (-1082))) 88)) (-4202 (((-597 (-862)) (-597 (-862))) 63) (((-597 (-862))) 60)) (-4191 (((-597 (-719)) (-597 (-719))) 57) (((-597 (-719))) 53)) (-4214 (((-1186)) 65)) (-1218 (((-862) (-862)) 81) (((-862)) 80)) (-4246 (((-862) (-862)) 79) (((-862)) 78)) (-4169 (((-815) (-815)) 75) (((-815)) 74)) (-1236 (((-208)) 85) (((-208) (-360)) 87)) (-1226 (((-862)) 82) (((-862) (-862)) 83)) (-4181 (((-862) (-862)) 77) (((-862)) 76)) (-4133 (((-815) (-815)) 69) (((-815)) 67)) (-4146 (((-815) (-815)) 71) (((-815)) 70)) (-4159 (((-815) (-815)) 73) (((-815)) 72)))
-(((-1184) (-10 -7 (-15 -4133 ((-815))) (-15 -4133 ((-815) (-815))) (-15 -4146 ((-815))) (-15 -4146 ((-815) (-815))) (-15 -4159 ((-815))) (-15 -4159 ((-815) (-815))) (-15 -4169 ((-815))) (-15 -4169 ((-815) (-815))) (-15 -4181 ((-862))) (-15 -4181 ((-862) (-862))) (-15 -4191 ((-597 (-719)))) (-15 -4191 ((-597 (-719)) (-597 (-719)))) (-15 -4202 ((-597 (-862)))) (-15 -4202 ((-597 (-862)) (-597 (-862)))) (-15 -4214 ((-1186))) (-15 -4223 ((-597 (-1082)))) (-15 -4223 ((-597 (-1082)) (-597 (-1082)))) (-15 -4234 ((-597 (-1082)))) (-15 -4246 ((-862))) (-15 -1218 ((-862))) (-15 -4246 ((-862) (-862))) (-15 -1218 ((-862) (-862))) (-15 -1226 ((-862) (-862))) (-15 -1226 ((-862))) (-15 -1236 ((-208) (-360))) (-15 -1236 ((-208))))) (T -1184))
-((-1236 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184)))) (-1226 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-1226 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-1218 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-1218 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-4246 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-4234 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-4223 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-4223 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-4214 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-4202 (*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-4202 (*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-4191 (*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-4191 (*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-4181 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-4181 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4169 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4159 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4146 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4146 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-4133 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(-10 -7 (-15 -4133 ((-815))) (-15 -4133 ((-815) (-815))) (-15 -4146 ((-815))) (-15 -4146 ((-815) (-815))) (-15 -4159 ((-815))) (-15 -4159 ((-815) (-815))) (-15 -4169 ((-815))) (-15 -4169 ((-815) (-815))) (-15 -4181 ((-862))) (-15 -4181 ((-862) (-862))) (-15 -4191 ((-597 (-719)))) (-15 -4191 ((-597 (-719)) (-597 (-719)))) (-15 -4202 ((-597 (-862)))) (-15 -4202 ((-597 (-862)) (-597 (-862)))) (-15 -4214 ((-1186))) (-15 -4223 ((-597 (-1082)))) (-15 -4223 ((-597 (-1082)) (-597 (-1082)))) (-15 -4234 ((-597 (-1082)))) (-15 -4246 ((-862))) (-15 -1218 ((-862))) (-15 -4246 ((-862) (-862))) (-15 -1218 ((-862) (-862))) (-15 -1226 ((-862) (-862))) (-15 -1226 ((-862))) (-15 -1236 ((-208) (-360))) (-15 -1236 ((-208))))
-((-1811 (((-448) (-597 (-597 (-884 (-208)))) (-597 (-245))) 21) (((-448) (-597 (-597 (-884 (-208))))) 20) (((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 19)) (-1819 (((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245))) 27) (((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 26)) (-2258 (((-1182) (-448)) 38)))
-(((-1185) (-10 -7 (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -1819 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1819 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2258 ((-1182) (-448))))) (T -1185))
-((-2258 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-1819 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1811 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))))
-(-10 -7 (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1811 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -1819 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1819 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2258 ((-1182) (-448))))
-((-2875 (($) 7)) (-2258 (((-804) $) 10)))
-(((-1186) (-10 -8 (-15 -2875 ($)) (-15 -2258 ((-804) $)))) (T -1186))
-((-2258 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1186)))) (-2875 (*1 *1) (-5 *1 (-1186))))
-(-10 -8 (-15 -2875 ($)) (-15 -2258 ((-804) $)))
-((-2257 (($ $ |#2|) 10)))
-(((-1187 |#1| |#2|) (-10 -8 (-15 -2257 (|#1| |#1| |#2|))) (-1188 |#2|) (-344)) (T -1187))
-NIL
-(-10 -8 (-15 -2257 (|#1| |#1| |#2|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-1248 (((-130)) 28)) (-2258 (((-804) $) 11)) (-2943 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2257 (($ $ |#1|) 29)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-25)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1135)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (-3334 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-4176 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-984)) (-5 *2 (-637 *3)))) (-3691 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2339 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1511 ($ (-719))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2351 ($ $)) (-15 -2351 ($ $ $)) (-15 * ($ (-530) $))) |%noBranch|) (IF (|has| |t#1| (-675)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-15 -3334 (|t#1| $ $)) (-15 -4176 ((-637 |t#1|) $ $)) (-15 -3691 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-984)) (PROGN (-15 -4109 (|t#1| $)) (-15 -2337 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
+((-2753 (((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 13)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 15)) (-3217 (((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)) 28) (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 18)))
+(((-1180 |#1| |#2|) (-10 -7 (-15 -2753 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3217 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3217 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)))) (-1135) (-1135)) (T -1180))
+((-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
+(-10 -7 (-15 -2753 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3217 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3217 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|))))
+((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-3279 (($ (-597 |#1|)) 9)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 15 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) NIL (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 19 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 8)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1181 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3279 ($ (-597 |#1|))))) (-1135)) (T -1181))
+((-3279 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1181 *3)))))
+(-13 (-1179 |#1|) (-10 -8 (-15 -3279 ($ (-597 |#1|)))))
+((-2352 (((-110) $ $) NIL)) (-2645 (((-1082) $ (-1082)) 90) (((-1082) $ (-1082) (-1082)) 88) (((-1082) $ (-1082) (-597 (-1082))) 87)) (-2203 (($) 59)) (-3196 (((-1186) $ (-448) (-862)) 45)) (-1854 (((-1186) $ (-862) (-1082)) 73) (((-1186) $ (-862) (-815)) 74)) (-2223 (((-1186) $ (-862) (-360) (-360)) 48)) (-1283 (((-1186) $ (-1082)) 69)) (-1345 (((-1186) $ (-862) (-1082)) 78)) (-1573 (((-1186) $ (-862) (-360) (-360)) 49)) (-4231 (((-1186) $ (-862) (-862)) 46)) (-2621 (((-1186) $) 70)) (-2686 (((-1186) $ (-862) (-1082)) 77)) (-3157 (((-1186) $ (-448) (-862)) 31)) (-2214 (((-1186) $ (-862) (-1082)) 76)) (-4238 (((-597 (-245)) $) 23) (($ $ (-597 (-245))) 24)) (-3794 (((-1186) $ (-719) (-719)) 43)) (-2720 (($ $) 60) (($ (-448) (-597 (-245))) 61)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 38)) (-2624 (((-1046) $) NIL)) (-2928 (((-1181 (-3 (-448) "undefined")) $) 37)) (-1421 (((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $) 36)) (-4165 (((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530)) 68)) (-3180 (((-597 (-884 (-208))) $) NIL)) (-1755 (((-448) $ (-862)) 33)) (-1768 (((-1186) $ (-719) (-719) (-862) (-862)) 40)) (-3008 (((-1186) $ (-1082)) 79)) (-4173 (((-1186) $ (-862) (-1082)) 75)) (-2366 (((-804) $) 85)) (-2361 (((-1186) $) 80)) (-3285 (((-1186) $ (-862) (-1082)) 71) (((-1186) $ (-862) (-815)) 72)) (-2248 (((-110) $ $) NIL)))
+(((-1182) (-13 (-1027) (-10 -8 (-15 -3180 ((-597 (-884 (-208))) $)) (-15 -2203 ($)) (-15 -2720 ($ $)) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -2720 ($ (-448) (-597 (-245)))) (-15 -4165 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -1421 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -2928 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1283 ((-1186) $ (-1082))) (-15 -3157 ((-1186) $ (-448) (-862))) (-15 -1755 ((-448) $ (-862))) (-15 -3285 ((-1186) $ (-862) (-1082))) (-15 -3285 ((-1186) $ (-862) (-815))) (-15 -1854 ((-1186) $ (-862) (-1082))) (-15 -1854 ((-1186) $ (-862) (-815))) (-15 -2214 ((-1186) $ (-862) (-1082))) (-15 -2686 ((-1186) $ (-862) (-1082))) (-15 -4173 ((-1186) $ (-862) (-1082))) (-15 -3008 ((-1186) $ (-1082))) (-15 -2361 ((-1186) $)) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1573 ((-1186) $ (-862) (-360) (-360))) (-15 -2223 ((-1186) $ (-862) (-360) (-360))) (-15 -1345 ((-1186) $ (-862) (-1082))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -3196 ((-1186) $ (-448) (-862))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2621 ((-1186) $)) (-15 -3078 ((-530) $)) (-15 -2366 ((-804) $))))) (T -1182))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1182)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))) (-2203 (*1 *1) (-5 *1 (-1182))) (-2720 (*1 *1 *1) (-5 *1 (-1182))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-2720 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182)))) (-4165 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530))))) (-5 *1 (-1182)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1755 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))) (-3285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2214 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2686 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4173 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3008 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1768 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1573 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2223 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1345 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3196 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1182)))))
+(-13 (-1027) (-10 -8 (-15 -3180 ((-597 (-884 (-208))) $)) (-15 -2203 ($)) (-15 -2720 ($ $)) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -2720 ($ (-448) (-597 (-245)))) (-15 -4165 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -1421 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -2928 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1283 ((-1186) $ (-1082))) (-15 -3157 ((-1186) $ (-448) (-862))) (-15 -1755 ((-448) $ (-862))) (-15 -3285 ((-1186) $ (-862) (-1082))) (-15 -3285 ((-1186) $ (-862) (-815))) (-15 -1854 ((-1186) $ (-862) (-1082))) (-15 -1854 ((-1186) $ (-862) (-815))) (-15 -2214 ((-1186) $ (-862) (-1082))) (-15 -2686 ((-1186) $ (-862) (-1082))) (-15 -4173 ((-1186) $ (-862) (-1082))) (-15 -3008 ((-1186) $ (-1082))) (-15 -2361 ((-1186) $)) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1573 ((-1186) $ (-862) (-360) (-360))) (-15 -2223 ((-1186) $ (-862) (-360) (-360))) (-15 -1345 ((-1186) $ (-862) (-1082))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -3196 ((-1186) $ (-448) (-862))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2621 ((-1186) $)) (-15 -3078 ((-530) $)) (-15 -2366 ((-804) $))))
+((-2352 (((-110) $ $) NIL)) (-2898 (((-1186) $ (-360)) 140) (((-1186) $ (-360) (-360) (-360)) 141)) (-2645 (((-1082) $ (-1082)) 148) (((-1082) $ (-1082) (-1082)) 146) (((-1082) $ (-1082) (-597 (-1082))) 145)) (-3955 (($) 50)) (-1375 (((-1186) $ (-360) (-360) (-360) (-360) (-360)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1186) $ (-530) (-530) (-360) (-360) (-360)) 117) (((-1186) $ (-360) (-360)) 118) (((-1186) $ (-360) (-360) (-360)) 125)) (-3830 (((-360)) 97) (((-360) (-360)) 98)) (-2088 (((-360)) 92) (((-360) (-360)) 94)) (-3598 (((-360)) 95) (((-360) (-360)) 96)) (-3565 (((-360)) 101) (((-360) (-360)) 102)) (-2162 (((-360)) 99) (((-360) (-360)) 100)) (-2223 (((-1186) $ (-360) (-360)) 142)) (-1283 (((-1186) $ (-1082)) 126)) (-3082 (((-1059 (-208)) $) 51) (($ $ (-1059 (-208))) 52)) (-1503 (((-1186) $ (-1082)) 154)) (-2442 (((-1186) $ (-1082)) 155)) (-1381 (((-1186) $ (-360) (-360)) 124) (((-1186) $ (-530) (-530)) 139)) (-4231 (((-1186) $ (-862) (-862)) 132)) (-2621 (((-1186) $) 112)) (-4011 (((-1186) $ (-1082)) 153)) (-1915 (((-1186) $ (-1082)) 109)) (-4238 (((-597 (-245)) $) 53) (($ $ (-597 (-245))) 54)) (-3794 (((-1186) $ (-719) (-719)) 131)) (-3405 (((-1186) $ (-719) (-884 (-208))) 160)) (-1373 (($ $) 56) (($ (-1059 (-208)) (-1082)) 57) (($ (-1059 (-208)) (-597 (-245))) 58)) (-4184 (((-1186) $ (-360) (-360) (-360)) 106)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 103)) (-1462 (((-1186) $ (-360)) 143)) (-2657 (((-1186) $ (-360)) 158)) (-2624 (((-1046) $) NIL)) (-4190 (((-1186) $ (-360)) 157)) (-3298 (((-1186) $ (-1082)) 111)) (-1768 (((-1186) $ (-719) (-719) (-862) (-862)) 130)) (-1662 (((-1186) $ (-1082)) 108)) (-3008 (((-1186) $ (-1082)) 110)) (-2979 (((-1186) $ (-148) (-148)) 129)) (-2366 (((-804) $) 137)) (-2361 (((-1186) $) 113)) (-2742 (((-1186) $ (-1082)) 156)) (-3285 (((-1186) $ (-1082)) 107)) (-2248 (((-110) $ $) NIL)))
+(((-1183) (-13 (-1027) (-10 -8 (-15 -2088 ((-360))) (-15 -2088 ((-360) (-360))) (-15 -3598 ((-360))) (-15 -3598 ((-360) (-360))) (-15 -3830 ((-360))) (-15 -3830 ((-360) (-360))) (-15 -2162 ((-360))) (-15 -2162 ((-360) (-360))) (-15 -3565 ((-360))) (-15 -3565 ((-360) (-360))) (-15 -3955 ($)) (-15 -1373 ($ $)) (-15 -1373 ($ (-1059 (-208)) (-1082))) (-15 -1373 ($ (-1059 (-208)) (-597 (-245)))) (-15 -3082 ((-1059 (-208)) $)) (-15 -3082 ($ $ (-1059 (-208)))) (-15 -3405 ((-1186) $ (-719) (-884 (-208)))) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -1283 ((-1186) $ (-1082))) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1375 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -1375 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1375 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360) (-360))) (-15 -3008 ((-1186) $ (-1082))) (-15 -3285 ((-1186) $ (-1082))) (-15 -1662 ((-1186) $ (-1082))) (-15 -1915 ((-1186) $ (-1082))) (-15 -3298 ((-1186) $ (-1082))) (-15 -1381 ((-1186) $ (-360) (-360))) (-15 -1381 ((-1186) $ (-530) (-530))) (-15 -2898 ((-1186) $ (-360))) (-15 -2898 ((-1186) $ (-360) (-360) (-360))) (-15 -2223 ((-1186) $ (-360) (-360))) (-15 -4011 ((-1186) $ (-1082))) (-15 -4190 ((-1186) $ (-360))) (-15 -2657 ((-1186) $ (-360))) (-15 -1503 ((-1186) $ (-1082))) (-15 -2442 ((-1186) $ (-1082))) (-15 -2742 ((-1186) $ (-1082))) (-15 -4184 ((-1186) $ (-360) (-360) (-360))) (-15 -1462 ((-1186) $ (-360))) (-15 -2621 ((-1186) $)) (-15 -2979 ((-1186) $ (-148) (-148))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2361 ((-1186) $)) (-15 -3078 ((-530) $))))) (T -1183))
+((-2088 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3598 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3830 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2162 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3565 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3565 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3955 (*1 *1) (-5 *1 (-1183))) (-1373 (*1 *1 *1) (-5 *1 (-1183))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-3405 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1768 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3008 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2898 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2657 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2442 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4184 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2979 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1183)))))
+(-13 (-1027) (-10 -8 (-15 -2088 ((-360))) (-15 -2088 ((-360) (-360))) (-15 -3598 ((-360))) (-15 -3598 ((-360) (-360))) (-15 -3830 ((-360))) (-15 -3830 ((-360) (-360))) (-15 -2162 ((-360))) (-15 -2162 ((-360) (-360))) (-15 -3565 ((-360))) (-15 -3565 ((-360) (-360))) (-15 -3955 ($)) (-15 -1373 ($ $)) (-15 -1373 ($ (-1059 (-208)) (-1082))) (-15 -1373 ($ (-1059 (-208)) (-597 (-245)))) (-15 -3082 ((-1059 (-208)) $)) (-15 -3082 ($ $ (-1059 (-208)))) (-15 -3405 ((-1186) $ (-719) (-884 (-208)))) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -1283 ((-1186) $ (-1082))) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1375 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -1375 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1375 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360) (-360))) (-15 -3008 ((-1186) $ (-1082))) (-15 -3285 ((-1186) $ (-1082))) (-15 -1662 ((-1186) $ (-1082))) (-15 -1915 ((-1186) $ (-1082))) (-15 -3298 ((-1186) $ (-1082))) (-15 -1381 ((-1186) $ (-360) (-360))) (-15 -1381 ((-1186) $ (-530) (-530))) (-15 -2898 ((-1186) $ (-360))) (-15 -2898 ((-1186) $ (-360) (-360) (-360))) (-15 -2223 ((-1186) $ (-360) (-360))) (-15 -4011 ((-1186) $ (-1082))) (-15 -4190 ((-1186) $ (-360))) (-15 -2657 ((-1186) $ (-360))) (-15 -1503 ((-1186) $ (-1082))) (-15 -2442 ((-1186) $ (-1082))) (-15 -2742 ((-1186) $ (-1082))) (-15 -4184 ((-1186) $ (-360) (-360) (-360))) (-15 -1462 ((-1186) $ (-360))) (-15 -2621 ((-1186) $)) (-15 -2979 ((-1186) $ (-148) (-148))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2361 ((-1186) $)) (-15 -3078 ((-530) $))))
+((-1700 (((-597 (-1082)) (-597 (-1082))) 94) (((-597 (-1082))) 90)) (-3546 (((-597 (-1082))) 88)) (-2618 (((-597 (-862)) (-597 (-862))) 63) (((-597 (-862))) 60)) (-1555 (((-597 (-719)) (-597 (-719))) 57) (((-597 (-719))) 53)) (-1982 (((-1186)) 65)) (-2355 (((-862) (-862)) 81) (((-862)) 80)) (-2379 (((-862) (-862)) 79) (((-862)) 78)) (-3283 (((-815) (-815)) 75) (((-815)) 74)) (-2226 (((-208)) 85) (((-208) (-360)) 87)) (-2749 (((-862)) 82) (((-862) (-862)) 83)) (-3072 (((-862) (-862)) 77) (((-862)) 76)) (-3223 (((-815) (-815)) 69) (((-815)) 67)) (-3029 (((-815) (-815)) 71) (((-815)) 70)) (-1630 (((-815) (-815)) 73) (((-815)) 72)))
+(((-1184) (-10 -7 (-15 -3223 ((-815))) (-15 -3223 ((-815) (-815))) (-15 -3029 ((-815))) (-15 -3029 ((-815) (-815))) (-15 -1630 ((-815))) (-15 -1630 ((-815) (-815))) (-15 -3283 ((-815))) (-15 -3283 ((-815) (-815))) (-15 -3072 ((-862))) (-15 -3072 ((-862) (-862))) (-15 -1555 ((-597 (-719)))) (-15 -1555 ((-597 (-719)) (-597 (-719)))) (-15 -2618 ((-597 (-862)))) (-15 -2618 ((-597 (-862)) (-597 (-862)))) (-15 -1982 ((-1186))) (-15 -1700 ((-597 (-1082)))) (-15 -1700 ((-597 (-1082)) (-597 (-1082)))) (-15 -3546 ((-597 (-1082)))) (-15 -2379 ((-862))) (-15 -2355 ((-862))) (-15 -2379 ((-862) (-862))) (-15 -2355 ((-862) (-862))) (-15 -2749 ((-862) (-862))) (-15 -2749 ((-862))) (-15 -2226 ((-208) (-360))) (-15 -2226 ((-208))))) (T -1184))
+((-2226 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184)))) (-2749 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2355 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2379 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3546 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1700 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1982 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-2618 (*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-1555 (*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3072 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3283 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-1630 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3029 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3223 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(-10 -7 (-15 -3223 ((-815))) (-15 -3223 ((-815) (-815))) (-15 -3029 ((-815))) (-15 -3029 ((-815) (-815))) (-15 -1630 ((-815))) (-15 -1630 ((-815) (-815))) (-15 -3283 ((-815))) (-15 -3283 ((-815) (-815))) (-15 -3072 ((-862))) (-15 -3072 ((-862) (-862))) (-15 -1555 ((-597 (-719)))) (-15 -1555 ((-597 (-719)) (-597 (-719)))) (-15 -2618 ((-597 (-862)))) (-15 -2618 ((-597 (-862)) (-597 (-862)))) (-15 -1982 ((-1186))) (-15 -1700 ((-597 (-1082)))) (-15 -1700 ((-597 (-1082)) (-597 (-1082)))) (-15 -3546 ((-597 (-1082)))) (-15 -2379 ((-862))) (-15 -2355 ((-862))) (-15 -2379 ((-862) (-862))) (-15 -2355 ((-862) (-862))) (-15 -2749 ((-862) (-862))) (-15 -2749 ((-862))) (-15 -2226 ((-208) (-360))) (-15 -2226 ((-208))))
+((-1827 (((-448) (-597 (-597 (-884 (-208)))) (-597 (-245))) 21) (((-448) (-597 (-597 (-884 (-208))))) 20) (((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 19)) (-3947 (((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245))) 27) (((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 26)) (-2366 (((-1182) (-448)) 38)))
+(((-1185) (-10 -7 (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2366 ((-1182) (-448))))) (T -1185))
+((-2366 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-3947 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))))
+(-10 -7 (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2366 ((-1182) (-448))))
+((-3020 (($) 7)) (-2366 (((-804) $) 10)))
+(((-1186) (-10 -8 (-15 -3020 ($)) (-15 -2366 ((-804) $)))) (T -1186))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1186)))) (-3020 (*1 *1) (-5 *1 (-1186))))
+(-10 -8 (-15 -3020 ($)) (-15 -2366 ((-804) $)))
+((-2364 (($ $ |#2|) 10)))
+(((-1187 |#1| |#2|) (-10 -8 (-15 -2364 (|#1| |#1| |#2|))) (-1188 |#2|) (-344)) (T -1187))
+NIL
+(-10 -8 (-15 -2364 (|#1| |#1| |#2|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2488 (((-130)) 28)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 29)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1188 |#1|) (-133) (-344)) (T -1188))
-((-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-344)))) (-1248 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
-(-13 (-666 |t#1|) (-10 -8 (-15 -2257 ($ $ |t#1|)) (-15 -1248 ((-130)))))
+((-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-344)))) (-2488 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(-13 (-666 |t#1|) (-10 -8 (-15 -2364 ($ $ |t#1|)) (-15 -2488 ((-130)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3120 (((-597 (-1130 |#1|)) (-1099) (-1130 |#1|)) 74)) (-3096 (((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|))) 53)) (-3131 (((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))) 64)) (-3072 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 55)) (-3108 (((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099)) 29)) (-3084 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 54)))
-(((-1189 |#1|) (-10 -7 (-15 -3072 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -3084 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -3096 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -3108 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3120 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -3131 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))))) (-344)) (T -1189))
-((-3131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6)) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1080 *4)))) (-3120 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(-10 -7 (-15 -3072 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -3084 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -3096 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -3108 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3120 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -3131 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|)))))
-((-3154 (((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 75)) (-3142 (((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 74)))
-(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|))) (-330) (-1157 |#1|) (-1157 |#2|) (-390 |#2| |#3|)) (T -1190))
-((-3154 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))) (-3142 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3853 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
-(-10 -7 (-15 -3142 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -3154 ((-2 (|:| -3853 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 43)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) NIL)) (-3150 (((-110) $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2258 (((-804) $) 64) (($ (-530)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-1667 (((-719)) NIL)) (-3167 (((-1186) (-719)) 16)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 27 T CONST)) (-2955 (($) 67 T CONST)) (-2148 (((-110) $ $) 69)) (-2257 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2245 (($ $) 71) (($ $ $) NIL)) (-2234 (($ $ $) 47)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2258 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2257 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2258 ($ |#4|)) (-15 -3167 ((-1186) (-719))))) (-984) (-795) (-741) (-890 |#1| |#3| |#2|) (-597 |#2|) (-597 (-719)) (-719)) (T -1191))
-((-2258 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2257 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-741)) (-14 *6 (-597 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-890 *2 *4 *3)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2258 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-890 *3 *5 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-14 *8 (-597 *5)) (-5 *2 (-1186)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5)) (-14 *9 (-597 *3)) (-14 *10 *3))))
-(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2258 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2257 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2258 ($ |#4|)) (-15 -3167 ((-1186) (-719)))))
-((-2246 (((-110) $ $) NIL)) (-2832 (((-597 (-2 (|:| -2252 $) (|:| -2415 (-597 |#4|)))) (-597 |#4|)) NIL)) (-2844 (((-597 $) (-597 |#4|)) 88)) (-2596 (((-597 |#3|) $) NIL)) (-3158 (((-110) $) NIL)) (-3055 (((-110) $) NIL (|has| |#1| (-522)))) (-2963 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2906 ((|#4| |#4| $) NIL)) (-1317 (((-2 (|:| |under| $) (|:| -1702 $) (|:| |upper| $)) $ |#3|) NIL)) (-4102 (((-110) $ (-719)) NIL)) (-2180 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3956 (($) NIL T CONST)) (-3111 (((-110) $) NIL (|has| |#1| (-522)))) (-3134 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3123 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3145 (((-110) $) NIL (|has| |#1| (-522)))) (-2917 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-3064 (((-597 |#4|) (-597 |#4|) $) 25 (|has| |#1| (-522)))) (-3076 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3012 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2446 (($ (-597 |#4|)) NIL)) (-2918 (((-3 $ "failed") $) 70)) (-2878 ((|#4| |#4| $) 75)) (-2939 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-2272 (($ |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-3088 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2976 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2856 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4270))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4270))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2999 (((-2 (|:| -2252 (-597 |#4|)) (|:| -2415 (-597 |#4|))) $) NIL)) (-2456 (((-597 |#4|) $) NIL (|has| $ (-6 -4270)))) (-2987 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4167 ((|#3| $) 76)) (-2014 (((-110) $ (-719)) NIL)) (-3252 (((-597 |#4|) $) 29 (|has| $ (-6 -4270)))) (-3455 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027))))) (-3205 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-597 |#4|)) 35)) (-2847 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4271)))) (-3114 (($ (-1 |#4| |#4|) $) NIL)) (-3222 (((-597 |#3|) $) NIL)) (-3209 (((-110) |#3| $) NIL)) (-1987 (((-110) $ (-719)) NIL)) (-3443 (((-1082) $) NIL)) (-2294 (((-3 |#4| "failed") $) NIL)) (-3011 (((-597 |#4|) $) 50)) (-2938 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2888 ((|#4| |#4| $) 74)) (-1845 (((-110) $ $) 85)) (-3099 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2951 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2898 ((|#4| |#4| $) NIL)) (-2485 (((-1046) $) NIL)) (-2907 (((-3 |#4| "failed") $) 69)) (-4221 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2807 (((-3 $ "failed") $ |#4|) NIL)) (-1312 (($ $ |#4|) NIL)) (-1505 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-4084 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-1439 (((-110) $ $) NIL)) (-1262 (((-110) $) 67)) (-4227 (($) 42)) (-3409 (((-719) $) NIL)) (-2494 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2441 (($ $) NIL)) (-3173 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2268 (($ (-597 |#4|)) NIL)) (-3170 (($ $ |#3|) NIL)) (-3196 (($ $ |#3|) NIL)) (-2866 (($ $) NIL)) (-3183 (($ $ |#3|) NIL)) (-2258 (((-804) $) NIL) (((-597 |#4|) $) 57)) (-2795 (((-719) $) NIL (|has| |#3| (-349)))) (-3191 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-597 |#4|)) 41)) (-3180 (((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-597 $) (-597 |#4|)) 66)) (-1837 (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1596 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2929 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-1515 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4270)))) (-2820 (((-597 |#3|) $) NIL)) (-3292 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-719) $) NIL (|has| $ (-6 -4270)))))
-(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3205 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3205 ((-3 $ "failed") (-597 |#4|))) (-15 -3191 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3191 ((-3 $ "failed") (-597 |#4|))) (-15 -3180 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3180 ((-597 $) (-597 |#4|))))) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1192))
-((-3205 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3205 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3191 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3191 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3180 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7)))))
-(-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3205 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3205 ((-3 $ "failed") (-597 |#4|))) (-15 -3191 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3191 ((-3 $ "failed") (-597 |#4|))) (-15 -3180 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3180 ((-597 $) (-597 |#4|)))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3618 (((-3 $ "failed") $ $) 19)) (-3956 (($) 17 T CONST)) (-1673 (((-3 $ "failed") $) 34)) (-3150 (((-110) $) 31)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#1|) 38)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3293 (((-597 (-1130 |#1|)) (-1099) (-1130 |#1|)) 74)) (-2936 (((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|))) 53)) (-1929 (((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))) 64)) (-3172 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 55)) (-1527 (((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099)) 29)) (-1592 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 54)))
+(((-1189 |#1|) (-10 -7 (-15 -3172 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -1592 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -2936 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -1527 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3293 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -1929 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))))) (-344)) (T -1189))
+((-1929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6)) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1080 *4)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
+(-10 -7 (-15 -3172 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -1592 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -2936 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -1527 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3293 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -1929 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|)))))
+((-2596 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 75)) (-3696 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 74)))
+(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|))) (-330) (-1157 |#1|) (-1157 |#2|) (-390 |#2| |#3|)) (T -1190))
+((-2596 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))) (-3696 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
+(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 43)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 64) (($ (-530)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-3300 (((-719)) NIL)) (-1329 (((-1186) (-719)) 16)) (-3080 (($) 27 T CONST)) (-3093 (($) 67 T CONST)) (-2248 (((-110) $ $) 69)) (-2364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) 71) (($ $ $) NIL)) (-2339 (($ $ $) 47)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2366 ($ |#4|)) (-15 -1329 ((-1186) (-719))))) (-984) (-795) (-741) (-890 |#1| |#3| |#2|) (-597 |#2|) (-597 (-719)) (-719)) (T -1191))
+((-2366 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2364 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-741)) (-14 *6 (-597 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-890 *2 *4 *3)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-890 *3 *5 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-14 *8 (-597 *5)) (-5 *2 (-1186)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5)) (-14 *9 (-597 *3)) (-14 *10 *3))))
+(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2366 ($ |#4|)) (-15 -1329 ((-1186) (-719)))))
+((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 88)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-3588 (((-597 |#4|) (-597 |#4|) $) 25 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 70)) (-1622 ((|#4| |#4| $) 75)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3779 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 76)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3908 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-597 |#4|)) 35)) (-3583 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) NIL)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2407 (((-3 |#4| "failed") $) NIL)) (-1543 (((-597 |#4|) $) 50)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) 74)) (-1406 (((-110) $ $) 85)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 69)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) NIL)) (-3168 (($ $ |#4|) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 67)) (-3958 (($) 42)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) NIL)) (-1687 (($ $ |#3|) NIL)) (-1442 (($ $ |#3|) NIL)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) NIL) (((-597 |#4|) $) 57)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2237 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-597 |#4|)) 41)) (-3315 (((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-597 $) (-597 |#4|)) 66)) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-2856 (((-110) |#3| $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3908 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ "failed") (-597 |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|))) (-15 -3315 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3315 ((-597 $) (-597 |#4|))))) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1192))
+((-3908 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3908 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-2237 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-2237 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7)))))
+(-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3908 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ "failed") (-597 |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|))) (-15 -3315 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3315 ((-597 $) (-597 |#4|)))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 36)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
(((-1193 |#1|) (-133) (-984)) (T -1193))
-((-2258 (*1 *1 *2) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2258 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
+((-2366 (*1 *1 *2) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-984)))))
+(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2366 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2246 (((-110) $ $) 60)) (-3015 (((-110) $) NIL)) (-3717 (((-597 |#1|) $) 45)) (-3398 (($ $ (-719)) 39)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3303 (($ $ (-719)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-3956 (($) NIL T CONST)) (-3339 (($ $ $) 63) (($ $ (-767 |#1|)) 49) (($ $ |#1|) 53)) (-3012 (((-3 (-767 |#1|) "failed") $) NIL)) (-2446 (((-767 |#1|) $) NIL)) (-2425 (($ $) 32)) (-1673 (((-3 $ "failed") $) NIL)) (-3432 (((-110) $) NIL)) (-3420 (($ $) NIL)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ (-767 |#1|) |#2|) 31)) (-3315 (($ $) 33)) (-3364 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 12)) (-3457 (((-767 |#1|) $) NIL)) (-3468 (((-767 |#1|) $) 34)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-3352 (($ $ $) 62) (($ $ (-767 |#1|)) 51) (($ $ |#1|) 55)) (-2989 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2388 (((-767 |#1|) $) 28)) (-2402 ((|#2| $) 30)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3409 (((-719) $) 36)) (-3445 (((-110) $) 40)) (-2562 ((|#2| $) NIL)) (-2258 (((-804) $) NIL) (($ (-767 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-530)) NIL)) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-767 |#1|)) NIL)) (-1981 ((|#2| $ $) 65) ((|#2| $ (-767 |#1|)) NIL)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (-2943 (($) 13 T CONST)) (-2955 (($) 15 T CONST)) (-1477 (((-597 (-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2148 (((-110) $ $) 38)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 22)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-767 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+((-2352 (((-110) $ $) 60)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 45)) (-1911 (($ $ (-719)) 39)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ (-719)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ $) 63) (($ $ (-767 |#1|)) 49) (($ $ |#1|) 53)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL)) (-2562 (($ $) 32)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-4212 (($ $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) 31)) (-2627 (($ $) 33)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 12)) (-3278 (((-767 |#1|) $) NIL)) (-2008 (((-767 |#1|) $) 34)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (($ $ $) 62) (($ $ (-767 |#1|)) 51) (($ $ |#1|) 55)) (-3477 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-767 |#1|) $) 28)) (-2533 ((|#2| $) 30)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1429 (((-719) $) 36)) (-1613 (((-110) $) 40)) (-2708 ((|#2| $) NIL)) (-2366 (((-804) $) NIL) (($ (-767 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-530)) NIL)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-767 |#1|)) NIL)) (-2065 ((|#2| $ $) 65) ((|#2| $ (-767 |#1|)) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 13 T CONST)) (-3093 (($) 15 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2248 (((-110) $ $) 38)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 22)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-767 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
(((-1194 |#1| |#2|) (-13 (-363 |#2| (-767 |#1|)) (-1200 |#1| |#2|)) (-795) (-984)) (T -1194))
NIL
(-13 (-363 |#2| (-767 |#1|)) (-1200 |#1| |#2|))
-((-2070 ((|#3| |#3| (-719)) 23)) (-2693 ((|#3| |#3| (-719)) 27)) (-3219 ((|#3| |#3| |#3| (-719)) 28)))
-(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#3| |#3| (-719))) (-15 -2070 (|#3| |#3| (-719))) (-15 -3219 (|#3| |#3| |#3| (-719)))) (-13 (-984) (-666 (-388 (-530)))) (-795) (-1200 |#2| |#1|)) (T -1195))
-((-3219 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2070 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2693 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
-(-10 -7 (-15 -2693 (|#3| |#3| (-719))) (-15 -2070 (|#3| |#3| (-719))) (-15 -3219 (|#3| |#3| |#3| (-719))))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3717 (((-597 |#1|) $) 40)) (-3618 (((-3 $ "failed") $ $) 19)) (-3303 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-719)) 42 (|has| |#2| (-162)))) (-3956 (($) 17 T CONST)) (-3339 (($ $ |#1|) 54) (($ $ (-767 |#1|)) 53) (($ $ $) 52)) (-3012 (((-3 (-767 |#1|) "failed") $) 64)) (-2446 (((-767 |#1|) $) 63)) (-1673 (((-3 $ "failed") $) 34)) (-3432 (((-110) $) 45)) (-3420 (($ $) 44)) (-3150 (((-110) $) 31)) (-3327 (((-110) $) 50)) (-3931 (($ (-767 |#1|) |#2|) 51)) (-3315 (($ $) 49)) (-3364 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 60)) (-3457 (((-767 |#1|) $) 61)) (-3114 (($ (-1 |#2| |#2|) $) 41)) (-3352 (($ $ |#1|) 57) (($ $ (-767 |#1|)) 56) (($ $ $) 55)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3445 (((-110) $) 47)) (-2562 ((|#2| $) 46)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#2|) 68) (($ (-767 |#1|)) 65) (($ |#1|) 48)) (-1981 ((|#2| $ (-767 |#1|)) 59) ((|#2| $ $) 58)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+((-2168 ((|#3| |#3| (-719)) 23)) (-2853 ((|#3| |#3| (-719)) 27)) (-2072 ((|#3| |#3| |#3| (-719)) 28)))
+(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -2853 (|#3| |#3| (-719))) (-15 -2168 (|#3| |#3| (-719))) (-15 -2072 (|#3| |#3| |#3| (-719)))) (-13 (-984) (-666 (-388 (-530)))) (-795) (-1200 |#2| |#1|)) (T -1195))
+((-2072 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2853 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+(-10 -7 (-15 -2853 (|#3| |#3| (-719))) (-15 -2168 (|#3| |#3| (-719))) (-15 -2072 (|#3| |#3| |#3| (-719))))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 38)) (-1889 (((-3 $ "failed") $ $) 19)) (-1605 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-719)) 40 (|has| |#2| (-162)))) (-2350 (($) 17 T CONST)) (-3575 (($ $ |#1|) 52) (($ $ (-767 |#1|)) 51) (($ $ $) 50)) (-3139 (((-3 (-767 |#1|) "failed") $) 62)) (-2585 (((-767 |#1|) $) 61)) (-2707 (((-3 $ "failed") $) 32)) (-2985 (((-110) $) 43)) (-4212 (($ $) 42)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 48)) (-3940 (($ (-767 |#1|) |#2|) 49)) (-2627 (($ $) 47)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 58)) (-3278 (((-767 |#1|) $) 59)) (-3217 (($ (-1 |#2| |#2|) $) 39)) (-2448 (($ $ |#1|) 55) (($ $ (-767 |#1|)) 54) (($ $ $) 53)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1613 (((-110) $) 45)) (-2708 ((|#2| $) 44)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#2|) 66) (($ (-767 |#1|)) 63) (($ |#1|) 46)) (-2065 ((|#2| $ (-767 |#1|)) 57) ((|#2| $ $) 56)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
(((-1196 |#1| |#2|) (-133) (-795) (-984)) (T -1196))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))) (-1981 (*1 *2 *1 *3) (-12 (-5 *3 (-767 *4)) (-4 *1 (-1196 *4 *2)) (-4 *4 (-795)) (-4 *2 (-984)))) (-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-3352 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3352 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3339 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1196 *4 *3)) (-4 *3 (-984)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-2258 (*1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3303 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)) (-4 *3 (-162)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-4 *4 (-162)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-597 *3)))))
-(-13 (-984) (-1193 |t#2|) (-975 (-767 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3457 ((-767 |t#1|) $)) (-15 -3364 ((-2 (|:| |k| (-767 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1981 (|t#2| $ (-767 |t#1|))) (-15 -1981 (|t#2| $ $)) (-15 -3352 ($ $ |t#1|)) (-15 -3352 ($ $ (-767 |t#1|))) (-15 -3352 ($ $ $)) (-15 -3339 ($ $ |t#1|)) (-15 -3339 ($ $ (-767 |t#1|))) (-15 -3339 ($ $ $)) (-15 -3931 ($ (-767 |t#1|) |t#2|)) (-15 -3327 ((-110) $)) (-15 -3315 ($ $)) (-15 -2258 ($ |t#1|)) (-15 -3445 ((-110) $)) (-15 -2562 (|t#2| $)) (-15 -3432 ((-110) $)) (-15 -3420 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -3303 ($ $ $)) (-15 -3303 ($ $ (-719)))) |%noBranch|) (-15 -3114 ($ (-1 |t#2| |t#2|) $)) (-15 -3717 ((-597 |t#1|) $)) (IF (|has| |t#2| (-6 -4263)) (-6 -4263) |%noBranch|)))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-767 *4)) (-4 *1 (-1196 *4 *2)) (-4 *4 (-795)) (-4 *2 (-984)))) (-2065 (*1 *2 *1 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-2448 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1196 *4 *3)) (-4 *3 (-984)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-2627 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-1605 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)) (-4 *3 (-162)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-4 *4 (-162)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-597 *3)))))
+(-13 (-984) (-1193 |t#2|) (-975 (-767 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3278 ((-767 |t#1|) $)) (-15 -4097 ((-2 (|:| |k| (-767 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2065 (|t#2| $ (-767 |t#1|))) (-15 -2065 (|t#2| $ $)) (-15 -2448 ($ $ |t#1|)) (-15 -2448 ($ $ (-767 |t#1|))) (-15 -2448 ($ $ $)) (-15 -3575 ($ $ |t#1|)) (-15 -3575 ($ $ (-767 |t#1|))) (-15 -3575 ($ $ $)) (-15 -3940 ($ (-767 |t#1|) |t#2|)) (-15 -3668 ((-110) $)) (-15 -2627 ($ $)) (-15 -2366 ($ |t#1|)) (-15 -1613 ((-110) $)) (-15 -2708 (|t#2| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -1605 ($ $ $)) (-15 -1605 ($ $ (-719)))) |%noBranch|) (-15 -3217 ($ (-1 |t#2| |t#2|) $)) (-15 -3702 ((-597 |t#1|) $)) (IF (|has| |t#2| (-6 -4262)) (-6 -4262) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1193 |#2|) . T))
-((-3280 (((-110) $) 15)) (-3292 (((-110) $) 14)) (-3231 (($ $) 19) (($ $ (-719)) 20)))
-(((-1197 |#1| |#2|) (-10 -8 (-15 -3231 (|#1| |#1| (-719))) (-15 -3231 (|#1| |#1|)) (-15 -3280 ((-110) |#1|)) (-15 -3292 ((-110) |#1|))) (-1198 |#2|) (-344)) (T -1197))
+((-2536 (((-110) $) 15)) (-2856 (((-110) $) 14)) (-3962 (($ $) 19) (($ $ (-719)) 20)))
+(((-1197 |#1| |#2|) (-10 -8 (-15 -3962 (|#1| |#1| (-719))) (-15 -3962 (|#1| |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|))) (-1198 |#2|) (-344)) (T -1197))
NIL
-(-10 -8 (-15 -3231 (|#1| |#1| (-719))) (-15 -3231 (|#1| |#1|)) (-15 -3280 ((-110) |#1|)) (-15 -3292 ((-110) |#1|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3042 (((-2 (|:| -3251 $) (|:| -4257 $) (|:| |associate| $)) $) 41)) (-3031 (($ $) 40)) (-3006 (((-110) $) 38)) (-3280 (((-110) $) 94)) (-3242 (((-719)) 90)) (-3618 (((-3 $ "failed") $ $) 19)) (-1359 (($ $) 73)) (-3550 (((-399 $) $) 72)) (-1945 (((-110) $ $) 59)) (-3956 (($) 17 T CONST)) (-3012 (((-3 |#1| "failed") $) 101)) (-2446 ((|#1| $) 100)) (-3607 (($ $ $) 55)) (-1673 (((-3 $ "failed") $) 34)) (-3588 (($ $ $) 56)) (-4063 (((-2 (|:| -1981 (-597 $)) (|:| -1898 $)) (-597 $)) 51)) (-3175 (($ $ (-719)) 87 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 86 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2049 (((-110) $) 71)) (-1334 (((-781 (-862)) $) 84 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3150 (((-110) $) 31)) (-1915 (((-3 (-597 $) "failed") (-597 $) $) 52)) (-2072 (($ $ $) 46) (($ (-597 $)) 45)) (-3443 (((-1082) $) 9)) (-2359 (($ $) 70)) (-3268 (((-110) $) 93)) (-2485 (((-1046) $) 10)) (-3728 (((-1095 $) (-1095 $) (-1095 $)) 44)) (-2108 (($ $ $) 48) (($ (-597 $)) 47)) (-2473 (((-399 $) $) 74)) (-3255 (((-781 (-862))) 91)) (-1925 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1898 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3562 (((-3 $ "failed") $ $) 42)) (-4051 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1934 (((-719) $) 58)) (-3017 (((-2 (|:| -3624 $) (|:| -3088 $)) $ $) 57)) (-3187 (((-3 (-719) "failed") $ $) 85 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1248 (((-130)) 99)) (-3409 (((-781 (-862)) $) 92)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ $) 43) (($ (-388 (-530))) 65) (($ |#1|) 102)) (-1795 (((-3 $ "failed") $) 83 (-1476 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-1667 (((-719)) 29)) (-3020 (((-110) $ $) 39)) (-3292 (((-110) $) 95)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33) (($ $ (-530)) 69)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-3231 (($ $) 89 (|has| |#1| (-349))) (($ $ (-719)) 88 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2257 (($ $ $) 64) (($ $ |#1|) 98)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32) (($ $ (-530)) 68)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 67) (($ (-388 (-530)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(-10 -8 (-15 -3962 (|#1| |#1| (-719))) (-15 -3962 (|#1| |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2536 (((-110) $) 91)) (-2766 (((-719)) 87)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 98)) (-2585 ((|#1| $) 97)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3948 (($ $ (-719)) 84 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 81 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-1655 (((-110) $) 90)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-1415 (((-781 (-862))) 88)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 82 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) 96)) (-1429 (((-781 (-862)) $) 89)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 99)) (-3251 (((-3 $ "failed") $) 80 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-2856 (((-110) $) 92)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3962 (($ $) 86 (|has| |#1| (-349))) (($ $ (-719)) 85 (|has| |#1| (-349)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62) (($ $ |#1|) 95)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
(((-1198 |#1|) (-133) (-344)) (T -1198))
-((-3292 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-3255 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-3242 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))) (-3231 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-3231 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349)))))
-(-13 (-344) (-975 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -3292 ((-110) $)) (-15 -3280 ((-110) $)) (-15 -3268 ((-110) $)) (-15 -3409 ((-781 (-862)) $)) (-15 -3255 ((-781 (-862)))) (-15 -3242 ((-719))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -3231 ($ $)) (-15 -3231 ($ $ (-719)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1476 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -1476 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T) ((-1188 |#1|) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3717 (((-597 |#1|) $) 86)) (-3398 (($ $ (-719)) 89)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3303 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-719)) NIL (|has| |#2| (-162)))) (-3956 (($) NIL T CONST)) (-3339 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-3012 (((-3 (-767 |#1|) "failed") $) NIL) (((-3 (-834 |#1|) "failed") $) NIL)) (-2446 (((-767 |#1|) $) NIL) (((-834 |#1|) $) NIL)) (-2425 (($ $) 88)) (-1673 (((-3 $ "failed") $) NIL)) (-3432 (((-110) $) 77)) (-3420 (($ $) 81)) (-3374 (($ $ $ (-719)) 90)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ (-767 |#1|) |#2|) NIL) (($ (-834 |#1|) |#2|) 26)) (-3315 (($ $) 103)) (-3364 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3457 (((-767 |#1|) $) NIL)) (-3468 (((-767 |#1|) $) NIL)) (-3114 (($ (-1 |#2| |#2|) $) NIL)) (-3352 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-2070 (($ $ (-719)) 97 (|has| |#2| (-666 (-388 (-530)))))) (-2989 (((-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2388 (((-834 |#1|) $) 70)) (-2402 ((|#2| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2693 (($ $ (-719)) 94 (|has| |#2| (-666 (-388 (-530)))))) (-3409 (((-719) $) 87)) (-3445 (((-110) $) 71)) (-2562 ((|#2| $) 75)) (-2258 (((-804) $) 57) (($ (-530)) NIL) (($ |#2|) 51) (($ (-767 |#1|)) NIL) (($ |#1|) 59) (($ (-834 |#1|)) NIL) (($ (-615 |#1| |#2|)) 43) (((-1194 |#1| |#2|) $) 64) (((-1203 |#1| |#2|) $) 69)) (-1669 (((-597 |#2|) $) NIL)) (-2782 ((|#2| $ (-834 |#1|)) NIL)) (-1981 ((|#2| $ (-767 |#1|)) NIL) ((|#2| $ $) NIL)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 21 T CONST)) (-2955 (($) 25 T CONST)) (-1477 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3385 (((-3 (-615 |#1| |#2|) "failed") $) 102)) (-2148 (((-110) $ $) 65)) (-2245 (($ $) 96) (($ $ $) 95)) (-2234 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-834 |#1|)) NIL)))
-(((-1199 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2258 ($ (-615 |#1| |#2|))) (-15 -2258 ((-1194 |#1| |#2|) $)) (-15 -2258 ((-1203 |#1| |#2|) $)) (-15 -3385 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -3374 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2693 ($ $ (-719))) (-15 -2070 ($ $ (-719)))) |%noBranch|))) (-795) (-162)) (T -1199))
-((-2258 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-1199 *3 *4)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3385 (*1 *2 *1) (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3374 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2693 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
-(-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2258 ($ (-615 |#1| |#2|))) (-15 -2258 ((-1194 |#1| |#2|) $)) (-15 -2258 ((-1203 |#1| |#2|) $)) (-15 -3385 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -3374 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2693 ($ $ (-719))) (-15 -2070 ($ $ (-719)))) |%noBranch|)))
-((-2246 (((-110) $ $) 7)) (-3015 (((-110) $) 16)) (-3717 (((-597 |#1|) $) 40)) (-3398 (($ $ (-719)) 73)) (-3618 (((-3 $ "failed") $ $) 19)) (-3303 (($ $ $) 43 (|has| |#2| (-162))) (($ $ (-719)) 42 (|has| |#2| (-162)))) (-3956 (($) 17 T CONST)) (-3339 (($ $ |#1|) 54) (($ $ (-767 |#1|)) 53) (($ $ $) 52)) (-3012 (((-3 (-767 |#1|) "failed") $) 64)) (-2446 (((-767 |#1|) $) 63)) (-1673 (((-3 $ "failed") $) 34)) (-3432 (((-110) $) 45)) (-3420 (($ $) 44)) (-3150 (((-110) $) 31)) (-3327 (((-110) $) 50)) (-3931 (($ (-767 |#1|) |#2|) 51)) (-3315 (($ $) 49)) (-3364 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 60)) (-3457 (((-767 |#1|) $) 61)) (-3468 (((-767 |#1|) $) 75)) (-3114 (($ (-1 |#2| |#2|) $) 41)) (-3352 (($ $ |#1|) 57) (($ $ (-767 |#1|)) 56) (($ $ $) 55)) (-3443 (((-1082) $) 9)) (-2485 (((-1046) $) 10)) (-3409 (((-719) $) 74)) (-3445 (((-110) $) 47)) (-2562 ((|#2| $) 46)) (-2258 (((-804) $) 11) (($ (-530)) 28) (($ |#2|) 68) (($ (-767 |#1|)) 65) (($ |#1|) 48)) (-1981 ((|#2| $ (-767 |#1|)) 59) ((|#2| $ $) 58)) (-1667 (((-719)) 29)) (-2723 (($ $ (-862)) 26) (($ $ (-719)) 33)) (-2943 (($) 18 T CONST)) (-2955 (($) 30 T CONST)) (-2148 (((-110) $ $) 6)) (-2245 (($ $) 22) (($ $ $) 21)) (-2234 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 32)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+((-2856 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-1415 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-2766 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349)))))
+(-13 (-344) (-975 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -2856 ((-110) $)) (-15 -2536 ((-110) $)) (-15 -1655 ((-110) $)) (-15 -1429 ((-781 (-862)) $)) (-15 -1415 ((-781 (-862)))) (-15 -2766 ((-719))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -3962 ($ $)) (-15 -3962 ($ $ (-719)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T) ((-1188 |#1|) . T))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 86)) (-1911 (($ $ (-719)) 89)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-719)) NIL (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL) (((-3 (-834 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL) (((-834 |#1|) $) NIL)) (-2562 (($ $) 88)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 77)) (-4212 (($ $) 81)) (-2801 (($ $ $ (-719)) 90)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) NIL) (($ (-834 |#1|) |#2|) 26)) (-2627 (($ $) 103)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3278 (((-767 |#1|) $) NIL)) (-2008 (((-767 |#1|) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-2168 (($ $ (-719)) 97 (|has| |#2| (-666 (-388 (-530)))))) (-3477 (((-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-834 |#1|) $) 70)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2853 (($ $ (-719)) 94 (|has| |#2| (-666 (-388 (-530)))))) (-1429 (((-719) $) 87)) (-1613 (((-110) $) 71)) (-2708 ((|#2| $) 75)) (-2366 (((-804) $) 57) (($ (-530)) NIL) (($ |#2|) 51) (($ (-767 |#1|)) NIL) (($ |#1|) 59) (($ (-834 |#1|)) NIL) (($ (-615 |#1| |#2|)) 43) (((-1194 |#1| |#2|) $) 64) (((-1203 |#1| |#2|) $) 69)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-834 |#1|)) NIL)) (-2065 ((|#2| $ (-767 |#1|)) NIL) ((|#2| $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 21 T CONST)) (-3093 (($) 25 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1352 (((-3 (-615 |#1| |#2|) "failed") $) 102)) (-2248 (((-110) $ $) 65)) (-2351 (($ $) 96) (($ $ $) 95)) (-2339 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-834 |#1|)) NIL)))
+(((-1199 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2366 ($ (-615 |#1| |#2|))) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1203 |#1| |#2|) $)) (-15 -1352 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2853 ($ $ (-719))) (-15 -2168 ($ $ (-719)))) |%noBranch|))) (-795) (-162)) (T -1199))
+((-2366 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-1199 *3 *4)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-1352 (*1 *2 *1) (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
+(-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2366 ($ (-615 |#1| |#2|))) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1203 |#1| |#2|) $)) (-15 -1352 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2853 ($ $ (-719))) (-15 -2168 ($ $ (-719)))) |%noBranch|)))
+((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 38)) (-1911 (($ $ (-719)) 71)) (-1889 (((-3 $ "failed") $ $) 19)) (-1605 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-719)) 40 (|has| |#2| (-162)))) (-2350 (($) 17 T CONST)) (-3575 (($ $ |#1|) 52) (($ $ (-767 |#1|)) 51) (($ $ $) 50)) (-3139 (((-3 (-767 |#1|) "failed") $) 62)) (-2585 (((-767 |#1|) $) 61)) (-2707 (((-3 $ "failed") $) 32)) (-2985 (((-110) $) 43)) (-4212 (($ $) 42)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 48)) (-3940 (($ (-767 |#1|) |#2|) 49)) (-2627 (($ $) 47)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 58)) (-3278 (((-767 |#1|) $) 59)) (-2008 (((-767 |#1|) $) 73)) (-3217 (($ (-1 |#2| |#2|) $) 39)) (-2448 (($ $ |#1|) 55) (($ $ (-767 |#1|)) 54) (($ $ $) 53)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 (((-719) $) 72)) (-1613 (((-110) $) 45)) (-2708 ((|#2| $) 44)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#2|) 66) (($ (-767 |#1|)) 63) (($ |#1|) 46)) (-2065 ((|#2| $ (-767 |#1|)) 57) ((|#2| $ $) 56)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
(((-1200 |#1| |#2|) (-133) (-795) (-984)) (T -1200))
-((-3468 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-719)))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(-13 (-1196 |t#1| |t#2|) (-10 -8 (-15 -3468 ((-767 |t#1|) $)) (-15 -3409 ((-719) $)) (-15 -3398 ($ $ (-719)))))
+((-2008 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-719)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(-13 (-1196 |t#1| |t#2|) (-10 -8 (-15 -2008 ((-767 |t#1|) $)) (-15 -1429 ((-719) $)) (-15 -1911 ($ $ (-719)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1193 |#2|) . T) ((-1196 |#1| |#2|) . T))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3717 (((-597 (-1099)) $) NIL)) (-3493 (($ (-1194 (-1099) |#1|)) NIL)) (-3398 (($ $ (-719)) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3303 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-719)) NIL (|has| |#1| (-162)))) (-3956 (($) NIL T CONST)) (-3339 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-3012 (((-3 (-767 (-1099)) "failed") $) NIL)) (-2446 (((-767 (-1099)) $) NIL)) (-1673 (((-3 $ "failed") $) NIL)) (-3432 (((-110) $) NIL)) (-3420 (($ $) NIL)) (-3150 (((-110) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ (-767 (-1099)) |#1|) NIL)) (-3315 (($ $) NIL)) (-3364 (((-2 (|:| |k| (-767 (-1099))) (|:| |c| |#1|)) $) NIL)) (-3457 (((-767 (-1099)) $) NIL)) (-3468 (((-767 (-1099)) $) NIL)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-3352 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2147 (((-1194 (-1099) |#1|) $) NIL)) (-3409 (((-719) $) NIL)) (-3445 (((-110) $) NIL)) (-2562 ((|#1| $) NIL)) (-2258 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-767 (-1099))) NIL) (($ (-1099)) NIL)) (-1981 ((|#1| $ (-767 (-1099))) NIL) ((|#1| $ $) NIL)) (-1667 (((-719)) NIL)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) NIL T CONST)) (-3481 (((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $) NIL)) (-2955 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1099) $) NIL)))
-(((-1201 |#1|) (-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2147 ((-1194 (-1099) |#1|) $)) (-15 -3493 ($ (-1194 (-1099) |#1|))) (-15 -3481 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $)))) (-984)) (T -1201))
-((-2147 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1099) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-984)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-984)))))
-(-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2147 ((-1194 (-1099) |#1|) $)) (-15 -3493 ($ (-1194 (-1099) |#1|))) (-15 -3481 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $))))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) NIL)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3956 (($) NIL T CONST)) (-3012 (((-3 |#2| "failed") $) NIL)) (-2446 ((|#2| $) NIL)) (-2425 (($ $) NIL)) (-1673 (((-3 $ "failed") $) 36)) (-3432 (((-110) $) 30)) (-3420 (($ $) 32)) (-3150 (((-110) $) NIL)) (-3239 (((-719) $) NIL)) (-3683 (((-597 $) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ |#2| |#1|) NIL)) (-3457 ((|#2| $) 19)) (-3468 ((|#2| $) 16)) (-3114 (($ (-1 |#1| |#1|) $) NIL)) (-2989 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2388 ((|#2| $) NIL)) (-2402 ((|#1| $) NIL)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-3445 (((-110) $) 27)) (-2562 ((|#1| $) 28)) (-2258 (((-804) $) 55) (($ (-530)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1669 (((-597 |#1|) $) NIL)) (-2782 ((|#1| $ |#2|) NIL)) (-1981 ((|#1| $ |#2|) 24)) (-1667 (((-719)) 14)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 25 T CONST)) (-2955 (($) 11 T CONST)) (-1477 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2148 (((-110) $ $) 26)) (-2257 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-2245 (($ $) NIL) (($ $ $) NIL)) (-2234 (($ $ $) 44)) (** (($ $ (-862)) NIL) (($ $ (-719)) 46)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2167 (((-719) $) 15)))
-(((-1202 |#1| |#2|) (-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-719) $)) (-15 -2258 ($ |#2|)) (-15 -3468 (|#2| $)) (-15 -3457 (|#2| $)) (-15 -2425 ($ $)) (-15 -1981 (|#1| $ |#2|)) (-15 -3445 ((-110) $)) (-15 -2562 (|#1| $)) (-15 -3432 ((-110) $)) (-15 -3420 ($ $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2257 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4263)) (-6 -4263) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|))) (-984) (-791)) (T -1202))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-791)))) (-2258 (*1 *1 *2) (-12 (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-3468 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-3457 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-1981 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-2562 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-3432 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-3420 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2257 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-719) $)) (-15 -2258 ($ |#2|)) (-15 -3468 (|#2| $)) (-15 -3457 (|#2| $)) (-15 -2425 ($ $)) (-15 -1981 (|#1| $ |#2|)) (-15 -3445 ((-110) $)) (-15 -2562 (|#1| $)) (-15 -3432 ((-110) $)) (-15 -3420 ($ $)) (-15 -3114 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2257 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4263)) (-6 -4263) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |#1| (-6 -4268)) (-6 -4268) |%noBranch|)))
-((-2246 (((-110) $ $) 26)) (-3015 (((-110) $) NIL)) (-3717 (((-597 |#1|) $) 120)) (-3493 (($ (-1194 |#1| |#2|)) 44)) (-3398 (($ $ (-719)) 32)) (-3618 (((-3 $ "failed") $ $) NIL)) (-3303 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-719)) 46 (|has| |#2| (-162)))) (-3956 (($) NIL T CONST)) (-3339 (($ $ |#1|) 102) (($ $ (-767 |#1|)) 103) (($ $ $) 25)) (-3012 (((-3 (-767 |#1|) "failed") $) NIL)) (-2446 (((-767 |#1|) $) NIL)) (-1673 (((-3 $ "failed") $) 110)) (-3432 (((-110) $) 105)) (-3420 (($ $) 106)) (-3150 (((-110) $) NIL)) (-3327 (((-110) $) NIL)) (-3931 (($ (-767 |#1|) |#2|) 19)) (-3315 (($ $) NIL)) (-3364 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3457 (((-767 |#1|) $) 111)) (-3468 (((-767 |#1|) $) 114)) (-3114 (($ (-1 |#2| |#2|) $) 119)) (-3352 (($ $ |#1|) 100) (($ $ (-767 |#1|)) 101) (($ $ $) 56)) (-3443 (((-1082) $) NIL)) (-2485 (((-1046) $) NIL)) (-2147 (((-1194 |#1| |#2|) $) 84)) (-3409 (((-719) $) 117)) (-3445 (((-110) $) 70)) (-2562 ((|#2| $) 28)) (-2258 (((-804) $) 63) (($ (-530)) 77) (($ |#2|) 74) (($ (-767 |#1|)) 17) (($ |#1|) 73)) (-1981 ((|#2| $ (-767 |#1|)) 104) ((|#2| $ $) 27)) (-1667 (((-719)) 108)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 14 T CONST)) (-3481 (((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2955 (($) 29 T CONST)) (-2148 (((-110) $ $) 13)) (-2245 (($ $) 88) (($ $ $) 91)) (-2234 (($ $ $) 55)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) 47) (($ (-530) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1203 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2147 ((-1194 |#1| |#2|) $)) (-15 -3493 ($ (-1194 |#1| |#2|))) (-15 -3481 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-795) (-984)) (T -1203))
-((-2147 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *1 (-1203 *3 *4)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2147 ((-1194 |#1| |#2|) $)) (-15 -3493 ($ (-1194 |#1| |#2|))) (-15 -3481 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4114 (((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)) 15) (((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|))) 11)))
-(((-1204 |#1|) (-10 -7 (-15 -4114 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4114 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)))) (-1135)) (T -1204))
-((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 (-1080 *5)) (-597 (-1080 *5)))) (-5 *4 (-530)) (-5 *2 (-597 (-1080 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1135)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1 (-1080 *4) (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -4114 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4114 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530))))
-((-3515 (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 148) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 147) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 146) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 145) (((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-981 |#1| |#2|)) 130)) (-3504 (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|))) 72) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110)) 71) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110)) 70)) (-3550 (((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|)) 61)) (-3525 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 115) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 114) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 113) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 112) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 107)) (-3537 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 120) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 119) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 118) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 117)) (-3173 (((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) 98) (((-1095 (-962 (-388 |#1|))) (-1095 |#1|)) 89) (((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|))) 96) (((-893 (-962 (-388 |#1|))) (-893 |#1|)) 94) (((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|))) 33)))
-(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3550 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3173 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3173 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3173 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3173 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3173 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))))) (-13 (-793) (-289) (-140) (-960)) (-597 (-1099)) (-597 (-1099))) (T -1205))
-((-3173 (*1 *2 *3) (-12 (-5 *3 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-728 *4 (-806 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-1095 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *6))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *5))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3537 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3525 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3525 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3515 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3515 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3504 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))))
-(-10 -7 (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -3504 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3515 ((-597 (-2 (|:| -2965 (-1095 |#1|)) (|:| -3351 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3525 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3537 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3550 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3173 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3173 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3173 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3173 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3173 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|))))))
-((-3585 (((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|) 21)) (-3560 (((-110) (-1181 |#1|)) 12)) (-3572 (((-3 (-1181 (-530)) "failed") (-1181 |#1|)) 16)))
-(((-1206 |#1|) (-10 -7 (-15 -3560 ((-110) (-1181 |#1|))) (-15 -3572 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -3585 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|))) (-593 (-530))) (T -1206))
-((-3585 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))) (-3572 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110)) (-5 *1 (-1206 *4)))))
-(-10 -7 (-15 -3560 ((-110) (-1181 |#1|))) (-15 -3572 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -3585 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|)))
-((-2246 (((-110) $ $) NIL)) (-3015 (((-110) $) 11)) (-3618 (((-3 $ "failed") $ $) NIL)) (-2879 (((-719)) 8)) (-3956 (($) NIL T CONST)) (-1673 (((-3 $ "failed") $) 43)) (-1376 (($) 36)) (-3150 (((-110) $) NIL)) (-1560 (((-3 $ "failed") $) 29)) (-3830 (((-862) $) 15)) (-3443 (((-1082) $) NIL)) (-3677 (($) 25 T CONST)) (-1910 (($ (-862)) 37)) (-2485 (((-1046) $) NIL)) (-3173 (((-530) $) 13)) (-2258 (((-804) $) 22) (($ (-530)) 19)) (-1667 (((-719)) 9)) (-2723 (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (-2943 (($) 23 T CONST)) (-2955 (($) 24 T CONST)) (-2148 (((-110) $ $) 27)) (-2245 (($ $) 38) (($ $ $) 35)) (-2234 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) 40)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 32) (($ $ $) 31)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 (-1099)) $) NIL)) (-3655 (($ (-1194 (-1099) |#1|)) NIL)) (-1911 (($ $ (-719)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-719)) NIL (|has| |#1| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-3139 (((-3 (-767 (-1099)) "failed") $) NIL)) (-2585 (((-767 (-1099)) $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-4212 (($ $) NIL)) (-2731 (((-110) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 (-1099)) |#1|) NIL)) (-2627 (($ $) NIL)) (-4097 (((-2 (|:| |k| (-767 (-1099))) (|:| |c| |#1|)) $) NIL)) (-3278 (((-767 (-1099)) $) NIL)) (-2008 (((-767 (-1099)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2246 (((-1194 (-1099) |#1|) $) NIL)) (-1429 (((-719) $) NIL)) (-1613 (((-110) $) NIL)) (-2708 ((|#1| $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-767 (-1099))) NIL) (($ (-1099)) NIL)) (-2065 ((|#1| $ (-767 (-1099))) NIL) ((|#1| $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) NIL T CONST)) (-3808 (((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $) NIL)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1099) $) NIL)))
+(((-1201 |#1|) (-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2246 ((-1194 (-1099) |#1|) $)) (-15 -3655 ($ (-1194 (-1099) |#1|))) (-15 -3808 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $)))) (-984)) (T -1201))
+((-2246 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1099) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-984)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-984)))))
+(-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2246 ((-1194 (-1099) |#1|) $)) (-15 -3655 ($ (-1194 (-1099) |#1|))) (-15 -3808 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $))))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL)) (-2585 ((|#2| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 36)) (-2985 (((-110) $) 30)) (-4212 (($ $) 32)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ |#2| |#1|) NIL)) (-3278 ((|#2| $) 19)) (-2008 ((|#2| $) 16)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2521 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1613 (((-110) $) 27)) (-2708 ((|#1| $) 28)) (-2366 (((-804) $) 55) (($ (-530)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ |#2|) NIL)) (-2065 ((|#1| $ |#2|) 24)) (-3300 (((-719)) 14)) (-3080 (($) 25 T CONST)) (-3093 (($) 11 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2248 (((-110) $ $) 26)) (-2364 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 44)) (** (($ $ (-862)) NIL) (($ $ (-719)) 46)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2267 (((-719) $) 15)))
+(((-1202 |#1| |#2|) (-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2267 ((-719) $)) (-15 -2366 ($ |#2|)) (-15 -2008 (|#2| $)) (-15 -3278 (|#2| $)) (-15 -2562 ($ $)) (-15 -2065 (|#1| $ |#2|)) (-15 -1613 ((-110) $)) (-15 -2708 (|#1| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-791)) (T -1202))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-791)))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-2008 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-3278 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-2065 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-2708 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2364 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-791)))))
+(-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2267 ((-719) $)) (-15 -2366 ($ |#2|)) (-15 -2008 (|#2| $)) (-15 -3278 (|#2| $)) (-15 -2562 ($ $)) (-15 -2065 (|#1| $ |#2|)) (-15 -1613 ((-110) $)) (-15 -2708 (|#1| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
+((-2352 (((-110) $ $) 26)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 120)) (-3655 (($ (-1194 |#1| |#2|)) 44)) (-1911 (($ $ (-719)) 32)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-719)) 46 (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ |#1|) 102) (($ $ (-767 |#1|)) 103) (($ $ $) 25)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL)) (-2707 (((-3 $ "failed") $) 110)) (-2985 (((-110) $) 105)) (-4212 (($ $) 106)) (-2731 (((-110) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) 19)) (-2627 (($ $) NIL)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3278 (((-767 |#1|) $) 111)) (-2008 (((-767 |#1|) $) 114)) (-3217 (($ (-1 |#2| |#2|) $) 119)) (-2448 (($ $ |#1|) 100) (($ $ (-767 |#1|)) 101) (($ $ $) 56)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2246 (((-1194 |#1| |#2|) $) 84)) (-1429 (((-719) $) 117)) (-1613 (((-110) $) 70)) (-2708 ((|#2| $) 28)) (-2366 (((-804) $) 63) (($ (-530)) 77) (($ |#2|) 74) (($ (-767 |#1|)) 17) (($ |#1|) 73)) (-2065 ((|#2| $ (-767 |#1|)) 104) ((|#2| $ $) 27)) (-3300 (((-719)) 108)) (-3080 (($) 14 T CONST)) (-3808 (((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 13)) (-2351 (($ $) 88) (($ $ $) 91)) (-2339 (($ $ $) 55)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) 47) (($ (-530) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1203 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2246 ((-1194 |#1| |#2|) $)) (-15 -3655 ($ (-1194 |#1| |#2|))) (-15 -3808 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-795) (-984)) (T -1203))
+((-2246 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *1 (-1203 *3 *4)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2246 ((-1194 |#1| |#2|) $)) (-15 -3655 ($ (-1194 |#1| |#2|))) (-15 -3808 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4126 (((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)) 15) (((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|))) 11)))
+(((-1204 |#1|) (-10 -7 (-15 -4126 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4126 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)))) (-1135)) (T -1204))
+((-4126 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 (-1080 *5)) (-597 (-1080 *5)))) (-5 *4 (-530)) (-5 *2 (-597 (-1080 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1135)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-1 (-1080 *4) (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1135)))))
+(-10 -7 (-15 -4126 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4126 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530))))
+((-3205 (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 148) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 147) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 146) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 145) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|)) 130)) (-2149 (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|))) 72) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110)) 71) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110)) 70)) (-3272 (((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|)) 61)) (-3009 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 115) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 114) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 113) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 112) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 107)) (-1500 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 120) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 119) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 118) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 117)) (-3260 (((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) 98) (((-1095 (-962 (-388 |#1|))) (-1095 |#1|)) 89) (((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|))) 96) (((-893 (-962 (-388 |#1|))) (-893 |#1|)) 94) (((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|))) 33)))
+(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3272 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3260 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3260 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3260 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))))) (-13 (-793) (-289) (-140) (-960)) (-597 (-1099)) (-597 (-1099))) (T -1205))
+((-3260 (*1 *2 *3) (-12 (-5 *3 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-728 *4 (-806 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-1095 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *6))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *5))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-2149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))))
+(-10 -7 (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3272 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3260 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3260 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3260 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|))))))
+((-2445 (((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|) 21)) (-3061 (((-110) (-1181 |#1|)) 12)) (-2103 (((-3 (-1181 (-530)) "failed") (-1181 |#1|)) 16)))
+(((-1206 |#1|) (-10 -7 (-15 -3061 ((-110) (-1181 |#1|))) (-15 -2103 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -2445 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|))) (-593 (-530))) (T -1206))
+((-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))) (-2103 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110)) (-5 *1 (-1206 *4)))))
+(-10 -7 (-15 -3061 ((-110) (-1181 |#1|))) (-15 -2103 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -2445 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|)))
+((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 11)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) 8)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 43)) (-1364 (($) 36)) (-2731 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) 29)) (-1905 (((-862) $) 15)) (-1424 (((-1082) $) NIL)) (-3657 (($) 25 T CONST)) (-1986 (($ (-862)) 37)) (-2624 (((-1046) $) NIL)) (-3260 (((-530) $) 13)) (-2366 (((-804) $) 22) (($ (-530)) 19)) (-3300 (((-719)) 9)) (-3080 (($) 23 T CONST)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 27)) (-2351 (($ $) 38) (($ $ $) 35)) (-2339 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) 40)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 32) (($ $ $) 31)))
(((-1207 |#1|) (-13 (-162) (-349) (-572 (-530)) (-1075)) (-862)) (T -1207))
NIL
(-13 (-162) (-349) (-572 (-530)) (-1075))
@@ -4959,4 +4959,4 @@ NIL
NIL
NIL
NIL
-((-3 3152487 3152492 3152497 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3152472 3152477 3152482 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3152457 3152462 3152467 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3152442 3152447 3152452 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1207 3151572 3152317 3152394 "ZMOD" 3152399 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1206 3150682 3150846 3151055 "ZLINDEP" 3151404 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1205 3140086 3141831 3143783 "ZDSOLVE" 3148831 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1204 3139332 3139473 3139662 "YSTREAM" 3139932 NIL YSTREAM (NIL T) -7 NIL NIL) (-1203 3137101 3138637 3138840 "XRPOLY" 3139175 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1202 3133563 3134892 3135474 "XPR" 3136565 NIL XPR (NIL T T) -8 NIL NIL) (-1201 3131277 3132898 3133101 "XPOLY" 3133394 NIL XPOLY (NIL T) -8 NIL NIL) (-1200 3129091 3130469 3130523 "XPOLYC" 3130808 NIL XPOLYC (NIL T T) -9 NIL 3130921) (-1199 3125463 3127608 3127996 "XPBWPOLY" 3128749 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1198 3121391 3123704 3123746 "XF" 3124367 NIL XF (NIL T) -9 NIL 3124766) (-1197 3121012 3121100 3121269 "XF-" 3121274 NIL XF- (NIL T T) -8 NIL NIL) (-1196 3116392 3117691 3117745 "XFALG" 3119893 NIL XFALG (NIL T T) -9 NIL 3120680) (-1195 3115529 3115633 3115837 "XEXPPKG" 3116284 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1194 3113628 3115380 3115475 "XDPOLY" 3115480 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1193 3112507 3113117 3113159 "XALG" 3113221 NIL XALG (NIL T) -9 NIL 3113340) (-1192 3105983 3110491 3110984 "WUTSET" 3112099 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1191 3103795 3104602 3104953 "WP" 3105765 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1190 3102681 3102879 3103174 "WFFINTBS" 3103592 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1189 3100585 3101012 3101474 "WEIER" 3102253 NIL WEIER (NIL T) -7 NIL NIL) (-1188 3099734 3100158 3100200 "VSPACE" 3100336 NIL VSPACE (NIL T) -9 NIL 3100410) (-1187 3099572 3099599 3099690 "VSPACE-" 3099695 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1186 3099318 3099361 3099432 "VOID" 3099523 T VOID (NIL) -8 NIL NIL) (-1185 3097454 3097813 3098219 "VIEW" 3098934 T VIEW (NIL) -7 NIL NIL) (-1184 3093879 3094517 3095254 "VIEWDEF" 3096739 T VIEWDEF (NIL) -7 NIL NIL) (-1183 3083217 3085427 3087600 "VIEW3D" 3091728 T VIEW3D (NIL) -8 NIL NIL) (-1182 3075499 3077128 3078707 "VIEW2D" 3081660 T VIEW2D (NIL) -8 NIL NIL) (-1181 3070908 3075269 3075361 "VECTOR" 3075442 NIL VECTOR (NIL T) -8 NIL NIL) (-1180 3069485 3069744 3070062 "VECTOR2" 3070638 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1179 3063025 3067277 3067320 "VECTCAT" 3068308 NIL VECTCAT (NIL T) -9 NIL 3068892) (-1178 3062039 3062293 3062683 "VECTCAT-" 3062688 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1177 3061520 3061690 3061810 "VARIABLE" 3061954 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1176 3061453 3061458 3061488 "UTYPE" 3061493 T UTYPE (NIL) -9 NIL NIL) (-1175 3060288 3060442 3060703 "UTSODETL" 3061279 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1174 3057728 3058188 3058712 "UTSODE" 3059829 NIL UTSODE (NIL T T) -7 NIL NIL) (-1173 3049572 3055368 3055856 "UTS" 3057297 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1172 3040917 3046282 3046324 "UTSCAT" 3047425 NIL UTSCAT (NIL T) -9 NIL 3048182) (-1171 3038272 3038988 3039976 "UTSCAT-" 3039981 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1170 3037903 3037946 3038077 "UTS2" 3038223 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1169 3032179 3034744 3034787 "URAGG" 3036857 NIL URAGG (NIL T) -9 NIL 3037579) (-1168 3029118 3029981 3031104 "URAGG-" 3031109 NIL URAGG- (NIL T T) -8 NIL NIL) (-1167 3024804 3027735 3028206 "UPXSSING" 3028782 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1166 3016695 3023925 3024205 "UPXS" 3024581 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1165 3009724 3016600 3016671 "UPXSCONS" 3016676 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1164 3000013 3006843 3006904 "UPXSCCA" 3007553 NIL UPXSCCA (NIL T T) -9 NIL 3007794) (-1163 2999652 2999737 2999910 "UPXSCCA-" 2999915 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1162 2989863 2996466 2996508 "UPXSCAT" 2997151 NIL UPXSCAT (NIL T) -9 NIL 2997759) (-1161 2989297 2989376 2989553 "UPXS2" 2989778 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1160 2987951 2988204 2988555 "UPSQFREE" 2989040 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1159 2981842 2984897 2984951 "UPSCAT" 2986100 NIL UPSCAT (NIL T T) -9 NIL 2986874) (-1158 2981047 2981254 2981580 "UPSCAT-" 2981585 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1157 2967133 2975170 2975212 "UPOLYC" 2977290 NIL UPOLYC (NIL T) -9 NIL 2978511) (-1156 2958463 2960888 2964034 "UPOLYC-" 2964039 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1155 2958094 2958137 2958268 "UPOLYC2" 2958414 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1154 2949513 2957663 2957800 "UP" 2958004 NIL UP (NIL NIL T) -8 NIL NIL) (-1153 2948856 2948963 2949126 "UPMP" 2949402 NIL UPMP (NIL T T) -7 NIL NIL) (-1152 2948409 2948490 2948629 "UPDIVP" 2948769 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1151 2946977 2947226 2947542 "UPDECOMP" 2948158 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1150 2946212 2946324 2946509 "UPCDEN" 2946861 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1149 2945735 2945804 2945951 "UP2" 2946137 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1148 2944252 2944939 2945216 "UNISEG" 2945493 NIL UNISEG (NIL T) -8 NIL NIL) (-1147 2943467 2943594 2943799 "UNISEG2" 2944095 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1146 2942527 2942707 2942933 "UNIFACT" 2943283 NIL UNIFACT (NIL T) -7 NIL NIL) (-1145 2926423 2941708 2941958 "ULS" 2942334 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1144 2914388 2926328 2926399 "ULSCONS" 2926404 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1143 2897138 2909151 2909212 "ULSCCAT" 2909924 NIL ULSCCAT (NIL T T) -9 NIL 2910220) (-1142 2896189 2896434 2896821 "ULSCCAT-" 2896826 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1141 2886179 2892696 2892738 "ULSCAT" 2893594 NIL ULSCAT (NIL T) -9 NIL 2894324) (-1140 2885613 2885692 2885869 "ULS2" 2886094 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1139 2884011 2884978 2885008 "UFD" 2885220 T UFD (NIL) -9 NIL 2885334) (-1138 2883805 2883851 2883946 "UFD-" 2883951 NIL UFD- (NIL T) -8 NIL NIL) (-1137 2882887 2883070 2883286 "UDVO" 2883611 T UDVO (NIL) -7 NIL NIL) (-1136 2880703 2881112 2881583 "UDPO" 2882451 NIL UDPO (NIL T) -7 NIL NIL) (-1135 2880636 2880641 2880671 "TYPE" 2880676 T TYPE (NIL) -9 NIL NIL) (-1134 2879607 2879809 2880049 "TWOFACT" 2880430 NIL TWOFACT (NIL T) -7 NIL NIL) (-1133 2878545 2878882 2879145 "TUPLE" 2879379 NIL TUPLE (NIL T) -8 NIL NIL) (-1132 2876236 2876755 2877294 "TUBETOOL" 2878028 T TUBETOOL (NIL) -7 NIL NIL) (-1131 2875085 2875290 2875531 "TUBE" 2876029 NIL TUBE (NIL T) -8 NIL NIL) (-1130 2869809 2874063 2874345 "TS" 2874837 NIL TS (NIL T) -8 NIL NIL) (-1129 2858513 2862605 2862701 "TSETCAT" 2867935 NIL TSETCAT (NIL T T T T) -9 NIL 2869466) (-1128 2853248 2854846 2856736 "TSETCAT-" 2856741 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1127 2847511 2848357 2849299 "TRMANIP" 2852384 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1126 2846952 2847015 2847178 "TRIMAT" 2847443 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1125 2844758 2844995 2845358 "TRIGMNIP" 2846701 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1124 2844278 2844391 2844421 "TRIGCAT" 2844634 T TRIGCAT (NIL) -9 NIL NIL) (-1123 2843947 2844026 2844167 "TRIGCAT-" 2844172 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1122 2840846 2842807 2843087 "TREE" 2843702 NIL TREE (NIL T) -8 NIL NIL) (-1121 2840120 2840648 2840678 "TRANFUN" 2840713 T TRANFUN (NIL) -9 NIL 2840779) (-1120 2839399 2839590 2839870 "TRANFUN-" 2839875 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1119 2839203 2839235 2839296 "TOPSP" 2839360 T TOPSP (NIL) -7 NIL NIL) (-1118 2838555 2838670 2838823 "TOOLSIGN" 2839084 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1117 2837216 2837732 2837971 "TEXTFILE" 2838338 T TEXTFILE (NIL) -8 NIL NIL) (-1116 2835081 2835595 2836033 "TEX" 2836800 T TEX (NIL) -8 NIL NIL) (-1115 2834862 2834893 2834965 "TEX1" 2835044 NIL TEX1 (NIL T) -7 NIL NIL) (-1114 2834510 2834573 2834663 "TEMUTL" 2834794 T TEMUTL (NIL) -7 NIL NIL) (-1113 2832664 2832944 2833269 "TBCMPPK" 2834233 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1112 2824553 2830825 2830881 "TBAGG" 2831281 NIL TBAGG (NIL T T) -9 NIL 2831492) (-1111 2819623 2821111 2822865 "TBAGG-" 2822870 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1110 2819007 2819114 2819259 "TANEXP" 2819512 NIL TANEXP (NIL T) -7 NIL NIL) (-1109 2812508 2818864 2818957 "TABLE" 2818962 NIL TABLE (NIL T T) -8 NIL NIL) (-1108 2811920 2812019 2812157 "TABLEAU" 2812405 NIL TABLEAU (NIL T) -8 NIL NIL) (-1107 2806528 2807748 2808996 "TABLBUMP" 2810706 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1106 2805956 2806056 2806184 "SYSTEM" 2806422 T SYSTEM (NIL) -7 NIL NIL) (-1105 2802419 2803114 2803897 "SYSSOLP" 2805207 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1104 2798710 2799418 2800152 "SYNTAX" 2801707 T SYNTAX (NIL) -8 NIL NIL) (-1103 2795844 2796452 2797090 "SYMTAB" 2798094 T SYMTAB (NIL) -8 NIL NIL) (-1102 2791093 2791995 2792978 "SYMS" 2794883 T SYMS (NIL) -8 NIL NIL) (-1101 2788326 2790553 2790782 "SYMPOLY" 2790898 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1100 2787846 2787921 2788043 "SYMFUNC" 2788238 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1099 2783823 2785083 2785905 "SYMBOL" 2787046 T SYMBOL (NIL) -8 NIL NIL) (-1098 2777362 2779051 2780771 "SWITCH" 2782125 T SWITCH (NIL) -8 NIL NIL) (-1097 2770592 2776189 2776491 "SUTS" 2777117 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1096 2762482 2769713 2769993 "SUPXS" 2770369 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1095 2753974 2762103 2762228 "SUP" 2762391 NIL SUP (NIL T) -8 NIL NIL) (-1094 2753133 2753260 2753477 "SUPFRACF" 2753842 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1093 2752758 2752817 2752928 "SUP2" 2753068 NIL SUP2 (NIL T T) -7 NIL NIL) (-1092 2751176 2751450 2751812 "SUMRF" 2752457 NIL SUMRF (NIL T) -7 NIL NIL) (-1091 2750493 2750559 2750757 "SUMFS" 2751097 NIL SUMFS (NIL T T) -7 NIL NIL) (-1090 2734429 2749674 2749924 "SULS" 2750300 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1089 2733751 2733954 2734094 "SUCH" 2734337 NIL SUCH (NIL T T) -8 NIL NIL) (-1088 2727678 2728690 2729648 "SUBSPACE" 2732839 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1087 2727108 2727198 2727362 "SUBRESP" 2727566 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1086 2720477 2721773 2723084 "STTF" 2725844 NIL STTF (NIL T) -7 NIL NIL) (-1085 2714650 2715770 2716917 "STTFNC" 2719377 NIL STTFNC (NIL T) -7 NIL NIL) (-1084 2706001 2707868 2709661 "STTAYLOR" 2712891 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1083 2699245 2705865 2705948 "STRTBL" 2705953 NIL STRTBL (NIL T) -8 NIL NIL) (-1082 2694636 2699200 2699231 "STRING" 2699236 T STRING (NIL) -8 NIL NIL) (-1081 2689525 2694010 2694040 "STRICAT" 2694099 T STRICAT (NIL) -9 NIL 2694161) (-1080 2682239 2687048 2687668 "STREAM" 2688940 NIL STREAM (NIL T) -8 NIL NIL) (-1079 2681749 2681826 2681970 "STREAM3" 2682156 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1078 2680731 2680914 2681149 "STREAM2" 2681562 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1077 2680419 2680471 2680564 "STREAM1" 2680673 NIL STREAM1 (NIL T) -7 NIL NIL) (-1076 2679435 2679616 2679847 "STINPROD" 2680235 NIL STINPROD (NIL T) -7 NIL NIL) (-1075 2679014 2679198 2679228 "STEP" 2679308 T STEP (NIL) -9 NIL 2679386) (-1074 2672557 2678913 2678990 "STBL" 2678995 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1073 2667733 2671780 2671823 "STAGG" 2671976 NIL STAGG (NIL T) -9 NIL 2672065) (-1072 2665435 2666037 2666909 "STAGG-" 2666914 NIL STAGG- (NIL T T) -8 NIL NIL) (-1071 2663630 2665205 2665297 "STACK" 2665378 NIL STACK (NIL T) -8 NIL NIL) (-1070 2656361 2661777 2662232 "SREGSET" 2663260 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1069 2648801 2650169 2651681 "SRDCMPK" 2654967 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1068 2641769 2646242 2646272 "SRAGG" 2647575 T SRAGG (NIL) -9 NIL 2648183) (-1067 2640786 2641041 2641420 "SRAGG-" 2641425 NIL SRAGG- (NIL T) -8 NIL NIL) (-1066 2635235 2639705 2640132 "SQMATRIX" 2640405 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1065 2628987 2631955 2632681 "SPLTREE" 2634581 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1064 2624977 2625643 2626289 "SPLNODE" 2628413 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1063 2624024 2624257 2624287 "SPFCAT" 2624731 T SPFCAT (NIL) -9 NIL NIL) (-1062 2622761 2622971 2623235 "SPECOUT" 2623782 T SPECOUT (NIL) -7 NIL NIL) (-1061 2622522 2622562 2622631 "SPADPRSR" 2622714 T SPADPRSR (NIL) -7 NIL NIL) (-1060 2614545 2616292 2616334 "SPACEC" 2620657 NIL SPACEC (NIL T) -9 NIL 2622473) (-1059 2612717 2614478 2614526 "SPACE3" 2614531 NIL SPACE3 (NIL T) -8 NIL NIL) (-1058 2611469 2611640 2611931 "SORTPAK" 2612522 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1057 2609525 2609828 2610246 "SOLVETRA" 2611133 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1056 2608536 2608758 2609032 "SOLVESER" 2609298 NIL SOLVESER (NIL T) -7 NIL NIL) (-1055 2603756 2604637 2605639 "SOLVERAD" 2607588 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1054 2599571 2600180 2600909 "SOLVEFOR" 2603123 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1053 2593870 2598922 2599018 "SNTSCAT" 2599023 NIL SNTSCAT (NIL T T T T) -9 NIL 2599093) (-1052 2587974 2592201 2592591 "SMTS" 2593560 NIL SMTS (NIL T T T) -8 NIL NIL) (-1051 2582384 2587863 2587939 "SMP" 2587944 NIL SMP (NIL T T) -8 NIL NIL) (-1050 2580543 2580844 2581242 "SMITH" 2582081 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1049 2573508 2577704 2577806 "SMATCAT" 2579146 NIL SMATCAT (NIL NIL T T T) -9 NIL 2579695) (-1048 2570449 2571272 2572449 "SMATCAT-" 2572454 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1047 2568163 2569686 2569729 "SKAGG" 2569990 NIL SKAGG (NIL T) -9 NIL 2570125) (-1046 2564221 2567267 2567545 "SINT" 2567907 T SINT (NIL) -8 NIL NIL) (-1045 2563993 2564031 2564097 "SIMPAN" 2564177 T SIMPAN (NIL) -7 NIL NIL) (-1044 2563509 2563695 2563794 "SIG" 2563916 T SIG (NIL) -8 NIL NIL) (-1043 2562347 2562568 2562843 "SIGNRF" 2563268 NIL SIGNRF (NIL T) -7 NIL NIL) (-1042 2561156 2561307 2561597 "SIGNEF" 2562176 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1041 2558846 2559300 2559806 "SHP" 2560697 NIL SHP (NIL T NIL) -7 NIL NIL) (-1040 2552699 2558747 2558823 "SHDP" 2558828 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1039 2552189 2552381 2552411 "SGROUP" 2552563 T SGROUP (NIL) -9 NIL 2552650) (-1038 2551959 2552011 2552115 "SGROUP-" 2552120 NIL SGROUP- (NIL T) -8 NIL NIL) (-1037 2548795 2549492 2550215 "SGCF" 2551258 T SGCF (NIL) -7 NIL NIL) (-1036 2543192 2548244 2548340 "SFRTCAT" 2548345 NIL SFRTCAT (NIL T T T T) -9 NIL 2548384) (-1035 2536634 2537649 2538784 "SFRGCD" 2542175 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1034 2529781 2530852 2532037 "SFQCMPK" 2535567 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2529403 2529492 2529602 "SFORT" 2529722 NIL SFORT (NIL T T) -8 NIL NIL) (-1032 2528548 2529243 2529364 "SEXOF" 2529369 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1031 2527682 2528429 2528497 "SEX" 2528502 T SEX (NIL) -8 NIL NIL) (-1030 2522459 2523148 2523243 "SEXCAT" 2527014 NIL SEXCAT (NIL T T T T T) -9 NIL 2527633) (-1029 2519639 2522393 2522441 "SET" 2522446 NIL SET (NIL T) -8 NIL NIL) (-1028 2517890 2518352 2518657 "SETMN" 2519380 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1027 2517498 2517624 2517654 "SETCAT" 2517771 T SETCAT (NIL) -9 NIL 2517855) (-1026 2517278 2517330 2517429 "SETCAT-" 2517434 NIL SETCAT- (NIL T) -8 NIL NIL) (-1025 2513666 2515740 2515783 "SETAGG" 2516653 NIL SETAGG (NIL T) -9 NIL 2516993) (-1024 2513124 2513240 2513477 "SETAGG-" 2513482 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1023 2512328 2512621 2512682 "SEGXCAT" 2512968 NIL SEGXCAT (NIL T T) -9 NIL 2513088) (-1022 2511384 2511994 2512176 "SEG" 2512181 NIL SEG (NIL T) -8 NIL NIL) (-1021 2510291 2510504 2510547 "SEGCAT" 2511129 NIL SEGCAT (NIL T) -9 NIL 2511367) (-1020 2509340 2509670 2509870 "SEGBIND" 2510126 NIL SEGBIND (NIL T) -8 NIL NIL) (-1019 2508961 2509020 2509133 "SEGBIND2" 2509275 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1018 2508180 2508306 2508510 "SEG2" 2508805 NIL SEG2 (NIL T T) -7 NIL NIL) (-1017 2507617 2508115 2508162 "SDVAR" 2508167 NIL SDVAR (NIL T) -8 NIL NIL) (-1016 2499869 2507390 2507518 "SDPOL" 2507523 NIL SDPOL (NIL T) -8 NIL NIL) (-1015 2498462 2498728 2499047 "SCPKG" 2499584 NIL SCPKG (NIL T) -7 NIL NIL) (-1014 2497598 2497778 2497978 "SCOPE" 2498284 T SCOPE (NIL) -8 NIL NIL) (-1013 2496819 2496952 2497131 "SCACHE" 2497453 NIL SCACHE (NIL T) -7 NIL NIL) (-1012 2496258 2496579 2496664 "SAOS" 2496756 T SAOS (NIL) -8 NIL NIL) (-1011 2495823 2495858 2496031 "SAERFFC" 2496217 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1010 2489717 2495720 2495800 "SAE" 2495805 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1009 2489310 2489345 2489504 "SAEFACT" 2489676 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1008 2487631 2487945 2488346 "RURPK" 2488976 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1007 2486271 2486550 2486861 "RULESET" 2487465 NIL RULESET (NIL T T T) -8 NIL NIL) (-1006 2483469 2483972 2484435 "RULE" 2485953 NIL RULE (NIL T T T) -8 NIL NIL) (-1005 2483108 2483263 2483346 "RULECOLD" 2483421 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1004 2477971 2478765 2479684 "RSETGCD" 2482307 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1003 2467257 2472309 2472405 "RSETCAT" 2476497 NIL RSETCAT (NIL T T T T) -9 NIL 2477594) (-1002 2465185 2465724 2466547 "RSETCAT-" 2466552 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1001 2457586 2458961 2460480 "RSDCMPK" 2463784 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1000 2455592 2456033 2456107 "RRCC" 2457193 NIL RRCC (NIL T T) -9 NIL 2457537) (-999 2454945 2455119 2455396 "RRCC-" 2455401 NIL RRCC- (NIL T T T) -8 NIL NIL) (-998 2429312 2438937 2439001 "RPOLCAT" 2449503 NIL RPOLCAT (NIL T T T) -9 NIL 2452661) (-997 2420816 2423154 2426272 "RPOLCAT-" 2426277 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-996 2411882 2419046 2419526 "ROUTINE" 2420356 T ROUTINE (NIL) -8 NIL NIL) (-995 2408587 2411438 2411585 "ROMAN" 2411755 T ROMAN (NIL) -8 NIL NIL) (-994 2406871 2407456 2407714 "ROIRC" 2408392 NIL ROIRC (NIL T T) -8 NIL NIL) (-993 2403276 2405580 2405608 "RNS" 2405904 T RNS (NIL) -9 NIL 2406174) (-992 2401790 2402173 2402704 "RNS-" 2402777 NIL RNS- (NIL T) -8 NIL NIL) (-991 2401216 2401624 2401652 "RNG" 2401657 T RNG (NIL) -9 NIL 2401678) (-990 2400614 2400976 2401016 "RMODULE" 2401076 NIL RMODULE (NIL T) -9 NIL 2401118) (-989 2399466 2399560 2399890 "RMCAT2" 2400515 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-988 2396180 2398649 2398970 "RMATRIX" 2399201 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-987 2389177 2391411 2391523 "RMATCAT" 2394832 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2395814) (-986 2388556 2388703 2389006 "RMATCAT-" 2389011 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-985 2388126 2388201 2388327 "RINTERP" 2388475 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-984 2387177 2387741 2387769 "RING" 2387879 T RING (NIL) -9 NIL 2387973) (-983 2386972 2387016 2387110 "RING-" 2387115 NIL RING- (NIL T) -8 NIL NIL) (-982 2385820 2386057 2386313 "RIDIST" 2386736 T RIDIST (NIL) -7 NIL NIL) (-981 2377140 2385292 2385496 "RGCHAIN" 2385668 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-980 2374145 2374759 2375427 "RF" 2376504 NIL RF (NIL T) -7 NIL NIL) (-979 2373794 2373857 2373958 "RFFACTOR" 2374076 NIL RFFACTOR (NIL T) -7 NIL NIL) (-978 2373522 2373557 2373652 "RFFACT" 2373753 NIL RFFACT (NIL T) -7 NIL NIL) (-977 2371652 2372016 2372396 "RFDIST" 2373162 T RFDIST (NIL) -7 NIL NIL) (-976 2371110 2371202 2371362 "RETSOL" 2371554 NIL RETSOL (NIL T T) -7 NIL NIL) (-975 2370703 2370783 2370824 "RETRACT" 2371014 NIL RETRACT (NIL T) -9 NIL NIL) (-974 2370555 2370580 2370664 "RETRACT-" 2370669 NIL RETRACT- (NIL T T) -8 NIL NIL) (-973 2363413 2370212 2370337 "RESULT" 2370450 T RESULT (NIL) -8 NIL NIL) (-972 2361998 2362687 2362884 "RESRING" 2363316 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-971 2361638 2361687 2361783 "RESLATC" 2361935 NIL RESLATC (NIL T) -7 NIL NIL) (-970 2361347 2361381 2361486 "REPSQ" 2361597 NIL REPSQ (NIL T) -7 NIL NIL) (-969 2358778 2359358 2359958 "REP" 2360767 T REP (NIL) -7 NIL NIL) (-968 2358479 2358513 2358622 "REPDB" 2358737 NIL REPDB (NIL T) -7 NIL NIL) (-967 2352424 2353803 2355023 "REP2" 2357291 NIL REP2 (NIL T) -7 NIL NIL) (-966 2348830 2349511 2350316 "REP1" 2351651 NIL REP1 (NIL T) -7 NIL NIL) (-965 2341574 2346989 2347442 "REGSET" 2348460 NIL REGSET (NIL T T T T) -8 NIL NIL) (-964 2340395 2340730 2340978 "REF" 2341359 NIL REF (NIL T) -8 NIL NIL) (-963 2339776 2339879 2340044 "REDORDER" 2340279 NIL REDORDER (NIL T T) -7 NIL NIL) (-962 2335745 2339010 2339231 "RECLOS" 2339607 NIL RECLOS (NIL T) -8 NIL NIL) (-961 2334802 2334983 2335196 "REALSOLV" 2335552 T REALSOLV (NIL) -7 NIL NIL) (-960 2334650 2334691 2334719 "REAL" 2334724 T REAL (NIL) -9 NIL 2334759) (-959 2331141 2331943 2332825 "REAL0Q" 2333815 NIL REAL0Q (NIL T) -7 NIL NIL) (-958 2326752 2327740 2328799 "REAL0" 2330122 NIL REAL0 (NIL T) -7 NIL NIL) (-957 2326160 2326232 2326437 "RDIV" 2326674 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-956 2325233 2325407 2325618 "RDIST" 2325982 NIL RDIST (NIL T) -7 NIL NIL) (-955 2323837 2324124 2324493 "RDETRS" 2324941 NIL RDETRS (NIL T T) -7 NIL NIL) (-954 2321658 2322112 2322647 "RDETR" 2323379 NIL RDETR (NIL T T) -7 NIL NIL) (-953 2320274 2320552 2320953 "RDEEFS" 2321374 NIL RDEEFS (NIL T T) -7 NIL NIL) (-952 2318774 2319080 2319509 "RDEEF" 2319962 NIL RDEEF (NIL T T) -7 NIL NIL) (-951 2313059 2315991 2316019 "RCFIELD" 2317296 T RCFIELD (NIL) -9 NIL 2318026) (-950 2311128 2311632 2312325 "RCFIELD-" 2312398 NIL RCFIELD- (NIL T) -8 NIL NIL) (-949 2307460 2309245 2309286 "RCAGG" 2310357 NIL RCAGG (NIL T) -9 NIL 2310822) (-948 2307091 2307185 2307345 "RCAGG-" 2307350 NIL RCAGG- (NIL T T) -8 NIL NIL) (-947 2306435 2306547 2306709 "RATRET" 2306975 NIL RATRET (NIL T) -7 NIL NIL) (-946 2305992 2306059 2306178 "RATFACT" 2306363 NIL RATFACT (NIL T) -7 NIL NIL) (-945 2305307 2305427 2305577 "RANDSRC" 2305862 T RANDSRC (NIL) -7 NIL NIL) (-944 2305044 2305088 2305159 "RADUTIL" 2305256 T RADUTIL (NIL) -7 NIL NIL) (-943 2298051 2303787 2304104 "RADIX" 2304759 NIL RADIX (NIL NIL) -8 NIL NIL) (-942 2289620 2297895 2298023 "RADFF" 2298028 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-941 2289272 2289347 2289375 "RADCAT" 2289532 T RADCAT (NIL) -9 NIL NIL) (-940 2289057 2289105 2289202 "RADCAT-" 2289207 NIL RADCAT- (NIL T) -8 NIL NIL) (-939 2287208 2288832 2288921 "QUEUE" 2289001 NIL QUEUE (NIL T) -8 NIL NIL) (-938 2283705 2287145 2287190 "QUAT" 2287195 NIL QUAT (NIL T) -8 NIL NIL) (-937 2283343 2283386 2283513 "QUATCT2" 2283656 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-936 2277137 2280517 2280557 "QUATCAT" 2281336 NIL QUATCAT (NIL T) -9 NIL 2282101) (-935 2273281 2274318 2275705 "QUATCAT-" 2275799 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-934 2270802 2272366 2272407 "QUAGG" 2272782 NIL QUAGG (NIL T) -9 NIL 2272957) (-933 2269727 2270200 2270372 "QFORM" 2270674 NIL QFORM (NIL NIL T) -8 NIL NIL) (-932 2261024 2266282 2266322 "QFCAT" 2266980 NIL QFCAT (NIL T) -9 NIL 2267973) (-931 2256596 2257797 2259388 "QFCAT-" 2259482 NIL QFCAT- (NIL T T) -8 NIL NIL) (-930 2256234 2256277 2256404 "QFCAT2" 2256547 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-929 2255694 2255804 2255934 "QEQUAT" 2256124 T QEQUAT (NIL) -8 NIL NIL) (-928 2248861 2249932 2251115 "QCMPACK" 2254627 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-927 2246437 2246858 2247286 "QALGSET" 2248516 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-926 2245682 2245856 2246088 "QALGSET2" 2246257 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-925 2244373 2244596 2244913 "PWFFINTB" 2245455 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-924 2242561 2242729 2243082 "PUSHVAR" 2244187 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-923 2238479 2239533 2239574 "PTRANFN" 2241458 NIL PTRANFN (NIL T) -9 NIL NIL) (-922 2236891 2237182 2237503 "PTPACK" 2238190 NIL PTPACK (NIL T) -7 NIL NIL) (-921 2236527 2236584 2236691 "PTFUNC2" 2236828 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-920 2231004 2235345 2235385 "PTCAT" 2235753 NIL PTCAT (NIL T) -9 NIL 2235915) (-919 2230662 2230697 2230821 "PSQFR" 2230963 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-918 2229257 2229555 2229889 "PSEUDLIN" 2230360 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-917 2216064 2218429 2220752 "PSETPK" 2227017 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-916 2209151 2211865 2211959 "PSETCAT" 2214940 NIL PSETCAT (NIL T T T T) -9 NIL 2215754) (-915 2206989 2207623 2208442 "PSETCAT-" 2208447 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-914 2206338 2206503 2206531 "PSCURVE" 2206799 T PSCURVE (NIL) -9 NIL 2206966) (-913 2202790 2204316 2204380 "PSCAT" 2205216 NIL PSCAT (NIL T T T) -9 NIL 2205456) (-912 2201854 2202070 2202469 "PSCAT-" 2202474 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-911 2200506 2201139 2201353 "PRTITION" 2201660 T PRTITION (NIL) -8 NIL NIL) (-910 2189604 2191810 2193998 "PRS" 2198368 NIL PRS (NIL T T) -7 NIL NIL) (-909 2187463 2188955 2188995 "PRQAGG" 2189178 NIL PRQAGG (NIL T) -9 NIL 2189280) (-908 2187034 2187136 2187164 "PROPLOG" 2187349 T PROPLOG (NIL) -9 NIL NIL) (-907 2184157 2184722 2185249 "PROPFRML" 2186539 NIL PROPFRML (NIL T) -8 NIL NIL) (-906 2183617 2183727 2183857 "PROPERTY" 2184047 T PROPERTY (NIL) -8 NIL NIL) (-905 2177391 2181783 2182603 "PRODUCT" 2182843 NIL PRODUCT (NIL T T) -8 NIL NIL) (-904 2174667 2176851 2177084 "PR" 2177202 NIL PR (NIL T T) -8 NIL NIL) (-903 2174463 2174495 2174554 "PRINT" 2174628 T PRINT (NIL) -7 NIL NIL) (-902 2173803 2173920 2174072 "PRIMES" 2174343 NIL PRIMES (NIL T) -7 NIL NIL) (-901 2171868 2172269 2172735 "PRIMELT" 2173382 NIL PRIMELT (NIL T) -7 NIL NIL) (-900 2171597 2171646 2171674 "PRIMCAT" 2171798 T PRIMCAT (NIL) -9 NIL NIL) (-899 2167758 2171535 2171580 "PRIMARR" 2171585 NIL PRIMARR (NIL T) -8 NIL NIL) (-898 2166765 2166943 2167171 "PRIMARR2" 2167576 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-897 2166408 2166464 2166575 "PREASSOC" 2166703 NIL PREASSOC (NIL T T) -7 NIL NIL) (-896 2165883 2166016 2166044 "PPCURVE" 2166249 T PPCURVE (NIL) -9 NIL 2166385) (-895 2165505 2165678 2165761 "PORTNUM" 2165820 T PORTNUM (NIL) -8 NIL NIL) (-894 2162864 2163263 2163855 "POLYROOT" 2165086 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-893 2156770 2162470 2162629 "POLY" 2162737 NIL POLY (NIL T) -8 NIL NIL) (-892 2156155 2156213 2156446 "POLYLIFT" 2156706 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-891 2152440 2152889 2153517 "POLYCATQ" 2155700 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-890 2139481 2144878 2144942 "POLYCAT" 2148427 NIL POLYCAT (NIL T T T) -9 NIL 2150354) (-889 2132932 2134793 2137176 "POLYCAT-" 2137181 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-888 2132521 2132589 2132708 "POLY2UP" 2132858 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-887 2132157 2132214 2132321 "POLY2" 2132458 NIL POLY2 (NIL T T) -7 NIL NIL) (-886 2130842 2131081 2131357 "POLUTIL" 2131931 NIL POLUTIL (NIL T T) -7 NIL NIL) (-885 2129204 2129481 2129811 "POLTOPOL" 2130564 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-884 2124727 2129141 2129186 "POINT" 2129191 NIL POINT (NIL T) -8 NIL NIL) (-883 2122914 2123271 2123646 "PNTHEORY" 2124372 T PNTHEORY (NIL) -7 NIL NIL) (-882 2121342 2121639 2122048 "PMTOOLS" 2122612 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-881 2120935 2121013 2121130 "PMSYM" 2121258 NIL PMSYM (NIL T) -7 NIL NIL) (-880 2120445 2120514 2120688 "PMQFCAT" 2120860 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-879 2119800 2119910 2120066 "PMPRED" 2120322 NIL PMPRED (NIL T) -7 NIL NIL) (-878 2119196 2119282 2119443 "PMPREDFS" 2119701 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-877 2117842 2118050 2118434 "PMPLCAT" 2118958 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-876 2117374 2117453 2117605 "PMLSAGG" 2117757 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-875 2116851 2116927 2117107 "PMKERNEL" 2117292 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-874 2116468 2116543 2116656 "PMINS" 2116770 NIL PMINS (NIL T) -7 NIL NIL) (-873 2115898 2115967 2116182 "PMFS" 2116393 NIL PMFS (NIL T T T) -7 NIL NIL) (-872 2115129 2115247 2115451 "PMDOWN" 2115775 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-871 2114292 2114451 2114633 "PMASS" 2114967 T PMASS (NIL) -7 NIL NIL) (-870 2113566 2113677 2113840 "PMASSFS" 2114178 NIL PMASSFS (NIL T T) -7 NIL NIL) (-869 2113221 2113289 2113383 "PLOTTOOL" 2113492 T PLOTTOOL (NIL) -7 NIL NIL) (-868 2107843 2109032 2110180 "PLOT" 2112093 T PLOT (NIL) -8 NIL NIL) (-867 2103657 2104691 2105612 "PLOT3D" 2106942 T PLOT3D (NIL) -8 NIL NIL) (-866 2102569 2102746 2102981 "PLOT1" 2103461 NIL PLOT1 (NIL T) -7 NIL NIL) (-865 2077963 2082635 2087486 "PLEQN" 2097835 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-864 2077281 2077403 2077583 "PINTERP" 2077828 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-863 2076974 2077021 2077124 "PINTERPA" 2077228 NIL PINTERPA (NIL T T) -7 NIL NIL) (-862 2076213 2076780 2076867 "PI" 2076907 T PI (NIL) -8 NIL NIL) (-861 2074605 2075590 2075618 "PID" 2075800 T PID (NIL) -9 NIL 2075934) (-860 2074330 2074367 2074455 "PICOERCE" 2074562 NIL PICOERCE (NIL T) -7 NIL NIL) (-859 2073650 2073789 2073965 "PGROEB" 2074186 NIL PGROEB (NIL T) -7 NIL NIL) (-858 2069237 2070051 2070956 "PGE" 2072765 T PGE (NIL) -7 NIL NIL) (-857 2067361 2067607 2067973 "PGCD" 2068954 NIL PGCD (NIL T T T T) -7 NIL NIL) (-856 2066699 2066802 2066963 "PFRPAC" 2067245 NIL PFRPAC (NIL T) -7 NIL NIL) (-855 2063314 2065247 2065600 "PFR" 2066378 NIL PFR (NIL T) -8 NIL NIL) (-854 2061703 2061947 2062272 "PFOTOOLS" 2063061 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-853 2060236 2060475 2060826 "PFOQ" 2061460 NIL PFOQ (NIL T T T) -7 NIL NIL) (-852 2058713 2058925 2059287 "PFO" 2060020 NIL PFO (NIL T T T T T) -7 NIL NIL) (-851 2055236 2058602 2058671 "PF" 2058676 NIL PF (NIL NIL) -8 NIL NIL) (-850 2052665 2053946 2053974 "PFECAT" 2054559 T PFECAT (NIL) -9 NIL 2054943) (-849 2052110 2052264 2052478 "PFECAT-" 2052483 NIL PFECAT- (NIL T) -8 NIL NIL) (-848 2050714 2050965 2051266 "PFBRU" 2051859 NIL PFBRU (NIL T T) -7 NIL NIL) (-847 2048581 2048932 2049364 "PFBR" 2050365 NIL PFBR (NIL T T T T) -7 NIL NIL) (-846 2044432 2045957 2046633 "PERM" 2047938 NIL PERM (NIL T) -8 NIL NIL) (-845 2039698 2040639 2041509 "PERMGRP" 2043595 NIL PERMGRP (NIL T) -8 NIL NIL) (-844 2037769 2038762 2038803 "PERMCAT" 2039249 NIL PERMCAT (NIL T) -9 NIL 2039554) (-843 2037424 2037465 2037588 "PERMAN" 2037722 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-842 2034864 2036993 2037124 "PENDTREE" 2037326 NIL PENDTREE (NIL T) -8 NIL NIL) (-841 2032937 2033715 2033756 "PDRING" 2034413 NIL PDRING (NIL T) -9 NIL 2034698) (-840 2032040 2032258 2032620 "PDRING-" 2032625 NIL PDRING- (NIL T T) -8 NIL NIL) (-839 2029181 2029932 2030623 "PDEPROB" 2031369 T PDEPROB (NIL) -8 NIL NIL) (-838 2026752 2027248 2027797 "PDEPACK" 2028652 T PDEPACK (NIL) -7 NIL NIL) (-837 2025664 2025854 2026105 "PDECOMP" 2026551 NIL PDECOMP (NIL T T) -7 NIL NIL) (-836 2023276 2024091 2024119 "PDECAT" 2024904 T PDECAT (NIL) -9 NIL 2025615) (-835 2023029 2023062 2023151 "PCOMP" 2023237 NIL PCOMP (NIL T T) -7 NIL NIL) (-834 2021236 2021832 2022128 "PBWLB" 2022759 NIL PBWLB (NIL T) -8 NIL NIL) (-833 2013744 2015313 2016649 "PATTERN" 2019921 NIL PATTERN (NIL T) -8 NIL NIL) (-832 2013376 2013433 2013542 "PATTERN2" 2013681 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-831 2011133 2011521 2011978 "PATTERN1" 2012965 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-830 2008528 2009082 2009563 "PATRES" 2010698 NIL PATRES (NIL T T) -8 NIL NIL) (-829 2008092 2008159 2008291 "PATRES2" 2008455 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-828 2005989 2006389 2006794 "PATMATCH" 2007761 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-827 2005526 2005709 2005750 "PATMAB" 2005857 NIL PATMAB (NIL T) -9 NIL 2005940) (-826 2004071 2004380 2004638 "PATLRES" 2005331 NIL PATLRES (NIL T T T) -8 NIL NIL) (-825 2003617 2003740 2003781 "PATAB" 2003786 NIL PATAB (NIL T) -9 NIL 2003958) (-824 2001098 2001630 2002203 "PARTPERM" 2003064 T PARTPERM (NIL) -7 NIL NIL) (-823 2000719 2000782 2000884 "PARSURF" 2001029 NIL PARSURF (NIL T) -8 NIL NIL) (-822 2000351 2000408 2000517 "PARSU2" 2000656 NIL PARSU2 (NIL T T) -7 NIL NIL) (-821 2000115 2000155 2000222 "PARSER" 2000304 T PARSER (NIL) -7 NIL NIL) (-820 1999736 1999799 1999901 "PARSCURV" 2000046 NIL PARSCURV (NIL T) -8 NIL NIL) (-819 1999368 1999425 1999534 "PARSC2" 1999673 NIL PARSC2 (NIL T T) -7 NIL NIL) (-818 1999007 1999065 1999162 "PARPCURV" 1999304 NIL PARPCURV (NIL T) -8 NIL NIL) (-817 1998639 1998696 1998805 "PARPC2" 1998944 NIL PARPC2 (NIL T T) -7 NIL NIL) (-816 1998159 1998245 1998364 "PAN2EXPR" 1998540 T PAN2EXPR (NIL) -7 NIL NIL) (-815 1996965 1997280 1997508 "PALETTE" 1997951 T PALETTE (NIL) -8 NIL NIL) (-814 1995433 1995970 1996330 "PAIR" 1996651 NIL PAIR (NIL T T) -8 NIL NIL) (-813 1989283 1994692 1994886 "PADICRC" 1995288 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-812 1982491 1988629 1988813 "PADICRAT" 1989131 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-811 1980795 1982428 1982473 "PADIC" 1982478 NIL PADIC (NIL NIL) -8 NIL NIL) (-810 1978000 1979574 1979614 "PADICCT" 1980195 NIL PADICCT (NIL NIL) -9 NIL 1980477) (-809 1976957 1977157 1977425 "PADEPAC" 1977787 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-808 1976169 1976302 1976508 "PADE" 1976819 NIL PADE (NIL T T T) -7 NIL NIL) (-807 1974180 1975012 1975327 "OWP" 1975937 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-806 1973289 1973785 1973957 "OVAR" 1974048 NIL OVAR (NIL NIL) -8 NIL NIL) (-805 1972553 1972674 1972835 "OUT" 1973148 T OUT (NIL) -7 NIL NIL) (-804 1961607 1963778 1965948 "OUTFORM" 1970403 T OUTFORM (NIL) -8 NIL NIL) (-803 1961015 1961336 1961425 "OSI" 1961538 T OSI (NIL) -8 NIL NIL) (-802 1960546 1960884 1960912 "OSGROUP" 1960917 T OSGROUP (NIL) -9 NIL 1960939) (-801 1959291 1959518 1959803 "ORTHPOL" 1960293 NIL ORTHPOL (NIL T) -7 NIL NIL) (-800 1956662 1958952 1959090 "OREUP" 1959234 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-799 1954058 1956355 1956481 "ORESUP" 1956604 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-798 1951593 1952093 1952653 "OREPCTO" 1953547 NIL OREPCTO (NIL T T) -7 NIL NIL) (-797 1945503 1947709 1947749 "OREPCAT" 1950070 NIL OREPCAT (NIL T) -9 NIL 1951173) (-796 1942651 1943433 1944490 "OREPCAT-" 1944495 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-795 1941829 1942101 1942129 "ORDSET" 1942438 T ORDSET (NIL) -9 NIL 1942602) (-794 1941348 1941470 1941663 "ORDSET-" 1941668 NIL ORDSET- (NIL T) -8 NIL NIL) (-793 1939962 1940763 1940791 "ORDRING" 1940993 T ORDRING (NIL) -9 NIL 1941117) (-792 1939607 1939701 1939845 "ORDRING-" 1939850 NIL ORDRING- (NIL T) -8 NIL NIL) (-791 1938970 1939451 1939479 "ORDMON" 1939484 T ORDMON (NIL) -9 NIL 1939505) (-790 1938132 1938279 1938474 "ORDFUNS" 1938819 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-789 1937644 1938003 1938031 "ORDFIN" 1938036 T ORDFIN (NIL) -9 NIL 1938057) (-788 1934156 1936230 1936639 "ORDCOMP" 1937268 NIL ORDCOMP (NIL T) -8 NIL NIL) (-787 1933422 1933549 1933735 "ORDCOMP2" 1934016 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-786 1929929 1930812 1931649 "OPTPROB" 1932605 T OPTPROB (NIL) -8 NIL NIL) (-785 1926771 1927400 1928094 "OPTPACK" 1929255 T OPTPACK (NIL) -7 NIL NIL) (-784 1924497 1925233 1925261 "OPTCAT" 1926076 T OPTCAT (NIL) -9 NIL 1926722) (-783 1924265 1924304 1924370 "OPQUERY" 1924451 T OPQUERY (NIL) -7 NIL NIL) (-782 1921401 1922592 1923092 "OP" 1923797 NIL OP (NIL T) -8 NIL NIL) (-781 1918166 1920198 1920567 "ONECOMP" 1921065 NIL ONECOMP (NIL T) -8 NIL NIL) (-780 1917471 1917586 1917760 "ONECOMP2" 1918038 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-779 1916890 1916996 1917126 "OMSERVER" 1917361 T OMSERVER (NIL) -7 NIL NIL) (-778 1913779 1916331 1916371 "OMSAGG" 1916432 NIL OMSAGG (NIL T) -9 NIL 1916496) (-777 1912402 1912665 1912947 "OMPKG" 1913517 T OMPKG (NIL) -7 NIL NIL) (-776 1911832 1911935 1911963 "OM" 1912262 T OM (NIL) -9 NIL NIL) (-775 1910371 1911384 1911552 "OMLO" 1911713 NIL OMLO (NIL T T) -8 NIL NIL) (-774 1909301 1909448 1909674 "OMEXPR" 1910197 NIL OMEXPR (NIL T) -7 NIL NIL) (-773 1908619 1908847 1908983 "OMERR" 1909185 T OMERR (NIL) -8 NIL NIL) (-772 1907797 1908040 1908200 "OMERRK" 1908479 T OMERRK (NIL) -8 NIL NIL) (-771 1907275 1907474 1907582 "OMENC" 1907709 T OMENC (NIL) -8 NIL NIL) (-770 1901170 1902355 1903526 "OMDEV" 1906124 T OMDEV (NIL) -8 NIL NIL) (-769 1900239 1900410 1900604 "OMCONN" 1900996 T OMCONN (NIL) -8 NIL NIL) (-768 1898855 1899841 1899869 "OINTDOM" 1899874 T OINTDOM (NIL) -9 NIL 1899895) (-767 1894617 1895847 1896562 "OFMONOID" 1898172 NIL OFMONOID (NIL T) -8 NIL NIL) (-766 1894055 1894554 1894599 "ODVAR" 1894604 NIL ODVAR (NIL T) -8 NIL NIL) (-765 1891180 1893552 1893737 "ODR" 1893930 NIL ODR (NIL T T NIL) -8 NIL NIL) (-764 1883486 1890959 1891083 "ODPOL" 1891088 NIL ODPOL (NIL T) -8 NIL NIL) (-763 1877309 1883358 1883463 "ODP" 1883468 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-762 1876075 1876290 1876565 "ODETOOLS" 1877083 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-761 1873044 1873700 1874416 "ODESYS" 1875408 NIL ODESYS (NIL T T) -7 NIL NIL) (-760 1867948 1868856 1869879 "ODERTRIC" 1872119 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-759 1867374 1867456 1867650 "ODERED" 1867860 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-758 1864276 1864824 1865499 "ODERAT" 1866797 NIL ODERAT (NIL T T) -7 NIL NIL) (-757 1861244 1861708 1862304 "ODEPRRIC" 1863805 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-756 1859113 1859682 1860191 "ODEPROB" 1860755 T ODEPROB (NIL) -8 NIL NIL) (-755 1855645 1856128 1856774 "ODEPRIM" 1858592 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-754 1854898 1855000 1855258 "ODEPAL" 1855537 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-753 1851100 1851881 1852735 "ODEPACK" 1854064 T ODEPACK (NIL) -7 NIL NIL) (-752 1850137 1850244 1850472 "ODEINT" 1850989 NIL ODEINT (NIL T T) -7 NIL NIL) (-751 1844238 1845663 1847110 "ODEIFTBL" 1848710 T ODEIFTBL (NIL) -8 NIL NIL) (-750 1839582 1840368 1841326 "ODEEF" 1843397 NIL ODEEF (NIL T T) -7 NIL NIL) (-749 1838919 1839008 1839237 "ODECONST" 1839487 NIL ODECONST (NIL T T T) -7 NIL NIL) (-748 1837077 1837710 1837738 "ODECAT" 1838341 T ODECAT (NIL) -9 NIL 1838870) (-747 1833949 1836789 1836908 "OCT" 1836990 NIL OCT (NIL T) -8 NIL NIL) (-746 1833587 1833630 1833757 "OCTCT2" 1833900 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-745 1828421 1830859 1830899 "OC" 1831995 NIL OC (NIL T) -9 NIL 1832852) (-744 1825648 1826396 1827386 "OC-" 1827480 NIL OC- (NIL T T) -8 NIL NIL) (-743 1825027 1825469 1825497 "OCAMON" 1825502 T OCAMON (NIL) -9 NIL 1825523) (-742 1824585 1824900 1824928 "OASGP" 1824933 T OASGP (NIL) -9 NIL 1824953) (-741 1823873 1824336 1824364 "OAMONS" 1824404 T OAMONS (NIL) -9 NIL 1824447) (-740 1823314 1823721 1823749 "OAMON" 1823754 T OAMON (NIL) -9 NIL 1823774) (-739 1822619 1823111 1823139 "OAGROUP" 1823144 T OAGROUP (NIL) -9 NIL 1823164) (-738 1822309 1822359 1822447 "NUMTUBE" 1822563 NIL NUMTUBE (NIL T) -7 NIL NIL) (-737 1815882 1817400 1818936 "NUMQUAD" 1820793 T NUMQUAD (NIL) -7 NIL NIL) (-736 1811638 1812626 1813651 "NUMODE" 1814877 T NUMODE (NIL) -7 NIL NIL) (-735 1809042 1809888 1809916 "NUMINT" 1810833 T NUMINT (NIL) -9 NIL 1811589) (-734 1807990 1808187 1808405 "NUMFMT" 1808844 T NUMFMT (NIL) -7 NIL NIL) (-733 1794369 1797306 1799836 "NUMERIC" 1805499 NIL NUMERIC (NIL T) -7 NIL NIL) (-732 1788768 1793820 1793914 "NTSCAT" 1793919 NIL NTSCAT (NIL T T T T) -9 NIL 1793958) (-731 1787962 1788127 1788320 "NTPOLFN" 1788607 NIL NTPOLFN (NIL T) -7 NIL NIL) (-730 1775778 1784804 1785614 "NSUP" 1787184 NIL NSUP (NIL T) -8 NIL NIL) (-729 1775414 1775471 1775578 "NSUP2" 1775715 NIL NSUP2 (NIL T T) -7 NIL NIL) (-728 1765376 1775193 1775323 "NSMP" 1775328 NIL NSMP (NIL T T) -8 NIL NIL) (-727 1763808 1764109 1764466 "NREP" 1765064 NIL NREP (NIL T) -7 NIL NIL) (-726 1762399 1762651 1763009 "NPCOEF" 1763551 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-725 1761465 1761580 1761796 "NORMRETR" 1762280 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-724 1759512 1759802 1760210 "NORMPK" 1761173 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-723 1759197 1759225 1759349 "NORMMA" 1759478 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-722 1759024 1759154 1759183 "NONE" 1759188 T NONE (NIL) -8 NIL NIL) (-721 1758813 1758842 1758911 "NONE1" 1758988 NIL NONE1 (NIL T) -7 NIL NIL) (-720 1758298 1758360 1758545 "NODE1" 1758745 NIL NODE1 (NIL T T) -7 NIL NIL) (-719 1756592 1757461 1757716 "NNI" 1758063 T NNI (NIL) -8 NIL NIL) (-718 1755012 1755325 1755689 "NLINSOL" 1756260 NIL NLINSOL (NIL T) -7 NIL NIL) (-717 1751179 1752147 1753069 "NIPROB" 1754110 T NIPROB (NIL) -8 NIL NIL) (-716 1749936 1750170 1750472 "NFINTBAS" 1750941 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-715 1748644 1748875 1749156 "NCODIV" 1749704 NIL NCODIV (NIL T T) -7 NIL NIL) (-714 1748406 1748443 1748518 "NCNTFRAC" 1748601 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-713 1746586 1746950 1747370 "NCEP" 1748031 NIL NCEP (NIL T) -7 NIL NIL) (-712 1745498 1746237 1746265 "NASRING" 1746375 T NASRING (NIL) -9 NIL 1746449) (-711 1745293 1745337 1745431 "NASRING-" 1745436 NIL NASRING- (NIL T) -8 NIL NIL) (-710 1744447 1744946 1744974 "NARNG" 1745091 T NARNG (NIL) -9 NIL 1745182) (-709 1744139 1744206 1744340 "NARNG-" 1744345 NIL NARNG- (NIL T) -8 NIL NIL) (-708 1743018 1743225 1743460 "NAGSP" 1743924 T NAGSP (NIL) -7 NIL NIL) (-707 1734442 1736088 1737723 "NAGS" 1741403 T NAGS (NIL) -7 NIL NIL) (-706 1733006 1733310 1733637 "NAGF07" 1734135 T NAGF07 (NIL) -7 NIL NIL) (-705 1727588 1728868 1730164 "NAGF04" 1731730 T NAGF04 (NIL) -7 NIL NIL) (-704 1720620 1722218 1723835 "NAGF02" 1725991 T NAGF02 (NIL) -7 NIL NIL) (-703 1715884 1716974 1718081 "NAGF01" 1719533 T NAGF01 (NIL) -7 NIL NIL) (-702 1709544 1711102 1712679 "NAGE04" 1714327 T NAGE04 (NIL) -7 NIL NIL) (-701 1700785 1702888 1705000 "NAGE02" 1707452 T NAGE02 (NIL) -7 NIL NIL) (-700 1696778 1697715 1698669 "NAGE01" 1699851 T NAGE01 (NIL) -7 NIL NIL) (-699 1694585 1695116 1695671 "NAGD03" 1696243 T NAGD03 (NIL) -7 NIL NIL) (-698 1686371 1688290 1690235 "NAGD02" 1692660 T NAGD02 (NIL) -7 NIL NIL) (-697 1680230 1681643 1683071 "NAGD01" 1684963 T NAGD01 (NIL) -7 NIL NIL) (-696 1676487 1677297 1678122 "NAGC06" 1679425 T NAGC06 (NIL) -7 NIL NIL) (-695 1674964 1675293 1675646 "NAGC05" 1676154 T NAGC05 (NIL) -7 NIL NIL) (-694 1674348 1674465 1674607 "NAGC02" 1674842 T NAGC02 (NIL) -7 NIL NIL) (-693 1673410 1673967 1674007 "NAALG" 1674086 NIL NAALG (NIL T) -9 NIL 1674147) (-692 1673245 1673274 1673364 "NAALG-" 1673369 NIL NAALG- (NIL T T) -8 NIL NIL) (-691 1667195 1668303 1669490 "MULTSQFR" 1672141 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-690 1666514 1666589 1666773 "MULTFACT" 1667107 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-689 1659708 1663619 1663671 "MTSCAT" 1664731 NIL MTSCAT (NIL T T) -9 NIL 1665245) (-688 1659420 1659474 1659566 "MTHING" 1659648 NIL MTHING (NIL T) -7 NIL NIL) (-687 1659212 1659245 1659305 "MSYSCMD" 1659380 T MSYSCMD (NIL) -7 NIL NIL) (-686 1655324 1657967 1658287 "MSET" 1658925 NIL MSET (NIL T) -8 NIL NIL) (-685 1652420 1654886 1654927 "MSETAGG" 1654932 NIL MSETAGG (NIL T) -9 NIL 1654966) (-684 1648276 1649818 1650559 "MRING" 1651723 NIL MRING (NIL T T) -8 NIL NIL) (-683 1647846 1647913 1648042 "MRF2" 1648203 NIL MRF2 (NIL T T T) -7 NIL NIL) (-682 1647464 1647499 1647643 "MRATFAC" 1647805 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-681 1645076 1645371 1645802 "MPRFF" 1647169 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-680 1639096 1644931 1645027 "MPOLY" 1645032 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-679 1638586 1638621 1638829 "MPCPF" 1639055 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-678 1638102 1638145 1638328 "MPC3" 1638537 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-677 1637303 1637384 1637603 "MPC2" 1638017 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-676 1635604 1635941 1636331 "MONOTOOL" 1636963 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-675 1634729 1635064 1635092 "MONOID" 1635369 T MONOID (NIL) -9 NIL 1635541) (-674 1634107 1634270 1634513 "MONOID-" 1634518 NIL MONOID- (NIL T) -8 NIL NIL) (-673 1625088 1631074 1631133 "MONOGEN" 1631807 NIL MONOGEN (NIL T T) -9 NIL 1632263) (-672 1622306 1623041 1624041 "MONOGEN-" 1624160 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-671 1621166 1621586 1621614 "MONADWU" 1622006 T MONADWU (NIL) -9 NIL 1622244) (-670 1620538 1620697 1620945 "MONADWU-" 1620950 NIL MONADWU- (NIL T) -8 NIL NIL) (-669 1619924 1620142 1620170 "MONAD" 1620377 T MONAD (NIL) -9 NIL 1620489) (-668 1619609 1619687 1619819 "MONAD-" 1619824 NIL MONAD- (NIL T) -8 NIL NIL) (-667 1617860 1618522 1618801 "MOEBIUS" 1619362 NIL MOEBIUS (NIL T) -8 NIL NIL) (-666 1617254 1617632 1617672 "MODULE" 1617677 NIL MODULE (NIL T) -9 NIL 1617703) (-665 1616822 1616918 1617108 "MODULE-" 1617113 NIL MODULE- (NIL T T) -8 NIL NIL) (-664 1614493 1615188 1615514 "MODRING" 1616647 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-663 1611449 1612614 1613131 "MODOP" 1614025 NIL MODOP (NIL T T) -8 NIL NIL) (-662 1609636 1610088 1610429 "MODMONOM" 1611248 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-661 1599315 1607840 1608262 "MODMON" 1609264 NIL MODMON (NIL T T) -8 NIL NIL) (-660 1596441 1598159 1598435 "MODFIELD" 1599190 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-659 1595445 1595722 1595912 "MMLFORM" 1596271 T MMLFORM (NIL) -8 NIL NIL) (-658 1594971 1595014 1595193 "MMAP" 1595396 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-657 1593208 1593985 1594025 "MLO" 1594442 NIL MLO (NIL T) -9 NIL 1594683) (-656 1590575 1591090 1591692 "MLIFT" 1592689 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-655 1589966 1590050 1590204 "MKUCFUNC" 1590486 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-654 1589565 1589635 1589758 "MKRECORD" 1589889 NIL MKRECORD (NIL T T) -7 NIL NIL) (-653 1588613 1588774 1589002 "MKFUNC" 1589376 NIL MKFUNC (NIL T) -7 NIL NIL) (-652 1588001 1588105 1588261 "MKFLCFN" 1588496 NIL MKFLCFN (NIL T) -7 NIL NIL) (-651 1587427 1587794 1587883 "MKCHSET" 1587945 NIL MKCHSET (NIL T) -8 NIL NIL) (-650 1586704 1586806 1586991 "MKBCFUNC" 1587320 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-649 1583388 1586258 1586394 "MINT" 1586588 T MINT (NIL) -8 NIL NIL) (-648 1582200 1582443 1582720 "MHROWRED" 1583143 NIL MHROWRED (NIL T) -7 NIL NIL) (-647 1577471 1580645 1581069 "MFLOAT" 1581796 T MFLOAT (NIL) -8 NIL NIL) (-646 1576828 1576904 1577075 "MFINFACT" 1577383 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-645 1573143 1573991 1574875 "MESH" 1575964 T MESH (NIL) -7 NIL NIL) (-644 1571533 1571845 1572198 "MDDFACT" 1572830 NIL MDDFACT (NIL T) -7 NIL NIL) (-643 1568376 1570693 1570734 "MDAGG" 1570989 NIL MDAGG (NIL T) -9 NIL 1571132) (-642 1558074 1567669 1567876 "MCMPLX" 1568189 T MCMPLX (NIL) -8 NIL NIL) (-641 1557215 1557361 1557561 "MCDEN" 1557923 NIL MCDEN (NIL T T) -7 NIL NIL) (-640 1555105 1555375 1555755 "MCALCFN" 1556945 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-639 1554016 1554189 1554430 "MAYBE" 1554903 NIL MAYBE (NIL T) -8 NIL NIL) (-638 1551638 1552161 1552722 "MATSTOR" 1553487 NIL MATSTOR (NIL T) -7 NIL NIL) (-637 1547647 1551013 1551260 "MATRIX" 1551423 NIL MATRIX (NIL T) -8 NIL NIL) (-636 1543416 1544120 1544856 "MATLIN" 1547004 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-635 1533614 1536752 1536828 "MATCAT" 1541666 NIL MATCAT (NIL T T T) -9 NIL 1543083) (-634 1529979 1530992 1532347 "MATCAT-" 1532352 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-633 1528581 1528734 1529065 "MATCAT2" 1529814 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-632 1526693 1527017 1527401 "MAPPKG3" 1528256 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-631 1525674 1525847 1526069 "MAPPKG2" 1526517 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-630 1524173 1524457 1524784 "MAPPKG1" 1525380 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-629 1523784 1523842 1523965 "MAPHACK3" 1524109 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-628 1523376 1523437 1523551 "MAPHACK2" 1523716 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-627 1522814 1522917 1523059 "MAPHACK1" 1523267 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-626 1520922 1521516 1521819 "MAGMA" 1522543 NIL MAGMA (NIL T) -8 NIL NIL) (-625 1517397 1519166 1519626 "M3D" 1520495 NIL M3D (NIL T) -8 NIL NIL) (-624 1511553 1515768 1515809 "LZSTAGG" 1516591 NIL LZSTAGG (NIL T) -9 NIL 1516886) (-623 1507526 1508684 1510141 "LZSTAGG-" 1510146 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-622 1504642 1505419 1505905 "LWORD" 1507072 NIL LWORD (NIL T) -8 NIL NIL) (-621 1497802 1504413 1504547 "LSQM" 1504552 NIL LSQM (NIL NIL T) -8 NIL NIL) (-620 1497026 1497165 1497393 "LSPP" 1497657 NIL LSPP (NIL T T T T) -7 NIL NIL) (-619 1494838 1495139 1495595 "LSMP" 1496715 NIL LSMP (NIL T T T T) -7 NIL NIL) (-618 1491617 1492291 1493021 "LSMP1" 1494140 NIL LSMP1 (NIL T) -7 NIL NIL) (-617 1485544 1490786 1490827 "LSAGG" 1490889 NIL LSAGG (NIL T) -9 NIL 1490967) (-616 1482239 1483163 1484376 "LSAGG-" 1484381 NIL LSAGG- (NIL T T) -8 NIL NIL) (-615 1479865 1481383 1481632 "LPOLY" 1482034 NIL LPOLY (NIL T T) -8 NIL NIL) (-614 1479447 1479532 1479655 "LPEFRAC" 1479774 NIL LPEFRAC (NIL T) -7 NIL NIL) (-613 1477794 1478541 1478794 "LO" 1479279 NIL LO (NIL T T T) -8 NIL NIL) (-612 1477448 1477560 1477588 "LOGIC" 1477699 T LOGIC (NIL) -9 NIL 1477779) (-611 1477310 1477333 1477404 "LOGIC-" 1477409 NIL LOGIC- (NIL T) -8 NIL NIL) (-610 1476503 1476643 1476836 "LODOOPS" 1477166 NIL LODOOPS (NIL T T) -7 NIL NIL) (-609 1473921 1476420 1476485 "LODO" 1476490 NIL LODO (NIL T NIL) -8 NIL NIL) (-608 1472467 1472702 1473053 "LODOF" 1473668 NIL LODOF (NIL T T) -7 NIL NIL) (-607 1468887 1471323 1471363 "LODOCAT" 1471795 NIL LODOCAT (NIL T) -9 NIL 1472006) (-606 1468621 1468679 1468805 "LODOCAT-" 1468810 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-605 1465935 1468462 1468580 "LODO2" 1468585 NIL LODO2 (NIL T T) -8 NIL NIL) (-604 1463364 1465872 1465917 "LODO1" 1465922 NIL LODO1 (NIL T) -8 NIL NIL) (-603 1462227 1462392 1462703 "LODEEF" 1463187 NIL LODEEF (NIL T T T) -7 NIL NIL) (-602 1457514 1460358 1460399 "LNAGG" 1461346 NIL LNAGG (NIL T) -9 NIL 1461790) (-601 1456661 1456875 1457217 "LNAGG-" 1457222 NIL LNAGG- (NIL T T) -8 NIL NIL) (-600 1452826 1453588 1454226 "LMOPS" 1456077 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-599 1452224 1452586 1452626 "LMODULE" 1452686 NIL LMODULE (NIL T) -9 NIL 1452728) (-598 1449470 1451869 1451992 "LMDICT" 1452134 NIL LMDICT (NIL T) -8 NIL NIL) (-597 1442697 1448416 1448714 "LIST" 1449205 NIL LIST (NIL T) -8 NIL NIL) (-596 1442222 1442296 1442435 "LIST3" 1442617 NIL LIST3 (NIL T T T) -7 NIL NIL) (-595 1441229 1441407 1441635 "LIST2" 1442040 NIL LIST2 (NIL T T) -7 NIL NIL) (-594 1439363 1439675 1440074 "LIST2MAP" 1440876 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-593 1438076 1438756 1438796 "LINEXP" 1439049 NIL LINEXP (NIL T) -9 NIL 1439197) (-592 1436723 1436983 1437280 "LINDEP" 1437828 NIL LINDEP (NIL T T) -7 NIL NIL) (-591 1433490 1434209 1434986 "LIMITRF" 1435978 NIL LIMITRF (NIL T) -7 NIL NIL) (-590 1431770 1432065 1432480 "LIMITPS" 1433185 NIL LIMITPS (NIL T T) -7 NIL NIL) (-589 1426225 1431281 1431509 "LIE" 1431591 NIL LIE (NIL T T) -8 NIL NIL) (-588 1425276 1425719 1425759 "LIECAT" 1425899 NIL LIECAT (NIL T) -9 NIL 1426050) (-587 1425117 1425144 1425232 "LIECAT-" 1425237 NIL LIECAT- (NIL T T) -8 NIL NIL) (-586 1417729 1424566 1424731 "LIB" 1424972 T LIB (NIL) -8 NIL NIL) (-585 1413366 1414247 1415182 "LGROBP" 1416846 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-584 1411232 1411506 1411868 "LF" 1413087 NIL LF (NIL T T) -7 NIL NIL) (-583 1410072 1410764 1410792 "LFCAT" 1410999 T LFCAT (NIL) -9 NIL 1411138) (-582 1406984 1407610 1408296 "LEXTRIPK" 1409438 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-581 1403690 1404554 1405057 "LEXP" 1406564 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-580 1402088 1402401 1402802 "LEADCDET" 1403372 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-579 1401281 1401355 1401583 "LAZM3PK" 1402009 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-578 1396198 1399360 1399897 "LAUPOL" 1400794 NIL LAUPOL (NIL T T) -8 NIL NIL) (-577 1395765 1395809 1395976 "LAPLACE" 1396148 NIL LAPLACE (NIL T T) -7 NIL NIL) (-576 1393693 1394866 1395117 "LA" 1395598 NIL LA (NIL T T T) -8 NIL NIL) (-575 1392756 1393350 1393390 "LALG" 1393451 NIL LALG (NIL T) -9 NIL 1393509) (-574 1392471 1392530 1392665 "LALG-" 1392670 NIL LALG- (NIL T T) -8 NIL NIL) (-573 1391381 1391568 1391865 "KOVACIC" 1392271 NIL KOVACIC (NIL T T) -7 NIL NIL) (-572 1391216 1391240 1391281 "KONVERT" 1391343 NIL KONVERT (NIL T) -9 NIL NIL) (-571 1391051 1391075 1391116 "KOERCE" 1391178 NIL KOERCE (NIL T) -9 NIL NIL) (-570 1388785 1389545 1389938 "KERNEL" 1390690 NIL KERNEL (NIL T) -8 NIL NIL) (-569 1388287 1388368 1388498 "KERNEL2" 1388699 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-568 1382139 1386827 1386881 "KDAGG" 1387258 NIL KDAGG (NIL T T) -9 NIL 1387464) (-567 1381668 1381792 1381997 "KDAGG-" 1382002 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-566 1374843 1381329 1381484 "KAFILE" 1381546 NIL KAFILE (NIL T) -8 NIL NIL) (-565 1369298 1374354 1374582 "JORDAN" 1374664 NIL JORDAN (NIL T T) -8 NIL NIL) (-564 1369027 1369086 1369173 "JAVACODE" 1369231 T JAVACODE (NIL) -8 NIL NIL) (-563 1365327 1367233 1367287 "IXAGG" 1368216 NIL IXAGG (NIL T T) -9 NIL 1368675) (-562 1364246 1364552 1364971 "IXAGG-" 1364976 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-561 1359831 1364168 1364227 "IVECTOR" 1364232 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-560 1358597 1358834 1359100 "ITUPLE" 1359598 NIL ITUPLE (NIL T) -8 NIL NIL) (-559 1357033 1357210 1357516 "ITRIGMNP" 1358419 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-558 1355778 1355982 1356265 "ITFUN3" 1356809 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-557 1355410 1355467 1355576 "ITFUN2" 1355715 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-556 1353212 1354283 1354580 "ITAYLOR" 1355145 NIL ITAYLOR (NIL T) -8 NIL NIL) (-555 1342200 1347398 1348557 "ISUPS" 1352085 NIL ISUPS (NIL T) -8 NIL NIL) (-554 1341304 1341444 1341680 "ISUMP" 1342047 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-553 1336568 1341105 1341184 "ISTRING" 1341257 NIL ISTRING (NIL NIL) -8 NIL NIL) (-552 1335781 1335862 1336077 "IRURPK" 1336482 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-551 1334717 1334918 1335158 "IRSN" 1335561 T IRSN (NIL) -7 NIL NIL) (-550 1332752 1333107 1333542 "IRRF2F" 1334355 NIL IRRF2F (NIL T) -7 NIL NIL) (-549 1332499 1332537 1332613 "IRREDFFX" 1332708 NIL IRREDFFX (NIL T) -7 NIL NIL) (-548 1331114 1331373 1331672 "IROOT" 1332232 NIL IROOT (NIL T) -7 NIL NIL) (-547 1327752 1328803 1329493 "IR" 1330456 NIL IR (NIL T) -8 NIL NIL) (-546 1325365 1325860 1326426 "IR2" 1327230 NIL IR2 (NIL T T) -7 NIL NIL) (-545 1324441 1324554 1324774 "IR2F" 1325248 NIL IR2F (NIL T T) -7 NIL NIL) (-544 1324232 1324266 1324326 "IPRNTPK" 1324401 T IPRNTPK (NIL) -7 NIL NIL) (-543 1320786 1324121 1324190 "IPF" 1324195 NIL IPF (NIL NIL) -8 NIL NIL) (-542 1319103 1320711 1320768 "IPADIC" 1320773 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-541 1318602 1318660 1318849 "INVLAPLA" 1319039 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-540 1308251 1310604 1312990 "INTTR" 1316266 NIL INTTR (NIL T T) -7 NIL NIL) (-539 1304599 1305340 1306203 "INTTOOLS" 1307437 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-538 1304185 1304276 1304393 "INTSLPE" 1304502 T INTSLPE (NIL) -7 NIL NIL) (-537 1302135 1304108 1304167 "INTRVL" 1304172 NIL INTRVL (NIL T) -8 NIL NIL) (-536 1299742 1300254 1300828 "INTRF" 1301620 NIL INTRF (NIL T) -7 NIL NIL) (-535 1299157 1299254 1299395 "INTRET" 1299640 NIL INTRET (NIL T) -7 NIL NIL) (-534 1297159 1297548 1298017 "INTRAT" 1298765 NIL INTRAT (NIL T T) -7 NIL NIL) (-533 1294392 1294975 1295600 "INTPM" 1296644 NIL INTPM (NIL T T) -7 NIL NIL) (-532 1291101 1291700 1292444 "INTPAF" 1293778 NIL INTPAF (NIL T T T) -7 NIL NIL) (-531 1286344 1287290 1288325 "INTPACK" 1290086 T INTPACK (NIL) -7 NIL NIL) (-530 1283198 1286073 1286200 "INT" 1286237 T INT (NIL) -8 NIL NIL) (-529 1282450 1282602 1282810 "INTHERTR" 1283040 NIL INTHERTR (NIL T T) -7 NIL NIL) (-528 1281889 1281969 1282157 "INTHERAL" 1282364 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-527 1279735 1280178 1280635 "INTHEORY" 1281452 T INTHEORY (NIL) -7 NIL NIL) (-526 1271057 1272678 1274456 "INTG0" 1278087 NIL INTG0 (NIL T T T) -7 NIL NIL) (-525 1251630 1256420 1261230 "INTFTBL" 1266267 T INTFTBL (NIL) -8 NIL NIL) (-524 1250879 1251017 1251190 "INTFACT" 1251489 NIL INTFACT (NIL T) -7 NIL NIL) (-523 1248270 1248716 1249279 "INTEF" 1250433 NIL INTEF (NIL T T) -7 NIL NIL) (-522 1246732 1247481 1247509 "INTDOM" 1247810 T INTDOM (NIL) -9 NIL 1248017) (-521 1246101 1246275 1246517 "INTDOM-" 1246522 NIL INTDOM- (NIL T) -8 NIL NIL) (-520 1242594 1244526 1244580 "INTCAT" 1245379 NIL INTCAT (NIL T) -9 NIL 1245698) (-519 1242067 1242169 1242297 "INTBIT" 1242486 T INTBIT (NIL) -7 NIL NIL) (-518 1240742 1240896 1241209 "INTALG" 1241912 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-517 1240199 1240289 1240459 "INTAF" 1240646 NIL INTAF (NIL T T) -7 NIL NIL) (-516 1233653 1240009 1240149 "INTABL" 1240154 NIL INTABL (NIL T T T) -8 NIL NIL) (-515 1228604 1231333 1231361 "INS" 1232329 T INS (NIL) -9 NIL 1233010) (-514 1225844 1226615 1227589 "INS-" 1227662 NIL INS- (NIL T) -8 NIL NIL) (-513 1224623 1224850 1225147 "INPSIGN" 1225597 NIL INPSIGN (NIL T T) -7 NIL NIL) (-512 1223741 1223858 1224055 "INPRODPF" 1224503 NIL INPRODPF (NIL T T) -7 NIL NIL) (-511 1222635 1222752 1222989 "INPRODFF" 1223621 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-510 1221635 1221787 1222047 "INNMFACT" 1222471 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-509 1220832 1220929 1221117 "INMODGCD" 1221534 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-508 1219341 1219585 1219909 "INFSP" 1220577 NIL INFSP (NIL T T T) -7 NIL NIL) (-507 1218525 1218642 1218825 "INFPROD0" 1219221 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-506 1215536 1216694 1217185 "INFORM" 1218042 T INFORM (NIL) -8 NIL NIL) (-505 1215146 1215206 1215304 "INFORM1" 1215471 NIL INFORM1 (NIL T) -7 NIL NIL) (-504 1214669 1214758 1214872 "INFINITY" 1215052 T INFINITY (NIL) -7 NIL NIL) (-503 1213286 1213535 1213856 "INEP" 1214417 NIL INEP (NIL T T T) -7 NIL NIL) (-502 1212562 1213183 1213248 "INDE" 1213253 NIL INDE (NIL T) -8 NIL NIL) (-501 1212126 1212194 1212311 "INCRMAPS" 1212489 NIL INCRMAPS (NIL T) -7 NIL NIL) (-500 1207437 1208362 1209306 "INBFF" 1211214 NIL INBFF (NIL T) -7 NIL NIL) (-499 1203932 1207282 1207385 "IMATRIX" 1207390 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-498 1202644 1202767 1203082 "IMATQF" 1203788 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-497 1200864 1201091 1201428 "IMATLIN" 1202400 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-496 1195490 1200788 1200846 "ILIST" 1200851 NIL ILIST (NIL T NIL) -8 NIL NIL) (-495 1193443 1195350 1195463 "IIARRAY2" 1195468 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-494 1188811 1193354 1193418 "IFF" 1193423 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-493 1183854 1188103 1188291 "IFARRAY" 1188668 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-492 1183061 1183758 1183831 "IFAMON" 1183836 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-491 1182645 1182710 1182764 "IEVALAB" 1182971 NIL IEVALAB (NIL T T) -9 NIL NIL) (-490 1182320 1182388 1182548 "IEVALAB-" 1182553 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-489 1181978 1182234 1182297 "IDPO" 1182302 NIL IDPO (NIL T T) -8 NIL NIL) (-488 1181255 1181867 1181942 "IDPOAMS" 1181947 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-487 1180589 1181144 1181219 "IDPOAM" 1181224 NIL IDPOAM (NIL T T) -8 NIL NIL) (-486 1179675 1179925 1179978 "IDPC" 1180391 NIL IDPC (NIL T T) -9 NIL 1180540) (-485 1179171 1179567 1179640 "IDPAM" 1179645 NIL IDPAM (NIL T T) -8 NIL NIL) (-484 1178574 1179063 1179136 "IDPAG" 1179141 NIL IDPAG (NIL T T) -8 NIL NIL) (-483 1174829 1175677 1176572 "IDECOMP" 1177731 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1167702 1168752 1169799 "IDEAL" 1173865 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1166866 1166978 1167177 "ICDEN" 1167586 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1165965 1166346 1166493 "ICARD" 1166739 T ICARD (NIL) -8 NIL NIL) (-479 1164037 1164350 1164753 "IBPTOOLS" 1165642 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1159671 1163657 1163770 "IBITS" 1163956 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1156394 1156970 1157665 "IBATOOL" 1159088 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1154174 1154635 1155168 "IBACHIN" 1155929 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1152051 1154020 1154123 "IARRAY2" 1154128 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1148204 1151977 1152034 "IARRAY1" 1152039 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1142142 1146622 1147100 "IAN" 1147746 T IAN (NIL) -8 NIL NIL) (-472 1141653 1141710 1141883 "IALGFACT" 1142079 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1141181 1141294 1141322 "HYPCAT" 1141529 T HYPCAT (NIL) -9 NIL NIL) (-470 1140719 1140836 1141022 "HYPCAT-" 1141027 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1140341 1140514 1140597 "HOSTNAME" 1140656 T HOSTNAME (NIL) -8 NIL NIL) (-468 1137021 1138352 1138393 "HOAGG" 1139374 NIL HOAGG (NIL T) -9 NIL 1140053) (-467 1135615 1136014 1136540 "HOAGG-" 1136545 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1129445 1135056 1135222 "HEXADEC" 1135469 T HEXADEC (NIL) -8 NIL NIL) (-465 1128193 1128415 1128678 "HEUGCD" 1129222 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1127296 1128030 1128160 "HELLFDIV" 1128165 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1125524 1127073 1127161 "HEAP" 1127240 NIL HEAP (NIL T) -8 NIL NIL) (-462 1124863 1125103 1125231 "HEADAST" 1125416 T HEADAST (NIL) -8 NIL NIL) (-461 1118730 1124778 1124840 "HDP" 1124845 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1112442 1118367 1118518 "HDMP" 1118631 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1111767 1111906 1112070 "HB" 1112298 T HB (NIL) -7 NIL NIL) (-458 1105264 1111613 1111717 "HASHTBL" 1111722 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1103017 1104892 1105071 "HACKPI" 1105105 T HACKPI (NIL) -8 NIL NIL) (-456 1098713 1102871 1102983 "GTSET" 1102988 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1092239 1098591 1098689 "GSTBL" 1098694 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1084472 1091275 1091539 "GSERIES" 1092030 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1083495 1083948 1083976 "GROUP" 1084237 T GROUP (NIL) -9 NIL 1084396) (-452 1082611 1082834 1083178 "GROUP-" 1083183 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1080980 1081299 1081686 "GROEBSOL" 1082288 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1079921 1080183 1080234 "GRMOD" 1080763 NIL GRMOD (NIL T T) -9 NIL 1080931) (-449 1079689 1079725 1079853 "GRMOD-" 1079858 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1075014 1076043 1077043 "GRIMAGE" 1078709 T GRIMAGE (NIL) -8 NIL NIL) (-447 1073481 1073741 1074065 "GRDEF" 1074710 T GRDEF (NIL) -7 NIL NIL) (-446 1072925 1073041 1073182 "GRAY" 1073360 T GRAY (NIL) -7 NIL NIL) (-445 1072159 1072539 1072590 "GRALG" 1072743 NIL GRALG (NIL T T) -9 NIL 1072835) (-444 1071820 1071893 1072056 "GRALG-" 1072061 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1068628 1071409 1071585 "GPOLSET" 1071727 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1067984 1068041 1068298 "GOSPER" 1068565 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1063743 1064422 1064948 "GMODPOL" 1067683 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1062748 1062932 1063170 "GHENSEL" 1063555 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1056814 1057657 1058683 "GENUPS" 1061832 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1056511 1056562 1056651 "GENUFACT" 1056757 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1055923 1056000 1056165 "GENPGCD" 1056429 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1055397 1055432 1055645 "GENMFACT" 1055882 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1053965 1054220 1054527 "GENEEZ" 1055140 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1047839 1053578 1053739 "GDMP" 1053888 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1037216 1041610 1042716 "GCNAALG" 1046822 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1035638 1036510 1036538 "GCDDOM" 1036793 T GCDDOM (NIL) -9 NIL 1036950) (-431 1035108 1035235 1035450 "GCDDOM-" 1035455 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1033780 1033965 1034269 "GB" 1034887 NIL GB (NIL T T T T) -7 NIL NIL) (-429 1022400 1024726 1027118 "GBINTERN" 1031471 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-428 1020237 1020529 1020950 "GBF" 1022075 NIL GBF (NIL T T T T) -7 NIL NIL) (-427 1019018 1019183 1019450 "GBEUCLID" 1020053 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-426 1018367 1018492 1018641 "GAUSSFAC" 1018889 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1016744 1017046 1017359 "GALUTIL" 1018086 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1015061 1015335 1015658 "GALPOLYU" 1016471 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1012450 1012740 1013145 "GALFACTU" 1014758 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 1004256 1005755 1007363 "GALFACT" 1010882 NIL GALFACT (NIL T) -7 NIL NIL) (-421 1001644 1002302 1002330 "FVFUN" 1003486 T FVFUN (NIL) -9 NIL 1004206) (-420 1000910 1001092 1001120 "FVC" 1001411 T FVC (NIL) -9 NIL 1001594) (-419 1000552 1000707 1000788 "FUNCTION" 1000862 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 998222 998773 999262 "FT" 1000083 T FT (NIL) -8 NIL NIL) (-417 997040 997523 997726 "FTEM" 998039 T FTEM (NIL) -8 NIL NIL) (-416 995305 995593 995995 "FSUPFACT" 996732 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 993702 993991 994323 "FST" 994993 T FST (NIL) -8 NIL NIL) (-414 992877 992983 993177 "FSRED" 993584 NIL FSRED (NIL T T) -7 NIL NIL) (-413 991556 991811 992165 "FSPRMELT" 992592 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 988641 989079 989578 "FSPECF" 991119 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 971015 979572 979612 "FS" 983450 NIL FS (NIL T) -9 NIL 985732) (-410 959665 962655 966711 "FS-" 967008 NIL FS- (NIL T T) -8 NIL NIL) (-409 959181 959235 959411 "FSINT" 959606 NIL FSINT (NIL T T) -7 NIL NIL) (-408 957462 958174 958477 "FSERIES" 958960 NIL FSERIES (NIL T T) -8 NIL NIL) (-407 956480 956596 956826 "FSCINT" 957342 NIL FSCINT (NIL T T) -7 NIL NIL) (-406 952715 955425 955466 "FSAGG" 955836 NIL FSAGG (NIL T) -9 NIL 956095) (-405 950477 951078 951874 "FSAGG-" 951969 NIL FSAGG- (NIL T T) -8 NIL NIL) (-404 949519 949662 949889 "FSAGG2" 950330 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-403 947178 947457 948010 "FS2UPS" 949237 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-402 946764 946807 946960 "FS2" 947129 NIL FS2 (NIL T T T T) -7 NIL NIL) (-401 945624 945795 946103 "FS2EXPXP" 946589 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-400 945050 945165 945317 "FRUTIL" 945504 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 936470 940549 941905 "FR" 943726 NIL FR (NIL T) -8 NIL NIL) (-398 931547 934190 934230 "FRNAALG" 935626 NIL FRNAALG (NIL T) -9 NIL 936233) (-397 927225 928296 929571 "FRNAALG-" 930321 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-396 926863 926906 927033 "FRNAAF2" 927176 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-395 925228 925720 926014 "FRMOD" 926676 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-394 922950 923619 923935 "FRIDEAL" 925019 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 922149 922236 922523 "FRIDEAL2" 922857 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-392 921407 921815 921856 "FRETRCT" 921861 NIL FRETRCT (NIL T) -9 NIL 922032) (-391 920519 920750 921101 "FRETRCT-" 921106 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-390 917729 918949 919008 "FRAMALG" 919890 NIL FRAMALG (NIL T T) -9 NIL 920182) (-389 915863 916318 916948 "FRAMALG-" 917171 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-388 909765 915338 915614 "FRAC" 915619 NIL FRAC (NIL T) -8 NIL NIL) (-387 909401 909458 909565 "FRAC2" 909702 NIL FRAC2 (NIL T T) -7 NIL NIL) (-386 909037 909094 909201 "FR2" 909338 NIL FR2 (NIL T T) -7 NIL NIL) (-385 903711 906624 906652 "FPS" 907771 T FPS (NIL) -9 NIL 908327) (-384 903160 903269 903433 "FPS-" 903579 NIL FPS- (NIL T) -8 NIL NIL) (-383 900609 902306 902334 "FPC" 902559 T FPC (NIL) -9 NIL 902701) (-382 900402 900442 900539 "FPC-" 900544 NIL FPC- (NIL T) -8 NIL NIL) (-381 899281 899891 899932 "FPATMAB" 899937 NIL FPATMAB (NIL T) -9 NIL 900089) (-380 896981 897457 897883 "FPARFRAC" 898918 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 892374 892873 893555 "FORTRAN" 896413 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 890090 890590 891129 "FORT" 891855 T FORT (NIL) -7 NIL NIL) (-377 887766 888328 888356 "FORTFN" 889416 T FORTFN (NIL) -9 NIL 890040) (-376 887530 887580 887608 "FORTCAT" 887667 T FORTCAT (NIL) -9 NIL 887729) (-375 885590 886073 886472 "FORMULA" 887151 T FORMULA (NIL) -8 NIL NIL) (-374 885378 885408 885477 "FORMULA1" 885554 NIL FORMULA1 (NIL T) -7 NIL NIL) (-373 884901 884953 885126 "FORDER" 885320 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 883997 884161 884354 "FOP" 884728 T FOP (NIL) -7 NIL NIL) (-371 882605 883277 883451 "FNLA" 883879 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 881274 881663 881691 "FNCAT" 882263 T FNCAT (NIL) -9 NIL 882556) (-369 880840 881233 881261 "FNAME" 881266 T FNAME (NIL) -8 NIL NIL) (-368 879500 880473 880501 "FMTC" 880506 T FMTC (NIL) -9 NIL 880541) (-367 875818 877025 877653 "FMONOID" 878905 NIL FMONOID (NIL T) -8 NIL NIL) (-366 875038 875561 875709 "FM" 875714 NIL FM (NIL T T) -8 NIL NIL) (-365 872462 873108 873136 "FMFUN" 874280 T FMFUN (NIL) -9 NIL 874988) (-364 871731 871912 871940 "FMC" 872230 T FMC (NIL) -9 NIL 872412) (-363 868961 869795 869848 "FMCAT" 871030 NIL FMCAT (NIL T T) -9 NIL 871524) (-362 867856 868729 868828 "FM1" 868906 NIL FM1 (NIL T T) -8 NIL NIL) (-361 865630 866046 866540 "FLOATRP" 867407 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 859116 863286 863916 "FLOAT" 865020 T FLOAT (NIL) -8 NIL NIL) (-359 856554 857054 857632 "FLOATCP" 858583 NIL FLOATCP (NIL T) -7 NIL NIL) (-358 855343 856191 856231 "FLINEXP" 856236 NIL FLINEXP (NIL T) -9 NIL 856329) (-357 854498 854733 855060 "FLINEXP-" 855065 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 853574 853718 853942 "FLASORT" 854350 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 850793 851635 851687 "FLALG" 852914 NIL FLALG (NIL T T) -9 NIL 853381) (-354 844578 848280 848321 "FLAGG" 849583 NIL FLAGG (NIL T) -9 NIL 850235) (-353 843304 843643 844133 "FLAGG-" 844138 NIL FLAGG- (NIL T T) -8 NIL NIL) (-352 842346 842489 842716 "FLAGG2" 843157 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-351 839319 840337 840396 "FINRALG" 841524 NIL FINRALG (NIL T T) -9 NIL 842032) (-350 838479 838708 839047 "FINRALG-" 839052 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 837886 838099 838127 "FINITE" 838323 T FINITE (NIL) -9 NIL 838430) (-348 830346 832507 832547 "FINAALG" 836214 NIL FINAALG (NIL T) -9 NIL 837667) (-347 825687 826728 827872 "FINAALG-" 829251 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 825082 825442 825545 "FILE" 825617 NIL FILE (NIL T) -8 NIL NIL) (-345 823767 824079 824133 "FILECAT" 824817 NIL FILECAT (NIL T T) -9 NIL 825033) (-344 821630 823186 823214 "FIELD" 823254 T FIELD (NIL) -9 NIL 823334) (-343 820250 820635 821146 "FIELD-" 821151 NIL FIELD- (NIL T) -8 NIL NIL) (-342 818065 818887 819233 "FGROUP" 819937 NIL FGROUP (NIL T) -8 NIL NIL) (-341 817155 817319 817539 "FGLMICPK" 817897 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 812957 817080 817137 "FFX" 817142 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 812558 812619 812754 "FFSLPE" 812890 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 808551 809330 810126 "FFPOLY" 811794 NIL FFPOLY (NIL T) -7 NIL NIL) (-337 808055 808091 808300 "FFPOLY2" 808509 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-336 803876 807974 808037 "FFP" 808042 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 799244 803787 803851 "FF" 803856 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 794340 798587 798777 "FFNBX" 799098 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-333 789249 793475 793733 "FFNBP" 794194 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-332 783852 788533 788744 "FFNB" 789082 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-331 782684 782882 783197 "FFINTBAS" 783649 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-330 778908 781148 781176 "FFIELDC" 781796 T FFIELDC (NIL) -9 NIL 782172) (-329 777571 777941 778438 "FFIELDC-" 778443 NIL FFIELDC- (NIL T) -8 NIL NIL) (-328 777141 777186 777310 "FFHOM" 777513 NIL FFHOM (NIL T T T) -7 NIL NIL) (-327 774839 775323 775840 "FFF" 776656 NIL FFF (NIL T) -7 NIL NIL) (-326 770427 774581 774682 "FFCGX" 774782 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-325 766029 770159 770266 "FFCGP" 770370 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-324 761182 765756 765864 "FFCG" 765965 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-323 743128 752251 752337 "FFCAT" 757502 NIL FFCAT (NIL T T T) -9 NIL 758989) (-322 738326 739373 740687 "FFCAT-" 741917 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 737737 737780 738015 "FFCAT2" 738277 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-320 726937 730727 731944 "FEXPR" 736592 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 725937 726372 726413 "FEVALAB" 726497 NIL FEVALAB (NIL T) -9 NIL 726758) (-318 725096 725306 725644 "FEVALAB-" 725649 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 723689 724479 724682 "FDIV" 724995 NIL FDIV (NIL T T T T) -8 NIL NIL) (-316 720756 721471 721586 "FDIVCAT" 723154 NIL FDIVCAT (NIL T T T T) -9 NIL 723591) (-315 720518 720545 720715 "FDIVCAT-" 720720 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-314 719738 719825 720102 "FDIV2" 720425 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-313 718424 718683 718972 "FCPAK1" 719469 T FCPAK1 (NIL) -7 NIL NIL) (-312 717552 717924 718065 "FCOMP" 718315 NIL FCOMP (NIL T) -8 NIL NIL) (-311 701187 704601 708162 "FC" 714011 T FC (NIL) -8 NIL NIL) (-310 693783 697829 697869 "FAXF" 699671 NIL FAXF (NIL T) -9 NIL 700362) (-309 691062 691717 692542 "FAXF-" 693007 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 686162 690438 690614 "FARRAY" 690919 NIL FARRAY (NIL T) -8 NIL NIL) (-307 681553 683624 683676 "FAMR" 684688 NIL FAMR (NIL T T) -9 NIL 685148) (-306 680444 680746 681180 "FAMR-" 681185 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 679640 680366 680419 "FAMONOID" 680424 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 677473 678157 678210 "FAMONC" 679151 NIL FAMONC (NIL T T) -9 NIL 679536) (-303 676165 677227 677364 "FAGROUP" 677369 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 673968 674287 674689 "FACUTIL" 675846 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 673067 673252 673474 "FACTFUNC" 673778 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 665387 672318 672530 "EXPUPXS" 672923 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 662870 663410 663996 "EXPRTUBE" 664821 T EXPRTUBE (NIL) -7 NIL NIL) (-298 659064 659656 660393 "EXPRODE" 662209 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 644223 657723 658149 "EXPR" 658670 NIL EXPR (NIL T) -8 NIL NIL) (-296 638651 639238 640050 "EXPR2UPS" 643521 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-295 638287 638344 638451 "EXPR2" 638588 NIL EXPR2 (NIL T T) -7 NIL NIL) (-294 629641 637424 637719 "EXPEXPAN" 638125 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 629468 629598 629627 "EXIT" 629632 T EXIT (NIL) -8 NIL NIL) (-292 629095 629157 629270 "EVALCYC" 629400 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 628636 628754 628795 "EVALAB" 628965 NIL EVALAB (NIL T) -9 NIL 629069) (-290 628117 628239 628460 "EVALAB-" 628465 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 625580 626892 626920 "EUCDOM" 627475 T EUCDOM (NIL) -9 NIL 627825) (-288 623985 624427 625017 "EUCDOM-" 625022 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 611563 614311 617051 "ESTOOLS" 621265 T ESTOOLS (NIL) -7 NIL NIL) (-286 611199 611256 611363 "ESTOOLS2" 611500 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-285 610950 610992 611072 "ESTOOLS1" 611151 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-284 604888 606612 606640 "ES" 609404 T ES (NIL) -9 NIL 610810) (-283 599835 601122 602939 "ES-" 603103 NIL ES- (NIL T) -8 NIL NIL) (-282 596210 596970 597750 "ESCONT" 599075 T ESCONT (NIL) -7 NIL NIL) (-281 595955 595987 596069 "ESCONT1" 596172 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-280 595630 595680 595780 "ES2" 595899 NIL ES2 (NIL T T) -7 NIL NIL) (-279 595260 595318 595427 "ES1" 595566 NIL ES1 (NIL T T) -7 NIL NIL) (-278 594476 594605 594781 "ERROR" 595104 T ERROR (NIL) -7 NIL NIL) (-277 587979 594335 594426 "EQTBL" 594431 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 580416 583297 584744 "EQ" 586565 NIL -3806 (NIL T) -8 NIL NIL) (-275 580048 580105 580214 "EQ2" 580353 NIL EQ2 (NIL T T) -7 NIL NIL) (-274 575340 576386 577479 "EP" 578987 NIL EP (NIL T) -7 NIL NIL) (-273 573922 574223 574540 "ENV" 575043 T ENV (NIL) -8 NIL NIL) (-272 573082 573646 573674 "ENTIRER" 573679 T ENTIRER (NIL) -9 NIL 573724) (-271 569538 571037 571407 "EMR" 572881 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 568682 568867 568921 "ELTAGG" 569301 NIL ELTAGG (NIL T T) -9 NIL 569512) (-269 568401 568463 568604 "ELTAGG-" 568609 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 568190 568219 568273 "ELTAB" 568357 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 567316 567462 567661 "ELFUTS" 568041 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 567058 567114 567142 "ELEMFUN" 567247 T ELEMFUN (NIL) -9 NIL NIL) (-265 566928 566949 567017 "ELEMFUN-" 567022 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 561820 565029 565070 "ELAGG" 566010 NIL ELAGG (NIL T) -9 NIL 566473) (-263 560105 560539 561202 "ELAGG-" 561207 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 558762 559042 559337 "ELABEXPR" 559830 T ELABEXPR (NIL) -8 NIL NIL) (-261 551628 553429 554256 "EFUPXS" 558038 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 545078 546879 547689 "EFULS" 550904 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 542509 542867 543345 "EFSTRUC" 544710 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 531581 533146 534706 "EF" 541024 NIL EF (NIL T T) -7 NIL NIL) (-257 530682 531066 531215 "EAB" 531452 T EAB (NIL) -8 NIL NIL) (-256 529895 530641 530669 "E04UCFA" 530674 T E04UCFA (NIL) -8 NIL NIL) (-255 529108 529854 529882 "E04NAFA" 529887 T E04NAFA (NIL) -8 NIL NIL) (-254 528321 529067 529095 "E04MBFA" 529100 T E04MBFA (NIL) -8 NIL NIL) (-253 527534 528280 528308 "E04JAFA" 528313 T E04JAFA (NIL) -8 NIL NIL) (-252 526749 527493 527521 "E04GCFA" 527526 T E04GCFA (NIL) -8 NIL NIL) (-251 525964 526708 526736 "E04FDFA" 526741 T E04FDFA (NIL) -8 NIL NIL) (-250 525177 525923 525951 "E04DGFA" 525956 T E04DGFA (NIL) -8 NIL NIL) (-249 519362 520707 522069 "E04AGNT" 523835 T E04AGNT (NIL) -7 NIL NIL) (-248 518089 518569 518609 "DVARCAT" 519084 NIL DVARCAT (NIL T) -9 NIL 519282) (-247 517293 517505 517819 "DVARCAT-" 517824 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 510155 517095 517222 "DSMP" 517227 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 504965 506100 507168 "DROPT" 509107 T DROPT (NIL) -8 NIL NIL) (-244 504630 504689 504787 "DROPT1" 504900 NIL DROPT1 (NIL T) -7 NIL NIL) (-243 499745 500871 502008 "DROPT0" 503513 T DROPT0 (NIL) -7 NIL NIL) (-242 498090 498415 498801 "DRAWPT" 499379 T DRAWPT (NIL) -7 NIL NIL) (-241 492677 493600 494679 "DRAW" 497064 NIL DRAW (NIL T) -7 NIL NIL) (-240 492310 492363 492481 "DRAWHACK" 492618 NIL DRAWHACK (NIL T) -7 NIL NIL) (-239 491041 491310 491601 "DRAWCX" 492039 T DRAWCX (NIL) -7 NIL NIL) (-238 490559 490627 490777 "DRAWCURV" 490967 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-237 481030 482989 485104 "DRAWCFUN" 488464 T DRAWCFUN (NIL) -7 NIL NIL) (-236 477844 479726 479767 "DQAGG" 480396 NIL DQAGG (NIL T) -9 NIL 480669) (-235 466351 473089 473171 "DPOLCAT" 475009 NIL DPOLCAT (NIL T T T T) -9 NIL 475553) (-234 461191 462537 464494 "DPOLCAT-" 464499 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 453987 461053 461150 "DPMO" 461155 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 446686 453768 453934 "DPMM" 453939 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 446106 446309 446423 "DOMAIN" 446592 T DOMAIN (NIL) -8 NIL NIL) (-230 439818 445743 445894 "DMP" 446007 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 439418 439474 439618 "DLP" 439756 NIL DLP (NIL T) -7 NIL NIL) (-228 433062 438519 438746 "DLIST" 439223 NIL DLIST (NIL T) -8 NIL NIL) (-227 429909 431918 431959 "DLAGG" 432509 NIL DLAGG (NIL T) -9 NIL 432738) (-226 428619 429311 429339 "DIVRING" 429489 T DIVRING (NIL) -9 NIL 429597) (-225 427607 427860 428253 "DIVRING-" 428258 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 425709 426066 426472 "DISPLAY" 427221 T DISPLAY (NIL) -7 NIL NIL) (-223 419598 425623 425686 "DIRPROD" 425691 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-222 418446 418649 418914 "DIRPROD2" 419391 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-221 407965 413970 414023 "DIRPCAT" 414431 NIL DIRPCAT (NIL NIL T) -9 NIL 415270) (-220 405291 405933 406814 "DIRPCAT-" 407151 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 404578 404738 404924 "DIOSP" 405125 T DIOSP (NIL) -7 NIL NIL) (-218 401281 403491 403532 "DIOPS" 403966 NIL DIOPS (NIL T) -9 NIL 404195) (-217 400830 400944 401135 "DIOPS-" 401140 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 399702 400340 400368 "DIFRING" 400555 T DIFRING (NIL) -9 NIL 400664) (-215 399348 399425 399577 "DIFRING-" 399582 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 397138 398420 398460 "DIFEXT" 398819 NIL DIFEXT (NIL T) -9 NIL 399112) (-213 395424 395852 396517 "DIFEXT-" 396522 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 392747 394957 394998 "DIAGG" 395003 NIL DIAGG (NIL T) -9 NIL 395023) (-211 392131 392288 392540 "DIAGG-" 392545 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 387596 391090 391367 "DHMATRIX" 391900 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 383208 384117 385127 "DFSFUN" 386606 T DFSFUN (NIL) -7 NIL NIL) (-208 377994 381922 382287 "DFLOAT" 382863 T DFLOAT (NIL) -8 NIL NIL) (-207 376227 376508 376903 "DFINTTLS" 377702 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 373260 374262 374660 "DERHAM" 375894 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 371109 373035 373124 "DEQUEUE" 373204 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 370327 370460 370655 "DEGRED" 370971 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 366727 367472 368324 "DEFINTRF" 369555 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 364258 364727 365325 "DEFINTEF" 366246 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 358088 363699 363865 "DECIMAL" 364112 T DECIMAL (NIL) -8 NIL NIL) (-200 355600 356058 356564 "DDFACT" 357632 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 355196 355239 355390 "DBLRESP" 355551 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 352906 353240 353609 "DBASE" 354954 NIL DBASE (NIL T) -8 NIL NIL) (-197 352175 352386 352532 "DATABUF" 352805 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 351310 352134 352162 "D03FAFA" 352167 T D03FAFA (NIL) -8 NIL NIL) (-195 350446 351269 351297 "D03EEFA" 351302 T D03EEFA (NIL) -8 NIL NIL) (-194 348396 348862 349351 "D03AGNT" 349977 T D03AGNT (NIL) -7 NIL NIL) (-193 347714 348355 348383 "D02EJFA" 348388 T D02EJFA (NIL) -8 NIL NIL) (-192 347032 347673 347701 "D02CJFA" 347706 T D02CJFA (NIL) -8 NIL NIL) (-191 346350 346991 347019 "D02BHFA" 347024 T D02BHFA (NIL) -8 NIL NIL) (-190 345668 346309 346337 "D02BBFA" 346342 T D02BBFA (NIL) -8 NIL NIL) (-189 338866 340454 342060 "D02AGNT" 344082 T D02AGNT (NIL) -7 NIL NIL) (-188 336635 337157 337703 "D01WGTS" 338340 T D01WGTS (NIL) -7 NIL NIL) (-187 335738 336594 336622 "D01TRNS" 336627 T D01TRNS (NIL) -8 NIL NIL) (-186 334841 335697 335725 "D01GBFA" 335730 T D01GBFA (NIL) -8 NIL NIL) (-185 333944 334800 334828 "D01FCFA" 334833 T D01FCFA (NIL) -8 NIL NIL) (-184 333047 333903 333931 "D01ASFA" 333936 T D01ASFA (NIL) -8 NIL NIL) (-183 332150 333006 333034 "D01AQFA" 333039 T D01AQFA (NIL) -8 NIL NIL) (-182 331253 332109 332137 "D01APFA" 332142 T D01APFA (NIL) -8 NIL NIL) (-181 330356 331212 331240 "D01ANFA" 331245 T D01ANFA (NIL) -8 NIL NIL) (-180 329459 330315 330343 "D01AMFA" 330348 T D01AMFA (NIL) -8 NIL NIL) (-179 328562 329418 329446 "D01ALFA" 329451 T D01ALFA (NIL) -8 NIL NIL) (-178 327665 328521 328549 "D01AKFA" 328554 T D01AKFA (NIL) -8 NIL NIL) (-177 326768 327624 327652 "D01AJFA" 327657 T D01AJFA (NIL) -8 NIL NIL) (-176 320072 321621 323180 "D01AGNT" 325229 T D01AGNT (NIL) -7 NIL NIL) (-175 319409 319537 319689 "CYCLOTOM" 319940 T CYCLOTOM (NIL) -7 NIL NIL) (-174 316144 316857 317584 "CYCLES" 318702 T CYCLES (NIL) -7 NIL NIL) (-173 315456 315590 315761 "CVMP" 316005 NIL CVMP (NIL T) -7 NIL NIL) (-172 313237 313495 313870 "CTRIGMNP" 315184 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 312748 312937 313036 "CTORCALL" 313158 T CTORCALL (NIL) -8 NIL NIL) (-170 312122 312221 312374 "CSTTOOLS" 312645 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 307921 308578 309336 "CRFP" 311434 NIL CRFP (NIL T T) -7 NIL NIL) (-168 306968 307153 307381 "CRAPACK" 307725 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 306352 306453 306657 "CPMATCH" 306844 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 306077 306105 306211 "CPIMA" 306318 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 302441 303113 303831 "COORDSYS" 305412 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 301825 301954 302104 "CONTOUR" 302311 T CONTOUR (NIL) -8 NIL NIL) (-163 297686 299828 300320 "CONTFRAC" 301365 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 296840 297404 297432 "COMRING" 297437 T COMRING (NIL) -9 NIL 297488) (-161 295921 296198 296382 "COMPPROP" 296676 T COMPPROP (NIL) -8 NIL NIL) (-160 295582 295617 295745 "COMPLPAT" 295880 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 285563 295391 295500 "COMPLEX" 295505 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 285199 285256 285363 "COMPLEX2" 285500 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 284917 284952 285050 "COMPFACT" 285158 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 269252 279546 279586 "COMPCAT" 280588 NIL COMPCAT (NIL T) -9 NIL 281981) (-155 258767 261691 265318 "COMPCAT-" 265674 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 258498 258526 258628 "COMMUPC" 258733 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 258293 258326 258385 "COMMONOP" 258459 T COMMONOP (NIL) -7 NIL NIL) (-152 257876 258044 258131 "COMM" 258226 T COMM (NIL) -8 NIL NIL) (-151 257125 257319 257347 "COMBOPC" 257685 T COMBOPC (NIL) -9 NIL 257860) (-150 256021 256231 256473 "COMBINAT" 256915 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 252219 252792 253432 "COMBF" 255443 NIL COMBF (NIL T T) -7 NIL NIL) (-148 251005 251335 251570 "COLOR" 252004 T COLOR (NIL) -8 NIL NIL) (-147 250645 250692 250817 "CMPLXRT" 250952 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 246147 247175 248255 "CLIP" 249585 T CLIP (NIL) -7 NIL NIL) (-145 244485 245255 245493 "CLIF" 245975 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 240708 242632 242673 "CLAGG" 243602 NIL CLAGG (NIL T) -9 NIL 244138) (-143 239130 239587 240170 "CLAGG-" 240175 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 238674 238759 238899 "CINTSLPE" 239039 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 236175 236646 237194 "CHVAR" 238202 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 235398 235962 235990 "CHARZ" 235995 T CHARZ (NIL) -9 NIL 236009) (-139 235152 235192 235270 "CHARPOL" 235352 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 234259 234856 234884 "CHARNZ" 234931 T CHARNZ (NIL) -9 NIL 234986) (-137 232284 232949 233284 "CHAR" 233944 T CHAR (NIL) -8 NIL NIL) (-136 232010 232071 232099 "CFCAT" 232210 T CFCAT (NIL) -9 NIL NIL) (-135 231255 231366 231548 "CDEN" 231894 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 227247 230408 230688 "CCLASS" 230995 T CCLASS (NIL) -8 NIL NIL) (-133 227166 227192 227227 "CATEGORY" 227232 T -10 (NIL) -8 NIL NIL) (-132 222218 223195 223948 "CARTEN" 226469 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 221326 221474 221695 "CARTEN2" 222065 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 219624 220478 220734 "CARD" 221090 T CARD (NIL) -8 NIL NIL) (-129 218997 219325 219353 "CACHSET" 219485 T CACHSET (NIL) -9 NIL 219562) (-128 218494 218790 218818 "CABMON" 218868 T CABMON (NIL) -9 NIL 218924) (-127 217662 218041 218184 "BYTE" 218371 T BYTE (NIL) -8 NIL NIL) (-126 213610 217609 217643 "BYTEARY" 217648 T BYTEARY (NIL) -8 NIL NIL) (-125 211167 213302 213409 "BTREE" 213536 NIL BTREE (NIL T) -8 NIL NIL) (-124 208665 210815 210937 "BTOURN" 211077 NIL BTOURN (NIL T) -8 NIL NIL) (-123 206084 208137 208178 "BTCAT" 208246 NIL BTCAT (NIL T) -9 NIL 208323) (-122 205751 205831 205980 "BTCAT-" 205985 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 201044 204895 204923 "BTAGG" 205145 T BTAGG (NIL) -9 NIL 205306) (-120 200534 200659 200865 "BTAGG-" 200870 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 197578 199812 200027 "BSTREE" 200351 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196716 196842 197026 "BRILL" 197434 NIL BRILL (NIL T) -7 NIL NIL) (-117 193418 195445 195486 "BRAGG" 196135 NIL BRAGG (NIL T) -9 NIL 196392) (-116 191947 192353 192908 "BRAGG-" 192913 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 185155 191293 191477 "BPADICRT" 191795 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 183459 185092 185137 "BPADIC" 185142 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 183159 183189 183302 "BOUNDZRO" 183423 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL) (-111 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL) (-110 175019 175705 175905 "BOOLEAN" 176115 T BOOLEAN (NIL) -8 NIL NIL) (-109 174386 174764 174816 "BMODULE" 174821 NIL BMODULE (NIL T T) -9 NIL 174885) (-108 170216 174184 174257 "BITS" 174333 T BITS (NIL) -8 NIL NIL) (-107 169313 169748 169900 "BINFILE" 170084 T BINFILE (NIL) -8 NIL NIL) (-106 168725 168847 168989 "BINDING" 169191 T BINDING (NIL) -8 NIL NIL) (-105 162559 168169 168334 "BINARY" 168580 T BINARY (NIL) -8 NIL NIL) (-104 160387 161815 161856 "BGAGG" 162116 NIL BGAGG (NIL T) -9 NIL 162253) (-103 160218 160250 160341 "BGAGG-" 160346 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 159316 159602 159807 "BFUNCT" 160033 T BFUNCT (NIL) -8 NIL NIL) (-101 158011 158189 158476 "BEZOUT" 159140 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154528 156863 157193 "BBTREE" 157714 NIL BBTREE (NIL T) -8 NIL NIL) (-99 154266 154319 154345 "BASTYPE" 154462 T BASTYPE (NIL) -9 NIL NIL) (-98 154121 154150 154220 "BASTYPE-" 154225 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153559 153635 153785 "BALFACT" 154032 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 152381 152978 153163 "AUTOMOR" 153404 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 152107 152112 152138 "ATTREG" 152143 T ATTREG (NIL) -9 NIL NIL) (-94 150386 150804 151156 "ATTRBUT" 151773 T ATTRBUT (NIL) -8 NIL NIL) (-93 149922 150035 150061 "ATRIG" 150262 T ATRIG (NIL) -9 NIL NIL) (-92 149731 149772 149859 "ATRIG-" 149864 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149457 149600 149626 "ASTCAT" 149631 T ASTCAT (NIL) -9 NIL 149661) (-90 149254 149297 149389 "ASTCAT-" 149394 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147451 149030 149118 "ASTACK" 149197 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145956 146253 146618 "ASSOCEQ" 147133 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144988 145615 145739 "ASP9" 145863 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144752 144936 144975 "ASP8" 144980 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143621 144357 144499 "ASP80" 144641 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142520 143256 143388 "ASP7" 143520 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141474 142197 142315 "ASP78" 142433 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140443 141154 141271 "ASP77" 141388 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139355 140081 140212 "ASP74" 140343 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138255 138990 139122 "ASP73" 139254 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137210 137932 138050 "ASP6" 138168 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136158 136887 137005 "ASP55" 137123 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135108 135832 135951 "ASP50" 136070 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134196 134809 134919 "ASP4" 135029 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133284 133897 134007 "ASP49" 134117 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132069 132823 132991 "ASP42" 133173 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130846 131602 131772 "ASP41" 131956 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129796 130523 130641 "ASP35" 130759 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129561 129744 129783 "ASP34" 129788 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129298 129365 129441 "ASP33" 129516 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128193 128933 129065 "ASP31" 129197 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127958 128141 128180 "ASP30" 128185 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127693 127762 127838 "ASP29" 127913 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127458 127641 127680 "ASP28" 127685 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127223 127406 127445 "ASP27" 127450 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126307 126921 127032 "ASP24" 127143 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125223 125948 126078 "ASP20" 126208 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124311 124924 125034 "ASP1" 125144 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123255 123985 124104 "ASP19" 124223 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122992 123059 123135 "ASP12" 123210 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121844 122591 122735 "ASP10" 122879 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119743 121688 121779 "ARRAY2" 121784 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115559 119391 119505 "ARRAY1" 119660 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114591 114764 114985 "ARRAY12" 115382 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108951 110822 110897 "ARR2CAT" 113527 NIL ARR2CAT (NIL T T T) -9 NIL 114285) (-54 106385 107129 108083 "ARR2CAT-" 108088 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105137 105289 105594 "APPRULE" 106221 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104790 104838 104956 "APPLYORE" 105083 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103764 104055 104250 "ANY" 104613 T ANY (NIL) -8 NIL NIL) (-50 103042 103165 103322 "ANY1" 103638 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100574 101492 101817 "ANTISYM" 102767 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100089 100278 100375 "ANON" 100495 T ANON (NIL) -8 NIL NIL) (-47 94166 98634 99085 "AN" 99656 T AN (NIL) -8 NIL NIL) (-46 90520 91918 91968 "AMR" 92707 NIL AMR (NIL T T) -9 NIL 93306) (-45 89633 89854 90216 "AMR-" 90221 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74183 89550 89611 "ALIST" 89616 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71020 73777 73946 "ALGSC" 74101 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67576 68130 68737 "ALGPKG" 70460 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66853 66954 67138 "ALGMFACT" 67462 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63283 63937 "ALGMANIP" 66377 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-3 3138561 3138566 3138571 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3138546 3138551 3138556 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3138531 3138536 3138541 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3138516 3138521 3138526 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1207 3137692 3138391 3138468 "ZMOD" 3138473 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1206 3136802 3136966 3137175 "ZLINDEP" 3137524 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1205 3126206 3127951 3129903 "ZDSOLVE" 3134951 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1204 3125452 3125593 3125782 "YSTREAM" 3126052 NIL YSTREAM (NIL T) -7 NIL NIL) (-1203 3123267 3124757 3124960 "XRPOLY" 3125295 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1202 3119775 3121058 3121640 "XPR" 3122731 NIL XPR (NIL T T) -8 NIL NIL) (-1201 3117535 3119110 3119313 "XPOLY" 3119606 NIL XPOLY (NIL T) -8 NIL NIL) (-1200 3115393 3116727 3116781 "XPOLYC" 3117066 NIL XPOLYC (NIL T T) -9 NIL 3117179) (-1199 3111811 3113910 3114298 "XPBWPOLY" 3115051 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1198 3107804 3110052 3110094 "XF" 3110715 NIL XF (NIL T) -9 NIL 3111114) (-1197 3107425 3107513 3107682 "XF-" 3107687 NIL XF- (NIL T T) -8 NIL NIL) (-1196 3102849 3104104 3104158 "XFALG" 3106306 NIL XFALG (NIL T T) -9 NIL 3107093) (-1195 3101986 3102090 3102294 "XEXPPKG" 3102741 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1194 3100131 3101837 3101932 "XDPOLY" 3101937 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1193 3099054 3099620 3099662 "XALG" 3099724 NIL XALG (NIL T) -9 NIL 3099843) (-1192 3092530 3097038 3097531 "WUTSET" 3098646 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1191 3090388 3091149 3091500 "WP" 3092312 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1190 3089274 3089472 3089767 "WFFINTBS" 3090185 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1189 3087178 3087605 3088067 "WEIER" 3088846 NIL WEIER (NIL T) -7 NIL NIL) (-1188 3086327 3086751 3086793 "VSPACE" 3086929 NIL VSPACE (NIL T) -9 NIL 3087003) (-1187 3086165 3086192 3086283 "VSPACE-" 3086288 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1186 3085911 3085954 3086025 "VOID" 3086116 T VOID (NIL) -8 NIL NIL) (-1185 3084047 3084406 3084812 "VIEW" 3085527 T VIEW (NIL) -7 NIL NIL) (-1184 3080472 3081110 3081847 "VIEWDEF" 3083332 T VIEWDEF (NIL) -7 NIL NIL) (-1183 3069810 3072020 3074193 "VIEW3D" 3078321 T VIEW3D (NIL) -8 NIL NIL) (-1182 3062092 3063721 3065300 "VIEW2D" 3068253 T VIEW2D (NIL) -8 NIL NIL) (-1181 3057501 3061862 3061954 "VECTOR" 3062035 NIL VECTOR (NIL T) -8 NIL NIL) (-1180 3056078 3056337 3056655 "VECTOR2" 3057231 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1179 3049618 3053870 3053913 "VECTCAT" 3054901 NIL VECTCAT (NIL T) -9 NIL 3055485) (-1178 3048632 3048886 3049276 "VECTCAT-" 3049281 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1177 3048113 3048283 3048403 "VARIABLE" 3048547 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1176 3048046 3048051 3048081 "UTYPE" 3048086 T UTYPE (NIL) -9 NIL NIL) (-1175 3046881 3047035 3047296 "UTSODETL" 3047872 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1174 3044321 3044781 3045305 "UTSODE" 3046422 NIL UTSODE (NIL T T) -7 NIL NIL) (-1173 3036211 3041961 3042449 "UTS" 3043890 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1172 3027602 3032921 3032963 "UTSCAT" 3034064 NIL UTSCAT (NIL T) -9 NIL 3034821) (-1171 3024957 3025673 3026661 "UTSCAT-" 3026666 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1170 3024588 3024631 3024762 "UTS2" 3024908 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1169 3018864 3021429 3021472 "URAGG" 3023542 NIL URAGG (NIL T) -9 NIL 3024264) (-1168 3015803 3016666 3017789 "URAGG-" 3017794 NIL URAGG- (NIL T T) -8 NIL NIL) (-1167 3011535 3014420 3014891 "UPXSSING" 3015467 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1166 3003511 3010656 3010936 "UPXS" 3011312 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1165 2996625 3003416 3003487 "UPXSCONS" 3003492 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1164 2986999 2993744 2993805 "UPXSCCA" 2994454 NIL UPXSCCA (NIL T T) -9 NIL 2994695) (-1163 2986638 2986723 2986896 "UPXSCCA-" 2986901 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1162 2976934 2983452 2983494 "UPXSCAT" 2984137 NIL UPXSCAT (NIL T) -9 NIL 2984745) (-1161 2976368 2976447 2976624 "UPXS2" 2976849 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1160 2975022 2975275 2975626 "UPSQFREE" 2976111 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1159 2968959 2971968 2972022 "UPSCAT" 2973171 NIL UPSCAT (NIL T T) -9 NIL 2973945) (-1158 2968164 2968371 2968697 "UPSCAT-" 2968702 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1157 2954296 2962287 2962329 "UPOLYC" 2964407 NIL UPOLYC (NIL T) -9 NIL 2965628) (-1156 2945626 2948051 2951197 "UPOLYC-" 2951202 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1155 2945257 2945300 2945431 "UPOLYC2" 2945577 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1154 2936722 2944826 2944963 "UP" 2945167 NIL UP (NIL NIL T) -8 NIL NIL) (-1153 2936065 2936172 2936335 "UPMP" 2936611 NIL UPMP (NIL T T) -7 NIL NIL) (-1152 2935618 2935699 2935838 "UPDIVP" 2935978 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1151 2934186 2934435 2934751 "UPDECOMP" 2935367 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1150 2933421 2933533 2933718 "UPCDEN" 2934070 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1149 2932944 2933013 2933160 "UP2" 2933346 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1148 2931461 2932148 2932425 "UNISEG" 2932702 NIL UNISEG (NIL T) -8 NIL NIL) (-1147 2930676 2930803 2931008 "UNISEG2" 2931304 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1146 2929736 2929916 2930142 "UNIFACT" 2930492 NIL UNIFACT (NIL T) -7 NIL NIL) (-1145 2913717 2928917 2929167 "ULS" 2929543 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1144 2901767 2913622 2913693 "ULSCONS" 2913698 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1143 2884602 2896530 2896591 "ULSCCAT" 2897303 NIL ULSCCAT (NIL T T) -9 NIL 2897599) (-1142 2883653 2883898 2884285 "ULSCCAT-" 2884290 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1141 2873728 2880160 2880202 "ULSCAT" 2881058 NIL ULSCAT (NIL T) -9 NIL 2881788) (-1140 2873162 2873241 2873418 "ULS2" 2873643 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1139 2871604 2872527 2872557 "UFD" 2872769 T UFD (NIL) -9 NIL 2872883) (-1138 2871398 2871444 2871539 "UFD-" 2871544 NIL UFD- (NIL T) -8 NIL NIL) (-1137 2870480 2870663 2870879 "UDVO" 2871204 T UDVO (NIL) -7 NIL NIL) (-1136 2868296 2868705 2869176 "UDPO" 2870044 NIL UDPO (NIL T) -7 NIL NIL) (-1135 2868229 2868234 2868264 "TYPE" 2868269 T TYPE (NIL) -9 NIL NIL) (-1134 2867200 2867402 2867642 "TWOFACT" 2868023 NIL TWOFACT (NIL T) -7 NIL NIL) (-1133 2866138 2866475 2866738 "TUPLE" 2866972 NIL TUPLE (NIL T) -8 NIL NIL) (-1132 2863829 2864348 2864887 "TUBETOOL" 2865621 T TUBETOOL (NIL) -7 NIL NIL) (-1131 2862678 2862883 2863124 "TUBE" 2863622 NIL TUBE (NIL T) -8 NIL NIL) (-1130 2857448 2861656 2861938 "TS" 2862430 NIL TS (NIL T) -8 NIL NIL) (-1129 2846152 2850244 2850340 "TSETCAT" 2855574 NIL TSETCAT (NIL T T T T) -9 NIL 2857105) (-1128 2840887 2842485 2844375 "TSETCAT-" 2844380 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1127 2835150 2835996 2836938 "TRMANIP" 2840023 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1126 2834591 2834654 2834817 "TRIMAT" 2835082 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1125 2832397 2832634 2832997 "TRIGMNIP" 2834340 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1124 2831917 2832030 2832060 "TRIGCAT" 2832273 T TRIGCAT (NIL) -9 NIL NIL) (-1123 2831586 2831665 2831806 "TRIGCAT-" 2831811 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1122 2828485 2830446 2830726 "TREE" 2831341 NIL TREE (NIL T) -8 NIL NIL) (-1121 2827759 2828287 2828317 "TRANFUN" 2828352 T TRANFUN (NIL) -9 NIL 2828418) (-1120 2827038 2827229 2827509 "TRANFUN-" 2827514 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1119 2826842 2826874 2826935 "TOPSP" 2826999 T TOPSP (NIL) -7 NIL NIL) (-1118 2826194 2826309 2826462 "TOOLSIGN" 2826723 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1117 2824855 2825371 2825610 "TEXTFILE" 2825977 T TEXTFILE (NIL) -8 NIL NIL) (-1116 2822720 2823234 2823672 "TEX" 2824439 T TEX (NIL) -8 NIL NIL) (-1115 2822501 2822532 2822604 "TEX1" 2822683 NIL TEX1 (NIL T) -7 NIL NIL) (-1114 2822149 2822212 2822302 "TEMUTL" 2822433 T TEMUTL (NIL) -7 NIL NIL) (-1113 2820303 2820583 2820908 "TBCMPPK" 2821872 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1112 2812192 2818464 2818520 "TBAGG" 2818920 NIL TBAGG (NIL T T) -9 NIL 2819131) (-1111 2807262 2808750 2810504 "TBAGG-" 2810509 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1110 2806646 2806753 2806898 "TANEXP" 2807151 NIL TANEXP (NIL T) -7 NIL NIL) (-1109 2800147 2806503 2806596 "TABLE" 2806601 NIL TABLE (NIL T T) -8 NIL NIL) (-1108 2799559 2799658 2799796 "TABLEAU" 2800044 NIL TABLEAU (NIL T) -8 NIL NIL) (-1107 2794167 2795387 2796635 "TABLBUMP" 2798345 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1106 2793595 2793695 2793823 "SYSTEM" 2794061 T SYSTEM (NIL) -7 NIL NIL) (-1105 2790058 2790753 2791536 "SYSSOLP" 2792846 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1104 2786349 2787057 2787791 "SYNTAX" 2789346 T SYNTAX (NIL) -8 NIL NIL) (-1103 2783483 2784091 2784729 "SYMTAB" 2785733 T SYMTAB (NIL) -8 NIL NIL) (-1102 2778732 2779634 2780617 "SYMS" 2782522 T SYMS (NIL) -8 NIL NIL) (-1101 2776011 2778192 2778421 "SYMPOLY" 2778537 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1100 2775531 2775606 2775728 "SYMFUNC" 2775923 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1099 2771508 2772768 2773590 "SYMBOL" 2774731 T SYMBOL (NIL) -8 NIL NIL) (-1098 2765047 2766736 2768456 "SWITCH" 2769810 T SWITCH (NIL) -8 NIL NIL) (-1097 2758323 2763874 2764176 "SUTS" 2764802 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1096 2750298 2757444 2757724 "SUPXS" 2758100 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1095 2741835 2749919 2750044 "SUP" 2750207 NIL SUP (NIL T) -8 NIL NIL) (-1094 2740994 2741121 2741338 "SUPFRACF" 2741703 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1093 2740619 2740678 2740789 "SUP2" 2740929 NIL SUP2 (NIL T T) -7 NIL NIL) (-1092 2739037 2739311 2739673 "SUMRF" 2740318 NIL SUMRF (NIL T) -7 NIL NIL) (-1091 2738354 2738420 2738618 "SUMFS" 2738958 NIL SUMFS (NIL T T) -7 NIL NIL) (-1090 2722375 2737535 2737785 "SULS" 2738161 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1089 2721697 2721900 2722040 "SUCH" 2722283 NIL SUCH (NIL T T) -8 NIL NIL) (-1088 2715624 2716636 2717594 "SUBSPACE" 2720785 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1087 2715054 2715144 2715308 "SUBRESP" 2715512 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1086 2708423 2709719 2711030 "STTF" 2713790 NIL STTF (NIL T) -7 NIL NIL) (-1085 2702596 2703716 2704863 "STTFNC" 2707323 NIL STTFNC (NIL T) -7 NIL NIL) (-1084 2693947 2695814 2697607 "STTAYLOR" 2700837 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1083 2687191 2693811 2693894 "STRTBL" 2693899 NIL STRTBL (NIL T) -8 NIL NIL) (-1082 2682582 2687146 2687177 "STRING" 2687182 T STRING (NIL) -8 NIL NIL) (-1081 2677471 2681956 2681986 "STRICAT" 2682045 T STRICAT (NIL) -9 NIL 2682107) (-1080 2670185 2674994 2675614 "STREAM" 2676886 NIL STREAM (NIL T) -8 NIL NIL) (-1079 2669695 2669772 2669916 "STREAM3" 2670102 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1078 2668677 2668860 2669095 "STREAM2" 2669508 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1077 2668365 2668417 2668510 "STREAM1" 2668619 NIL STREAM1 (NIL T) -7 NIL NIL) (-1076 2667381 2667562 2667793 "STINPROD" 2668181 NIL STINPROD (NIL T) -7 NIL NIL) (-1075 2666960 2667144 2667174 "STEP" 2667254 T STEP (NIL) -9 NIL 2667332) (-1074 2660503 2666859 2666936 "STBL" 2666941 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1073 2655679 2659726 2659769 "STAGG" 2659922 NIL STAGG (NIL T) -9 NIL 2660011) (-1072 2653381 2653983 2654855 "STAGG-" 2654860 NIL STAGG- (NIL T T) -8 NIL NIL) (-1071 2651576 2653151 2653243 "STACK" 2653324 NIL STACK (NIL T) -8 NIL NIL) (-1070 2644307 2649723 2650178 "SREGSET" 2651206 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1069 2636747 2638115 2639627 "SRDCMPK" 2642913 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1068 2629715 2634188 2634218 "SRAGG" 2635521 T SRAGG (NIL) -9 NIL 2636129) (-1067 2628732 2628987 2629366 "SRAGG-" 2629371 NIL SRAGG- (NIL T) -8 NIL NIL) (-1066 2623227 2627651 2628078 "SQMATRIX" 2628351 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1065 2616979 2619947 2620673 "SPLTREE" 2622573 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1064 2612969 2613635 2614281 "SPLNODE" 2616405 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1063 2612016 2612249 2612279 "SPFCAT" 2612723 T SPFCAT (NIL) -9 NIL NIL) (-1062 2610753 2610963 2611227 "SPECOUT" 2611774 T SPECOUT (NIL) -7 NIL NIL) (-1061 2610514 2610554 2610623 "SPADPRSR" 2610706 T SPADPRSR (NIL) -7 NIL NIL) (-1060 2602537 2604284 2604326 "SPACEC" 2608649 NIL SPACEC (NIL T) -9 NIL 2610465) (-1059 2600709 2602470 2602518 "SPACE3" 2602523 NIL SPACE3 (NIL T) -8 NIL NIL) (-1058 2599461 2599632 2599923 "SORTPAK" 2600514 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1057 2597517 2597820 2598238 "SOLVETRA" 2599125 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1056 2596528 2596750 2597024 "SOLVESER" 2597290 NIL SOLVESER (NIL T) -7 NIL NIL) (-1055 2591748 2592629 2593631 "SOLVERAD" 2595580 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1054 2587563 2588172 2588901 "SOLVEFOR" 2591115 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1053 2581862 2586914 2587010 "SNTSCAT" 2587015 NIL SNTSCAT (NIL T T T T) -9 NIL 2587085) (-1052 2576012 2580193 2580583 "SMTS" 2581552 NIL SMTS (NIL T T T) -8 NIL NIL) (-1051 2570468 2575901 2575977 "SMP" 2575982 NIL SMP (NIL T T) -8 NIL NIL) (-1050 2568627 2568928 2569326 "SMITH" 2570165 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1049 2561638 2565788 2565890 "SMATCAT" 2567230 NIL SMATCAT (NIL NIL T T T) -9 NIL 2567779) (-1048 2558579 2559402 2560579 "SMATCAT-" 2560584 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1047 2556293 2557816 2557859 "SKAGG" 2558120 NIL SKAGG (NIL T) -9 NIL 2558255) (-1046 2552397 2555397 2555675 "SINT" 2556037 T SINT (NIL) -8 NIL NIL) (-1045 2552169 2552207 2552273 "SIMPAN" 2552353 T SIMPAN (NIL) -7 NIL NIL) (-1044 2551685 2551871 2551970 "SIG" 2552092 T SIG (NIL) -8 NIL NIL) (-1043 2550523 2550744 2551019 "SIGNRF" 2551444 NIL SIGNRF (NIL T) -7 NIL NIL) (-1042 2549332 2549483 2549773 "SIGNEF" 2550352 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1041 2547022 2547476 2547982 "SHP" 2548873 NIL SHP (NIL T NIL) -7 NIL NIL) (-1040 2540961 2546923 2546999 "SHDP" 2547004 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1039 2540561 2540727 2540757 "SGROUP" 2540850 T SGROUP (NIL) -9 NIL 2540912) (-1038 2540419 2540445 2540518 "SGROUP-" 2540523 NIL SGROUP- (NIL T) -8 NIL NIL) (-1037 2537255 2537952 2538675 "SGCF" 2539718 T SGCF (NIL) -7 NIL NIL) (-1036 2531652 2536704 2536800 "SFRTCAT" 2536805 NIL SFRTCAT (NIL T T T T) -9 NIL 2536844) (-1035 2525094 2526109 2527244 "SFRGCD" 2530635 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1034 2518241 2519312 2520497 "SFQCMPK" 2524027 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2517863 2517952 2518062 "SFORT" 2518182 NIL SFORT (NIL T T) -8 NIL NIL) (-1032 2517008 2517703 2517824 "SEXOF" 2517829 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1031 2516142 2516889 2516957 "SEX" 2516962 T SEX (NIL) -8 NIL NIL) (-1030 2510919 2511608 2511703 "SEXCAT" 2515474 NIL SEXCAT (NIL T T T T T) -9 NIL 2516093) (-1029 2508099 2510853 2510901 "SET" 2510906 NIL SET (NIL T) -8 NIL NIL) (-1028 2506350 2506812 2507117 "SETMN" 2507840 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1027 2505958 2506084 2506114 "SETCAT" 2506231 T SETCAT (NIL) -9 NIL 2506315) (-1026 2505738 2505790 2505889 "SETCAT-" 2505894 NIL SETCAT- (NIL T) -8 NIL NIL) (-1025 2502126 2504200 2504243 "SETAGG" 2505113 NIL SETAGG (NIL T) -9 NIL 2505453) (-1024 2501584 2501700 2501937 "SETAGG-" 2501942 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1023 2500788 2501081 2501142 "SEGXCAT" 2501428 NIL SEGXCAT (NIL T T) -9 NIL 2501548) (-1022 2499844 2500454 2500636 "SEG" 2500641 NIL SEG (NIL T) -8 NIL NIL) (-1021 2498751 2498964 2499007 "SEGCAT" 2499589 NIL SEGCAT (NIL T) -9 NIL 2499827) (-1020 2497800 2498130 2498330 "SEGBIND" 2498586 NIL SEGBIND (NIL T) -8 NIL NIL) (-1019 2497421 2497480 2497593 "SEGBIND2" 2497735 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1018 2496640 2496766 2496970 "SEG2" 2497265 NIL SEG2 (NIL T T) -7 NIL NIL) (-1017 2496077 2496575 2496622 "SDVAR" 2496627 NIL SDVAR (NIL T) -8 NIL NIL) (-1016 2488375 2495850 2495978 "SDPOL" 2495983 NIL SDPOL (NIL T) -8 NIL NIL) (-1015 2486968 2487234 2487553 "SCPKG" 2488090 NIL SCPKG (NIL T) -7 NIL NIL) (-1014 2486104 2486284 2486484 "SCOPE" 2486790 T SCOPE (NIL) -8 NIL NIL) (-1013 2485325 2485458 2485637 "SCACHE" 2485959 NIL SCACHE (NIL T) -7 NIL NIL) (-1012 2484764 2485085 2485170 "SAOS" 2485262 T SAOS (NIL) -8 NIL NIL) (-1011 2484329 2484364 2484537 "SAERFFC" 2484723 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1010 2478308 2484226 2484306 "SAE" 2484311 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1009 2477901 2477936 2478095 "SAEFACT" 2478267 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1008 2476222 2476536 2476937 "RURPK" 2477567 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1007 2474862 2475141 2475452 "RULESET" 2476056 NIL RULESET (NIL T T T) -8 NIL NIL) (-1006 2472060 2472563 2473026 "RULE" 2474544 NIL RULE (NIL T T T) -8 NIL NIL) (-1005 2471699 2471854 2471937 "RULECOLD" 2472012 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1004 2466562 2467356 2468275 "RSETGCD" 2470898 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1003 2455848 2460900 2460996 "RSETCAT" 2465088 NIL RSETCAT (NIL T T T T) -9 NIL 2466185) (-1002 2453776 2454315 2455138 "RSETCAT-" 2455143 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1001 2446177 2447552 2449071 "RSDCMPK" 2452375 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1000 2444183 2444624 2444698 "RRCC" 2445784 NIL RRCC (NIL T T) -9 NIL 2446128) (-999 2443536 2443710 2443987 "RRCC-" 2443992 NIL RRCC- (NIL T T T) -8 NIL NIL) (-998 2417949 2427528 2427592 "RPOLCAT" 2438094 NIL RPOLCAT (NIL T T T) -9 NIL 2441252) (-997 2409453 2411791 2414909 "RPOLCAT-" 2414914 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-996 2400519 2407683 2408163 "ROUTINE" 2408993 T ROUTINE (NIL) -8 NIL NIL) (-995 2397270 2400075 2400222 "ROMAN" 2400392 T ROMAN (NIL) -8 NIL NIL) (-994 2395554 2396139 2396397 "ROIRC" 2397075 NIL ROIRC (NIL T T) -8 NIL NIL) (-993 2392024 2394263 2394291 "RNS" 2394587 T RNS (NIL) -9 NIL 2394857) (-992 2390538 2390921 2391452 "RNS-" 2391525 NIL RNS- (NIL T) -8 NIL NIL) (-991 2389990 2390372 2390400 "RNG" 2390405 T RNG (NIL) -9 NIL 2390426) (-990 2389388 2389750 2389790 "RMODULE" 2389850 NIL RMODULE (NIL T) -9 NIL 2389892) (-989 2388240 2388334 2388664 "RMCAT2" 2389289 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-988 2384954 2387423 2387744 "RMATRIX" 2387975 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-987 2377951 2380185 2380297 "RMATCAT" 2383606 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2384588) (-986 2377330 2377477 2377780 "RMATCAT-" 2377785 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-985 2376900 2376975 2377101 "RINTERP" 2377249 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-984 2375995 2376515 2376543 "RING" 2376653 T RING (NIL) -9 NIL 2376747) (-983 2375790 2375834 2375928 "RING-" 2375933 NIL RING- (NIL T) -8 NIL NIL) (-982 2374638 2374875 2375131 "RIDIST" 2375554 T RIDIST (NIL) -7 NIL NIL) (-981 2365958 2374110 2374314 "RGCHAIN" 2374486 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-980 2362963 2363577 2364245 "RF" 2365322 NIL RF (NIL T) -7 NIL NIL) (-979 2362612 2362675 2362776 "RFFACTOR" 2362894 NIL RFFACTOR (NIL T) -7 NIL NIL) (-978 2362340 2362375 2362470 "RFFACT" 2362571 NIL RFFACT (NIL T) -7 NIL NIL) (-977 2360470 2360834 2361214 "RFDIST" 2361980 T RFDIST (NIL) -7 NIL NIL) (-976 2359928 2360020 2360180 "RETSOL" 2360372 NIL RETSOL (NIL T T) -7 NIL NIL) (-975 2359521 2359601 2359642 "RETRACT" 2359832 NIL RETRACT (NIL T) -9 NIL NIL) (-974 2359373 2359398 2359482 "RETRACT-" 2359487 NIL RETRACT- (NIL T T) -8 NIL NIL) (-973 2352231 2359030 2359155 "RESULT" 2359268 T RESULT (NIL) -8 NIL NIL) (-972 2350862 2351505 2351702 "RESRING" 2352134 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-971 2350502 2350551 2350647 "RESLATC" 2350799 NIL RESLATC (NIL T) -7 NIL NIL) (-970 2350211 2350245 2350350 "REPSQ" 2350461 NIL REPSQ (NIL T) -7 NIL NIL) (-969 2347642 2348222 2348822 "REP" 2349631 T REP (NIL) -7 NIL NIL) (-968 2347343 2347377 2347486 "REPDB" 2347601 NIL REPDB (NIL T) -7 NIL NIL) (-967 2341288 2342667 2343887 "REP2" 2346155 NIL REP2 (NIL T) -7 NIL NIL) (-966 2337694 2338375 2339180 "REP1" 2340515 NIL REP1 (NIL T) -7 NIL NIL) (-965 2330438 2335853 2336306 "REGSET" 2337324 NIL REGSET (NIL T T T T) -8 NIL NIL) (-964 2329259 2329594 2329842 "REF" 2330223 NIL REF (NIL T) -8 NIL NIL) (-963 2328640 2328743 2328908 "REDORDER" 2329143 NIL REDORDER (NIL T T) -7 NIL NIL) (-962 2324674 2327874 2328095 "RECLOS" 2328471 NIL RECLOS (NIL T) -8 NIL NIL) (-961 2323731 2323912 2324125 "REALSOLV" 2324481 T REALSOLV (NIL) -7 NIL NIL) (-960 2323579 2323620 2323648 "REAL" 2323653 T REAL (NIL) -9 NIL 2323688) (-959 2320070 2320872 2321754 "REAL0Q" 2322744 NIL REAL0Q (NIL T) -7 NIL NIL) (-958 2315681 2316669 2317728 "REAL0" 2319051 NIL REAL0 (NIL T) -7 NIL NIL) (-957 2315089 2315161 2315366 "RDIV" 2315603 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-956 2314162 2314336 2314547 "RDIST" 2314911 NIL RDIST (NIL T) -7 NIL NIL) (-955 2312766 2313053 2313422 "RDETRS" 2313870 NIL RDETRS (NIL T T) -7 NIL NIL) (-954 2310587 2311041 2311576 "RDETR" 2312308 NIL RDETR (NIL T T) -7 NIL NIL) (-953 2309203 2309481 2309882 "RDEEFS" 2310303 NIL RDEEFS (NIL T T) -7 NIL NIL) (-952 2307703 2308009 2308438 "RDEEF" 2308891 NIL RDEEF (NIL T T) -7 NIL NIL) (-951 2302053 2304920 2304948 "RCFIELD" 2306225 T RCFIELD (NIL) -9 NIL 2306955) (-950 2300122 2300626 2301319 "RCFIELD-" 2301392 NIL RCFIELD- (NIL T) -8 NIL NIL) (-949 2296454 2298239 2298280 "RCAGG" 2299351 NIL RCAGG (NIL T) -9 NIL 2299816) (-948 2296085 2296179 2296339 "RCAGG-" 2296344 NIL RCAGG- (NIL T T) -8 NIL NIL) (-947 2295429 2295541 2295703 "RATRET" 2295969 NIL RATRET (NIL T) -7 NIL NIL) (-946 2294986 2295053 2295172 "RATFACT" 2295357 NIL RATFACT (NIL T) -7 NIL NIL) (-945 2294301 2294421 2294571 "RANDSRC" 2294856 T RANDSRC (NIL) -7 NIL NIL) (-944 2294038 2294082 2294153 "RADUTIL" 2294250 T RADUTIL (NIL) -7 NIL NIL) (-943 2287110 2292781 2293098 "RADIX" 2293753 NIL RADIX (NIL NIL) -8 NIL NIL) (-942 2278771 2286954 2287082 "RADFF" 2287087 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-941 2278423 2278498 2278526 "RADCAT" 2278683 T RADCAT (NIL) -9 NIL NIL) (-940 2278208 2278256 2278353 "RADCAT-" 2278358 NIL RADCAT- (NIL T) -8 NIL NIL) (-939 2276359 2277983 2278072 "QUEUE" 2278152 NIL QUEUE (NIL T) -8 NIL NIL) (-938 2272941 2276296 2276341 "QUAT" 2276346 NIL QUAT (NIL T) -8 NIL NIL) (-937 2272579 2272622 2272749 "QUATCT2" 2272892 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-936 2266458 2269753 2269793 "QUATCAT" 2270572 NIL QUATCAT (NIL T) -9 NIL 2271337) (-935 2262602 2263639 2265026 "QUATCAT-" 2265120 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-934 2260123 2261687 2261728 "QUAGG" 2262103 NIL QUAGG (NIL T) -9 NIL 2262278) (-933 2259048 2259521 2259693 "QFORM" 2259995 NIL QFORM (NIL NIL T) -8 NIL NIL) (-932 2250407 2255603 2255643 "QFCAT" 2256301 NIL QFCAT (NIL T) -9 NIL 2257294) (-931 2245979 2247180 2248771 "QFCAT-" 2248865 NIL QFCAT- (NIL T T) -8 NIL NIL) (-930 2245617 2245660 2245787 "QFCAT2" 2245930 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-929 2245077 2245187 2245317 "QEQUAT" 2245507 T QEQUAT (NIL) -8 NIL NIL) (-928 2238244 2239315 2240498 "QCMPACK" 2244010 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-927 2235820 2236241 2236669 "QALGSET" 2237899 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-926 2235065 2235239 2235471 "QALGSET2" 2235640 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-925 2233756 2233979 2234296 "PWFFINTB" 2234838 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-924 2231944 2232112 2232465 "PUSHVAR" 2233570 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-923 2227862 2228916 2228957 "PTRANFN" 2230841 NIL PTRANFN (NIL T) -9 NIL NIL) (-922 2226274 2226565 2226886 "PTPACK" 2227573 NIL PTPACK (NIL T) -7 NIL NIL) (-921 2225910 2225967 2226074 "PTFUNC2" 2226211 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-920 2220387 2224728 2224768 "PTCAT" 2225136 NIL PTCAT (NIL T) -9 NIL 2225298) (-919 2220045 2220080 2220204 "PSQFR" 2220346 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-918 2218640 2218938 2219272 "PSEUDLIN" 2219743 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-917 2205447 2207812 2210135 "PSETPK" 2216400 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-916 2198534 2201248 2201342 "PSETCAT" 2204323 NIL PSETCAT (NIL T T T T) -9 NIL 2205137) (-915 2196372 2197006 2197825 "PSETCAT-" 2197830 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-914 2195721 2195886 2195914 "PSCURVE" 2196182 T PSCURVE (NIL) -9 NIL 2196349) (-913 2192217 2193699 2193763 "PSCAT" 2194599 NIL PSCAT (NIL T T T) -9 NIL 2194839) (-912 2191281 2191497 2191896 "PSCAT-" 2191901 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-911 2189933 2190566 2190780 "PRTITION" 2191087 T PRTITION (NIL) -8 NIL NIL) (-910 2179031 2181237 2183425 "PRS" 2187795 NIL PRS (NIL T T) -7 NIL NIL) (-909 2176890 2178382 2178422 "PRQAGG" 2178605 NIL PRQAGG (NIL T) -9 NIL 2178707) (-908 2176461 2176563 2176591 "PROPLOG" 2176776 T PROPLOG (NIL) -9 NIL NIL) (-907 2173584 2174149 2174676 "PROPFRML" 2175966 NIL PROPFRML (NIL T) -8 NIL NIL) (-906 2173044 2173154 2173284 "PROPERTY" 2173474 T PROPERTY (NIL) -8 NIL NIL) (-905 2167129 2171210 2172030 "PRODUCT" 2172270 NIL PRODUCT (NIL T T) -8 NIL NIL) (-904 2164449 2166589 2166822 "PR" 2166940 NIL PR (NIL T T) -8 NIL NIL) (-903 2164245 2164277 2164336 "PRINT" 2164410 T PRINT (NIL) -7 NIL NIL) (-902 2163585 2163702 2163854 "PRIMES" 2164125 NIL PRIMES (NIL T) -7 NIL NIL) (-901 2161650 2162051 2162517 "PRIMELT" 2163164 NIL PRIMELT (NIL T) -7 NIL NIL) (-900 2161379 2161428 2161456 "PRIMCAT" 2161580 T PRIMCAT (NIL) -9 NIL NIL) (-899 2157540 2161317 2161362 "PRIMARR" 2161367 NIL PRIMARR (NIL T) -8 NIL NIL) (-898 2156547 2156725 2156953 "PRIMARR2" 2157358 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-897 2156190 2156246 2156357 "PREASSOC" 2156485 NIL PREASSOC (NIL T T) -7 NIL NIL) (-896 2155665 2155798 2155826 "PPCURVE" 2156031 T PPCURVE (NIL) -9 NIL 2156167) (-895 2155287 2155460 2155543 "PORTNUM" 2155602 T PORTNUM (NIL) -8 NIL NIL) (-894 2152646 2153045 2153637 "POLYROOT" 2154868 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-893 2146598 2152252 2152411 "POLY" 2152519 NIL POLY (NIL T) -8 NIL NIL) (-892 2145983 2146041 2146274 "POLYLIFT" 2146534 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-891 2142268 2142717 2143345 "POLYCATQ" 2145528 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-890 2129355 2134706 2134770 "POLYCAT" 2138255 NIL POLYCAT (NIL T T T) -9 NIL 2140182) (-889 2122806 2124667 2127050 "POLYCAT-" 2127055 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-888 2122395 2122463 2122582 "POLY2UP" 2122732 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-887 2122031 2122088 2122195 "POLY2" 2122332 NIL POLY2 (NIL T T) -7 NIL NIL) (-886 2120716 2120955 2121231 "POLUTIL" 2121805 NIL POLUTIL (NIL T T) -7 NIL NIL) (-885 2119078 2119355 2119685 "POLTOPOL" 2120438 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-884 2114601 2119015 2119060 "POINT" 2119065 NIL POINT (NIL T) -8 NIL NIL) (-883 2112788 2113145 2113520 "PNTHEORY" 2114246 T PNTHEORY (NIL) -7 NIL NIL) (-882 2111216 2111513 2111922 "PMTOOLS" 2112486 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-881 2110809 2110887 2111004 "PMSYM" 2111132 NIL PMSYM (NIL T) -7 NIL NIL) (-880 2110319 2110388 2110562 "PMQFCAT" 2110734 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-879 2109674 2109784 2109940 "PMPRED" 2110196 NIL PMPRED (NIL T) -7 NIL NIL) (-878 2109070 2109156 2109317 "PMPREDFS" 2109575 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-877 2107716 2107924 2108308 "PMPLCAT" 2108832 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-876 2107248 2107327 2107479 "PMLSAGG" 2107631 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-875 2106725 2106801 2106981 "PMKERNEL" 2107166 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-874 2106342 2106417 2106530 "PMINS" 2106644 NIL PMINS (NIL T) -7 NIL NIL) (-873 2105772 2105841 2106056 "PMFS" 2106267 NIL PMFS (NIL T T T) -7 NIL NIL) (-872 2105003 2105121 2105325 "PMDOWN" 2105649 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-871 2104166 2104325 2104507 "PMASS" 2104841 T PMASS (NIL) -7 NIL NIL) (-870 2103440 2103551 2103714 "PMASSFS" 2104052 NIL PMASSFS (NIL T T) -7 NIL NIL) (-869 2103095 2103163 2103257 "PLOTTOOL" 2103366 T PLOTTOOL (NIL) -7 NIL NIL) (-868 2097717 2098906 2100054 "PLOT" 2101967 T PLOT (NIL) -8 NIL NIL) (-867 2093531 2094565 2095486 "PLOT3D" 2096816 T PLOT3D (NIL) -8 NIL NIL) (-866 2092443 2092620 2092855 "PLOT1" 2093335 NIL PLOT1 (NIL T) -7 NIL NIL) (-865 2067837 2072509 2077360 "PLEQN" 2087709 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-864 2067155 2067277 2067457 "PINTERP" 2067702 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-863 2066848 2066895 2066998 "PINTERPA" 2067102 NIL PINTERPA (NIL T T) -7 NIL NIL) (-862 2066133 2066654 2066741 "PI" 2066781 T PI (NIL) -8 NIL NIL) (-861 2064569 2065510 2065538 "PID" 2065720 T PID (NIL) -9 NIL 2065854) (-860 2064294 2064331 2064419 "PICOERCE" 2064526 NIL PICOERCE (NIL T) -7 NIL NIL) (-859 2063614 2063753 2063929 "PGROEB" 2064150 NIL PGROEB (NIL T) -7 NIL NIL) (-858 2059201 2060015 2060920 "PGE" 2062729 T PGE (NIL) -7 NIL NIL) (-857 2057325 2057571 2057937 "PGCD" 2058918 NIL PGCD (NIL T T T T) -7 NIL NIL) (-856 2056663 2056766 2056927 "PFRPAC" 2057209 NIL PFRPAC (NIL T) -7 NIL NIL) (-855 2053343 2055211 2055564 "PFR" 2056342 NIL PFR (NIL T) -8 NIL NIL) (-854 2051732 2051976 2052301 "PFOTOOLS" 2053090 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-853 2050265 2050504 2050855 "PFOQ" 2051489 NIL PFOQ (NIL T T T) -7 NIL NIL) (-852 2048742 2048954 2049316 "PFO" 2050049 NIL PFO (NIL T T T T T) -7 NIL NIL) (-851 2045330 2048631 2048700 "PF" 2048705 NIL PF (NIL NIL) -8 NIL NIL) (-850 2042803 2044040 2044068 "PFECAT" 2044653 T PFECAT (NIL) -9 NIL 2045037) (-849 2042248 2042402 2042616 "PFECAT-" 2042621 NIL PFECAT- (NIL T) -8 NIL NIL) (-848 2040852 2041103 2041404 "PFBRU" 2041997 NIL PFBRU (NIL T T) -7 NIL NIL) (-847 2038719 2039070 2039502 "PFBR" 2040503 NIL PFBR (NIL T T T T) -7 NIL NIL) (-846 2034635 2036095 2036771 "PERM" 2038076 NIL PERM (NIL T) -8 NIL NIL) (-845 2029901 2030842 2031712 "PERMGRP" 2033798 NIL PERMGRP (NIL T) -8 NIL NIL) (-844 2028034 2028965 2029006 "PERMCAT" 2029452 NIL PERMCAT (NIL T) -9 NIL 2029757) (-843 2027689 2027730 2027853 "PERMAN" 2027987 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-842 2025129 2027258 2027389 "PENDTREE" 2027591 NIL PENDTREE (NIL T) -8 NIL NIL) (-841 2023246 2023980 2024021 "PDRING" 2024678 NIL PDRING (NIL T) -9 NIL 2024963) (-840 2022349 2022567 2022929 "PDRING-" 2022934 NIL PDRING- (NIL T T) -8 NIL NIL) (-839 2019490 2020241 2020932 "PDEPROB" 2021678 T PDEPROB (NIL) -8 NIL NIL) (-838 2017061 2017557 2018106 "PDEPACK" 2018961 T PDEPACK (NIL) -7 NIL NIL) (-837 2015973 2016163 2016414 "PDECOMP" 2016860 NIL PDECOMP (NIL T T) -7 NIL NIL) (-836 2013585 2014400 2014428 "PDECAT" 2015213 T PDECAT (NIL) -9 NIL 2015924) (-835 2013338 2013371 2013460 "PCOMP" 2013546 NIL PCOMP (NIL T T) -7 NIL NIL) (-834 2011545 2012141 2012437 "PBWLB" 2013068 NIL PBWLB (NIL T) -8 NIL NIL) (-833 2004053 2005622 2006958 "PATTERN" 2010230 NIL PATTERN (NIL T) -8 NIL NIL) (-832 2003685 2003742 2003851 "PATTERN2" 2003990 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-831 2001442 2001830 2002287 "PATTERN1" 2003274 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-830 1998837 1999391 1999872 "PATRES" 2001007 NIL PATRES (NIL T T) -8 NIL NIL) (-829 1998401 1998468 1998600 "PATRES2" 1998764 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-828 1996298 1996698 1997103 "PATMATCH" 1998070 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-827 1995835 1996018 1996059 "PATMAB" 1996166 NIL PATMAB (NIL T) -9 NIL 1996249) (-826 1994380 1994689 1994947 "PATLRES" 1995640 NIL PATLRES (NIL T T T) -8 NIL NIL) (-825 1993926 1994049 1994090 "PATAB" 1994095 NIL PATAB (NIL T) -9 NIL 1994267) (-824 1991407 1991939 1992512 "PARTPERM" 1993373 T PARTPERM (NIL) -7 NIL NIL) (-823 1991028 1991091 1991193 "PARSURF" 1991338 NIL PARSURF (NIL T) -8 NIL NIL) (-822 1990660 1990717 1990826 "PARSU2" 1990965 NIL PARSU2 (NIL T T) -7 NIL NIL) (-821 1990424 1990464 1990531 "PARSER" 1990613 T PARSER (NIL) -7 NIL NIL) (-820 1990045 1990108 1990210 "PARSCURV" 1990355 NIL PARSCURV (NIL T) -8 NIL NIL) (-819 1989677 1989734 1989843 "PARSC2" 1989982 NIL PARSC2 (NIL T T) -7 NIL NIL) (-818 1989316 1989374 1989471 "PARPCURV" 1989613 NIL PARPCURV (NIL T) -8 NIL NIL) (-817 1988948 1989005 1989114 "PARPC2" 1989253 NIL PARPC2 (NIL T T) -7 NIL NIL) (-816 1988468 1988554 1988673 "PAN2EXPR" 1988849 T PAN2EXPR (NIL) -7 NIL NIL) (-815 1987274 1987589 1987817 "PALETTE" 1988260 T PALETTE (NIL) -8 NIL NIL) (-814 1985742 1986279 1986639 "PAIR" 1986960 NIL PAIR (NIL T T) -8 NIL NIL) (-813 1979657 1985001 1985195 "PADICRC" 1985597 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-812 1972930 1979003 1979187 "PADICRAT" 1979505 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-811 1971280 1972867 1972912 "PADIC" 1972917 NIL PADIC (NIL NIL) -8 NIL NIL) (-810 1968529 1970059 1970099 "PADICCT" 1970680 NIL PADICCT (NIL NIL) -9 NIL 1970962) (-809 1967486 1967686 1967954 "PADEPAC" 1968316 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-808 1966698 1966831 1967037 "PADE" 1967348 NIL PADE (NIL T T T) -7 NIL NIL) (-807 1964755 1965541 1965856 "OWP" 1966466 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-806 1963864 1964360 1964532 "OVAR" 1964623 NIL OVAR (NIL NIL) -8 NIL NIL) (-805 1963128 1963249 1963410 "OUT" 1963723 T OUT (NIL) -7 NIL NIL) (-804 1952182 1954353 1956523 "OUTFORM" 1960978 T OUTFORM (NIL) -8 NIL NIL) (-803 1951590 1951911 1952000 "OSI" 1952113 T OSI (NIL) -8 NIL NIL) (-802 1951147 1951459 1951487 "OSGROUP" 1951492 T OSGROUP (NIL) -9 NIL 1951514) (-801 1949892 1950119 1950404 "ORTHPOL" 1950894 NIL ORTHPOL (NIL T) -7 NIL NIL) (-800 1947309 1949553 1949691 "OREUP" 1949835 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-799 1944751 1947002 1947128 "ORESUP" 1947251 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-798 1942286 1942786 1943346 "OREPCTO" 1944240 NIL OREPCTO (NIL T T) -7 NIL NIL) (-797 1936240 1938402 1938442 "OREPCAT" 1940763 NIL OREPCAT (NIL T) -9 NIL 1941866) (-796 1933388 1934170 1935227 "OREPCAT-" 1935232 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-795 1932566 1932838 1932866 "ORDSET" 1933175 T ORDSET (NIL) -9 NIL 1933339) (-794 1932085 1932207 1932400 "ORDSET-" 1932405 NIL ORDSET- (NIL T) -8 NIL NIL) (-793 1930743 1931500 1931528 "ORDRING" 1931730 T ORDRING (NIL) -9 NIL 1931854) (-792 1930388 1930482 1930626 "ORDRING-" 1930631 NIL ORDRING- (NIL T) -8 NIL NIL) (-791 1929795 1930232 1930260 "ORDMON" 1930265 T ORDMON (NIL) -9 NIL 1930286) (-790 1928957 1929104 1929299 "ORDFUNS" 1929644 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-789 1928469 1928828 1928856 "ORDFIN" 1928861 T ORDFIN (NIL) -9 NIL 1928882) (-788 1925067 1927055 1927464 "ORDCOMP" 1928093 NIL ORDCOMP (NIL T) -8 NIL NIL) (-787 1924333 1924460 1924646 "ORDCOMP2" 1924927 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-786 1920840 1921723 1922560 "OPTPROB" 1923516 T OPTPROB (NIL) -8 NIL NIL) (-785 1917682 1918311 1919005 "OPTPACK" 1920166 T OPTPACK (NIL) -7 NIL NIL) (-784 1915408 1916144 1916172 "OPTCAT" 1916987 T OPTCAT (NIL) -9 NIL 1917633) (-783 1915176 1915215 1915281 "OPQUERY" 1915362 T OPQUERY (NIL) -7 NIL NIL) (-782 1912358 1913503 1914003 "OP" 1914708 NIL OP (NIL T) -8 NIL NIL) (-781 1909209 1911155 1911524 "ONECOMP" 1912022 NIL ONECOMP (NIL T) -8 NIL NIL) (-780 1908514 1908629 1908803 "ONECOMP2" 1909081 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-779 1907933 1908039 1908169 "OMSERVER" 1908404 T OMSERVER (NIL) -7 NIL NIL) (-778 1904822 1907374 1907414 "OMSAGG" 1907475 NIL OMSAGG (NIL T) -9 NIL 1907539) (-777 1903445 1903708 1903990 "OMPKG" 1904560 T OMPKG (NIL) -7 NIL NIL) (-776 1902875 1902978 1903006 "OM" 1903305 T OM (NIL) -9 NIL NIL) (-775 1901460 1902427 1902595 "OMLO" 1902756 NIL OMLO (NIL T T) -8 NIL NIL) (-774 1900390 1900537 1900763 "OMEXPR" 1901286 NIL OMEXPR (NIL T) -7 NIL NIL) (-773 1899708 1899936 1900072 "OMERR" 1900274 T OMERR (NIL) -8 NIL NIL) (-772 1898886 1899129 1899289 "OMERRK" 1899568 T OMERRK (NIL) -8 NIL NIL) (-771 1898364 1898563 1898671 "OMENC" 1898798 T OMENC (NIL) -8 NIL NIL) (-770 1892259 1893444 1894615 "OMDEV" 1897213 T OMDEV (NIL) -8 NIL NIL) (-769 1891328 1891499 1891693 "OMCONN" 1892085 T OMCONN (NIL) -8 NIL NIL) (-768 1889988 1890930 1890958 "OINTDOM" 1890963 T OINTDOM (NIL) -9 NIL 1890984) (-767 1885796 1886980 1887695 "OFMONOID" 1889305 NIL OFMONOID (NIL T) -8 NIL NIL) (-766 1885234 1885733 1885778 "ODVAR" 1885783 NIL ODVAR (NIL T) -8 NIL NIL) (-765 1882444 1884731 1884916 "ODR" 1885109 NIL ODR (NIL T T NIL) -8 NIL NIL) (-764 1874796 1882223 1882347 "ODPOL" 1882352 NIL ODPOL (NIL T) -8 NIL NIL) (-763 1868705 1874668 1874773 "ODP" 1874778 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-762 1867471 1867686 1867961 "ODETOOLS" 1868479 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-761 1864440 1865096 1865812 "ODESYS" 1866804 NIL ODESYS (NIL T T) -7 NIL NIL) (-760 1859344 1860252 1861275 "ODERTRIC" 1863515 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-759 1858770 1858852 1859046 "ODERED" 1859256 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-758 1855672 1856220 1856895 "ODERAT" 1858193 NIL ODERAT (NIL T T) -7 NIL NIL) (-757 1852640 1853104 1853700 "ODEPRRIC" 1855201 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-756 1850509 1851078 1851587 "ODEPROB" 1852151 T ODEPROB (NIL) -8 NIL NIL) (-755 1847041 1847524 1848170 "ODEPRIM" 1849988 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-754 1846294 1846396 1846654 "ODEPAL" 1846933 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-753 1842496 1843277 1844131 "ODEPACK" 1845460 T ODEPACK (NIL) -7 NIL NIL) (-752 1841533 1841640 1841868 "ODEINT" 1842385 NIL ODEINT (NIL T T) -7 NIL NIL) (-751 1835634 1837059 1838506 "ODEIFTBL" 1840106 T ODEIFTBL (NIL) -8 NIL NIL) (-750 1830978 1831764 1832722 "ODEEF" 1834793 NIL ODEEF (NIL T T) -7 NIL NIL) (-749 1830315 1830404 1830633 "ODECONST" 1830883 NIL ODECONST (NIL T T T) -7 NIL NIL) (-748 1828473 1829106 1829134 "ODECAT" 1829737 T ODECAT (NIL) -9 NIL 1830266) (-747 1825391 1828185 1828304 "OCT" 1828386 NIL OCT (NIL T) -8 NIL NIL) (-746 1825029 1825072 1825199 "OCTCT2" 1825342 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-745 1819907 1822301 1822341 "OC" 1823437 NIL OC (NIL T) -9 NIL 1824294) (-744 1817134 1817882 1818872 "OC-" 1818966 NIL OC- (NIL T T) -8 NIL NIL) (-743 1816513 1816955 1816983 "OCAMON" 1816988 T OCAMON (NIL) -9 NIL 1817009) (-742 1816071 1816386 1816414 "OASGP" 1816419 T OASGP (NIL) -9 NIL 1816439) (-741 1815359 1815822 1815850 "OAMONS" 1815890 T OAMONS (NIL) -9 NIL 1815933) (-740 1814800 1815207 1815235 "OAMON" 1815240 T OAMON (NIL) -9 NIL 1815260) (-739 1814105 1814597 1814625 "OAGROUP" 1814630 T OAGROUP (NIL) -9 NIL 1814650) (-738 1813795 1813845 1813933 "NUMTUBE" 1814049 NIL NUMTUBE (NIL T) -7 NIL NIL) (-737 1807368 1808886 1810422 "NUMQUAD" 1812279 T NUMQUAD (NIL) -7 NIL NIL) (-736 1803124 1804112 1805137 "NUMODE" 1806363 T NUMODE (NIL) -7 NIL NIL) (-735 1800528 1801374 1801402 "NUMINT" 1802319 T NUMINT (NIL) -9 NIL 1803075) (-734 1799476 1799673 1799891 "NUMFMT" 1800330 T NUMFMT (NIL) -7 NIL NIL) (-733 1785855 1788792 1791322 "NUMERIC" 1796985 NIL NUMERIC (NIL T) -7 NIL NIL) (-732 1780254 1785306 1785400 "NTSCAT" 1785405 NIL NTSCAT (NIL T T T T) -9 NIL 1785444) (-731 1779448 1779613 1779806 "NTPOLFN" 1780093 NIL NTPOLFN (NIL T) -7 NIL NIL) (-730 1767310 1776290 1777100 "NSUP" 1778670 NIL NSUP (NIL T) -8 NIL NIL) (-729 1766946 1767003 1767110 "NSUP2" 1767247 NIL NSUP2 (NIL T T) -7 NIL NIL) (-728 1756954 1766725 1766855 "NSMP" 1766860 NIL NSMP (NIL T T) -8 NIL NIL) (-727 1755386 1755687 1756044 "NREP" 1756642 NIL NREP (NIL T) -7 NIL NIL) (-726 1753977 1754229 1754587 "NPCOEF" 1755129 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-725 1753043 1753158 1753374 "NORMRETR" 1753858 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-724 1751090 1751380 1751788 "NORMPK" 1752751 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-723 1750775 1750803 1750927 "NORMMA" 1751056 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-722 1750602 1750732 1750761 "NONE" 1750766 T NONE (NIL) -8 NIL NIL) (-721 1750391 1750420 1750489 "NONE1" 1750566 NIL NONE1 (NIL T) -7 NIL NIL) (-720 1749876 1749938 1750123 "NODE1" 1750323 NIL NODE1 (NIL T T) -7 NIL NIL) (-719 1748216 1749039 1749294 "NNI" 1749641 T NNI (NIL) -8 NIL NIL) (-718 1746636 1746949 1747313 "NLINSOL" 1747884 NIL NLINSOL (NIL T) -7 NIL NIL) (-717 1742803 1743771 1744693 "NIPROB" 1745734 T NIPROB (NIL) -8 NIL NIL) (-716 1741560 1741794 1742096 "NFINTBAS" 1742565 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-715 1740268 1740499 1740780 "NCODIV" 1741328 NIL NCODIV (NIL T T) -7 NIL NIL) (-714 1740030 1740067 1740142 "NCNTFRAC" 1740225 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-713 1738210 1738574 1738994 "NCEP" 1739655 NIL NCEP (NIL T) -7 NIL NIL) (-712 1737122 1737861 1737889 "NASRING" 1737999 T NASRING (NIL) -9 NIL 1738073) (-711 1736917 1736961 1737055 "NASRING-" 1737060 NIL NASRING- (NIL T) -8 NIL NIL) (-710 1736071 1736570 1736598 "NARNG" 1736715 T NARNG (NIL) -9 NIL 1736806) (-709 1735763 1735830 1735964 "NARNG-" 1735969 NIL NARNG- (NIL T) -8 NIL NIL) (-708 1734642 1734849 1735084 "NAGSP" 1735548 T NAGSP (NIL) -7 NIL NIL) (-707 1726066 1727712 1729347 "NAGS" 1733027 T NAGS (NIL) -7 NIL NIL) (-706 1724630 1724934 1725261 "NAGF07" 1725759 T NAGF07 (NIL) -7 NIL NIL) (-705 1719212 1720492 1721788 "NAGF04" 1723354 T NAGF04 (NIL) -7 NIL NIL) (-704 1712244 1713842 1715459 "NAGF02" 1717615 T NAGF02 (NIL) -7 NIL NIL) (-703 1707508 1708598 1709705 "NAGF01" 1711157 T NAGF01 (NIL) -7 NIL NIL) (-702 1701168 1702726 1704303 "NAGE04" 1705951 T NAGE04 (NIL) -7 NIL NIL) (-701 1692409 1694512 1696624 "NAGE02" 1699076 T NAGE02 (NIL) -7 NIL NIL) (-700 1688402 1689339 1690293 "NAGE01" 1691475 T NAGE01 (NIL) -7 NIL NIL) (-699 1686209 1686740 1687295 "NAGD03" 1687867 T NAGD03 (NIL) -7 NIL NIL) (-698 1677995 1679914 1681859 "NAGD02" 1684284 T NAGD02 (NIL) -7 NIL NIL) (-697 1671854 1673267 1674695 "NAGD01" 1676587 T NAGD01 (NIL) -7 NIL NIL) (-696 1668111 1668921 1669746 "NAGC06" 1671049 T NAGC06 (NIL) -7 NIL NIL) (-695 1666588 1666917 1667270 "NAGC05" 1667778 T NAGC05 (NIL) -7 NIL NIL) (-694 1665972 1666089 1666231 "NAGC02" 1666466 T NAGC02 (NIL) -7 NIL NIL) (-693 1665034 1665591 1665631 "NAALG" 1665710 NIL NAALG (NIL T) -9 NIL 1665771) (-692 1664869 1664898 1664988 "NAALG-" 1664993 NIL NAALG- (NIL T T) -8 NIL NIL) (-691 1658819 1659927 1661114 "MULTSQFR" 1663765 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-690 1658138 1658213 1658397 "MULTFACT" 1658731 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-689 1651378 1655243 1655295 "MTSCAT" 1656355 NIL MTSCAT (NIL T T) -9 NIL 1656869) (-688 1651090 1651144 1651236 "MTHING" 1651318 NIL MTHING (NIL T) -7 NIL NIL) (-687 1650882 1650915 1650975 "MSYSCMD" 1651050 T MSYSCMD (NIL) -7 NIL NIL) (-686 1646994 1649637 1649957 "MSET" 1650595 NIL MSET (NIL T) -8 NIL NIL) (-685 1644090 1646556 1646597 "MSETAGG" 1646602 NIL MSETAGG (NIL T) -9 NIL 1646636) (-684 1639992 1641488 1642229 "MRING" 1643393 NIL MRING (NIL T T) -8 NIL NIL) (-683 1639562 1639629 1639758 "MRF2" 1639919 NIL MRF2 (NIL T T T) -7 NIL NIL) (-682 1639180 1639215 1639359 "MRATFAC" 1639521 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-681 1636792 1637087 1637518 "MPRFF" 1638885 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-680 1630858 1636647 1636743 "MPOLY" 1636748 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-679 1630348 1630383 1630591 "MPCPF" 1630817 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-678 1629864 1629907 1630090 "MPC3" 1630299 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-677 1629065 1629146 1629365 "MPC2" 1629779 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-676 1627366 1627703 1628093 "MONOTOOL" 1628725 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-675 1626618 1626909 1626937 "MONOID" 1627156 T MONOID (NIL) -9 NIL 1627303) (-674 1626164 1626283 1626464 "MONOID-" 1626469 NIL MONOID- (NIL T) -8 NIL NIL) (-673 1617230 1623131 1623190 "MONOGEN" 1623864 NIL MONOGEN (NIL T T) -9 NIL 1624320) (-672 1614448 1615183 1616183 "MONOGEN-" 1616302 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-671 1613308 1613728 1613756 "MONADWU" 1614148 T MONADWU (NIL) -9 NIL 1614386) (-670 1612680 1612839 1613087 "MONADWU-" 1613092 NIL MONADWU- (NIL T) -8 NIL NIL) (-669 1612066 1612284 1612312 "MONAD" 1612519 T MONAD (NIL) -9 NIL 1612631) (-668 1611751 1611829 1611961 "MONAD-" 1611966 NIL MONAD- (NIL T) -8 NIL NIL) (-667 1610067 1610664 1610943 "MOEBIUS" 1611504 NIL MOEBIUS (NIL T) -8 NIL NIL) (-666 1609461 1609839 1609879 "MODULE" 1609884 NIL MODULE (NIL T) -9 NIL 1609910) (-665 1609029 1609125 1609315 "MODULE-" 1609320 NIL MODULE- (NIL T T) -8 NIL NIL) (-664 1606746 1607395 1607721 "MODRING" 1608854 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-663 1603748 1604867 1605384 "MODOP" 1606278 NIL MODOP (NIL T T) -8 NIL NIL) (-662 1601935 1602387 1602728 "MODMONOM" 1603547 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-661 1591660 1600139 1600561 "MODMON" 1601563 NIL MODMON (NIL T T) -8 NIL NIL) (-660 1588851 1590504 1590780 "MODFIELD" 1591535 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-659 1587855 1588132 1588322 "MMLFORM" 1588681 T MMLFORM (NIL) -8 NIL NIL) (-658 1587381 1587424 1587603 "MMAP" 1587806 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-657 1585662 1586395 1586435 "MLO" 1586852 NIL MLO (NIL T) -9 NIL 1587093) (-656 1583029 1583544 1584146 "MLIFT" 1585143 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-655 1582420 1582504 1582658 "MKUCFUNC" 1582940 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-654 1582019 1582089 1582212 "MKRECORD" 1582343 NIL MKRECORD (NIL T T) -7 NIL NIL) (-653 1581067 1581228 1581456 "MKFUNC" 1581830 NIL MKFUNC (NIL T) -7 NIL NIL) (-652 1580455 1580559 1580715 "MKFLCFN" 1580950 NIL MKFLCFN (NIL T) -7 NIL NIL) (-651 1579881 1580248 1580337 "MKCHSET" 1580399 NIL MKCHSET (NIL T) -8 NIL NIL) (-650 1579158 1579260 1579445 "MKBCFUNC" 1579774 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-649 1575888 1578712 1578848 "MINT" 1579042 T MINT (NIL) -8 NIL NIL) (-648 1574700 1574943 1575220 "MHROWRED" 1575643 NIL MHROWRED (NIL T) -7 NIL NIL) (-647 1570036 1573145 1573569 "MFLOAT" 1574296 T MFLOAT (NIL) -8 NIL NIL) (-646 1569393 1569469 1569640 "MFINFACT" 1569948 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-645 1565708 1566556 1567440 "MESH" 1568529 T MESH (NIL) -7 NIL NIL) (-644 1564098 1564410 1564763 "MDDFACT" 1565395 NIL MDDFACT (NIL T) -7 NIL NIL) (-643 1560941 1563258 1563299 "MDAGG" 1563554 NIL MDAGG (NIL T) -9 NIL 1563697) (-642 1550726 1560234 1560441 "MCMPLX" 1560754 T MCMPLX (NIL) -8 NIL NIL) (-641 1549867 1550013 1550213 "MCDEN" 1550575 NIL MCDEN (NIL T T) -7 NIL NIL) (-640 1547757 1548027 1548407 "MCALCFN" 1549597 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-639 1546668 1546841 1547082 "MAYBE" 1547555 NIL MAYBE (NIL T) -8 NIL NIL) (-638 1544290 1544813 1545374 "MATSTOR" 1546139 NIL MATSTOR (NIL T) -7 NIL NIL) (-637 1540299 1543665 1543912 "MATRIX" 1544075 NIL MATRIX (NIL T) -8 NIL NIL) (-636 1536068 1536772 1537508 "MATLIN" 1539656 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-635 1526266 1529404 1529480 "MATCAT" 1534318 NIL MATCAT (NIL T T T) -9 NIL 1535735) (-634 1522631 1523644 1524999 "MATCAT-" 1525004 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-633 1521233 1521386 1521717 "MATCAT2" 1522466 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-632 1519345 1519669 1520053 "MAPPKG3" 1520908 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-631 1518326 1518499 1518721 "MAPPKG2" 1519169 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-630 1516825 1517109 1517436 "MAPPKG1" 1518032 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-629 1516436 1516494 1516617 "MAPHACK3" 1516761 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-628 1516028 1516089 1516203 "MAPHACK2" 1516368 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-627 1515466 1515569 1515711 "MAPHACK1" 1515919 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-626 1513574 1514168 1514471 "MAGMA" 1515195 NIL MAGMA (NIL T) -8 NIL NIL) (-625 1510049 1511818 1512278 "M3D" 1513147 NIL M3D (NIL T) -8 NIL NIL) (-624 1504205 1508420 1508461 "LZSTAGG" 1509243 NIL LZSTAGG (NIL T) -9 NIL 1509538) (-623 1500178 1501336 1502793 "LZSTAGG-" 1502798 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-622 1497294 1498071 1498557 "LWORD" 1499724 NIL LWORD (NIL T) -8 NIL NIL) (-621 1490500 1497065 1497199 "LSQM" 1497204 NIL LSQM (NIL NIL T) -8 NIL NIL) (-620 1489724 1489863 1490091 "LSPP" 1490355 NIL LSPP (NIL T T T T) -7 NIL NIL) (-619 1487536 1487837 1488293 "LSMP" 1489413 NIL LSMP (NIL T T T T) -7 NIL NIL) (-618 1484315 1484989 1485719 "LSMP1" 1486838 NIL LSMP1 (NIL T) -7 NIL NIL) (-617 1478242 1483484 1483525 "LSAGG" 1483587 NIL LSAGG (NIL T) -9 NIL 1483665) (-616 1474937 1475861 1477074 "LSAGG-" 1477079 NIL LSAGG- (NIL T T) -8 NIL NIL) (-615 1472563 1474081 1474330 "LPOLY" 1474732 NIL LPOLY (NIL T T) -8 NIL NIL) (-614 1472145 1472230 1472353 "LPEFRAC" 1472472 NIL LPEFRAC (NIL T) -7 NIL NIL) (-613 1470492 1471239 1471492 "LO" 1471977 NIL LO (NIL T T T) -8 NIL NIL) (-612 1470146 1470258 1470286 "LOGIC" 1470397 T LOGIC (NIL) -9 NIL 1470477) (-611 1470008 1470031 1470102 "LOGIC-" 1470107 NIL LOGIC- (NIL T) -8 NIL NIL) (-610 1469201 1469341 1469534 "LODOOPS" 1469864 NIL LODOOPS (NIL T T) -7 NIL NIL) (-609 1466665 1469118 1469183 "LODO" 1469188 NIL LODO (NIL T NIL) -8 NIL NIL) (-608 1465211 1465446 1465797 "LODOF" 1466412 NIL LODOF (NIL T T) -7 NIL NIL) (-607 1461675 1464067 1464107 "LODOCAT" 1464539 NIL LODOCAT (NIL T) -9 NIL 1464750) (-606 1461409 1461467 1461593 "LODOCAT-" 1461598 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-605 1458769 1461250 1461368 "LODO2" 1461373 NIL LODO2 (NIL T T) -8 NIL NIL) (-604 1456244 1458706 1458751 "LODO1" 1458756 NIL LODO1 (NIL T) -8 NIL NIL) (-603 1455107 1455272 1455583 "LODEEF" 1456067 NIL LODEEF (NIL T T T) -7 NIL NIL) (-602 1450394 1453238 1453279 "LNAGG" 1454226 NIL LNAGG (NIL T) -9 NIL 1454670) (-601 1449541 1449755 1450097 "LNAGG-" 1450102 NIL LNAGG- (NIL T T) -8 NIL NIL) (-600 1445706 1446468 1447106 "LMOPS" 1448957 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-599 1445104 1445466 1445506 "LMODULE" 1445566 NIL LMODULE (NIL T) -9 NIL 1445608) (-598 1442350 1444749 1444872 "LMDICT" 1445014 NIL LMDICT (NIL T) -8 NIL NIL) (-597 1435577 1441296 1441594 "LIST" 1442085 NIL LIST (NIL T) -8 NIL NIL) (-596 1435102 1435176 1435315 "LIST3" 1435497 NIL LIST3 (NIL T T T) -7 NIL NIL) (-595 1434109 1434287 1434515 "LIST2" 1434920 NIL LIST2 (NIL T T) -7 NIL NIL) (-594 1432243 1432555 1432954 "LIST2MAP" 1433756 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-593 1431000 1431636 1431676 "LINEXP" 1431929 NIL LINEXP (NIL T) -9 NIL 1432077) (-592 1429647 1429907 1430204 "LINDEP" 1430752 NIL LINDEP (NIL T T) -7 NIL NIL) (-591 1426414 1427133 1427910 "LIMITRF" 1428902 NIL LIMITRF (NIL T) -7 NIL NIL) (-590 1424694 1424989 1425404 "LIMITPS" 1426109 NIL LIMITPS (NIL T T) -7 NIL NIL) (-589 1419149 1424205 1424433 "LIE" 1424515 NIL LIE (NIL T T) -8 NIL NIL) (-588 1418200 1418643 1418683 "LIECAT" 1418823 NIL LIECAT (NIL T) -9 NIL 1418974) (-587 1418041 1418068 1418156 "LIECAT-" 1418161 NIL LIECAT- (NIL T T) -8 NIL NIL) (-586 1410653 1417490 1417655 "LIB" 1417896 T LIB (NIL) -8 NIL NIL) (-585 1406290 1407171 1408106 "LGROBP" 1409770 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-584 1404156 1404430 1404792 "LF" 1406011 NIL LF (NIL T T) -7 NIL NIL) (-583 1402996 1403688 1403716 "LFCAT" 1403923 T LFCAT (NIL) -9 NIL 1404062) (-582 1399908 1400534 1401220 "LEXTRIPK" 1402362 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-581 1396679 1397478 1397981 "LEXP" 1399488 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-580 1395077 1395390 1395791 "LEADCDET" 1396361 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-579 1394270 1394344 1394572 "LAZM3PK" 1394998 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-578 1389233 1392349 1392886 "LAUPOL" 1393783 NIL LAUPOL (NIL T T) -8 NIL NIL) (-577 1388800 1388844 1389011 "LAPLACE" 1389183 NIL LAPLACE (NIL T T) -7 NIL NIL) (-576 1386774 1387901 1388152 "LA" 1388633 NIL LA (NIL T T T) -8 NIL NIL) (-575 1385881 1386431 1386471 "LALG" 1386532 NIL LALG (NIL T) -9 NIL 1386590) (-574 1385596 1385655 1385790 "LALG-" 1385795 NIL LALG- (NIL T T) -8 NIL NIL) (-573 1384506 1384693 1384990 "KOVACIC" 1385396 NIL KOVACIC (NIL T T) -7 NIL NIL) (-572 1384341 1384365 1384406 "KONVERT" 1384468 NIL KONVERT (NIL T) -9 NIL NIL) (-571 1384176 1384200 1384241 "KOERCE" 1384303 NIL KOERCE (NIL T) -9 NIL NIL) (-570 1381910 1382670 1383063 "KERNEL" 1383815 NIL KERNEL (NIL T) -8 NIL NIL) (-569 1381412 1381493 1381623 "KERNEL2" 1381824 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-568 1375264 1379952 1380006 "KDAGG" 1380383 NIL KDAGG (NIL T T) -9 NIL 1380589) (-567 1374793 1374917 1375122 "KDAGG-" 1375127 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-566 1367968 1374454 1374609 "KAFILE" 1374671 NIL KAFILE (NIL T) -8 NIL NIL) (-565 1362423 1367479 1367707 "JORDAN" 1367789 NIL JORDAN (NIL T T) -8 NIL NIL) (-564 1362152 1362211 1362298 "JAVACODE" 1362356 T JAVACODE (NIL) -8 NIL NIL) (-563 1358452 1360358 1360412 "IXAGG" 1361341 NIL IXAGG (NIL T T) -9 NIL 1361800) (-562 1357371 1357677 1358096 "IXAGG-" 1358101 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-561 1352956 1357293 1357352 "IVECTOR" 1357357 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-560 1351722 1351959 1352225 "ITUPLE" 1352723 NIL ITUPLE (NIL T) -8 NIL NIL) (-559 1350158 1350335 1350641 "ITRIGMNP" 1351544 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-558 1348903 1349107 1349390 "ITFUN3" 1349934 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-557 1348535 1348592 1348701 "ITFUN2" 1348840 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-556 1346383 1347408 1347705 "ITAYLOR" 1348270 NIL ITAYLOR (NIL T) -8 NIL NIL) (-555 1335417 1340569 1341728 "ISUPS" 1345256 NIL ISUPS (NIL T) -8 NIL NIL) (-554 1334521 1334661 1334897 "ISUMP" 1335264 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-553 1329785 1334322 1334401 "ISTRING" 1334474 NIL ISTRING (NIL NIL) -8 NIL NIL) (-552 1328998 1329079 1329294 "IRURPK" 1329699 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-551 1327934 1328135 1328375 "IRSN" 1328778 T IRSN (NIL) -7 NIL NIL) (-550 1325969 1326324 1326759 "IRRF2F" 1327572 NIL IRRF2F (NIL T) -7 NIL NIL) (-549 1325716 1325754 1325830 "IRREDFFX" 1325925 NIL IRREDFFX (NIL T) -7 NIL NIL) (-548 1324331 1324590 1324889 "IROOT" 1325449 NIL IROOT (NIL T) -7 NIL NIL) (-547 1320969 1322020 1322710 "IR" 1323673 NIL IR (NIL T) -8 NIL NIL) (-546 1318582 1319077 1319643 "IR2" 1320447 NIL IR2 (NIL T T) -7 NIL NIL) (-545 1317658 1317771 1317991 "IR2F" 1318465 NIL IR2F (NIL T T) -7 NIL NIL) (-544 1317449 1317483 1317543 "IPRNTPK" 1317618 T IPRNTPK (NIL) -7 NIL NIL) (-543 1314068 1317338 1317407 "IPF" 1317412 NIL IPF (NIL NIL) -8 NIL NIL) (-542 1312431 1313993 1314050 "IPADIC" 1314055 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-541 1311930 1311988 1312177 "INVLAPLA" 1312367 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-540 1301579 1303932 1306318 "INTTR" 1309594 NIL INTTR (NIL T T) -7 NIL NIL) (-539 1297927 1298668 1299531 "INTTOOLS" 1300765 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-538 1297513 1297604 1297721 "INTSLPE" 1297830 T INTSLPE (NIL) -7 NIL NIL) (-537 1295508 1297436 1297495 "INTRVL" 1297500 NIL INTRVL (NIL T) -8 NIL NIL) (-536 1293115 1293627 1294201 "INTRF" 1294993 NIL INTRF (NIL T) -7 NIL NIL) (-535 1292530 1292627 1292768 "INTRET" 1293013 NIL INTRET (NIL T) -7 NIL NIL) (-534 1290532 1290921 1291390 "INTRAT" 1292138 NIL INTRAT (NIL T T) -7 NIL NIL) (-533 1287765 1288348 1288973 "INTPM" 1290017 NIL INTPM (NIL T T) -7 NIL NIL) (-532 1284474 1285073 1285817 "INTPAF" 1287151 NIL INTPAF (NIL T T T) -7 NIL NIL) (-531 1279717 1280663 1281698 "INTPACK" 1283459 T INTPACK (NIL) -7 NIL NIL) (-530 1276617 1279446 1279573 "INT" 1279610 T INT (NIL) -8 NIL NIL) (-529 1275869 1276021 1276229 "INTHERTR" 1276459 NIL INTHERTR (NIL T T) -7 NIL NIL) (-528 1275308 1275388 1275576 "INTHERAL" 1275783 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-527 1273154 1273597 1274054 "INTHEORY" 1274871 T INTHEORY (NIL) -7 NIL NIL) (-526 1264476 1266097 1267875 "INTG0" 1271506 NIL INTG0 (NIL T T T) -7 NIL NIL) (-525 1245049 1249839 1254649 "INTFTBL" 1259686 T INTFTBL (NIL) -8 NIL NIL) (-524 1244298 1244436 1244609 "INTFACT" 1244908 NIL INTFACT (NIL T) -7 NIL NIL) (-523 1241689 1242135 1242698 "INTEF" 1243852 NIL INTEF (NIL T T) -7 NIL NIL) (-522 1240195 1240900 1240928 "INTDOM" 1241229 T INTDOM (NIL) -9 NIL 1241436) (-521 1239564 1239738 1239980 "INTDOM-" 1239985 NIL INTDOM- (NIL T) -8 NIL NIL) (-520 1236103 1237989 1238043 "INTCAT" 1238842 NIL INTCAT (NIL T) -9 NIL 1239161) (-519 1235576 1235678 1235806 "INTBIT" 1235995 T INTBIT (NIL) -7 NIL NIL) (-518 1234251 1234405 1234718 "INTALG" 1235421 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-517 1233708 1233798 1233968 "INTAF" 1234155 NIL INTAF (NIL T T) -7 NIL NIL) (-516 1227162 1233518 1233658 "INTABL" 1233663 NIL INTABL (NIL T T T) -8 NIL NIL) (-515 1222159 1224842 1224870 "INS" 1225838 T INS (NIL) -9 NIL 1226519) (-514 1219399 1220170 1221144 "INS-" 1221217 NIL INS- (NIL T) -8 NIL NIL) (-513 1218178 1218405 1218702 "INPSIGN" 1219152 NIL INPSIGN (NIL T T) -7 NIL NIL) (-512 1217296 1217413 1217610 "INPRODPF" 1218058 NIL INPRODPF (NIL T T) -7 NIL NIL) (-511 1216190 1216307 1216544 "INPRODFF" 1217176 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-510 1215190 1215342 1215602 "INNMFACT" 1216026 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-509 1214387 1214484 1214672 "INMODGCD" 1215089 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-508 1212896 1213140 1213464 "INFSP" 1214132 NIL INFSP (NIL T T T) -7 NIL NIL) (-507 1212080 1212197 1212380 "INFPROD0" 1212776 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-506 1209091 1210249 1210740 "INFORM" 1211597 T INFORM (NIL) -8 NIL NIL) (-505 1208701 1208761 1208859 "INFORM1" 1209026 NIL INFORM1 (NIL T) -7 NIL NIL) (-504 1208224 1208313 1208427 "INFINITY" 1208607 T INFINITY (NIL) -7 NIL NIL) (-503 1206841 1207090 1207411 "INEP" 1207972 NIL INEP (NIL T T T) -7 NIL NIL) (-502 1206117 1206738 1206803 "INDE" 1206808 NIL INDE (NIL T) -8 NIL NIL) (-501 1205681 1205749 1205866 "INCRMAPS" 1206044 NIL INCRMAPS (NIL T) -7 NIL NIL) (-500 1200992 1201917 1202861 "INBFF" 1204769 NIL INBFF (NIL T) -7 NIL NIL) (-499 1197487 1200837 1200940 "IMATRIX" 1200945 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-498 1196199 1196322 1196637 "IMATQF" 1197343 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-497 1194419 1194646 1194983 "IMATLIN" 1195955 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-496 1189045 1194343 1194401 "ILIST" 1194406 NIL ILIST (NIL T NIL) -8 NIL NIL) (-495 1186998 1188905 1189018 "IIARRAY2" 1189023 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-494 1182431 1186909 1186973 "IFF" 1186978 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-493 1177474 1181723 1181911 "IFARRAY" 1182288 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-492 1176681 1177378 1177451 "IFAMON" 1177456 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-491 1176265 1176330 1176384 "IEVALAB" 1176591 NIL IEVALAB (NIL T T) -9 NIL NIL) (-490 1175940 1176008 1176168 "IEVALAB-" 1176173 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-489 1175598 1175854 1175917 "IDPO" 1175922 NIL IDPO (NIL T T) -8 NIL NIL) (-488 1174875 1175487 1175562 "IDPOAMS" 1175567 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-487 1174209 1174764 1174839 "IDPOAM" 1174844 NIL IDPOAM (NIL T T) -8 NIL NIL) (-486 1173295 1173545 1173598 "IDPC" 1174011 NIL IDPC (NIL T T) -9 NIL 1174160) (-485 1172791 1173187 1173260 "IDPAM" 1173265 NIL IDPAM (NIL T T) -8 NIL NIL) (-484 1172194 1172683 1172756 "IDPAG" 1172761 NIL IDPAG (NIL T T) -8 NIL NIL) (-483 1168449 1169297 1170192 "IDECOMP" 1171351 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1161322 1162372 1163419 "IDEAL" 1167485 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1160486 1160598 1160797 "ICDEN" 1161206 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1159585 1159966 1160113 "ICARD" 1160359 T ICARD (NIL) -8 NIL NIL) (-479 1157657 1157970 1158373 "IBPTOOLS" 1159262 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1153291 1157277 1157390 "IBITS" 1157576 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1150014 1150590 1151285 "IBATOOL" 1152708 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1147794 1148255 1148788 "IBACHIN" 1149549 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1145671 1147640 1147743 "IARRAY2" 1147748 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1141824 1145597 1145654 "IARRAY1" 1145659 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1135827 1140242 1140720 "IAN" 1141366 T IAN (NIL) -8 NIL NIL) (-472 1135338 1135395 1135568 "IALGFACT" 1135764 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1134866 1134979 1135007 "HYPCAT" 1135214 T HYPCAT (NIL) -9 NIL NIL) (-470 1134404 1134521 1134707 "HYPCAT-" 1134712 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1134026 1134199 1134282 "HOSTNAME" 1134341 T HOSTNAME (NIL) -8 NIL NIL) (-468 1130706 1132037 1132078 "HOAGG" 1133059 NIL HOAGG (NIL T) -9 NIL 1133738) (-467 1129300 1129699 1130225 "HOAGG-" 1130230 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1123195 1128741 1128907 "HEXADEC" 1129154 T HEXADEC (NIL) -8 NIL NIL) (-465 1121943 1122165 1122428 "HEUGCD" 1122972 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1121046 1121780 1121910 "HELLFDIV" 1121915 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1119274 1120823 1120911 "HEAP" 1120990 NIL HEAP (NIL T) -8 NIL NIL) (-462 1118613 1118853 1118981 "HEADAST" 1119166 T HEADAST (NIL) -8 NIL NIL) (-461 1112566 1118528 1118590 "HDP" 1118595 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1106324 1112203 1112354 "HDMP" 1112467 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1105649 1105788 1105952 "HB" 1106180 T HB (NIL) -7 NIL NIL) (-458 1099146 1105495 1105599 "HASHTBL" 1105604 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1096964 1098774 1098953 "HACKPI" 1098987 T HACKPI (NIL) -8 NIL NIL) (-456 1092660 1096818 1096930 "GTSET" 1096935 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1086186 1092538 1092636 "GSTBL" 1092641 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1078504 1085222 1085486 "GSERIES" 1085977 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1077672 1078063 1078091 "GROUP" 1078294 T GROUP (NIL) -9 NIL 1078428) (-452 1077038 1077197 1077448 "GROUP-" 1077453 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1075407 1075726 1076113 "GROEBSOL" 1076715 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1074348 1074610 1074661 "GRMOD" 1075190 NIL GRMOD (NIL T T) -9 NIL 1075358) (-449 1074116 1074152 1074280 "GRMOD-" 1074285 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1069441 1070470 1071470 "GRIMAGE" 1073136 T GRIMAGE (NIL) -8 NIL NIL) (-447 1067908 1068168 1068492 "GRDEF" 1069137 T GRDEF (NIL) -7 NIL NIL) (-446 1067352 1067468 1067609 "GRAY" 1067787 T GRAY (NIL) -7 NIL NIL) (-445 1066586 1066966 1067017 "GRALG" 1067170 NIL GRALG (NIL T T) -9 NIL 1067262) (-444 1066247 1066320 1066483 "GRALG-" 1066488 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1063055 1065836 1066012 "GPOLSET" 1066154 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1062411 1062468 1062725 "GOSPER" 1062992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1058170 1058849 1059375 "GMODPOL" 1062110 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1057175 1057359 1057597 "GHENSEL" 1057982 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1051241 1052084 1053110 "GENUPS" 1056259 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1050938 1050989 1051078 "GENUFACT" 1051184 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1050350 1050427 1050592 "GENPGCD" 1050856 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1049824 1049859 1050072 "GENMFACT" 1050309 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1048392 1048647 1048954 "GENEEZ" 1049567 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1042312 1048005 1048166 "GDMP" 1048315 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1031689 1036083 1037189 "GCNAALG" 1041295 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1030155 1030983 1031011 "GCDDOM" 1031266 T GCDDOM (NIL) -9 NIL 1031423) (-431 1029625 1029752 1029967 "GCDDOM-" 1029972 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1028297 1028482 1028786 "GB" 1029404 NIL GB (NIL T T T T) -7 NIL NIL) (-429 1016917 1019243 1021635 "GBINTERN" 1025988 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-428 1014754 1015046 1015467 "GBF" 1016592 NIL GBF (NIL T T T T) -7 NIL NIL) (-427 1013535 1013700 1013967 "GBEUCLID" 1014570 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-426 1012884 1013009 1013158 "GAUSSFAC" 1013406 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1011261 1011563 1011876 "GALUTIL" 1012603 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1009578 1009852 1010175 "GALPOLYU" 1010988 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1006967 1007257 1007662 "GALFACTU" 1009275 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 998773 1000272 1001880 "GALFACT" 1005399 NIL GALFACT (NIL T) -7 NIL NIL) (-421 996161 996819 996847 "FVFUN" 998003 T FVFUN (NIL) -9 NIL 998723) (-420 995427 995609 995637 "FVC" 995928 T FVC (NIL) -9 NIL 996111) (-419 995069 995224 995305 "FUNCTION" 995379 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 992739 993290 993779 "FT" 994600 T FT (NIL) -8 NIL NIL) (-417 991557 992040 992243 "FTEM" 992556 T FTEM (NIL) -8 NIL NIL) (-416 989822 990110 990512 "FSUPFACT" 991249 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 988219 988508 988840 "FST" 989510 T FST (NIL) -8 NIL NIL) (-414 987394 987500 987694 "FSRED" 988101 NIL FSRED (NIL T T) -7 NIL NIL) (-413 986073 986328 986682 "FSPRMELT" 987109 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 983158 983596 984095 "FSPECF" 985636 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 965687 974089 974129 "FS" 977967 NIL FS (NIL T) -9 NIL 980249) (-410 954337 957327 961383 "FS-" 961680 NIL FS- (NIL T T) -8 NIL NIL) (-409 953853 953907 954083 "FSINT" 954278 NIL FSINT (NIL T T) -7 NIL NIL) (-408 952180 952846 953149 "FSERIES" 953632 NIL FSERIES (NIL T T) -8 NIL NIL) (-407 951198 951314 951544 "FSCINT" 952060 NIL FSCINT (NIL T T) -7 NIL NIL) (-406 947433 950143 950184 "FSAGG" 950554 NIL FSAGG (NIL T) -9 NIL 950813) (-405 945195 945796 946592 "FSAGG-" 946687 NIL FSAGG- (NIL T T) -8 NIL NIL) (-404 944237 944380 944607 "FSAGG2" 945048 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-403 941896 942175 942728 "FS2UPS" 943955 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-402 941482 941525 941678 "FS2" 941847 NIL FS2 (NIL T T T T) -7 NIL NIL) (-401 940342 940513 940821 "FS2EXPXP" 941307 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-400 939768 939883 940035 "FRUTIL" 940222 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 931234 935267 936623 "FR" 938444 NIL FR (NIL T) -8 NIL NIL) (-398 926311 928954 928994 "FRNAALG" 930390 NIL FRNAALG (NIL T) -9 NIL 930997) (-397 921989 923060 924335 "FRNAALG-" 925085 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-396 921627 921670 921797 "FRNAAF2" 921940 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-395 920038 920484 920778 "FRMOD" 921440 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-394 917825 918429 918745 "FRIDEAL" 919829 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 917024 917111 917398 "FRIDEAL2" 917732 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-392 916282 916690 916731 "FRETRCT" 916736 NIL FRETRCT (NIL T) -9 NIL 916907) (-391 915394 915625 915976 "FRETRCT-" 915981 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-390 912648 913824 913883 "FRAMALG" 914765 NIL FRAMALG (NIL T T) -9 NIL 915057) (-389 910782 911237 911867 "FRAMALG-" 912090 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-388 904749 910257 910533 "FRAC" 910538 NIL FRAC (NIL T) -8 NIL NIL) (-387 904385 904442 904549 "FRAC2" 904686 NIL FRAC2 (NIL T T) -7 NIL NIL) (-386 904021 904078 904185 "FR2" 904322 NIL FR2 (NIL T T) -7 NIL NIL) (-385 898760 901608 901636 "FPS" 902755 T FPS (NIL) -9 NIL 903311) (-384 898209 898318 898482 "FPS-" 898628 NIL FPS- (NIL T) -8 NIL NIL) (-383 895720 897355 897383 "FPC" 897608 T FPC (NIL) -9 NIL 897750) (-382 895513 895553 895650 "FPC-" 895655 NIL FPC- (NIL T) -8 NIL NIL) (-381 894392 895002 895043 "FPATMAB" 895048 NIL FPATMAB (NIL T) -9 NIL 895200) (-380 892092 892568 892994 "FPARFRAC" 894029 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 887485 887984 888666 "FORTRAN" 891524 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 885201 885701 886240 "FORT" 886966 T FORT (NIL) -7 NIL NIL) (-377 882877 883439 883467 "FORTFN" 884527 T FORTFN (NIL) -9 NIL 885151) (-376 882641 882691 882719 "FORTCAT" 882778 T FORTCAT (NIL) -9 NIL 882840) (-375 880701 881184 881583 "FORMULA" 882262 T FORMULA (NIL) -8 NIL NIL) (-374 880489 880519 880588 "FORMULA1" 880665 NIL FORMULA1 (NIL T) -7 NIL NIL) (-373 880012 880064 880237 "FORDER" 880431 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 879108 879272 879465 "FOP" 879839 T FOP (NIL) -7 NIL NIL) (-371 877716 878388 878562 "FNLA" 878990 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 876385 876774 876802 "FNCAT" 877374 T FNCAT (NIL) -9 NIL 877667) (-369 875951 876344 876372 "FNAME" 876377 T FNAME (NIL) -8 NIL NIL) (-368 874655 875584 875612 "FMTC" 875617 T FMTC (NIL) -9 NIL 875652) (-367 871019 872180 872808 "FMONOID" 874060 NIL FMONOID (NIL T) -8 NIL NIL) (-366 870239 870762 870910 "FM" 870915 NIL FM (NIL T T) -8 NIL NIL) (-365 867663 868309 868337 "FMFUN" 869481 T FMFUN (NIL) -9 NIL 870189) (-364 866932 867113 867141 "FMC" 867431 T FMC (NIL) -9 NIL 867613) (-363 864162 864996 865049 "FMCAT" 866231 NIL FMCAT (NIL T T) -9 NIL 866725) (-362 863057 863930 864029 "FM1" 864107 NIL FM1 (NIL T T) -8 NIL NIL) (-361 860831 861247 861741 "FLOATRP" 862608 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 854382 858487 859117 "FLOAT" 860221 T FLOAT (NIL) -8 NIL NIL) (-359 851820 852320 852898 "FLOATCP" 853849 NIL FLOATCP (NIL T) -7 NIL NIL) (-358 850653 851457 851497 "FLINEXP" 851502 NIL FLINEXP (NIL T) -9 NIL 851595) (-357 849808 850043 850370 "FLINEXP-" 850375 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 848884 849028 849252 "FLASORT" 849660 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 846103 846945 846997 "FLALG" 848224 NIL FLALG (NIL T T) -9 NIL 848691) (-354 839888 843590 843631 "FLAGG" 844893 NIL FLAGG (NIL T) -9 NIL 845545) (-353 838614 838953 839443 "FLAGG-" 839448 NIL FLAGG- (NIL T T) -8 NIL NIL) (-352 837656 837799 838026 "FLAGG2" 838467 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-351 834673 835647 835706 "FINRALG" 836834 NIL FINRALG (NIL T T) -9 NIL 837342) (-350 833833 834062 834401 "FINRALG-" 834406 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 833240 833453 833481 "FINITE" 833677 T FINITE (NIL) -9 NIL 833784) (-348 825700 827861 827901 "FINAALG" 831568 NIL FINAALG (NIL T) -9 NIL 833021) (-347 821041 822082 823226 "FINAALG-" 824605 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 820436 820796 820899 "FILE" 820971 NIL FILE (NIL T) -8 NIL NIL) (-345 819121 819433 819487 "FILECAT" 820171 NIL FILECAT (NIL T T) -9 NIL 820387) (-344 817046 818540 818568 "FIELD" 818608 T FIELD (NIL) -9 NIL 818688) (-343 815666 816051 816562 "FIELD-" 816567 NIL FIELD- (NIL T) -8 NIL NIL) (-342 813546 814303 814649 "FGROUP" 815353 NIL FGROUP (NIL T) -8 NIL NIL) (-341 812636 812800 813020 "FGLMICPK" 813378 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 808503 812561 812618 "FFX" 812623 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 808104 808165 808300 "FFSLPE" 808436 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 804097 804876 805672 "FFPOLY" 807340 NIL FFPOLY (NIL T) -7 NIL NIL) (-337 803601 803637 803846 "FFPOLY2" 804055 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-336 799487 803520 803583 "FFP" 803588 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 794920 799398 799462 "FF" 799467 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 790081 794263 794453 "FFNBX" 794774 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-333 785055 789216 789474 "FFNBP" 789935 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-332 779723 784339 784550 "FFNB" 784888 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-331 778555 778753 779068 "FFINTBAS" 779520 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-330 774844 777019 777047 "FFIELDC" 777667 T FFIELDC (NIL) -9 NIL 778043) (-329 773507 773877 774374 "FFIELDC-" 774379 NIL FFIELDC- (NIL T) -8 NIL NIL) (-328 773077 773122 773246 "FFHOM" 773449 NIL FFHOM (NIL T T T) -7 NIL NIL) (-327 770775 771259 771776 "FFF" 772592 NIL FFF (NIL T) -7 NIL NIL) (-326 766428 770517 770618 "FFCGX" 770718 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-325 762095 766160 766267 "FFCGP" 766371 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-324 757313 761822 761930 "FFCG" 762031 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-323 739387 748418 748504 "FFCAT" 753669 NIL FFCAT (NIL T T T) -9 NIL 755120) (-322 734585 735632 736946 "FFCAT-" 738176 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 733996 734039 734274 "FFCAT2" 734536 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-320 723242 726986 728203 "FEXPR" 732851 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 722242 722677 722718 "FEVALAB" 722802 NIL FEVALAB (NIL T) -9 NIL 723063) (-318 721401 721611 721949 "FEVALAB-" 721954 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 719994 720784 720987 "FDIV" 721300 NIL FDIV (NIL T T T T) -8 NIL NIL) (-316 717061 717776 717891 "FDIVCAT" 719459 NIL FDIVCAT (NIL T T T T) -9 NIL 719896) (-315 716823 716850 717020 "FDIVCAT-" 717025 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-314 716043 716130 716407 "FDIV2" 716730 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-313 714729 714988 715277 "FCPAK1" 715774 T FCPAK1 (NIL) -7 NIL NIL) (-312 713857 714229 714370 "FCOMP" 714620 NIL FCOMP (NIL T) -8 NIL NIL) (-311 697492 700906 704467 "FC" 710316 T FC (NIL) -8 NIL NIL) (-310 690153 694134 694174 "FAXF" 695976 NIL FAXF (NIL T) -9 NIL 696667) (-309 687432 688087 688912 "FAXF-" 689377 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 682532 686808 686984 "FARRAY" 687289 NIL FARRAY (NIL T) -8 NIL NIL) (-307 677967 679994 680046 "FAMR" 681058 NIL FAMR (NIL T T) -9 NIL 681518) (-306 676858 677160 677594 "FAMR-" 677599 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 676054 676780 676833 "FAMONOID" 676838 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 673887 674571 674624 "FAMONC" 675565 NIL FAMONC (NIL T T) -9 NIL 675950) (-303 672579 673641 673778 "FAGROUP" 673783 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 670382 670701 671103 "FACUTIL" 672260 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 669481 669666 669888 "FACTFUNC" 670192 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 661886 668732 668944 "EXPUPXS" 669337 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 659369 659909 660495 "EXPRTUBE" 661320 T EXPRTUBE (NIL) -7 NIL NIL) (-298 655563 656155 656892 "EXPRODE" 658708 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 640999 654222 654648 "EXPR" 655169 NIL EXPR (NIL T) -8 NIL NIL) (-296 635427 636014 636826 "EXPR2UPS" 640297 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-295 635063 635120 635227 "EXPR2" 635364 NIL EXPR2 (NIL T T) -7 NIL NIL) (-294 626482 634200 634495 "EXPEXPAN" 634901 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 626309 626439 626468 "EXIT" 626473 T EXIT (NIL) -8 NIL NIL) (-292 625936 625998 626111 "EVALCYC" 626241 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 625477 625595 625636 "EVALAB" 625806 NIL EVALAB (NIL T) -9 NIL 625910) (-290 624958 625080 625301 "EVALAB-" 625306 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 622465 623733 623761 "EUCDOM" 624316 T EUCDOM (NIL) -9 NIL 624666) (-288 620870 621312 621902 "EUCDOM-" 621907 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 608448 611196 613936 "ESTOOLS" 618150 T ESTOOLS (NIL) -7 NIL NIL) (-286 608084 608141 608248 "ESTOOLS2" 608385 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-285 607835 607877 607957 "ESTOOLS1" 608036 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-284 601773 603497 603525 "ES" 606289 T ES (NIL) -9 NIL 607695) (-283 596720 598007 599824 "ES-" 599988 NIL ES- (NIL T) -8 NIL NIL) (-282 593095 593855 594635 "ESCONT" 595960 T ESCONT (NIL) -7 NIL NIL) (-281 592840 592872 592954 "ESCONT1" 593057 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-280 592515 592565 592665 "ES2" 592784 NIL ES2 (NIL T T) -7 NIL NIL) (-279 592145 592203 592312 "ES1" 592451 NIL ES1 (NIL T T) -7 NIL NIL) (-278 591361 591490 591666 "ERROR" 591989 T ERROR (NIL) -7 NIL NIL) (-277 584864 591220 591311 "EQTBL" 591316 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 577427 580182 581629 "EQ" 583450 NIL -3805 (NIL T) -8 NIL NIL) (-275 577059 577116 577225 "EQ2" 577364 NIL EQ2 (NIL T T) -7 NIL NIL) (-274 572351 573397 574490 "EP" 575998 NIL EP (NIL T) -7 NIL NIL) (-273 570933 571234 571551 "ENV" 572054 T ENV (NIL) -8 NIL NIL) (-272 570137 570657 570685 "ENTIRER" 570690 T ENTIRER (NIL) -9 NIL 570735) (-271 566639 568092 568462 "EMR" 569936 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 565783 565968 566022 "ELTAGG" 566402 NIL ELTAGG (NIL T T) -9 NIL 566613) (-269 565502 565564 565705 "ELTAGG-" 565710 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 565291 565320 565374 "ELTAB" 565458 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 564417 564563 564762 "ELFUTS" 565142 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 564159 564215 564243 "ELEMFUN" 564348 T ELEMFUN (NIL) -9 NIL NIL) (-265 564029 564050 564118 "ELEMFUN-" 564123 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 558921 562130 562171 "ELAGG" 563111 NIL ELAGG (NIL T) -9 NIL 563574) (-263 557206 557640 558303 "ELAGG-" 558308 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 555863 556143 556438 "ELABEXPR" 556931 T ELABEXPR (NIL) -8 NIL NIL) (-261 548729 550530 551357 "EFUPXS" 555139 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 542179 543980 544790 "EFULS" 548005 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 539610 539968 540446 "EFSTRUC" 541811 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 528682 530247 531807 "EF" 538125 NIL EF (NIL T T) -7 NIL NIL) (-257 527783 528167 528316 "EAB" 528553 T EAB (NIL) -8 NIL NIL) (-256 526996 527742 527770 "E04UCFA" 527775 T E04UCFA (NIL) -8 NIL NIL) (-255 526209 526955 526983 "E04NAFA" 526988 T E04NAFA (NIL) -8 NIL NIL) (-254 525422 526168 526196 "E04MBFA" 526201 T E04MBFA (NIL) -8 NIL NIL) (-253 524635 525381 525409 "E04JAFA" 525414 T E04JAFA (NIL) -8 NIL NIL) (-252 523850 524594 524622 "E04GCFA" 524627 T E04GCFA (NIL) -8 NIL NIL) (-251 523065 523809 523837 "E04FDFA" 523842 T E04FDFA (NIL) -8 NIL NIL) (-250 522278 523024 523052 "E04DGFA" 523057 T E04DGFA (NIL) -8 NIL NIL) (-249 516463 517808 519170 "E04AGNT" 520936 T E04AGNT (NIL) -7 NIL NIL) (-248 515190 515670 515710 "DVARCAT" 516185 NIL DVARCAT (NIL T) -9 NIL 516383) (-247 514394 514606 514920 "DVARCAT-" 514925 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 507302 514196 514323 "DSMP" 514328 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 502112 503247 504315 "DROPT" 506254 T DROPT (NIL) -8 NIL NIL) (-244 501777 501836 501934 "DROPT1" 502047 NIL DROPT1 (NIL T) -7 NIL NIL) (-243 496892 498018 499155 "DROPT0" 500660 T DROPT0 (NIL) -7 NIL NIL) (-242 495237 495562 495948 "DRAWPT" 496526 T DRAWPT (NIL) -7 NIL NIL) (-241 489824 490747 491826 "DRAW" 494211 NIL DRAW (NIL T) -7 NIL NIL) (-240 489457 489510 489628 "DRAWHACK" 489765 NIL DRAWHACK (NIL T) -7 NIL NIL) (-239 488188 488457 488748 "DRAWCX" 489186 T DRAWCX (NIL) -7 NIL NIL) (-238 487706 487774 487924 "DRAWCURV" 488114 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-237 478177 480136 482251 "DRAWCFUN" 485611 T DRAWCFUN (NIL) -7 NIL NIL) (-236 474991 476873 476914 "DQAGG" 477543 NIL DQAGG (NIL T) -9 NIL 477816) (-235 463544 470236 470318 "DPOLCAT" 472156 NIL DPOLCAT (NIL T T T T) -9 NIL 472700) (-234 458384 459730 461687 "DPOLCAT-" 461692 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 451588 458246 458343 "DPMO" 458348 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 444695 451369 451535 "DPMM" 451540 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 444115 444318 444432 "DOMAIN" 444601 T DOMAIN (NIL) -8 NIL NIL) (-230 437873 443752 443903 "DMP" 444016 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 437473 437529 437673 "DLP" 437811 NIL DLP (NIL T) -7 NIL NIL) (-228 431117 436574 436801 "DLIST" 437278 NIL DLIST (NIL T) -8 NIL NIL) (-227 427964 429973 430014 "DLAGG" 430564 NIL DLAGG (NIL T) -9 NIL 430793) (-226 426819 427449 427477 "DIVRING" 427569 T DIVRING (NIL) -9 NIL 427652) (-225 426056 426246 426546 "DIVRING-" 426551 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 424158 424515 424921 "DISPLAY" 425670 T DISPLAY (NIL) -7 NIL NIL) (-223 418133 424072 424135 "DIRPROD" 424140 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-222 416981 417184 417449 "DIRPROD2" 417926 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-221 406586 412505 412558 "DIRPCAT" 412966 NIL DIRPCAT (NIL NIL T) -9 NIL 413805) (-220 403912 404554 405435 "DIRPCAT-" 405772 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 403199 403359 403545 "DIOSP" 403746 T DIOSP (NIL) -7 NIL NIL) (-218 399902 402112 402153 "DIOPS" 402587 NIL DIOPS (NIL T) -9 NIL 402816) (-217 399451 399565 399756 "DIOPS-" 399761 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 398367 398961 398989 "DIFRING" 399176 T DIFRING (NIL) -9 NIL 399285) (-215 398013 398090 398242 "DIFRING-" 398247 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 395847 397085 397125 "DIFEXT" 397484 NIL DIFEXT (NIL T) -9 NIL 397777) (-213 394133 394561 395226 "DIFEXT-" 395231 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 391456 393666 393707 "DIAGG" 393712 NIL DIAGG (NIL T) -9 NIL 393732) (-211 390840 390997 391249 "DIAGG-" 391254 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 386305 389799 390076 "DHMATRIX" 390609 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 381917 382826 383836 "DFSFUN" 385315 T DFSFUN (NIL) -7 NIL NIL) (-208 376768 380631 380996 "DFLOAT" 381572 T DFLOAT (NIL) -8 NIL NIL) (-207 375001 375282 375677 "DFINTTLS" 376476 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 372080 373036 373434 "DERHAM" 374668 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 369929 371855 371944 "DEQUEUE" 372024 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 369147 369280 369475 "DEGRED" 369791 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 365547 366292 367144 "DEFINTRF" 368375 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 363078 363547 364145 "DEFINTEF" 365066 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 356973 362519 362685 "DECIMAL" 362932 T DECIMAL (NIL) -8 NIL NIL) (-200 354485 354943 355449 "DDFACT" 356517 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 354081 354124 354275 "DBLRESP" 354436 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 351791 352125 352494 "DBASE" 353839 NIL DBASE (NIL T) -8 NIL NIL) (-197 351060 351271 351417 "DATABUF" 351690 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 350195 351019 351047 "D03FAFA" 351052 T D03FAFA (NIL) -8 NIL NIL) (-195 349331 350154 350182 "D03EEFA" 350187 T D03EEFA (NIL) -8 NIL NIL) (-194 347281 347747 348236 "D03AGNT" 348862 T D03AGNT (NIL) -7 NIL NIL) (-193 346599 347240 347268 "D02EJFA" 347273 T D02EJFA (NIL) -8 NIL NIL) (-192 345917 346558 346586 "D02CJFA" 346591 T D02CJFA (NIL) -8 NIL NIL) (-191 345235 345876 345904 "D02BHFA" 345909 T D02BHFA (NIL) -8 NIL NIL) (-190 344553 345194 345222 "D02BBFA" 345227 T D02BBFA (NIL) -8 NIL NIL) (-189 337751 339339 340945 "D02AGNT" 342967 T D02AGNT (NIL) -7 NIL NIL) (-188 335520 336042 336588 "D01WGTS" 337225 T D01WGTS (NIL) -7 NIL NIL) (-187 334623 335479 335507 "D01TRNS" 335512 T D01TRNS (NIL) -8 NIL NIL) (-186 333726 334582 334610 "D01GBFA" 334615 T D01GBFA (NIL) -8 NIL NIL) (-185 332829 333685 333713 "D01FCFA" 333718 T D01FCFA (NIL) -8 NIL NIL) (-184 331932 332788 332816 "D01ASFA" 332821 T D01ASFA (NIL) -8 NIL NIL) (-183 331035 331891 331919 "D01AQFA" 331924 T D01AQFA (NIL) -8 NIL NIL) (-182 330138 330994 331022 "D01APFA" 331027 T D01APFA (NIL) -8 NIL NIL) (-181 329241 330097 330125 "D01ANFA" 330130 T D01ANFA (NIL) -8 NIL NIL) (-180 328344 329200 329228 "D01AMFA" 329233 T D01AMFA (NIL) -8 NIL NIL) (-179 327447 328303 328331 "D01ALFA" 328336 T D01ALFA (NIL) -8 NIL NIL) (-178 326550 327406 327434 "D01AKFA" 327439 T D01AKFA (NIL) -8 NIL NIL) (-177 325653 326509 326537 "D01AJFA" 326542 T D01AJFA (NIL) -8 NIL NIL) (-176 318957 320506 322065 "D01AGNT" 324114 T D01AGNT (NIL) -7 NIL NIL) (-175 318294 318422 318574 "CYCLOTOM" 318825 T CYCLOTOM (NIL) -7 NIL NIL) (-174 315029 315742 316469 "CYCLES" 317587 T CYCLES (NIL) -7 NIL NIL) (-173 314341 314475 314646 "CVMP" 314890 NIL CVMP (NIL T) -7 NIL NIL) (-172 312122 312380 312755 "CTRIGMNP" 314069 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 311633 311822 311921 "CTORCALL" 312043 T CTORCALL (NIL) -8 NIL NIL) (-170 311007 311106 311259 "CSTTOOLS" 311530 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 306806 307463 308221 "CRFP" 310319 NIL CRFP (NIL T T) -7 NIL NIL) (-168 305853 306038 306266 "CRAPACK" 306610 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 305237 305338 305542 "CPMATCH" 305729 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 304962 304990 305096 "CPIMA" 305203 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 301326 301998 302716 "COORDSYS" 304297 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 300710 300839 300989 "CONTOUR" 301196 T CONTOUR (NIL) -8 NIL NIL) (-163 296636 298713 299205 "CONTFRAC" 300250 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 295834 296354 296382 "COMRING" 296387 T COMRING (NIL) -9 NIL 296438) (-161 294915 295192 295376 "COMPPROP" 295670 T COMPPROP (NIL) -8 NIL NIL) (-160 294576 294611 294739 "COMPLPAT" 294874 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 284642 294385 294494 "COMPLEX" 294499 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 284278 284335 284442 "COMPLEX2" 284579 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 283996 284031 284129 "COMPFACT" 284237 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 268416 278625 278665 "COMPCAT" 279667 NIL COMPCAT (NIL T) -9 NIL 281060) (-155 257931 260855 264482 "COMPCAT-" 264838 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 257662 257690 257792 "COMMUPC" 257897 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 257457 257490 257549 "COMMONOP" 257623 T COMMONOP (NIL) -7 NIL NIL) (-152 257040 257208 257295 "COMM" 257390 T COMM (NIL) -8 NIL NIL) (-151 256289 256483 256511 "COMBOPC" 256849 T COMBOPC (NIL) -9 NIL 257024) (-150 255185 255395 255637 "COMBINAT" 256079 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 251383 251956 252596 "COMBF" 254607 NIL COMBF (NIL T T) -7 NIL NIL) (-148 250169 250499 250734 "COLOR" 251168 T COLOR (NIL) -8 NIL NIL) (-147 249809 249856 249981 "CMPLXRT" 250116 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 245311 246339 247419 "CLIP" 248749 T CLIP (NIL) -7 NIL NIL) (-145 243695 244419 244657 "CLIF" 245139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 239918 241842 241883 "CLAGG" 242812 NIL CLAGG (NIL T) -9 NIL 243348) (-143 238340 238797 239380 "CLAGG-" 239385 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 237884 237969 238109 "CINTSLPE" 238249 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 235385 235856 236404 "CHVAR" 237412 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 234652 235172 235200 "CHARZ" 235205 T CHARZ (NIL) -9 NIL 235219) (-139 234406 234446 234524 "CHARPOL" 234606 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 233557 234110 234138 "CHARNZ" 234185 T CHARNZ (NIL) -9 NIL 234240) (-137 231582 232247 232582 "CHAR" 233242 T CHAR (NIL) -8 NIL NIL) (-136 231308 231369 231397 "CFCAT" 231508 T CFCAT (NIL) -9 NIL NIL) (-135 230553 230664 230846 "CDEN" 231192 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 226545 229706 229986 "CCLASS" 230293 T CCLASS (NIL) -8 NIL NIL) (-133 226464 226490 226525 "CATEGORY" 226530 T -10 (NIL) -8 NIL NIL) (-132 221516 222493 223246 "CARTEN" 225767 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 220624 220772 220993 "CARTEN2" 221363 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 218968 219776 220032 "CARD" 220388 T CARD (NIL) -8 NIL NIL) (-129 218341 218669 218697 "CACHSET" 218829 T CACHSET (NIL) -9 NIL 218906) (-128 217838 218134 218162 "CABMON" 218212 T CABMON (NIL) -9 NIL 218268) (-127 217006 217385 217528 "BYTE" 217715 T BYTE (NIL) -8 NIL NIL) (-126 212954 216953 216987 "BYTEARY" 216992 T BYTEARY (NIL) -8 NIL NIL) (-125 210511 212646 212753 "BTREE" 212880 NIL BTREE (NIL T) -8 NIL NIL) (-124 208009 210159 210281 "BTOURN" 210421 NIL BTOURN (NIL T) -8 NIL NIL) (-123 205428 207481 207522 "BTCAT" 207590 NIL BTCAT (NIL T) -9 NIL 207667) (-122 205095 205175 205324 "BTCAT-" 205329 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 200388 204239 204267 "BTAGG" 204489 T BTAGG (NIL) -9 NIL 204650) (-120 199878 200003 200209 "BTAGG-" 200214 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 196922 199156 199371 "BSTREE" 199695 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196060 196186 196370 "BRILL" 196778 NIL BRILL (NIL T) -7 NIL NIL) (-117 192762 194789 194830 "BRAGG" 195479 NIL BRAGG (NIL T) -9 NIL 195736) (-116 191291 191697 192252 "BRAGG-" 192257 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 184564 190637 190821 "BPADICRT" 191139 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 182914 184501 184546 "BPADIC" 184551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 182614 182644 182757 "BOUNDZRO" 182878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178129 179220 180087 "BOP" 181767 T BOP (NIL) -8 NIL NIL) (-111 175750 176194 176714 "BOP1" 177642 NIL BOP1 (NIL T) -7 NIL NIL) (-110 174474 175160 175360 "BOOLEAN" 175570 T BOOLEAN (NIL) -8 NIL NIL) (-109 173841 174219 174271 "BMODULE" 174276 NIL BMODULE (NIL T T) -9 NIL 174340) (-108 169671 173639 173712 "BITS" 173788 T BITS (NIL) -8 NIL NIL) (-107 168768 169203 169355 "BINFILE" 169539 T BINFILE (NIL) -8 NIL NIL) (-106 168180 168302 168444 "BINDING" 168646 T BINDING (NIL) -8 NIL NIL) (-105 162079 167624 167789 "BINARY" 168035 T BINARY (NIL) -8 NIL NIL) (-104 159907 161335 161376 "BGAGG" 161636 NIL BGAGG (NIL T) -9 NIL 161773) (-103 159738 159770 159861 "BGAGG-" 159866 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 158836 159122 159327 "BFUNCT" 159553 T BFUNCT (NIL) -8 NIL NIL) (-101 157531 157709 157996 "BEZOUT" 158660 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154048 156383 156713 "BBTREE" 157234 NIL BBTREE (NIL T) -8 NIL NIL) (-99 153786 153839 153865 "BASTYPE" 153982 T BASTYPE (NIL) -9 NIL NIL) (-98 153641 153670 153740 "BASTYPE-" 153745 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153079 153155 153305 "BALFACT" 153552 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 151966 152498 152683 "AUTOMOR" 152924 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 151692 151697 151723 "ATTREG" 151728 T ATTREG (NIL) -9 NIL NIL) (-94 149971 150389 150741 "ATTRBUT" 151358 T ATTRBUT (NIL) -8 NIL NIL) (-93 149507 149620 149646 "ATRIG" 149847 T ATRIG (NIL) -9 NIL NIL) (-92 149316 149357 149444 "ATRIG-" 149449 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149042 149185 149211 "ASTCAT" 149216 T ASTCAT (NIL) -9 NIL 149246) (-90 148839 148882 148974 "ASTCAT-" 148979 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147036 148615 148703 "ASTACK" 148782 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145541 145838 146203 "ASSOCEQ" 146718 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144573 145200 145324 "ASP9" 145448 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144337 144521 144560 "ASP8" 144565 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143206 143942 144084 "ASP80" 144226 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142105 142841 142973 "ASP7" 143105 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141059 141782 141900 "ASP78" 142018 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140028 140739 140856 "ASP77" 140973 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138940 139666 139797 "ASP74" 139928 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137840 138575 138707 "ASP73" 138839 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136795 137517 137635 "ASP6" 137753 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135743 136472 136590 "ASP55" 136708 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134693 135417 135536 "ASP50" 135655 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133781 134394 134504 "ASP4" 134614 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132869 133482 133592 "ASP49" 133702 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131654 132408 132576 "ASP42" 132758 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130431 131187 131357 "ASP41" 131541 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129381 130108 130226 "ASP35" 130344 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129146 129329 129368 "ASP34" 129373 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128883 128950 129026 "ASP33" 129101 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127778 128518 128650 "ASP31" 128782 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127543 127726 127765 "ASP30" 127770 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127278 127347 127423 "ASP29" 127498 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127043 127226 127265 "ASP28" 127270 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126808 126991 127030 "ASP27" 127035 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125892 126506 126617 "ASP24" 126728 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124808 125533 125663 "ASP20" 125793 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123896 124509 124619 "ASP1" 124729 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122840 123570 123689 "ASP19" 123808 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122577 122644 122720 "ASP12" 122795 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121429 122176 122320 "ASP10" 122464 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119328 121273 121364 "ARRAY2" 121369 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115144 118976 119090 "ARRAY1" 119245 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114176 114349 114570 "ARRAY12" 114967 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108536 110407 110482 "ARR2CAT" 113112 NIL ARR2CAT (NIL T T T) -9 NIL 113870) (-54 105970 106714 107668 "ARR2CAT-" 107673 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104722 104874 105179 "APPRULE" 105806 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104375 104423 104541 "APPLYORE" 104668 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103349 103640 103835 "ANY" 104198 T ANY (NIL) -8 NIL NIL) (-50 102627 102750 102907 "ANY1" 103223 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100205 101077 101402 "ANTISYM" 102352 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99720 99909 100006 "ANON" 100126 T ANON (NIL) -8 NIL NIL) (-47 93862 98265 98716 "AN" 99287 T AN (NIL) -8 NIL NIL) (-46 90260 91614 91664 "AMR" 92403 NIL AMR (NIL T T) -9 NIL 93002) (-45 89373 89594 89956 "AMR-" 89961 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73923 89290 89351 "ALIST" 89356 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70760 73517 73686 "ALGSC" 73841 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67316 67870 68477 "ALGPKG" 70200 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66593 66694 66878 "ALGMFACT" 67202 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62342 63023 63677 "ALGMANIP" 66117 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53753 61968 62118 "ALGFF" 62275 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52949 53080 53259 "ALGFACT" 53611 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51984 52550 52588 "ALGEBRA" 52648 NIL ALGEBRA (NIL T) -9 NIL 52706) (-36 51702 51761 51893 "ALGEBRA-" 51898 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33963 49706 49758 "ALAGG" 49894 NIL ALAGG (NIL T T) -9 NIL 50055) (-34 33499 33612 33638 "AHYP" 33839 T AHYP (NIL) -9 NIL NIL) (-33 32430 32678 32704 "AGG" 33203 T AGG (NIL) -9 NIL 33482) (-32 31864 32026 32240 "AGG-" 32245 NIL AGG- (NIL T) -8 NIL NIL) (-31 29551 29969 30386 "AF" 31507 NIL AF (NIL T T) -7 NIL NIL) (-30 28820 29078 29234 "ACPLOT" 29413 T ACPLOT (NIL) -8 NIL NIL) (-29 18349 26233 26284 "ACFS" 26995 NIL ACFS (NIL T) -9 NIL 27234) (-28 16363 16853 17628 "ACFS-" 17633 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14587 14613 "ACF" 15492 T ACF (NIL) -9 NIL 15904) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 9be30cd2..d8072fc4 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,206 +1,203 @@
-(727609 . 3429209007)
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741))
- (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3))
- (-5 *1 (-442 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-975 (-388 (-530))) (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $))
- (-15 -1857 (*7 $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4))
- (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
- (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-208))
+(727394 . 3429259030)
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
+ (-5 *1 (-1037)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-597 (-297 (-208))))
+ (|:| |constraints|
+ (-597
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-719)) (|:| |boundaryType| (-530))
+ (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
+ (|:| |tol| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-194)))))
+(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795))
+ (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741))
(-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 *4))))
- (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4))))
- (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984))
- (-5 *1 (-966 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984))
- (-5 *1 (-966 *4)))))
+ (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed"))
+ (|:| -3220 (-597 (-1181 (-388 *8))))))
+ (-5 *1 (-620 *5 *6 *7 *8)))))
(((*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
+ (-5 *1 (-429 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
+ (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530)))))
+ (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182))))
((*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182))))
((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183))))
((*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-14 *6
- (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *2))
- (-2 (|:| -1910 *5) (|:| -3059 *2))))
- (-4 *2 (-221 (-2167 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
-(((*1 *2 *3)
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-597
- (-2 (|:| -4113 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *7)))))
- (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
- (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-868))
(-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)))))
+ (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -4003 (-719))))
+ (-5 *1 (-730 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4003 (-719))))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-704)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432))
- (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
- (-4 *6 (-323 *3 *4 *5)))))
+ (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4))
+ (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-973)) (-5 *1 (-698))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))))
(((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273)))
- ((*1 *1) (-5 *1 (-804)))
- ((*1 *1)
- (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
- (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1014)))
- ((*1 *1)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33)))))
- ((*1 *1) (-5 *1 (-1102))) ((*1 *1) (-5 *1 (-1103))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *5 (-221 (-2167 *3) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *5))
- (-2 (|:| -1910 *2) (|:| -3059 *5))))
- (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-890 *4 *5 (-806 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
+ (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099)))
+ (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))
+ (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1)))
+ (-4 *1 (-998 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1)))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
+ (-5 *2
+ (-597
+ (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9)))))
+ (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
+ (-5 *2
+ (-597
+ (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9)))))
+ (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-597
- (-2 (|:| -4113 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *7)))))
- (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
- (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2))
- (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
- (-4 *6 (-323 *3 *4 *5)))))
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))))
(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162))
- (-4 *4 (-221 (-2167 *5) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1910 *3) (|:| -3059 *4))
- (-2 (|:| -1910 *3) (|:| -3059 *4))))
- (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795))
- (-4 *7 (-890 *2 *4 (-806 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3))
- (-4 *3 (-890 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284))))
- ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
- ((*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
- (-4 *2 (-1157 *3)))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
+ (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099))
+ (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186))
+ (-5 *1 (-1102))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1099))
+ (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186))
+ (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3))
- (-4 *3 (-1157 *2)))))
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
+ (-14 *4 (-719)) (-4 *5 (-162)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5))
- (|:| |c2| (-388 *5)) (|:| |deg| (-719))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
+ (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
+ (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360))))
((*1 *1 *1 *1) (-4 *1 (-515)))
((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-719)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162))
- (-4 *3 (-221 (-2167 *4) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *3))
- (-2 (|:| -1910 *5) (|:| -3059 *3))))
- (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795))
- (-4 *7 (-890 *2 *3 (-806 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289))
+ (-4 *9 (-890 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3109 (-1095 *9)) (|:| |polval| (-1095 *8))))
+ (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-597 (-570 *4))) (-4 *4 (-411 *3)) (-4 *3 (-795))
(-5 *1 (-539 *3 *4))))
@@ -209,243 +206,194 @@
((*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1896 (-637 (-388 (-893 *4))))
- (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -4113 (-719))
- (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741))
- (-5 *2
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *4)))))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1))
- (-4 *1 (-1000 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-415))
- (-5 *2
- (-597
- (-3 (|:| -3901 (-1099))
- (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))
- (-5 *1 (-1103)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3))))
- (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *1)
- (-12 (-4 *1 (-385)) (-3694 (|has| *1 (-6 -4261)))
- (-3694 (|has| *1 (-6 -4253)))))
- ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-4 *1 (-795))) ((*1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4))
- (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *4)))))))
- (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140)))
- (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27))))
((*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27))))
((*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804))
- (-4 *1 (-951))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344)))
- (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
- (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| *6)))
- (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5))
- (-4 *4 (-1027)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
+ (-4 *3 (-1027)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-845 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
+ (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
+ (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284))))
+ ((*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
+ (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
+ (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9))
+ (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-5 *1 (-917 *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| -4113 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *8)))))
- (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3))
- (-4 *3 (-13 (-793) (-344) (-960)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344)))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
+ (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-176)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
+ (-5 *2 (-2 (|:| -2065 (-388 *5)) (|:| |poly| *3)))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
(((*1 *2 *3 *3)
(-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-597
- (-597
- (-3 (|:| -3901 (-1099))
- (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))))
- (-5 *1 (-1103)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128))
- (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530))
+ (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))
+ ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4))
+ (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110))))
+ (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))))
(((*1 *2 *1 *1)
(-12 (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-984))
(-5 *2 (-637 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795))))
- ((*1 *2 *1)
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4))
+ (-4 *4 (-1027)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
+ (-4 *2 (-162)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
+ (-4 *3 (-1157 *4))
+ (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-399 *4)) (-4 *4 (-522)))))
+(((*1 *1 *1 *1 *2)
(-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13))
- (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13))
- (-5 *7 (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| *13)))))
- (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10))))
- (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12))
- (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530)))
- (-5 *1 (-311))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-530)))))
- (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-719)))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -2473 *3) (|:| -3059 (-530)))))
- (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 (-719)))))
- (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+ (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140)))
- (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-719)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9)))
- (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719)))
- (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11))
- (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12)))
- (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))))
+ (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3))
+ (-4 *3 (-1157 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
+ (-4 *2 (-607 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815))
+ (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289))
+ (-5 *1 (-168 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 *8))
+ (-5 *4
+ (-597
+ (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-637 *7)))))
+ (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-637 *7))))
+ (-5 *1 (-476 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-530))
+ (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-530))
+ (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
+ (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4))
- (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))))
+ (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1135)) (-5 *2 (-719))))
((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-719))))
((*1 *2 *3)
@@ -455,169 +403,52 @@
((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-27) (-411 *4)))
- (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2))
- (-4 *2 (-323 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
- (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-388 (-530)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6))
- (-4 *6 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530)))
- (-4 *7 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8))
- (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530)))
- (-4 *8 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530))))
- (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8)))
- (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-4 *3 (-984)) (-5 *1 (-555 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-4 *3 (-984)) (-4 *1 (-1141 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-719))
- (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))
- (-4 *4 (-984)) (-4 *1 (-1162 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3))))
- (-4 *3 (-984)) (-4 *1 (-1172 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
- (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7))
- (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11))
- (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719)))
- (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795))
- (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741))
- (-5 *1 (-656 *9 *10 *8 *11)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
+ (-5 *1 (-663 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-31 *4 *2)))))
+ (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795))
+ (-5 *1 (-569 *2 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
+ (-5 *2 (-110)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4))
+ (-4 *4 (-850)) (-5 *1 (-614 *4)))))
(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-687)))))
-(((*1 *1) (-5 *1 (-1102))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4))
- (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344))
- (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
- (-4 *6 (-13 (-27) (-411 *5)))
- (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
- (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
- (-4 *3 (-323 *6 *7 *8)))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
(((*1 *1 *2)
(-12 (-4 *3 (-984)) (-5 *1 (-775 *2 *3)) (-4 *2 (-657 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3))
- (-4 *3 (-890 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4))))
- (-5 *1 (-865 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4))))
- (-5 *1 (-865 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9))))
+ (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
(-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8))
(-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186))
(-5 *1 (-1001 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9))))
+ (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
(-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8))
(-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186))
(-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7))
- (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
- (-4 *7 (-1135))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6))
- (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099))
- (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-388 (-530))) (-5 *1 (-115 *4)) (-14 *4 *3)
(-5 *3 (-530))))
@@ -634,263 +465,180 @@
(-4 *3 (-1157 *2))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2258 (*2 (-1099))))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2366 (*2 (-1099))))
(-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3853 (-597 *6)))
- *7 *6))
- (-4 *6 (-344)) (-4 *7 (-607 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 *6) "failed"))
- (|:| -3853 (-597 (-1181 *6)))))
- (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
- (-4 *6 (-13 (-27) (-411 *5)))
- (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
- (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
- (-4 *3 (-323 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8))))
- (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140)))
- (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099))))
- (-4 *10 (-741))
- (-5 *2
- (-2
- (|:| |rgl|
- (-597
- (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11))
- (|:| |wcond| (-597 (-893 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *8))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *8))))))))))
- (|:| |rgsz| (-530))))
- (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6))
- (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
- (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
+ (-5 *1 (-429 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
+ (-15 -1928 ((-1051 *4 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *4 (-570 $))))))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3))
+ (-4 *3 (-1157 *2)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13))
+ (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13))
+ (-5 *7 (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *13)))))
+ (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10))))
+ (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12))
+ (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))))
+(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984))))
+ ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1 (-1080 *4) (-1080 *4))) (-5 *2 (-1080 *4))
(-5 *1 (-1204 *4)) (-4 *4 (-1135))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 (-597 (-1080 *5)) (-597 (-1080 *5)))) (-5 *4 (-530))
(-5 *2 (-597 (-1080 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1135)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
- (-14 *4 *2) (-4 *5 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-862))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
- (-5 *2 (-719)) (-5 *1 (-618 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-719))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4))
+ (-4 *4 (-13 (-411 *3) (-941)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284))))
+ ((*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4))
+ (-4 *4 (-13 (-411 *3) (-941) (-1121))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
+ (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1157 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-719)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344))
+ (-12
(-5 *2
- (-2 (|:| A (-637 *5))
- (|:| |eqs|
- (-597
- (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2623 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5))
- (-4 *6 (-607 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-607 *5))
- (-5 *2 (-2 (|:| -1896 (-637 *6)) (|:| |vec| (-1181 *5))))
- (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3)))
- (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522)))
- (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186))
- (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804)))
+ (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804)))
+ (|:| |args| (-597 (-804)))))
+ (-5 *1 (-1099)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
- (|:| |wcond| (-597 (-893 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *4))))))))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
+ (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5)))
+ (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
+ (-5 *1 (-872 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
+ (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5)))
+ (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
+ (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344))
+ (-5 *2 (-597 (-893 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-719)) (-4 *5 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3))
+ (-4 *4 (-354 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3))
- (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208)))
- (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))))
+ (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))))
(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
- (-5 *5 (-1 (-399 *7) *7))
- (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
- (-5 *5 (-1 (-399 *7) *7))
- (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6))
- (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3))
- (-4 *3 (-1157 *4))))
+ (-12 (-4 *4 (-984))
+ (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
+ ((*1 *1 *1) (-4 *1 (-515)))
+ ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135))))
((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7))
- (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
- (-4 *7 (-1135)))))
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
+ (-4 *2 (-984)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804))
+ (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))))
(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135))))
((*1 *2 *2)
(-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2623 *3))))
- (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6))
- (-4 *7 (-607 (-388 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2623 (-605 *6 (-388 *6))))))
- (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
+ (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7))
+ (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5))))
+ (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287))))
((*1 *2 *1)
(|partial| -12
(-5 *2 (-2 (|:| |num| (-833 *3)) (|:| |den| (-833 *3))))
(-5 *1 (-833 *3)) (-4 *3 (-1027)))))
(((*1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *2 *2 *3 *3)
(-12 (-5 *3 (-388 *5)) (-4 *4 (-1139)) (-4 *5 (-1157 *4))
(-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1157 *3))))
@@ -990,416 +738,427 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
(|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1080 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
- (|:| |wcond| (-597 (-893 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *4))))))))))
- (-5 *1 (-865 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7))
- (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099))))
- (-4 *8 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
- (|:| |wcond| (-597 (-893 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *6))))))))))
- (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
- (|:| |wcond| (-597 (-893 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *6))))))))))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862))
- (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
- (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
- (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
- (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))))
+ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6))
+ (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-534 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
- (-5 *1 (-1102))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
- (-5 *1 (-1102)))))
+ (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-719))
+ (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530))))))
+ (-5 *1 (-229 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3))
+ (-4 *3 (-1135)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
+ (-5 *1 (-1084 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
+ (-14 *4 (-1099)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7))
- (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2623 *3))))
- (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7))
- (-4 *8 (-607 (-388 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2
- (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2623 (-605 *6 (-388 *6))))))
- (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
- (-5 *2 (-1183)) (-5 *1 (-239)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+ (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289))
+ (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5))
+ (-14 *4 (-862)) (-14 *5 (-933 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4))
+ (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4))
+ (-4 *4 (-1157 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5))
+ (-4 *4 (-984)) (-4 *5 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984))
+ (-4 *2 (-795))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *2 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5))
+ (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4))
+ (-4 *4 (-984)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4))
- (-5 *1 (-863 *4 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3)))
- (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
+ (-4 *3 (-1003 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-648 *3))
- (-4 *3 (-289)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
- (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099))
- (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *2 (-1186))
- (-5 *1 (-1102))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1099))
- (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *2 (-1186))
- (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7))
- (-5 *2 (-2 (|:| -1896 (-637 *6)) (|:| |vec| (-1181 *5))))
- (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
- (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
-(((*1 *1) (-5 *1 (-1183))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -1981 (-597 *1)) (|:| -1898 *1)))
- (-5 *3 (-597 *1)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271)))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4))
- (-5 *1 (-758 *4 *2))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *1 *1) (-5 *1 (-506))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208)))
- (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183))))
- ((*1 *1 *1) (-5 *1 (-1183))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4))
- (-4 *4 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1099))
- (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void"))) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-758 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-2 (|:| -3853 (-597 (-388 *6))) (|:| -1896 (-637 *5))))
- (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1157 *3)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-570 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2))
+ (-4 *2 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-570 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
+ (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
+ (-14 *4 *2))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-758 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-2 (|:| -3853 (-597 (-388 *6))) (|:| -1896 (-637 *5))))
- (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3))))
- ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+ (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3))
+ (|:| |genIdeal| (-482 *3 *4 *5 *6))))
+ (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))))
+ (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
+ (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
- (-5 *1 (-859 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135))
- (-5 *2 (-110)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-1 (-208) (-208) (-208) (-208)))
+ (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530)
+ *6))
+ (-4 *6 (-344)) (-4 *7 (-1157 *6))
+ (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
+(((*1 *1 *1) (-5 *1 (-506))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344))
+ (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984))
+ (-5 *2 (-110)) (-5 *1 (-967 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
(((*1 *2 *3 *1)
- (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3))
- (-4 *5 (-607 (-388 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-388 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4))
- (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4))
- (-4 *4 (-984))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186))
- (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
- (-5 *1 (-859 *4)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (|has| *1 (-6 -4271)) (-4 *1 (-354 *3))
- (-4 *3 (-1135)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027))
+ (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5))
+ (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51))
+ (-5 *1 (-944)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
+ (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
+ (-4 *3 (-1157 (-388 *4))))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-597 *5) *6))
(-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| -2562 *5) (|:| -2623 *3))))
+ (-5 *2 (-597 (-2 (|:| -2708 *5) (|:| -2776 *3))))
(-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6))
(-4 *7 (-607 (-388 *6))))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
+ (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
+ (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
+ ((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1) (-4 *1 (-810 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740))
+ (-4 *4 (-795)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862))
+ (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
+ (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
+ (-5 *1 (-378))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
+ (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
+ (-5 *1 (-378))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099))
+ (-5 *2 (-1031)) (-5 *1 (-378)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984))
+ (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
+ (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795))
+ (-5 *1 (-429 *4 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-624 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))))
(((*1 *1)
(-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027))
(-4 *4 (-617 *3))))
((*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-354 *2)) (-4 *2 (-1135))
- (-4 *2 (-795))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4271))
- (-4 *1 (-354 *3)) (-4 *3 (-1135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
+ (-4 *3 (-908)))))
(((*1 *1 *1 *1 *2)
(-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
((*1 *1 *2 *1 *3)
(-12 (-5 *3 (-530)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4))
- (-5 *1 (-1100 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3))
- (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4))
- (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2623 *5))))
- (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5))
- (-4 *6 (-607 (-388 *5))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-1 (-208) (-208) (-208) (-208)))
- (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))))
-(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *5 (-607 (-388 *2))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795))
+ (-4 *3 (-1027)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
+ (-4 *3 (-13 (-1121) (-29 *5))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
+ ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
+ (-14 *3 (-597 (-1099))))))
+(((*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311))))
+ ((*1 *1) (-5 *1 (-311))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3))))
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719)))
- (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))))
+ (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027))
+ (-4 *2 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2204 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *5 (-607 (-388 *2)))))
+ (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
+ (-5 *5 (-1 (-399 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2))
- (-4 *3 (-607 (-388 *2))))))
+ (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
+ (-5 *5 (-1 (-399 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
+ (-4 *6 (-1157 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
+ (-4 *6 (-1157 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-530))))
+ (-5 *2
+ (-597
+ (-2 (|:| |outval| *4) (|:| |outmult| (-530))
+ (|:| |outvect| (-597 (-637 *4))))))
+ (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1095 (-388 (-530))))
+ (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))))
+ (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
+ (-4 *2 (-795)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-1099)) (-5 *1 (-806 *3)) (-14 *3 (-597 *2))))
@@ -1410,304 +1169,317 @@
(-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
(-5 *2 (-1099))))
((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
- (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *1 (-245))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3708 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *1 (-1084 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3721 *5) (|:| -1663 *5))))
- (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5))
- (-4 *6 (-607 (-388 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3721 *4) (|:| -1663 *4))))
- (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4))
- (-4 *6 (-607 (-388 *4)))))
+ (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
+ (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3721 *5) (|:| -1663 *5))))
- (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5))
- (-4 *3 (-607 (-388 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3721 *4) (|:| -1663 *4))))
- (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4))
- (-4 *3 (-607 (-388 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
- (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208)))
- (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
+ (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
+(((*1 *2)
+ (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))
+ (-14 *4 (-1099)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2366 ($ *4)))))
+ (-4 *4 (-793))
+ (-4 *5
+ (-13 (-1159 *2 *4) (-344) (-1121)
+ (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
+ (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-755 *5 *2 *3 *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *3 (-607 *2)) (-4 *6 (-607 *4))))
+ (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3))
+ (-4 *3 (-344)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1095 (-893 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
+ ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984)))
+ (-5 *2 (-1082)) (-5 *1 (-774 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5))
- (-5 *1 (-755 *5 *2 *3 *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *6 (-607 (-388 *2))))))
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-110))
+ (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082))
+ (-5 *1 (-774 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-297 *5))
+ (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
+ (-5 *1 (-774 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110))
+ (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
+ (-5 *1 (-774 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344))
- (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7))
- (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3088 *1)))
- (-4 *1 (-998 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3088 *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+ (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5))
+ (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5))
+ (-5 *1 (-1174 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5))
+ (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8))
+ (-5 *6 (-597 *8)) (-4 *8 (-411 *7))
+ (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8)))
+ (-4 *8 (-411 *7)) (-5 *5 (-276 *8))
+ (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6))
+ (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
+ (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
+ (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3))
+ (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506))))
+ (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4)))
+ (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *1 *1 *1) (-4 *1 (-710))))
(((*1 *2 *3 *2)
(-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-754 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432))
- (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344))
- (-4 *5 (-13 (-344) (-793))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1 *1)
+(((*1 *1 *2 *3 *4)
(-12
+ (-5 *3
+ (-597
+ (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2))
+ (|:| |logand| (-1095 *2)))))
+ (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-344)) (-5 *1 (-547 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
(-5 *2
- (-2 (|:| -1981 *3) (|:| |gap| (-719)) (|:| -3624 (-730 *3))
- (|:| -3088 (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-5 *2
- (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3624 *1)
- (|:| -3088 *1)))
- (-4 *1 (-998 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2
- (-2 (|:| -1981 *1) (|:| |gap| (-719)) (|:| -3624 *1)
- (|:| -3088 *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -3007 *5))))
- (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5))
- (-5 *1 (-200 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| -2473 *5) (|:| -3409 (-530)))))
- (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5))
- (-5 *1 (-644 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
+ (-3 (|:| |%expansion| (-294 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
+ (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
+ (-14 *6 (-1099)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
+ (-5 *1 (-582 *5 *6)))))
(((*1 *1 *2 *3)
(-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-311)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *1) (-4 *1 (-675))) ((*1 *1) (-5 *1 (-1099))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
+(((*1 *2 *2 *3)
(-12 (-5 *3 (-1099))
(-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1121) (-900))))))
+ (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1) (-5 *1 (-804)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-964 (-788 (-530))))
+ (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984))
+ (-5 *1 (-555 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4))
+ (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
+ (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
+ (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5))
+ (-5 *3 (-388 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135))
+ (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273)))
+ ((*1 *1) (-5 *1 (-804)))
+ ((*1 *1)
+ (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
+ (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1014)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33)))))
+ ((*1 *1) (-5 *1 (-1102))) ((*1 *1) (-5 *1 (-1103))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6))
+ (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))))
+(((*1 *1) (-5 *1 (-1183))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))
+ (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
+ (-5 *2 (-597 (-597 (-884 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984))
+ (-4 *1 (-1060 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984))
+ (-4 *1 (-1060 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110))
+ (-4 *1 (-1060 *4)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110))
+ (-4 *1 (-1060 *4)) (-4 *4 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161)))
+ (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161)))
+ (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
- (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793)))))
+ (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344))
+ (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
- (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984))))
+ (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5))
+ (-3676 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5)))
+ (-5 *1 (-592 *5 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-4 *4 (-795)) (-4 *2 (-522))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719))))
+ ((*1 *1 *1) (-4 *1 (-383))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
+ (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182))
+ (-5 *1 (-1185))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
+ (-5 *2 (-1182)) (-5 *1 (-1185)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2473 *3) (|:| -3409 *4))))
- (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804))
- (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4))
- (-4 *4 (-1135)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
- (-4 *4 (-248 *3)) (-4 *5 (-741)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -1791 (-719))))
- (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1791 (-719))))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
(((*1 *2)
(-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
(-4 *3 (-348 *4))))
((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3)
+(((*1 *2 *1)
(|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
(-5 *2
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))
- (-5 *1 (-751)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1166 *4 *5 *6))
+ (|:| |%expon| (-300 *4 *5 *6))
+ (|:| |%expTerms|
+ (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))))
+ (|:| |%type| (-1082))))
+ (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3)))
+ (-14 *5 (-1099)) (-14 *6 *4))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))))
(((*1 *1 *2 *3)
(-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
((*1 *2 *3 *4)
@@ -1716,36 +1488,37 @@
((*1 *1 *2 *3)
(-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1196 *4 *3))
(-4 *3 (-984)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-597
- (-2
- (|:| -2940
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208))))
- (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208)))
- (|:| |g| (-297 (-208))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1806
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360)))))))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))))
-(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
+ (-5 *2 (-973)) (-5 *1 (-694)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5))
+ (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1)))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
+ (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
+ ((*1 *1 *1) (-4 *1 (-793)))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
+ ((*1 *1 *1) (-4 *1 (-993))) ((*1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
+ (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-785))))
((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
@@ -1762,24 +1535,27 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360)))
(-5 *2 (-973)) (-5 *1 (-785)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027))
- (-5 *2 (-597 (-2 (|:| -1806 *3) (|:| -2494 (-719))))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984))
+ (-4 *4 (-1135))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
+ (-4 *5 (-221 (-2267 *3) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5))
+ (-2 (|:| -1986 *2) (|:| -3194 *5))))
+ (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795))
+ (-4 *7 (-890 *4 *5 (-806 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
+ (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7)))
+ (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *1) (-5 *1 (-418))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-1082)) (-4 *4 (-795)) (-5 *1 (-870 *4 *2))
@@ -1787,41 +1563,43 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-1099)) (-5 *4 (-1082)) (-5 *2 (-297 (-530)))
(-5 *1 (-871)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
+ (-4 *2 (-1157 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6)))
- (-4 *6 (-344))
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
(-5 *2
- (-597
- (-2 (|:| |outval| *7) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 *7))))))
- (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-719))
- (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530))))))
- (-5 *1 (-229 *3)))))
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-48)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6))
- (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7))
- (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4270)))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1157 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278))))
((*1 *2 *3)
(-12 (-5 *3 (-597 (-1082))) (-5 *2 (-293)) (-5 *1 (-278))))
@@ -1829,14 +1607,35 @@
((*1 *2 *3 *4)
(-12 (-5 *4 (-597 (-1082))) (-5 *3 (-1082)) (-5 *2 (-293))
(-5 *1 (-278)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *1) (-5 *1 (-751))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3))
+ (-4 *3 (-354 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3))
+ (-4 *5 (-354 *2)) (-4 *3 (-354 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522))
+ (-5 *1 (-641 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-530))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
+ (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-1192 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-106))))
((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-112))))
((*1 *2 *1)
@@ -1848,296 +1647,234 @@
((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-906))))
((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1005 *3)) (-14 *3 *2)))
((*1 *1 *1) (-5 *1 (-1099))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
+ (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
((*1 *2 *3)
(-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6))
- (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1121) (-900)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3853 (-597 *4))))
- (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
+(((*1 *1) (-5 *1 (-1014))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
+(((*1 *1) (-5 *1 (-448))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4))
- (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289))
- (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5))
- (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-289)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2108 (-730 *3)) (|:| |coef1| (-730 *3))
- (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2108 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
+ (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
+ (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
(((*1 *2 *2 *2 *3 *4)
(-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984))
(-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6))
- (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3))
- (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4270)))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-748))
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-973)))))
+ (-12 (-5 *3 (-1181 (-297 (-208))))
+ (-5 *2
+ (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530))
+ (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))))
+ (-5 *1 (-287)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
+ (-4 *4 (-1135)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1071 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2))
+ (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099)))
+ (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5))
+ (-4 *5 (-13 (-793) (-344)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6))
- (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))))
+ (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-570 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
+ (-4 *2 (-13 (-411 *5) (-27) (-1121)))
+ (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2108 (-730 *3)) (|:| |coef1| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2108 *1) (|:| |coef1| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
+ (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522))
+ (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6))))
+ (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6)))))
+ (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
+ (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4))))
+ (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
+ (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
+(((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
+ (-5 *3 (-597 (-530)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
+ (-5 *3 (-597 (-530))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3))
+ (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3))
(-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1))
- (-4 *1 (-310 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344))
- (-4 *2 (-1157 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2108 (-730 *3)) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2108 *1) (|:| |coef2| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3))
- (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))))
(((*1 *1 *1) (-5 *1 (-110))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
-(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4))
- (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))))
-(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-5 *1 (-47)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-56 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4270))
- (-4 *1 (-144 *2)) (-4 *2 (-1135))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *2))
- (-4 *2 (-1135))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *2))
- (-4 *2 (-1135))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-5 *2 (-2 (|:| -3770 (-1095 *4)) (|:| |deg| (-862))))
- (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719))
- (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2))
- (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135))
- (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027))
- (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2))))
- ((*1 *1 *1) (-5 *1 (-473)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-595 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984))
- (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2))
- (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344))
- (-4 *3 (-162)) (-4 *1 (-673 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-898 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5))
- (-14 *6 (-597 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984))
- (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7))
- (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2))
- (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
- (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289))
- (-4 *3 (-522)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1))
- (-4 *1 (-310 *4))))
- ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
+ (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4))))
((*1 *2)
- (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1))
- (-4 *1 (-390 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
- (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6))
- (-4 *6 (-13 (-390 *4 *5) (-975 *4)))))
+ (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862))
+ (-14 *4 (-862))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
+ (-14 *4
+ (-3 (-1095 *3)
+ (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-530))))
((*1 *2 *1)
- (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
- (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))
- (-4 *6 (-390 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
+ (-4 *3 (-1027)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -3721 (-597 (-2 (|:| |irr| *10) (|:| -2075 (-530)))))))
+ (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289))
+ (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741))
+ (-5 *2
+ (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-597 (-1095 *3)))))
+ (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-530)))))
+ (-5 *1 (-399 *3)) (-4 *3 (-522))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3))
+ (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6))
+ (-4 *6 (-1157 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-276 (-893 (-530))))
+ (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -2065 (-597 *1)) (|:| -1974 *1)))
+ (-5 *3 (-597 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
+ (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3))
+ (-4 *3 (-572 (-506)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
(-5 *2
- (-2 (|:| |varOrder| (-597 (-1099)))
- (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed"))
- (|:| |hom| (-597 (-1181 (-719))))))
- (-5 *1 (-219)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3))
- (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))))))
-(((*1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))))
+ (-2 (|:| -3509 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -4182 (-388 *6))
+ (|:| |special| (-388 *6))))
+ (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4))
+ (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-837 *3 *5))
+ (-4 *3 (-1157 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
+ (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
+ (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
+ (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
+ (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
(-14 *4 *3)))
@@ -2145,232 +1882,261 @@
(-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))))
+(((*1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 (-833 *3)))))
+ (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4)))
+ (-5 *1 (-833 *4)) (-4 *4 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
+ (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
+ (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795)))
+ (-5 *1 (-1056 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7))
- (-5 *3 (-1095 *6)) (-4 *7 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10))
- (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795))
- (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10))
- (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5))
- (-5 *3 (-1095 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6))
- (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-338 *4))))
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))
+ (-4 *2 (-432))))
((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-500 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3))))
- ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984))
- (-5 *1 (-638 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862))))
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530)))
+ (-5 *1 (-465 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *3 (-432)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-784))
+ (-5 *3
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
+ (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
+ (|:| |ub| (-597 (-788 (-208))))))
+ (-5 *2 (-973))))
((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862))
- (-5 *1 (-500 *4)))))
-(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027))
- (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5))))
- (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
- ((*1 *1 *1 *1) (-4 *1 (-741))))
+ (-12 (-4 *1 (-784))
+ (-5 *3
+ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
+ (-5 *2 (-973)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3))
+ (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -2104 (-388 *6)) (|:| |coeff| (-388 *6))))
+ (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
(((*1 *1 *1) (-4 *1 (-515))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522))
+ (-4 *3 (-1135)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-5 *2 (-1082)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
+ (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
+ (-4 *5 (-607 (-388 *2))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-415))
(-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *1) (-5 *1 (-1182))))
-(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+ (-597
+ (-3 (|:| -3907 (-1099))
+ (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))
+ (-5 *1 (-1103)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5))
+ (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3)))))
+ (-5 *1 (-1201 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4)))))
+ (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208)))
+ (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
(-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182))))
- ((*1 *1 *1) (-5 *1 (-1182))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-754 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530)
+ *6))
+ (-4 *6 (-344)) (-4 *7 (-1157 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2))
- (-4 *2 (-1157 (-388 *3))))))
-(((*1 *1 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+(((*1 *1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330))
- (-5 *1 (-500 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815))
- (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-4 *4 (-795)) (-4 *2 (-522))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530)))
+ (-5 *1 (-174)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3))
+ (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-110)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
+ (-4 *2 (-1157 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-597 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
+ (-5 *2 (-597 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
(((*1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-597 (-1181 *3))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
+ (-4 *4 (-795)))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-388 (-530))) (-4 *4 (-975 (-530)))
(-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4))))
@@ -2442,233 +2208,268 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *1) (-5 *1 (-137))))
(((*1 *1 *1 *1) (-5 *1 (-127))))
(((*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2))))
((*1 *2 *1)
(-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *1)
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-637 (-388 (-893 (-530)))))
+ (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969))
+ (-5 *3 (-297 (-530))))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *1 *2 *3)
(-12
- (-5 *2
- (-1181
- (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -3738 (-530))
- (|:| -3718 (-530)) (|:| |spline| (-530)) (|:| -3973 (-530))
- (|:| |axesColor| (-815)) (|:| -1786 (-530))
- (|:| |unitsColor| (-815)) (|:| |showing| (-530)))))
- (-5 *1 (-1182)))))
-(((*1 *1) (-5 *1 (-996))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))
- (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5))
- (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-1095 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1157 (-388 (-530))))
- (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))
- (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3)))))
+ (-5 *3
+ (-597
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-530)))))
+ (-4 *2 (-522)) (-5 *1 (-399 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *1)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-530))
+ (|:| -3721 (-597 (-2 (|:| |irr| *4) (|:| -2075 (-530)))))))
+ (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1324 (-719)) (|:| -3304 (-719))))
+ (-5 *1 (-719))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
+ (-5 *1 (-645)))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6))
+ (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-289)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2)
(-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-1095 *3)))))
+ (-5 *2 (-597 (-1181 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*")))
+ (-4 *4 (-984)) (-5 *1 (-966 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862))
+ (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-740)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
+ (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-110)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099))
- (-5 *5 (-788 *7))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6))
- (-4 *6 (-13 (-1121) (-29 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-207 *5 *6)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1))))
+ (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -3220 (-597 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3109 *4))) (-5 *5 (-719))
+ (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-429 *6 *7 *8 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862))
- (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
+ (-5 *1 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-399 *5)) (-4 *5 (-522))
+ (-5 *2
+ (-2 (|:| -3194 (-719)) (|:| -2065 *5) (|:| |radicand| (-597 *5))))
+ (-5 *1 (-301 *5)) (-5 *4 (-719))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
(((*1 *2 *1)
(-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
(-4 *4 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-706)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-311)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110))
- (-4 *4 (-13 (-1121) (-29 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-207 *6 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-2 (|:| -1334 (-719)) (|:| -1962 *8)))
- (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5))
- (-5 *2 (-2 (|:| -1334 (-719)) (|:| -1962 *6)))
- (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
- (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
- (-4 *2 (-635 *3 *5 *6)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
+ (-12 (-4 *3 (-1027))
+ (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
+ (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5))
+ (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795)))
+ (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
(-4 *4 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4))
- (-14 *4 (-530)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
+ (-5 *1 (-1107 *4)) (-4 *4 (-795)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5))
- (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
- (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110))
- (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110))
- (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
- (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
- (-4 *2 (-635 *3 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
+ (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
+ (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3))
+ (-4 *3 (-998 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-597
+ (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
+ (|:| |wcond| (-597 (-893 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
+ (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6))
+ (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3387 *4) (|:| -3906 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-530)))))
+ (-5 *1 (-342 *3)) (-4 *3 (-1027))))
((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
- (-14 *4 (-530)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
- (-14 *3 (-597 (-1099))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2))
- (-4 *2 (-635 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))))
+ (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719)))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -3194 (-530)))))
+ (-5 *1 (-399 *3)) (-4 *3 (-522))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719)))))
+ (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
+ (-4 *5 (-221 (-2267 *3) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5))
+ (-2 (|:| -1986 *2) (|:| -3194 *5))))
+ (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-890 *4 *5 (-806 *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5)
+ (|:| |f4| (-597 *5))))
+ (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
+ (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
+ (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224))))
((*1 *2 *2 *3 *4)
(-12 (-5 *2 (-597 (-1082))) (-5 *3 (-530)) (-5 *4 (-1082))
@@ -2677,18 +2478,12 @@
((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099))))))
-(((*1 *2 *1)
(-12 (-4 *3 (-1027))
(-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
(-5 *2 (-597 (-1006 *3 *4 *5))) (-5 *1 (-1007 *3 *4 *5))
(-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-194))
(-5 *3 (-1099))))
@@ -2708,234 +2503,311 @@
((*1 *2 *1)
(-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
(-5 *2 (-597 *3)))))
-(((*1 *1 *1) (-5 *1 (-996))))
(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-1082)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-530))
- (-5 *6
- (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))))
- (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-530))
- (-5 *6
- (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4037 (-360))))
- (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
- (-14 *4 (-530)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795)))
- (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1157 (-530)))
+ (-5 *2
+ (-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530))
+ (|:| |basisInv| (-637 (-530)))))
+ (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-637 *4))))
+ (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-637 *4))))
+ (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245)))
+ (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *2 (-432))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2))
- (-4 *4 (-1157 (-388 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-432))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
- (-14 *3 (-597 (-1099))))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *2 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))
+ (-5 *2 (-973)) (-5 *1 (-287)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719))
- (-5 *1 (-483 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *6 (-110))
- (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-1121) (-900) (-29 *7)))
+ (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))))
+ (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3))))
+ (-5 *1 (-767 *3)) (-4 *3 (-795)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
+ (-14 *3 (-862)) (-4 *4 (-984))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-411 *3))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))
+ (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027))))
+ (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4))))
+ (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $))
- (-15 -1857 (*7 $))))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
- (-4 *2
- (-13 (-383)
- (-10 -7 (-15 -2258 (*2 *4)) (-15 -3830 ((-862) *2))
- (-15 -3853 ((-1181 *2) (-862))) (-15 -3231 (*2 *2)))))
- (-5 *1 (-337 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-2 (|:| -2253 (-1080 *4)) (|:| -2263 (-1080 *4))))
- (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
+ (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-522))
+ (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 (-597 (-862))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
+(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *1) (-5 *1 (-1046))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289))
+ (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))))
(((*1 *2 *3 *2)
- (-12 (-4 *1 (-735)) (-5 *2 (-973))
- (-5 *3
- (-2 (|:| |fn| (-297 (-208)))
- (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-735)) (-5 *2 (-973))
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208)))))))
+ (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245)))
+ (-5 *1 (-243))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6))
+ (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6))
+ (-5 *1 (-585 *5 *6)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719))
- (-5 *2
- (-597
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530))))))
- (-5 *1 (-483 *4 *5))
- (-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
+ (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
+ (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110))
+ (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432))
+ (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1))
- (-4 *1 (-363 *3 *4))))
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4))
+ (-4 *4 (-1157 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
(-4 *4 (-675))))
((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-890 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4))
- (-5 *3 (-1095 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-2 (|:| -2121 (-1080 *4)) (|:| -2133 (-1080 *4))))
- (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
+ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984))
+ (-4 *2 (-1172 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3))))
+ (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4))
+ (-4 *4 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6))
+ (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7))
+ (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-5 *2 (-110)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
+ (|partial| -12 (-4 *4 (-13 (-522) (-140)))
+ (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5))
+ (-4 *3 (-1027)) (-4 *5 (-617 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
(((*1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
(-4 *4 (-795))))
((*1 *1) (-4 *1 (-1075))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
- (-5 *1 (-483 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-5 *2 (-719)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162))
+ (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *1 (-1203 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
+ (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3))
+ (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
(-5 *2
- (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3)
- (-230 *3 (-388 (-530)))))
- (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))))
+ (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
+ (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
+ (-14 *6 (-597 (-1099)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140)))
+ (-5 *2
+ (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
+ (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4)))
+ (-14 *5 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-5 *2
+ (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
+ (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
+ (-14 *6 (-597 (-1099))))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-530))
+ (-5 *6
+ (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))))
+ (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-530))
+ (-5 *6
+ (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))))
+ (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4))
+ (-4 *4 (-1157 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
+ (-5 *1 (-707)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-1157 (-388 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4))
+ (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741))
+ (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)))))
+ (-4 *6 (-522)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
+ (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
+ (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
+ (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
+ (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360))
+ (-5 *1 (-733 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
+ (-5 *1 (-1136 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
+ (-5 *1 (-1136 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-530))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
+ (-5 *2 (-1183)) (-5 *1 (-239)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -2943,63 +2815,13 @@
(-230 *4 (-388 (-530)))))
(-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
(-5 *1 (-483 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-719)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(((*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3))
- (-4 *3 (-572 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))
- (-4 *2 (-432))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530)))
- (-5 *1 (-465 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-432)))))
+ (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135))))
((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
@@ -3008,30 +2830,62 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
(-4 *3 (-1157 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+ (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121)))
+ (-5 *1 (-545 *4 *2))
+ (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-547 (-388 (-893 *4))))
+ (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
+ (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
+ (-5 *1 (-1084 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
+ (-14 *4 (-1099)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289))
+ (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
+ (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1598 (-597 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
+ (-5 *1 (-1085 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
+ (-5 *1 (-1086 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
+ (-4 *3 (-13 (-1121) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
- (-5 *1 (-287))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330))
- (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -3007 *3))))
- (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344))
- (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))))
+ (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
+ (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5))
+ (-5 *3 (-388 (-893 *5))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-429 *5 *6 *7 *3)))))
(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135))))
((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
@@ -3040,308 +2894,296 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
(-4 *3 (-1157 *2)))))
-(((*1 *1) (-5 *1 (-996))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
+ (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4))
+ (-5 *3 (-597 *4)))))
(((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-1099)) (-5 *3 (-415)) (-4 *5 (-795))
(-5 *1 (-1033 *5 *4)) (-4 *4 (-411 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530))
- (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-330))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530)))))))
- (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-388 (-530)))
+ (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795))
- (-5 *1 (-111 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2)))
- (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3))
- (-4 *3 (-323 *5 *2 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
(((*1 *2 *2)
(|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
+ (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-4 *2 (-221 *3 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128))
+ (-4 *3 (-740)))))
(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-110)) (-5 *1 (-194)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-697)))))
+ (-5 *2
+ (-597
+ (-597
+ (-3 (|:| -3907 (-1099))
+ (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))))
+ (-5 *1 (-1103)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
-(((*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
-(((*1 *1) (-5 *1 (-771))))
+ (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
+ (-4 *4 (-13 (-522) (-795)))
+ (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
+ (-5 *1 (-559 *4 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1157 (-159 *3))))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2))
+ (-4 *2 (-1157 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2
- (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4))
- (|:| |genIdeal| (-482 *4 *5 *6 *7))))
- (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
- (-5 *1 (-194)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
+ (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-830 *4 *5)) (-4 *5 (-1027))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-831 *5 *3)) (-4 *3 (-1135))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
+ (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *3)
(-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
(-4 *4 (-330)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
+ (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4))
- (-4 *4 (-984)))))
-(((*1 *1) (-5 *1 (-771))))
+ (-12 (-4 *4 (-432))
+ (-5 *2
+ (-597
+ (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
+ (|:| |geneigvec| (-597 (-637 (-388 (-893 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6))
+ (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
+ (-5 *1 (-809 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
+ (-5 *1 (-809 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795))
+ (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289))
+ (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4))
+ (-4 *4
+ (-13 (-795)
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
+ (-15 -3595 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
+ (-15 -3595 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-597 *5))
+ (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
+ (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
+ (-4 *2 (-1135)))))
+(((*1 *1) (-5 *1 (-148))))
(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5))
- (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(((*1 *1) (-5 *1 (-771))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344))
- (-5 *2
- (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6))))
- (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-4 *3 (-522)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5))
+ (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795))
- (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3))
+ (-4 *3 (-1135)))))
+(((*1 *1 *1 *1) (-4 *1 (-908))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *3)
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
+ (-5 *2 (-1095 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-675)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530)))))
+ (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
(-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
+ (-5 *1 (-701)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-530))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082))
- (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530))
- (-5 *1 (-1043 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6))))
- (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530))
- (-5 *1 (-1043 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099))
- (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(((*1 *1) (-5 *1 (-771))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5))
- (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))))
+ (-12 (-4 *4 (-13 (-344) (-793)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -3721 (-399 *3))))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
+ (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5))))
+ (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
- (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
+ (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4))
+ (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6))
- (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))))
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
+ (-5 *2 (-597 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *1) (-5 *1 (-208)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
(((*1 *2 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3))))
(-5 *1 (-767 *3)) (-4 *3 (-795))))
((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
- (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5))
- (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6))))
+ (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6))
+ (-5 *1 (-1174 *5 *6)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1157 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1157 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *1) (-5 *1 (-273))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3901 (-1082))))
- (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5))
- (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
((*1 *1 *1 *2)
@@ -3364,80 +3206,41 @@
((*1 *2 *2 *2)
(|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110))
- (-5 *1 (-1206 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4))
- (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
- (-5 *1 (-189)))))
-(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3))
- (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7))))
- (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3))
- (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2108 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099)))
- (-5 *2
- (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))))
+ (-12 (-5 *3 (-597 (-2 (|:| -3417 *4) (|:| -2001 (-530)))))
+ (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+ (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1))))
+ (-4 *1 (-1003 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1139)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2))
+ (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
+(((*1 *1) (-5 *1 (-1102))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *1 *2 *2 *3)
(-12 (-5 *2 (-719)) (-4 *3 (-1135)) (-4 *1 (-55 *3 *4 *5))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
@@ -3453,376 +3256,201 @@
((*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984))))
((*1 *1 *1) (-5 *1 (-1099))) ((*1 *1) (-5 *1 (-1099)))
((*1 *1) (-5 *1 (-1116))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031))
+ (-5 *1 (-708))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031))
+ (-5 *1 (-708)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
+ (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
+ (-4 *3 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
+ (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))
- (-14 *4 (-1099)) (-14 *5 *2)))
+ (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-5 *1 (-928 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2258 ($ *4)))))
- (-4 *4 (-793))
- (-4 *5
- (-13 (-1159 *2 *4) (-344) (-1121)
- (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $)))))
- (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1099))
- (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
- (-5 *2
- (-2 (|:| -2555 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5)))))
- (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-297 (-208))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
- (-5 *1 (-189)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
+ (-4 *5 (-354 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7))
+ (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5))
+ (-5 *1 (-755 *5 *2 *3 *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *3 (-607 *2)) (-4 *6 (-607 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+ (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5))
+ (-5 *1 (-755 *5 *2 *3 *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
+ (-4 *6 (-607 (-388 *2))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-5 *2 (-110)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -2940 *3) (|:| -1806 *4))))
+ (-12 (-5 *2 (-597 (-2 (|:| -3078 *3) (|:| -1874 *4))))
(-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1112 *3 *4))))
((*1 *1) (-12 (-4 *1 (-1112 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2258 ($ *7)))))
- (-4 *7 (-793))
- (-4 *8
- (-13 (-1159 *3 *7) (-344) (-1121)
- (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
+ (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128))
+ (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3))
+ (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
- (-14 *10 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4))))
- (-5 *1 (-111 *4)) (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))))
+ (-597
+ (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
+ (|:| |wcond| (-597 (-893 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
(-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
(-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6))))
- (-5 *3 (-388 (-893 *6)))
- (-4 *6 (-13 (-522) (-975 (-530)) (-140)))
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
(-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-536 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2258 ($ *7)))))
- (-4 *7 (-793))
- (-4 *8
- (-13 (-1159 *3 *7) (-344) (-1121)
- (-10 -8 (-15 -3211 ($ $)) (-15 -1637 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
- (-14 *10 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4)))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |%expansion| (-294 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-14 *6 (-1099)) (-14 *7 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-5 *1 (-523 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2))
+ (-4 *2 (-635 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3))
- (-4 *3 (-998 *4 *5 *6)))))
+ (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
- (-4 *3 (-13 (-1121) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
- (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5))
- (-5 *3 (-388 (-893 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
+ (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4))
+ (-5 *1 (-966 *5)) (-4 *5 (-984))))
((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -1981 (-530)) (|:| |var| (-570 *1))))
- (-4 *1 (-411 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-795)) (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-795)) (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
- (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
- (-5 *2 (-893 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *1 (-1203 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4))
+ (-4 *4 (-984))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530))
+ (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984))))
((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
+ (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530))))
+ (-5 *1 (-966 *4)) (-4 *4 (-984)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4))
+ (-14 *3 (-862)))))
(((*1 *2 *1)
(-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862))
(-14 *4 (-862)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9))
- (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795))
- (-5 *1 (-917 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-534 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3)))))
- (-5 *1 (-1201 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4)))))
- (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289))
+ (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6)))
+ (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
- (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
- (-4 *1 (-348 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
- (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))))
+ (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+(((*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))))
+(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-287))))
((*1 *2 *3) (-12 (-5 *3 (-597 (-973))) (-5 *2 (-973)) (-5 *1 (-287))))
((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
@@ -3835,284 +3463,93 @@
(-4 *4 (-1135))))
((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
- (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -2555 (-388 *5)) (|:| |coeff| (-388 *5))))
- (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-767 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2)
- (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4))
- (-14 *3 (-862)) (-14 *4 (-862)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
- ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1596 (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3))
- (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
+ (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-767 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208))))
+ (-5 *1 (-287)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-4 *3 (-1027)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
- (-5 *1 (-845 *4))))
+ (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
- ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
- (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063))
- (-4 *2 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *1 (-533 *5 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-791)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6)))
- (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027))
- (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8))
- (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
+ (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4))
+ (-5 *1 (-863 *4 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2940
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1806
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2902
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-525))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2940
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (|:| -1806
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))))
- (-5 *1 (-751))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
- (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+ (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4))
+ (-4 *4 (-1135)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110))))
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-791)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5))
- (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4))
- (-4 *4 (-1027))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5))
- (-5 *1 (-872 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
- (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $))))
- (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5)))
- (-5 *1 (-873 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515))
- (-5 *1 (-874 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027))
- (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5)))
- (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3)))
- (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6))
- (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4)))
- (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6)))
- (-5 *1 (-877 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
- (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5))
- (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6))
- (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5))
- (-5 *1 (-880 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5))
- (-4 *5 (-1027)) (-5 *1 (-881 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9)))
- (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027))
- (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9))
- (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795)))
- (-5 *1 (-882 *7 *8 *9)))))
+ (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-719)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1345)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+ (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
+ (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1))
+ (-4 *1 (-1000 *4 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
+ (-5 *2 (-597 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
(-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
@@ -4120,150 +3557,129 @@
(-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6))
(-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
(-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795))
+ (-5 *1 (-1107 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| -1716 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5)))
- (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-872 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-694)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4))
+ (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344))
+ (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
+ (-4 *8 (-890 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *3)))
+ (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *1 (-970 *2))
+ (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
+ (-4 *2 (-13 (-795) (-21))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *1 *1) (-4 *1 (-522))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
+ (|partial| -12 (-5 *3 (-862))
+ (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
+ (-5 *1 (-327 *4)) (-4 *4 (-330)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795))
- (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984))
- (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *2 (-740))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3))
- (-5 *2 (-530))))
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344))
+ (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-5 *2 (-597 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
- (-5 *2 (-388 (-530)))))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-597 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862)))))
+ (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-675))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208)))))
- (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-694)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+ (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7)))
+ (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-540 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
+(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-360)))
+ ((*1 *1) (-5 *1 (-360))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360)))
+ (-5 *2 (-973)) (-5 *1 (-785)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
- (-4 *2 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))))
+ (-12
+ (-5 *3
+ (-597
+ (-2 (|:| -2426 (-719))
+ (|:| |eqns|
+ (-597
+ (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
+ (|:| |cols| (-597 (-530))))))
+ (|:| |fgb| (-597 *7)))))
+ (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
+ (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
+ (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
+ (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-1022 *3)) (-4 *3 (-890 *7 *6 *4)) (-4 *6 (-741))
(-4 *4 (-795)) (-4 *7 (-522))
@@ -4298,59 +3714,37 @@
(-12 (-5 *4 (-1020 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
(-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 *3 (-297 *5)))
(-5 *1 (-1092 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289))
- (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5))
- (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3))
- (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))))
(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
(-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4))
+ (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
+ (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
+ (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9))))
+ (-5 *1 (-1035 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
+ ((*1 *1 *1 *1) (-4 *1 (-741))))
(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-803))))
((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-906))))
((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-929))))
@@ -4358,234 +3752,157 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3))
(-4 *3 (-13 (-1027) (-33))))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *1 (-615 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4))
- (-4 *3 (-795)) (-4 *4 (-162)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530))))
+ (-5 *1 (-969)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
+ (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
+ (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
+(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3))
- (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
-(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))
- ((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-570 *3))
- (-4 *3 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3)))
- (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *1) (-4 *1 (-330))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4))
+ (-4 *4 (-984))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186))
+ (-5 *1 (-1183)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3))
+ (|:| |logand| (-1095 *3)))))
+ (-5 *1 (-547 *3)) (-4 *3 (-344)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795))
- (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289))
- (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289))
- (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6)))
- (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4))
+ (-5 *1 (-400 *4))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-868)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
+ (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
+ (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
+ (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
+ (-4 *3 (-1157 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6))
- (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-289)))))
+ (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
+ (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
+ (-4 *4 (-635 *2 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1095 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1095 *3)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))
- (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-637 *3)))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
- (-4 *4 (-1027)) (-4 *5 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-4 *7 (-1157 (-388 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2546 *3)))
- (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |answer| (-388 *6)) (|:| -2546 (-388 *6))
- (|:| |specpart| (-388 *6)) (|:| |polypart| *6)))
- (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-1181 *4))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5))
+ (-14 *4 (-862)) (-4 *5 (-984)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *3 (-162))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-1181 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344))
- (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8)))
- (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
- (-5 *2
- (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8))
- (|:| |Lfact|
- (-597 (-2 (|:| -2473 (-1095 *8)) (|:| -3059 (-530)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-691 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-637 *3)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))))
+ (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
- (-4 *4 (-1027)) (-4 *5 (-1027)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
+ (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
((*1 *1 *1) (-5 *1 (-804)))
((*1 *1 *2)
@@ -4593,20 +3910,66 @@
((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-804)))
((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2259 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *2 (-13 (-1027) (-33))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4))
+ (-4 *4 (-1157 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
+ (-4 *4 (-248 *3)) (-4 *5 (-741)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
+ (-4 *6 (-13 (-27) (-411 *5)))
+ (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
+ (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
+ (-4 *3 (-323 *6 *7 *8)))))
+(((*1 *1) (-5 *1 (-110))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
+ (-4 *3 (-522))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
(-5 *2 (-1181 (-637 *4)))))
@@ -4626,136 +3989,120 @@
((*1 *2 *3)
(-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344))
(-5 *2 (-1181 (-637 *4))) (-5 *1 (-1015 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795))
- (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-597 (-2 (|:| -2473 (-1095 *9)) (|:| -3059 (-530)))))))
- (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099)))
+ (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099))
+ (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))))
(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
+ (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
+ (-5 *4 (-597 (-862))) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448))))
+ ((*1 *1 *1) (-5 *1 (-448))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1))))
+ (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -3220 (-597 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530)))
+ (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5))
+ (-4 *5 (-13 (-795) (-522) (-975 (-530))))
+ (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1) (-5 *1 (-110))))
+ (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3))
+ (-4 *3 (-572 (-506)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208)))
+ (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289))
- (-4 *9 (-890 *8 *6 *7))
- (-5 *2 (-2 (|:| -3770 (-1095 *9)) (|:| |polval| (-1095 *8))))
- (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795))
- (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862))))
- ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3))
- (-4 *3 (-344)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135))
+ (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984))
+ (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2))
+ (-4 *2 (-1172 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984)) (-4 *4 (-162))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))
- (-4 *3 (-162)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))))
+ (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
+ (-5 *1 (-1076 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2473 (-1095 *6)) (|:| -3059 (-530)))))
- (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
- (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-399 *4)) (-4 *4 (-522)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6)))
+ (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-704)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *1) (-5 *1 (-1014))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
+ (-5 *1 (-189)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1095 (-893 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
+ (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4))
(-4 *4 (-984))))
@@ -4778,302 +4125,220 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027))))
((*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
- (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(((*1 *1) (-5 *1 (-1014))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
- (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027))))
- ((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5)
- (|:| |f4| (-597 *5))))
- (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7))
- (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
- (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) ((*1 *1) (-4 *1 (-515)))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330))
+ (-5 *1 (-500 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
- ((*1 *2)
- (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *1) (-5 *1 (-1012))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
+ (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
+ (-4 *5 (-432))
(-5 *2
- (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208)))
- (|:| |singularities| (-1080 (-208)))))
- (-5 *1 (-102)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
+ (-2 (|:| |gblist| (-597 (-230 *4 *5)))
+ (|:| |gvlist| (-597 (-530)))))
+ (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2104 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
+ (-5 *3 (-388 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-540 *7 *8)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
+ ((*1 *1 *1) (-5 *1 (-804)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
+ (-5 *1 (-859 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530)))))
+ (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
- (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984))
- (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2
- (-2 (|:| -3738 (-719)) (|:| |curves| (-719))
- (|:| |polygons| (-719)) (|:| |constructs| (-719)))))))
-(((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+ (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984))
+ (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208)))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3))
- (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5))))))
- (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140)))
- (-5 *2
- (-597 (-2 (|:| -2965 (-1095 *4)) (|:| -3351 (-597 (-893 *4))))))
- (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4)))
- (-14 *5 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
+ (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719))
(-5 *2
- (-597 (-2 (|:| -2965 (-1095 *5)) (|:| -3351 (-597 (-893 *5))))))
- (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))))))
+ (-2 (|:| |contp| (-530))
+ (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
+ (-4 *3 (-1135)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
+ ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *1) (-5 *1 (-148))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675)))))
-(((*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4272 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
- (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
- (-4 *4 (-635 *2 *5 *6)))))
+ (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6))
+ (-5 *1 (-302 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-134))))
(((*1 *2 *3)
(-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4))
(-5 *3 (-597 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289))
- (-5 *1 (-168 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
+ (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7)))
+ (-5 *1 (-1192 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *8))
- (-5 *4
- (-597
- (-2 (|:| -3853 (-637 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-637 *7)))))
- (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330))
- (-5 *2
- (-2 (|:| -3853 (-637 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-637 *7))))
- (-5 *1 (-476 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4))
- (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
- ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3))
- (-4 *3 (-572 (-506)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1027))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
- (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5))
- (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4))
- (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4272 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
- (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
- (-4 *4 (-635 *2 *5 *6)))))
+ (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522))
+ (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9)))
+ (-5 *1 (-1192 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-4 *1 (-284))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-868))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4)))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
+ (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ ((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
+ (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719))
+ (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515))))
+ ((*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4))
+ (-4 *3 (-745 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4))
+ (-4 *3 (-932 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4))
+ (-4 *3 (-936 *4))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951))))
+ ((*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
+ (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-648 *3))
+ (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426))))
+ ((*1 *2 *3)
(-12
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208))))
- (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3677 (-597 (-208)))))))
- (-5 *2 (-597 (-1082))) (-5 *1 (-249)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530)))))
- (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+ (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
+ (-230 *4 (-388 (-530)))))
+ (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))))
(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522))
- (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2))
- (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))))))
+ (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5)))
+ (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (|has| *1 (-6 -4261)) (-4 *1 (-385))
- (-5 *2 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)))))
+ (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5))
+ (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
+ (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432))
+ (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))))
+ (-5 *1 (-274 *4)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4))
(-4 *4 (-984))))
@@ -5129,47 +4394,34 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5))
(-4 *3 (-984)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4))
- (-5 *3 (-597 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2))
- (-4 *2 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
- (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-1192 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
(((*1 *2 *1)
(-12
(-5 *2
(-597
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208)))))
(-5 *1 (-525))))
((*1 *2 *1)
@@ -5184,126 +4436,116 @@
(|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
(|:| |abserr| (-208)) (|:| |relerr| (-208)))))
(-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4))
- (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $)))))
- (-4 *6 (-522)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (|has| *1 (-6 -4261)) (-4 *1 (-385))
- (-5 *2 (-862)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140))
+ (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
+ (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1181 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-767 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4))))
- (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3))
- (-4 *3 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
- (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))))
+ (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
+ (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3))
+ (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *1 (-505 *2)) (-4 *2 (-1135))))
((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-506)))))
-(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-1192 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
+ (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7)))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432))
+ (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7))))
+ (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3))
+ (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2204 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-14 *5 (-597 (-1099)))
+ (-5 *2
+ (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))))
+ (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4))
+ (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *5 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *6 (-522))
- (-5 *2 (-2 (|:| -3821 (-893 *6)) (|:| -2973 (-893 *6))))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795))
- (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3)))
- (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3)))
- (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7)))
- (-5 *1 (-1192 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522))
- (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9)))
- (-5 *1 (-1192 *6 *7 *8 *9)))))
+ (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795))
+ (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-597 (-2 (|:| -2611 (-1095 *9)) (|:| -3194 (-530)))))))
+ (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804)))
- (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804)))
+ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804)))
+ (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804)))
(|:| |args| (-597 (-804)))))
(-5 *1 (-1099))))
((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719))))
- ((*1 *1 *1) (-4 *1 (-383))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984))
+ (-5 *1 (-967 *4)))))
+(((*1 *1) (-5 *1 (-273))))
(((*1 *2 *3)
(-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-833 *4))
(-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5))))
@@ -5338,9 +4580,9 @@
(-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5))
(-4 *5 (-572 (-1099))) (-4 *4 (-741)) (-4 *5 (-795))))
((*1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
+ (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
(-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
@@ -5351,7 +4593,7 @@
(-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
(-4 *4 (-741)) (-4 *5 (-795))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
(-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
(-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082))
(-5 *1 (-1001 *4 *5 *6 *7 *8))))
@@ -5376,7 +4618,7 @@
(-12 (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
(-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
(-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-432))
(-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082))
(-5 *1 (-1069 *4 *5 *6 *7 *8))))
@@ -5408,278 +4650,168 @@
(-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099)))
(-5 *2 (-597 (-728 *4 (-806 *6)))) (-5 *1 (-1205 *4 *5 *6))
(-14 *5 (-597 (-1099))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
- (-5 *1 (-1107 *4)) (-4 *4 (-795)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7))
- (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
- (-14 *8 (-597 *5)) (-5 *2 (-1186))
- (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5))
- (-14 *9 (-597 *3)) (-14 *10 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *3 *4)
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4))
+ (-5 *3 (-597 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4))
+ (-5 *3 (-1029 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))))
+ ((*1 *1 *1) (-5 *1 (-360)))
+ ((*1 *2 *3 *4)
(-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
(-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -4176 (-399 *3)) (|:| |special| (-399 *3))))
- (-5 *1 (-676 *5 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140)))
- (-5 *1 (-380 *3 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
- (-4 *4 (-795)) (-5 *1 (-1107 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-597
- (-2
- (|:| -2940
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1806
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2902
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719))
- (-5 *2 (-637 (-208))) (-5 *1 (-249)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-330)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110))
+ (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+ (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5))
+ (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6))
+ (-14 *7 (-862)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))))
(((*1 *2 *1)
(-12 (-4 *2 (-1135)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1135))))
((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9))))
- (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
- (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2350 *9))))
- (-5 *1 (-1004 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
+ (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3))
+ (-4 *3 (-13 (-411 *4) (-941))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2))
- (-4 *3 (-13 (-344) (-140))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027))
- (-5 *1 (-100 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795))
- (-5 *1 (-1107 *4)))))
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
+ (-4 *3 (-908)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4))
+ (-4 *4 (-810 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-1172 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))))
(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))))
+ (-12
+ (-5 *3
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *2 (-597 (-208))) (-5 *1 (-287)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-836))
+ (-5 *3
+ (-2 (|:| |pde| (-597 (-297 (-208))))
+ (|:| |constraints|
+ (-597
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-719)) (|:| |boundaryType| (-530))
+ (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
+ (|:| |tol| (-208))))
+ (-5 *2 (-973)))))
(((*1 *2)
- (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1157 (-530)))
- (-5 *2
- (-2 (|:| -3853 (-637 (-530))) (|:| |basisDen| (-530))
- (|:| |basisInv| (-637 (-530)))))
- (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
- (-5 *2
- (-2 (|:| -3853 (-637 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-637 *4))))
- (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
- (-5 *2
- (-2 (|:| -3853 (-637 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-637 *4))))
- (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
- (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5))
- (-5 *2 (-637 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-344) (-140)))
- (-5 *2 (-597 (-2 (|:| -3059 (-719)) (|:| -3721 *4) (|:| |num| *4))))
- (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3))
- (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140)))
- (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5))
- (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *1) (-5 *1 (-525))))
-(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6))
- (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6))
- (-5 *5 (-1080 *4)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6))
- (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4))))
- (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5)))
- (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
- (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
- (-5 *1 (-378))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
- (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
- (-5 *1 (-378))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099))
- (-5 *2 (-1031)) (-5 *1 (-378)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
+ (-5 *2 (-597 (-597 (-597 (-884 *3))))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795))
+ (-5 *1 (-111 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5))
+ (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330))
+ (-5 *1 (-500 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289))
+ (-4 *3 (-522)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1))
+ (-4 *1 (-310 *4))))
+ ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1))
+ (-4 *1 (-390 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
+ (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6))
+ (-4 *6 (-13 (-390 *4 *5) (-975 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
+ (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))
+ (-4 *6 (-390 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4))
+ (-4 *4 (-330)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984))
(-4 *4 (-740))))
@@ -5787,9 +4919,9 @@
(-4 *6 (-344)) (-5 *2 (-547 *6)) (-5 *1 (-546 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2555 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2104 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-344)) (-4 *6 (-344))
- (-5 *2 (-2 (|:| -2555 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2104 *6) (|:| |coeff| *6)))
(-5 *1 (-546 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -5908,7 +5040,7 @@
(-4 *8 (-984)) (-4 *6 (-741))
(-4 *2
(-13 (-1027)
- (-10 -8 (-15 -2234 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))))))
+ (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))))))
(-5 *1 (-892 *6 *7 *8 *5 *2)) (-4 *5 (-890 *8 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1135))
@@ -5921,8 +5053,8 @@
(-4 *2 (-890 (-893 *4) *5 *6)) (-4 *5 (-741))
(-4 *6
(-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
(-5 *1 (-924 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-522)) (-4 *6 (-522))
@@ -6009,416 +5141,119 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1202 *3 *4))
(-4 *4 (-791)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *1 (-249)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4)))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1) (|partial| -4 *1 (-671))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3)))
- (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3)))
- (-5 *1 (-523 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4))
- (-5 *1 (-249)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5))))
- (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7))))
+(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1) (|partial| -4 *1 (-671))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099))
+ (-5 *5 (-788 *7))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6))
+ (-4 *6 (-13 (-1121) (-29 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-207 *5 *6)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1099))
(-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
(-5 *2 (-547 *3)) (-5 *1 (-523 *5 *3))
(-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4))
- (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741))
- (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1099))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-597 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1121) (-27) (-411 *8)))
+ (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
+ (-5 *3 (-530))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110))))
+ (-5 *1 (-952 *8 *4)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
- (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1)))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))))
-(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))))
+ (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530)))
+ (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284))
+ (-5 *2 (-1095 *1)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))))
+(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
+ ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530)))))
- (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9))))
- (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530))
- (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10))
- (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741))
- (-5 *2
- (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12))
- (|:| |wcond| (-597 (-893 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *9))))
- (|:| -3853 (-597 (-1181 (-388 (-893 *9)))))))))
- (-5 *1 (-865 *9 *10 *11 *12)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530))))))
- (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4))))
- (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1121) (-900)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3853 (-597 *4))))
- (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3853 (-597 (-1181 *5)))))
- (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3853 (-597 (-1181 *5)))))
- (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-14 *5 (-597 (-1099)))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3853 (-597 (-1181 *5))))))
- (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
+ (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
+ (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3853 (-597 (-1181 *5))))))
- (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271))))
+ (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
+ (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
+ (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
+ (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271))))
- (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4271))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3853 (-597 *7)))))
- (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7))
- (-4 *3 (-635 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
+ (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
+ (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099))
- (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099))
- (-4 *6 (-13 (-29 *5) (-1121) (-900)))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112)))
- (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112)))
- (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3853 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099))
- (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3853 (-597 *7))) *7 "failed"))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3853 (-597 *3))) *3 "failed"))
- (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-750 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -3853 (-597 *6))) "failed")
- *7 *6))
- (-4 *6 (-344)) (-4 *7 (-607 *6))
- (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3853 (-637 *6))))
- (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
- (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360))
- (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
- (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973))
- (-5 *1 (-838))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360)))
- (-5 *1 (-961)) (-5 *4 (-360))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961))
- (-5 *4 (-360))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
- (-5 *3 (-297 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
- (-5 *3 (-276 (-297 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
- (-5 *3 (-276 (-297 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
- (-5 *3 (-297 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5))
- (-5 *3 (-597 (-276 (-297 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5))))))
- (-5 *1 (-1105 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5))
- (-5 *3 (-597 (-276 (-388 (-893 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4))))))
- (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-522))
- (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
- (-5 *3 (-388 (-893 *5)))))
+ (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
+ (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4)))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-522))
- (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
- (-5 *3 (-276 (-388 (-893 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
- (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
- (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-523 *6 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2594 (-597 *3)) (|:| -3884 (-597 *3))))
+ (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4))
+ (-4 *4 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
(((*1 *2 *1)
(-12 (-5 *2 (-1166 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5))
(-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3)))
@@ -6428,11 +5263,73 @@
((*1 *2 *1)
(-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795))
(-14 *4
- (-1 (-110) (-2 (|:| -1910 *3) (|:| -3059 *2))
- (-2 (|:| -1910 *3) (|:| -3059 *2)))))))
+ (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *2))
+ (-2 (|:| -1986 *3) (|:| -3194 *2)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
- (-14 *4 (-719)) (-4 *5 (-162)))))
+ (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -3194 (-530)))) (-4 *1 (-411 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-833 *3))))
+ (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-890 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -3194 (-530))))
+ (-5 *1 (-891 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
+ (-15 -1928 (*7 $))))))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-637 *2)) (-5 *4 (-530))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *1 *1) (-5 *1 (-208)))
+ ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1063))) ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4))
+ (-4 *4 (-984)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
+ (-4 *3 (-1027)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5))
+ (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-60 *3)) (-14 *3 (-1099))))
((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-67 *3)) (-14 *3 (-1099))))
((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-70 *3)) (-14 *3 (-1099))))
@@ -6443,87 +5340,111 @@
((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
((*1 *2 *3)
(-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1099))
- (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-2 (|:| -2555 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3 *3 *1)
+(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
+ ((*1 *1 *1) (-4 *1 (-993))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
+ (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
+ (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-795))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
+ ((*1 *2 *3 *1)
(-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1)))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
- (-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *1 *1) (-5 *1 (-804)))
((*1 *2 *1)
(-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027))))
((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1081))))
((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3251 *1) (|:| -4257 *1) (|:| |associate| *1)))
- (-4 *1 (-522)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-372)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2))
- (-4 *2 (-1157 *3)))))
-(((*1 *1) (-5 *1 (-137)))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5))
+ (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1181 (-597 (-2 (|:| -3417 (-851 *3)) (|:| -1986 (-1046))))))
+ (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))
+ (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))
+ (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-429 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4))
+ (-5 *1 (-956 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))))
+ (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| |minor| (-597 (-862))) (|:| -2623 *3)
- (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104)))
- (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-4 *1 (-522))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2)))
+ (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3))
+ (-4 *3 (-323 *5 *2 *6)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-597 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530))
(-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162))
@@ -6533,78 +5454,55 @@
(-4 *8 (-984)) (-4 *2 (-890 *9 *7 *5))
(-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741))
(-4 *4 (-890 *8 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372))))
- ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4))
- (-4 *4 (-1157 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
+ (-4 *3 (-908)))))
(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1157 (-159 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3))
+ (-4 *3 (-890 *4 *6 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
- ((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1) (-4 *1 (-810 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *4 (-795)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4))))
+ (-5 *1 (-865 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4))))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
(((*1 *2 *1)
(-12 (-5 *2 (-597 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
(-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-289))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3624 (-719)) (|:| -3088 (-719))))
- (-5 *1 (-719))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-522))
- (-5 *2 (-2 (|:| -1896 (-637 *5)) (|:| |vec| (-1181 (-597 (-862))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-276 (-893 (-530))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-597 (-1099)))
+ (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed"))
+ (|:| |hom| (-597 (-1181 (-719))))))
+ (-5 *1 (-219)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-597 (-1099))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135))))
((*1 *1 *2)
@@ -6680,26 +5578,26 @@
(-4 *1 (-916 *3 *4 *5 *6))))
((*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1135))))
((*1 *1 *2)
- (|partial| -1476
+ (|partial| -1461
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-37 (-388 (-530)))))
- (-3694 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
+ (-12 (-3676 (-4 *3 (-37 (-388 (-530)))))
+ (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-515))) (-3694 (-4 *3 (-37 (-388 (-530)))))
+ (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530)))))
(-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
+ (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
(-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))))
((*1 *1 *2)
- (|partial| -1476
+ (|partial| -1461
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
+ (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
(-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
@@ -6709,315 +5607,339 @@
(|partial| -12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5))
(-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
(-4 *4 (-741)) (-4 *5 (-795)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 (-418)))))
+ (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418)))))
(-5 *1 (-1103)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2981 *4))) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289))
+ (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *2 (-2 (|:| -2252 (-597 *6)) (|:| -2415 (-597 *6)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
+ (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4))
+ (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741))
+ (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))))
+(((*1 *1) (-5 *1 (-137)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911))
- (-5 *3 (-597 (-530))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3))
- (-4 *3 (-13 (-385) (-1121)))))
- ((*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+ (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862))
+ (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-843 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-276 (-781 *3)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432))
+ (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5))
+ (-5 *3 (-388 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
+ (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2981 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135))
- (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
(((*1 *2)
- (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3))
+ (-4 *3 (-1135)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-1061)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186))
+ (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121))))
+ ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135))
- (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
+ (-230 *4 (-388 (-530)))))
+ (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5))
- (-4 *5 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344))))))
+ (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6)))
+ (-4 *6 (-344))
+ (-5 *2
+ (-597
+ (-2 (|:| |outval| *7) (|:| |outmult| (-530))
+ (|:| |outvect| (-597 (-637 *7))))))
+ (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))))
(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2330 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
+ (-5 *1 (-500 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-530))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360)))))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360)))))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
+ (-5 *4 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311))))
+ ((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208)))
- (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-703)))))
+ (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
+ (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
(((*1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
- (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5))))
- (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2330 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046)))
+ (-5 *1 (-327 *4)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-741))
+ (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522))
+ (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
+ (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *6))
+ (-4 *6
+ (-13 (-795)
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
+ (-4 *2 (-890 (-893 *4) *5 *6)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7))
+ (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-597 (-530)))
+ (|:| |cols| (-597 (-530)))))
+ (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9))))
+ (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530))
+ (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10))
+ (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741))
+ (-5 *2
+ (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12))
+ (|:| |wcond| (-597 (-893 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *9))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *9)))))))))
+ (-5 *1 (-865 *9 *10 *11 *12)))))
(((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-506))) ((*1 *1) (-4 *1 (-671)))
((*1 *1) (-4 *1 (-675)))
((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))))
(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-804)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
- (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530)))))))
- (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-159 (-530)))))
- (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530))))))
- (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4))))
+ (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867)))
+ (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082))
+ (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530))
+ (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082))
+ (-5 *2 (-1131 (-867))) (-5 *1 (-299)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))))
+(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))))
+ (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))
((*1 *1 *1 *1) (-5 *1 (-1046))))
(((*1 *2 *3)
- (-12 (-5 *3 (-868))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2341 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)))))
+ (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6))
+ (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-740))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-506)))
((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
- (-5 *7 (-637 (-530)))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-448))))
((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1182))))
((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1183)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
(-4 *2 (-1027)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
+ (-5 *1 (-418)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2341 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+ (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530)))))
+ (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
+(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2011)) (-5 *2 (-110)) (-5 *1 (-639 *4))
+ (-12 (-5 *3 (|[\|\|]| -2099)) (-5 *2 (-110)) (-5 *1 (-639 *4))
(-4 *4 (-571 (-804)))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-804))) (-5 *2 (-110))
@@ -7030,55 +5952,59 @@
(-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1104))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-110)) (-5 *1 (-1104)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6))
- (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530)))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
+ ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432))
+ (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))))
(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7))
- (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4))
+ (-14 *3 (-862)) (-14 *4 (-862)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
+ (-4 *3 (-1157 *4))
+ (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
(((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2108 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
- (-4 *2 (-221 *3 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-702)))))
+ (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
+ (-4 *3 (-1135)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -2065 (-530)) (|:| |var| (-570 *1))))
+ (-4 *1 (-411 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110))
+ (-5 *1 (-1206 *4)))))
+(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2))
+ (-4 *2 (-162))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4))
+ (-4 *3 (-390 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4))
+ (-4 *4 (-390 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *3 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-597 *3)) (-4 *3 (-1135)))))
-(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-360)))
- ((*1 *1) (-5 *1 (-360))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
(((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795))))
@@ -7088,51 +6014,29 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2108 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4))))
+ (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186))
+ (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-360))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *1) (-5 *1 (-771))))
(((*1 *2 *1)
(-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795))
(-4 *2 (-1135))))
@@ -7147,107 +6051,125 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2108 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344))
- (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
- (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
- (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-5 *2 (-394 *4 (-388 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4)))
+ (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289))
+ (-5 *1 (-394 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984))
+ (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
+ (-14 *4 (-862)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
+ (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
+ (-5 *1 (-845 *4)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3)))
+ (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2))
+ (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6))
+ (-4 *6 (-323 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3)))
+ (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *1 (-316 *3 *4 *5 *6)))))
(((*1 *1 *1)
(-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110))
- (-5 *1 (-245)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+ (-12 (-4 *5 (-344)) (-4 *5 (-522))
+ (-5 *2
+ (-2 (|:| |minor| (-597 (-862))) (|:| -2776 *3)
+ (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
- (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-597 (-1099)))))
((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
- (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
+ (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135))))
((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4272 "*"))) (-4 *2 (-984)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3)))
- (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))))
+ (|partial| -12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-1152 *4 *3))
+ (-4 *3 (-1157 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-597 (-893 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162))
+ (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
(((*1 *2)
(-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719))
(-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
@@ -7274,91 +6196,106 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
(-4 *3 (-1157 *2)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
+ (-4 *4 (-1027)) (-4 *5 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7))
+ (-4 *7 (-890 *6 *4 *5)))))
(((*1 *1) (-5 *1 (-1186))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4))
+ (-5 *1 (-249)))))
(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-4 *1 (-385))))
((*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-385))))
((*1 *2 *1)
(-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *1))))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530)))))
+ (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
- (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
- (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
+ (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-719))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099)))
+ (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
+ (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))))
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4)))
+ (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911))
+ (-5 *3 (-597 (-530))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1095 *3)))))
(((*1 *2 *1 *1)
(-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-797 *3))))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
((*1 *2 *3 *3 *4)
(-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-798 *5 *3))
+ (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
(-4 *3 (-797 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344))
- (-5 *1 (-933 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
- (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2473 *4) (|:| -3409 (-530)))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984))
- (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
- (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
- (-4 *2 (-1135)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984))
(-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5))))
@@ -7368,365 +6305,399 @@
((*1 *2 *3 *2 *2 *4 *5)
(-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984))
(-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208))))
- (-5 *2
- (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530))
- (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))))
- (-5 *1 (-287)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522))
+ (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2))
+ (-4 *5 (-741))
+ (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
+ (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
- (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4271)) (-4 *1 (-468 *3))
- (-4 *3 (-1135)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
+ (-4 *3 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-928 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1034 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530))))
+ (-4 *2 (-162)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
+ (-5 *1 (-859 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
+ (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10))
- (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8))
- (-4 *10 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-582 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099)))
- (-5 *2
- (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
- (-5 *1 (-582 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-981 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1129 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1))))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))
- (-5 *2 (-360)) (-5 *1 (-249))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208)))
+ (-5 *1 (-448)))))
+(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
+ (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741))
+ (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *9))))
+ (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *8))))
+ (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432))
+ (-5 *2
+ (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530)))))
+ (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3638 *7) (|:| |sol?| (-110)))
+ (-530) *7))
+ (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
+ (-5 *3 (-388 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-540 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-791)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *3)
(-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
(-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| -2252 *1) (|:| -2415 (-597 *7)))))
+ (-5 *2 (-597 (-2 (|:| -2361 *1) (|:| -2551 (-597 *7)))))
(-5 *3 (-597 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719))
- (-230 *3 (-388 (-530)))))
- (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-137))))
((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530))
+ (-5 *1 (-1037)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289))
+ (-4 *10 (-890 *9 *7 *8))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
+ (-2 (|:| |deter| (-597 (-1095 *10)))
+ (|:| |dterm|
+ (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10))))
+ (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6))
+ (-5 *5 (-597 *10)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| -2426 (-719))
+ (|:| |eqns|
+ (-597
+ (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
+ (|:| |cols| (-597 (-530))))))
+ (|:| |fgb| (-597 *8)))))
+ (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
+ (-4 *3 (-1027)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1075))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432))
- (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-984))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3))
+ (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
- (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1099))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1121) (-900)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4))))
+ (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-570 *3))
+ (-4 *3 (-13 (-411 *5) (-27) (-1121)))
+ (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
+ (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
+(((*1 *1 *1) (-4 *1 (-993))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522))
+ (-4 *7 (-890 *3 *5 *6))
+ (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *8) (|:| |radicand| *8)))
+ (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -1918 (*7 $)) (-15 -1928 (*7 $)) (-15 -2366 ($ *7))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
(-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
- (-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1)))
- (-4 *1 (-797 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795))
- (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *1 (-429 *4 *5 *6 *3)))))
+(((*1 *1 *1) (-4 *1 (-810 *2))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2330 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
- (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530))
- (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5))
- (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))))
+ (-12
+ (-5 *2
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))
+ (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-530)))
+ (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-958 *3))
+ (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
- (-4 *3 (-1157 *4))
- (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
+ (-12
+ (-5 *2
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))
+ (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-530)))
+ (-5 *2 (-597 (-2 (|:| -3628 *4) (|:| -3638 *4)))) (-5 *1 (-959 *3))
+ (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-530)))
+ (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-959 *3))
+ (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))))
+(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
+ (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
(-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349))
- (-5 *2 (-719)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6))
- (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208))))
- (-5 *1 (-287)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
+ (-4 *4 (-37 (-388 (-530)))))))
(((*1 *2 *1)
(-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795))
(-4 *5 (-741)) (-4 *2 (-248 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2330 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
- (-4 *5 (-354 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7))
- (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
- (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
- (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
+ ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982))
+ (-5 *3 (-530)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
- (-4 *3 (-1157 *4))
- (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5))
- (-14 *4 (-862)) (-14 *5 (-933 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4))
- (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4))
- (-4 *4 (-1157 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5))
- (-4 *4 (-984)) (-4 *5 (-795))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984))
- (-4 *2 (-795))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6))
- (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *2 (-795))))
+ (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5))
- (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795))))
+ (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3 (-795)) (-5 *2 (-719)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208)))
+ (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5))))
+ (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
+ (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099)))
+ (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121)))
+ (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2))
+ (-4 *6 (-13 (-411 *5) (-941) (-1121))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
+ (-5 *2 (-597 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4))
- (-4 *4 (-984)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2))
- (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2330 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
- (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))))
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
+ (-4 *4 (-330)))))
+(((*1 *1) (-5 *1 (-771))))
(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530))))
- (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5))
- (-4 *5 (-890 *4 (-502 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4))
- (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
- (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))))
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110))
+ (-5 *1 (-245)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
+ (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7))
+ (-4 *7 (-890 *4 *6 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530))
+ (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5))
+ (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))))
+ ((*1 *2 *3)
(-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
(-4 *3 (-1157 *4))
(-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-699)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027))
(-4 *6 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-594 *5 *6))))
@@ -7746,232 +6717,293 @@
(-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-5 *6 (-1 *2 *5))
(-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2))))
((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-719)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3))
- (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
+ (-5 *2 (-597 (-597 (-597 (-719))))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
+ (-5 *3 (-597 (-530))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5))
- (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))))
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719))
- (-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530)))))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3))
+ (-4 *3 (-1157 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
+ (-4 *3 (-1157 *2)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984))
+ (-5 *2 (-719)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3))
+ (-4 *3 (-13 (-385) (-1121)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3))
+ (-4 *3 (-914)))))
(((*1 *2 *1)
(-12 (-5 *2 (-597 *4)) (-5 *1 (-1065 *3 *4))
(-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *5 (-522))
- (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
- (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *6))
- (-4 *6
- (-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
- (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
- (-4 *2 (-890 (-893 *4) *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1)))
- (-4 *1 (-797 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *3 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *5 (-522))
- (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
- (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *6))
- (-4 *6
- (-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
- (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
- (-4 *2 (-890 (-893 *4) *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-973)) (-5 *1 (-697)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
+ (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-344)) (-5 *1 (-918 *5)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
- (-5 *2 (-1080 (-208))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530))
- (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-176)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
+ ((*1 *1 *1) (-4 *1 (-151))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
- (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
+ (-4 *3 (-890 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| (-597 *3))))
+ (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -1918 (*3 $)) (-15 -1928 (*3 $)) (-15 -2366 ($ *3))))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
(-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
(-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3))
+ (-4 *3 (-13 (-793) (-344) (-960)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
+ (-4 *3 (-1157 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344)))
+ (-4 *3 (-1157 *2)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
+ (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5))
+ (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4))
+ (-4 *4 (-1027))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5))
+ (-5 *1 (-872 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
+ (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $))))
+ (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5)))
+ (-5 *1 (-873 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515))
+ (-5 *1 (-874 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027))
+ (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5)))
+ (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
+ (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3)))
+ (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6))
+ (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4)))
+ (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6)))
+ (-5 *1 (-877 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
+ (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5))
+ (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6))
+ (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5))
+ (-5 *1 (-880 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5))
+ (-4 *5 (-1027)) (-5 *1 (-881 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9)))
+ (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027))
+ (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9))
+ (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795)))
+ (-5 *1 (-882 *7 *8 *9)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344))
+ (-5 *1 (-933 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
+ (-5 *1 (-1102))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
+ (-5 *1 (-1102)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385))
+ (-5 *2 (-862)))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330))
+ (-5 *1 (-500 *4)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
+ (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7))))
+ (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7))))
+ (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2776 *3) (|:| -4145 (-597 *5))))
+ (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))))
(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
-(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
+ (-5 *2 (-388 (-893 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
+ (-5 *2 (-388 (-893 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
+ (-14 *4 (-530)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
+ (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4))
+ (-4 *4 (-599 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6))
+ (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
+ (|:| -2776
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-954 *6 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-110)) (-5 *1 (-282)))))
+ (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4))
+ (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-530)) (-14 *4 (-719)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
+ (-5 *2
+ (-597
+ (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530))
+ (|:| |outvect| (-597 (-637 (-159 *4)))))))
+ (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1157 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530))
+ (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741))
+ (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
(-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-4 *1 (-284))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
+(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 (-530))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
(-14 *4 (-597 (-1099)))))
@@ -8005,90 +7037,168 @@
(-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4))
(-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-552 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
+ (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432))
+ (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
+ (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
+ (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
+ (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
+ (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9))))
+ (-5 *1 (-1004 *6 *7 *4 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795))
+ (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
+ ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530)))
- (-5 *2 (-637 (-530))) (-5 *1 (-551))))
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162))
+ (-4 *3 (-221 (-2267 *4) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *3))
+ (-2 (|:| -1986 *5) (|:| -3194 *3))))
+ (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795))
+ (-4 *7 (-890 *2 *3 (-806 *4))))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
+ (-4 *1 (-289)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
+(((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1157 (-388 (-530))))
+ (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))
+ (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-551))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530))))
- (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))))
-(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))))
+ (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
+ (-4 *3 (-1157 (-388 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -1429 *4))))
+ (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-597
+ (-2
+ (|:| -3078
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1874
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1080 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1300
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-525)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1853 (-530)) (|:| -4162 (-597 *3))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
+ (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2473 *4) (|:| -3409 (-530)))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360)))
- (-5 *2 (-973)) (-5 *1 (-785)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027))
+ (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2
+ (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4))
+ (|:| |genIdeal| (-482 *4 *5 *6 *7))))
+ (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1099))
(-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
@@ -8125,52 +7235,36 @@
(-4 *3 (-1172 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530)))
- (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284))
- (-5 *2 (-1095 *1)))))
+ (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
+ (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5))
+ (|:| |c2| (-388 *5)) (|:| |deg| (-719))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-804)))
((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795))
+ (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))))
+(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-804))))
(((*1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-784))
- (-5 *3
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *2 (-973))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-784))
- (-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))
- (-5 *2 (-973)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1099))
(-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
@@ -8217,137 +7311,196 @@
((*1 *2 *1)
(-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121)))
- (-5 *1 (-545 *4 *2))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))))
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522))
+ (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2))
+ (-4 *6 (-607 *5)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
+ (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
+(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110))))
((*1 *2 *3)
- (-12 (-5 *3 (-547 (-388 (-893 *4))))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))))
+ (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110))
+ (-5 *1 (-338 *4)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2))
- (-4 *2 (-1157 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
+ (-14 *4 *2))))
+(((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5))
+ (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6))
+ (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
+ (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
+ (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027))
(-5 *1 (-627 *2)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-597
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-530)))))
- (-4 *2 (-522)) (-5 *1 (-399 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-530))
- (|:| -4162 (-597 (-2 (|:| |irr| *4) (|:| -3001 (-530)))))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984))))
- ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
-(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7))
+ (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2776 *3))))
+ (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7))
+ (-4 *8 (-607 (-388 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2
+ (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2776 (-605 *6 (-388 *6))))))
+ (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5))
+ (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-698)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| A (-637 *5))
+ (|:| |eqs|
+ (-597
+ (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2776 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5))
+ (-4 *6 (-607 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-607 *5))
+ (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5))))
+ (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6))
+ (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3))
+ (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))))
(((*1 *2 *1 *1)
(-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
-(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
+ (-14 *3 (-597 (-1099))))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
+ (-12
+ (-5 *2
+ (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719))
+ (-230 *3 (-388 (-530)))))
+ (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
(((*1 *2 *3 *1)
(|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2))
+ (-4 *2 (-354 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4))
+ (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
+ (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2))
+ (-4 *2 (-1157 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110))
+ (-5 *1 (-1136 *3)))))
+(((*1 *2 *3 *4 *3)
(-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-330))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
+ (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
+ (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-112)) (-5 *4 (-597 *2)) (-5 *1 (-111 *2))
(-4 *2 (-1027))))
@@ -8365,34 +7518,55 @@
(-5 *1 (-663 *3 *4))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135))
+ (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719))
+ (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5))
+ (-5 *1 (-222 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135))
+ (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027))
+ (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135))
+ (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135))
+ (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135))
+ (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135))
+ (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4129 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
- (-5 *1 (-663 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-597 (-1099)))
+ (-5 *2
+ (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
+ (-5 *1 (-582 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
+ ((*1 *1 *1) (-4 *1 (-993))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))
+ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
(-5 *2 (-597 (-1099))) (-5 *1 (-249))))
((*1 *2 *3)
(-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741))
@@ -8414,7 +7588,7 @@
(-5 *1 (-891 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $)))))))
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))))
((*1 *2 *1)
(-12 (-5 *2 (-1029 (-1099))) (-5 *1 (-907 *3)) (-4 *3 (-908))))
((*1 *2 *1)
@@ -8426,29 +7600,33 @@
((*1 *2 *3)
(-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-1099)))
(-5 *1 (-980 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522))
- (-4 *3 (-1135)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2))
- (-4 *2 (-599 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135))
+ (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5))
+ (-5 *2
+ (-597
+ (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-637 *6)))))
+ (-5 *1 (-476 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-637 *6))))
+ (-4 *7 (-1157 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1095 (-388 (-1095 *2)))) (-5 *4 (-570 *2))
(-4 *2 (-13 (-411 *5) (-27) (-1121)))
@@ -8465,46 +7643,66 @@
(-4 *6 (-984))
(-4 *2
(-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $)))))
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))
(-5 *1 (-891 *5 *4 *6 *7 *2)) (-4 *7 (-890 *6 *5 *4))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-388 (-1095 (-388 (-893 *5))))) (-5 *4 (-1099))
(-5 *2 (-388 (-893 *5))) (-5 *1 (-980 *5)) (-4 *5 (-522)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11))
+ (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719)))
+ (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795))
+ (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741))
+ (-5 *1 (-656 *9 *10 *8 *11)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
+ (-5 *1 (-1055 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3256 *3) (|:| -3059 (-719)))) (-5 *1 (-548 *3))
- (-4 *3 (-515)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432))
- (-5 *2
- (-597
- (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
- (|:| |eigmult| (-719))
- (|:| |eigvec| (-597 (-637 (-388 (-893 *4))))))))
- (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
-(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
+ (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
+ (-5 *1 (-1055 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-276 (-388 (-893 *4))))
+ (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4))))
+ (-5 *1 (-1055 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-388 (-893 *4))))
+ (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-276 (-388 (-893 *4)))))
+ (-4 *4 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
- (-5 *1 (-418)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4))
- (-4 *4 (-599 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349))
+ (-5 *2 (-719)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))))
(((*1 *1 *2 *3)
(-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
((*1 *1 *2 *3)
@@ -8512,10 +7710,10 @@
(-4 *2 (-344)) (-14 *5 (-933 *4 *2))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795))
- (-4 *6 (-221 (-2167 *4) (-719)))
+ (-4 *6 (-221 (-2267 *4) (-719)))
(-14 *7
- (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6))
- (-2 (|:| -1910 *5) (|:| -3059 *6))))
+ (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
+ (-2 (|:| -1986 *5) (|:| -3194 *6))))
(-14 *4 (-597 (-1099))) (-4 *2 (-162))
(-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-890 *2 *6 (-806 *4)))))
((*1 *1 *2 *3)
@@ -8545,90 +7743,77 @@
((*1 *1 *1 *2 *3)
(-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740))
(-4 *2 (-795)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3))
+ (-4 *3 (-998 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3))
+ (-4 *3 (-998 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182))))
+ ((*1 *1 *1) (-5 *1 (-1182))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
+ (-5 *1 (-645))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208)))
+ (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208)))
+ (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432))
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
(-5 *2
- (-597
- (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
- (|:| |geneigvec| (-597 (-637 (-388 (-893 *4))))))))
- (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
-(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2350 *9))))
- (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
- (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2350 *9))))
- (-5 *1 (-1035 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208)))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))))
+ (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3)))
+ (|:| |vals| (-597 *3))))
+ (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
+ (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
(-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-597
- (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2))
- (|:| |logand| (-1095 *2)))))
- (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-344)) (-5 *1 (-547 *2)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6))))
- (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6)))))
- (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
- (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4))))
- (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
- (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(((*1 *1) (-4 *1 (-330)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4))
- (-4 *4 (-13 (-522) (-795) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5)))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-413 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3))
- (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3))))
- (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-901 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 *5)))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-901 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099))
- (-4 *6 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| -1981 (-597 (-530))) (|:| |poly| (-597 (-1095 *6)))
- (|:| |prim| (-1095 *6))))
- (-5 *1 (-901 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4))
(-5 *1 (-631 *4 *5)) (-4 *4 (-1027))))
@@ -8638,189 +7823,457 @@
(-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871))))
((*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
((*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))))
-(((*1 *2 *3 *3 *4)
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344))
+ (-14 *4 (-933 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671)))
+ ((*1 *1 *1) (|partial| -4 *1 (-675)))
+ ((*1 *2 *3 *4)
(-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973))
- (-5 *1 (-699)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
+ (-4 *2 (-1157 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
+ (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
+(((*1 *1 *1) (-4 *1 (-583)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
+ (-14 *3 (-530)) (-14 *4 (-719)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
+ (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))))
+ (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719))
+ (-5 *2 (-637 (-208))) (-5 *1 (-249)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1099))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-597 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1121) (-27) (-411 *8)))
+ (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
+ (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
- (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
- (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3))
- (-4 *2 (-344))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))
- (-4 *2 (-13 (-411 *4) (-941) (-1121)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121)))
- (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))))
(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-699)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *2))
+ (-2 (|:| -1986 *5) (|:| -3194 *2))))
+ (-4 *2 (-221 (-2267 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
(((*1 *2 *1)
(-12
(-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-311)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
+ (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-388 (-893 (-530)))))
+ (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530))))))
+ (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4))))
+ (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-893 (-530)))))
+ (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-793) (-344)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1099))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1121) (-900)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4))))
+ (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2))
+ (-4 *2 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
+ (|:| -3220 (-597 (-1181 *5)))))
+ (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
+ (|:| -3220 (-597 (-1181 *5)))))
+ (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2
(-597
- (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3))
- (|:| |logand| (-1095 *3)))))
- (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432))
- (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))))
- (-5 *1 (-274 *4)))))
+ (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
+ (|:| -3220 (-597 (-1181 *5))))))
+ (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-597
+ (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
+ (|:| -3220 (-597 (-1181 *5))))))
+ (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-5 *2
+ (-597
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3220 (-597 *7)))))
+ (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7))
+ (-4 *3 (-635 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099))
+ (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099))
+ (-4 *7 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
+ (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099))
+ (-4 *6 (-13 (-29 *5) (-1121) (-900)))
+ (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112)))
+ (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
+ (-5 *1 (-750 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112)))
+ (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
+ (-5 *1 (-750 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099))
+ (-4 *7 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -3220 (-597 *7))) *7 "failed"))
+ (-5 *1 (-750 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1099))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -3220 (-597 *3))) *3 "failed"))
+ (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2))
+ (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2))
+ (-4 *2 (-13 (-29 *6) (-1121) (-900)))
+ (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *1 (-750 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
+ (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -3220 (-597 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-607 *6))
+ (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3220 (-637 *6))))
+ (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
+ (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360))
+ (-5 *2 (-973)) (-5 *1 (-838))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
+ (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360)))
+ (-5 *1 (-961)) (-5 *4 (-360))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961))
+ (-5 *4 (-360))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
+ (-5 *3 (-297 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
+ (-5 *3 (-276 (-297 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
+ (-5 *3 (-276 (-297 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
+ (-5 *3 (-297 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-1099)))
+ (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5))
+ (-5 *3 (-597 (-276 (-297 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5))))))
+ (-5 *1 (-1105 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5))
+ (-5 *3 (-597 (-276 (-388 (-893 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4))))))
+ (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099)) (-4 *5 (-522))
+ (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
+ (-5 *3 (-388 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099)) (-4 *5 (-522))
+ (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
+ (-5 *3 (-276 (-388 (-893 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
+ (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
+ (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5))
- (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1) (-5 *1 (-418))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
+ (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
+ (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
(-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-975 (-47)))
+ (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
+ (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3))
+ (-4 *3 (-1157 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 *4))))
+ (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4))))
(-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))))
((*1 *2 *1)
(-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
(-4 *7 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
-(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-973)) (-5 *1 (-698))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
- (-4 *3 (-890 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| (-597 *3))))
- (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719))
- (-4 *8
- (-13 (-344)
- (-10 -8 (-15 -1848 (*3 $)) (-15 -1857 (*3 $)) (-15 -2258 ($ *3))))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1) (-5 *1 (-418))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
-(((*1 *1) (-5 *1 (-311))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))))
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3)))
+ (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522)))
+ (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
+(((*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-194)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104)))
+ (-5 *1 (-1104)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850))
+ (-5 *2 (-1181 *1)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
+ ((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-740)) (-4 *3 (-162)))))
(((*1 *1 *2)
(-12 (-5 *2 (-1181 *4)) (-4 *4 (-1135)) (-4 *1 (-221 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
- (-4 *8 (-890 *7 *5 *6))
- (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *3) (|:| |radicand| *3)))
- (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -1848 (*8 $)) (-15 -1857 (*8 $)) (-15 -2258 ($ *8))))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
- (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2623 (-597 *9)) (|:| -2350 *4) (|:| |ineq| (-597 *9))))
- (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
- (-4 *4 (-1003 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
- (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2623 (-597 *9)) (|:| -2350 *4) (|:| |ineq| (-597 *9))))
- (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
- (-4 *4 (-1003 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973))
- (-5 *1 (-698)))))
-(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-311))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4))
@@ -8828,12 +8281,12 @@
((*1 *2 *2)
(-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
(-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
+ (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)))))
(((*1 *2 *1 *2 *3)
(-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1182))))
((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182))))
@@ -8842,43 +8295,21 @@
(-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1183))))
((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183))))
((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-541 *4 *2))
- (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
+ (-4 *4 (-984)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6))
- (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *9) (|:| |radicand| *9)))
- (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719))
- (-4 *9
- (-13 (-344)
- (-10 -8 (-15 -1848 (*8 $)) (-15 -1857 (*8 $)) (-15 -2258 ($ *8))))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-597
- (-2 (|:| -2623 (-597 *9)) (|:| -2350 *10) (|:| |ineq| (-597 *9)))))
- (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
+ (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-522))
(-5 *2
- (-597
- (-2 (|:| -2623 (-597 *9)) (|:| -2350 *10) (|:| |ineq| (-597 *9)))))
- (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1) (-5 *1 (-418))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4))
@@ -8888,62 +8319,140 @@
((*1 *2 *2)
(-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
(-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719))
+ (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795))
- (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-540 *5 *3)))))
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344))
+ (-4 *7 (-1157 *6))
+ (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
(-4 *3 (-1027)) (-5 *2 (-719))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4))
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
(-4 *4 (-1135)) (-5 *2 (-719)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522))
- (-4 *7 (-890 *3 *5 *6))
- (-5 *2 (-2 (|:| -3059 (-719)) (|:| -1981 *8) (|:| |radicand| *8)))
- (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719))
- (-4 *8
- (-13 (-344)
- (-10 -8 (-15 -1848 (*7 $)) (-15 -1857 (*7 $)) (-15 -2258 ($ *7))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2350 *7))))
- (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2350 *7))))
- (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-975 (-47)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3))
- (-4 *3 (-1157 *5)))))
+ (-12 (-5 *3 (-717))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
+ (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-717)) (-5 *4 (-996))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
+ (-5 *1 (-531))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-735)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))
+ (|:| |extra| (-973))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-735)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))
+ (|:| |extra| (-973))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-748)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-756))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-753))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-756)) (-5 *4 (-996))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-753))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
+ (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
+ (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
+ (|:| |ub| (-597 (-788 (-208))))))
+ (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-786))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-786)) (-5 *4 (-996))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-836)) (-5 *3 (-996))
+ (-5 *4
+ (-2 (|:| |pde| (-597 (-297 (-208))))
+ (|:| |constraints|
+ (-597
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-719)) (|:| |boundaryType| (-530))
+ (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
+ (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
+ (|:| |tol| (-208))))
+ (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-839))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-838))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-839)) (-5 *4 (-996))
+ (-5 *2
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *1 (-838)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $))))))))))
+ (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2))
+ (-4 *2 (-1157 (-388 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795))
+ (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135))
+ (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))))
(((*1 *1 *1)
(-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
(-14 *3 (-597 (-1099))) (-4 *4 (-368))))
@@ -8953,69 +8462,40 @@
((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-951))))
((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-862))))
((*1 *1 *1) (-4 *1 (-951))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-208))))
((*1 *1 *1) (-4 *1 (-515)))
((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-553 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027))
+ (-5 *1 (-627 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182))))
((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *1) (-5 *1 (-273))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3059 (-530)))) (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3059 (-833 *3))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3059 (-530))))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $))
- (-15 -1857 (*7 $))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2350 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *1) (-5 *1 (-1014))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2
- (-3 (|:| |overq| (-1095 (-388 (-530))))
- (|:| |overan| (-1095 (-47))) (|:| -4018 (-110))))
- (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $))))))))))
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2204 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
(((*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804)))))
((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104))))
((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104))))
@@ -9069,8 +8549,8 @@
(-12
(-4 *4
(-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
(-4 *5 (-741)) (-4 *7 (-522)) (-5 *2 (-399 *3))
(-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-522))
(-4 *3 (-890 *7 *5 *4))))
@@ -9119,13 +8599,13 @@
(-12 (-4 *4 (-741))
(-4 *5
(-13 (-795)
- (-10 -8 (-15 -3173 ((-1099) $))
- (-15 -3994 ((-3 $ "failed") (-1099))))))
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
(-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-679 *4 *5 *6 *3))
(-4 *3 (-890 (-893 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-741))
- (-4 *5 (-13 (-795) (-10 -8 (-15 -3173 ((-1099) $))))) (-4 *6 (-522))
+ (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522))
(-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3))
(-4 *3 (-890 (-388 (-893 *6)) *4 *5))))
((*1 *2 *3)
@@ -9161,73 +8641,48 @@
((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139))))
((*1 *2 *3)
(-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-578 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3657 *4) (|:| |sol?| (-110)))
- (-530) *4))
- (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5))
- (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530))))
- (-4 *1 (-411 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530))))
- (-4 *1 (-411 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3059 (-530))))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3059 (-719))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3059 (-719))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3059 (-530))))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $))
- (-15 -1857 (*7 $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-928 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530)))))
- (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
+ (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
+ (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
+ (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110))
+ (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
+ (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7))
+ (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-710))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5))
+ (-5 *3 (-388 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2))
+ (-4 *3 (-13 (-344) (-140))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6))
+ (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4))))
+ (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
(((*1 *2 *2 *3)
(-12 (-5 *2 (-833 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027))
(-4 *5 (-1135)) (-5 *1 (-831 *4 *5))))
@@ -9255,69 +8710,6 @@
(-4 *6 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-4 *4 (-1027))
(-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
(-5 *1 (-1006 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $))
- (-15 -1857 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-597 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-5 *2 (-597 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-928 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1034 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $))))))))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-110))
(-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
@@ -9326,20 +8718,83 @@
(-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
(-5 *2 (-110)) (-5 *1 (-1125 *4 *3))
(-4 *3 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
+ (-5 *2
+ (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-637 *3))))
+ (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+ (|partial| -12
+ (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
+ (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
+ (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
+ (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
+ (-5 *1 (-174)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804))
+ (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984))
+ (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
+ (-4 *2 (-635 *3 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7)))
- (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-540 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+ (-12 (-5 *4 (-110))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7)))))
+ (-4 *7 (-793))
+ (-4 *8
+ (-13 (-1159 *3 *7) (-344) (-1121)
+ (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
+ (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
+ (-14 *10 (-1099)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135))))
((*1 *1 *2)
(-12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5))
@@ -9395,11 +8850,11 @@
(-3
(|:| |nia|
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(|:| |mdnia|
(-2 (|:| |fn| (-297 (-208)))
- (|:| -2902 (-597 (-1022 (-788 (-208)))))
+ (|:| -1300 (-597 (-1022 (-788 (-208)))))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))))
(-5 *1 (-717))))
((*1 *2 *1)
@@ -9415,13 +8870,13 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
(|:| |lb| (-597 (-788 (-208))))
(|:| |cf| (-597 (-297 (-208))))
(|:| |ub| (-597 (-788 (-208))))))
(|:| |lsa|
(-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3677 (-597 (-208)))))))
+ (|:| -3657 (-597 (-208)))))))
(-5 *1 (-786))))
((*1 *2 *1)
(-12
@@ -9440,26 +8895,26 @@
(-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6))))
((*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135))))
((*1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-37 (-388 (-530)))))
- (-3694 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
+ (-12 (-3676 (-4 *3 (-37 (-388 (-530)))))
+ (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-515))) (-3694 (-4 *3 (-37 (-388 (-530)))))
+ (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530)))))
(-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))
(-12 (-5 *2 (-893 *3))
- (-12 (-3694 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
+ (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
(-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
(-4 *5 (-795)))))
((*1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3694 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
+ (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
(-4 *5 (-572 (-1099))))
(-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
(-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
@@ -9469,19 +8924,23 @@
(-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5))
(-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
(-4 *4 (-741)) (-4 *5 (-795)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-697)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
+ ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))))
(((*1 *2) (-12 (-5 *2 (-597 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-128))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112)))
((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-515)))
((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
@@ -9490,12 +8949,8 @@
(-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
(-4 *3 (-13 (-1027) (-33))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $))
- (-15 -1857 ((-1051 *4 (-570 $)) $))
- (-15 -2258 ($ (-1051 *4 (-570 $))))))))))
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-570 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795))
(-4 *4 (-522)) (-5 *2 (-388 (-1095 *1)))))
@@ -9519,112 +8974,58 @@
(-5 *1 (-891 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $)))))))
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-1095 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2258 ($ *7)) (-15 -1848 (*7 $)) (-15 -1857 (*7 $)))))
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))
(-4 *7 (-890 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984))
(-5 *1 (-891 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1099)) (-4 *5 (-522))
(-5 *2 (-388 (-1095 (-388 (-893 *5))))) (-5 *1 (-980 *5))
(-5 *3 (-388 (-893 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984)))
- (-5 *2 (-1082)) (-5 *1 (-774 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-110))
- (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082))
- (-5 *1 (-774 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-770)) (-5 *4 (-297 *5))
- (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
- (-5 *1 (-774 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110))
- (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
- (-5 *1 (-774 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
- ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -2555 (-388 *6)) (|:| |coeff| (-388 *6))))
- (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360))))
+ (-5 *1 (-287)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984))
+ (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $)))))))))
+ (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $))
- (-15 -1857 ((-1051 *4 (-570 $)) $))
- (-15 -2258 ($ (-1051 *4 (-570 $)))))))
- (-4 *4 (-522)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-570 *2)))
+ (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
+ (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
(-4 *2
(-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *4 (-570 $)) $))
- (-15 -1857 ((-1051 *4 (-570 $)) $))
- (-15 -2258 ($ (-1051 *4 (-570 $)))))))
- (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
+(((*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 (-1006 *3 *4 *5))) (-4 *3 (-1027))
(-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
@@ -9639,10 +9040,10 @@
((*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
((*1 *1 *1)
(-12 (-14 *2 (-597 (-1099))) (-4 *3 (-162))
- (-4 *5 (-221 (-2167 *2) (-719)))
+ (-4 *5 (-221 (-2267 *2) (-719)))
(-14 *6
- (-1 (-110) (-2 (|:| -1910 *4) (|:| -3059 *5))
- (-2 (|:| -1910 *4) (|:| -3059 *5))))
+ (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5))
+ (-2 (|:| -1986 *4) (|:| -3194 *5))))
(-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795))
(-4 *7 (-890 *3 *5 (-806 *2)))))
((*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795))))
@@ -9657,141 +9058,132 @@
(-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
(-4 *2 (-795))))
((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3657 *7) (|:| |sol?| (-110)))
- (-530) *7))
- (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
- (-5 *3 (-388 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-540 *7 *8)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-218 *3))
- (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *3 (-570 $)) $))
- (-15 -1857 ((-1051 *3 (-570 $)) $))
- (-15 -2258 ($ (-1051 *3 (-570 $))))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
+ (-14 *3 (-862)) (-4 *4 (-984)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1 *1) (-4 *1 (-453)))
+ ((*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824))))
+ ((*1 *1 *1) (-5 *1 (-911)))
+ ((*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
(((*1 *2 *1 *3 *3 *2)
(-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
(-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4271)) (-4 *1 (-117 *3))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3))
(-4 *3 (-1135))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4271)) (-4 *1 (-117 *3))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3))
(-4 *3 (-1135))))
((*1 *2 *1 *3 *2)
(-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862))
(-4 *2 (-1027))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
(-4 *2 (-1135))))
((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1099)) (-5 *1 (-586))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4271)) (-4 *1 (-602 *2))
+ (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2))
(-4 *2 (-1135))))
((*1 *1 *1 *2 *2 *1)
(-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4271)) (-4 *1 (-949 *2))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2))
(-4 *2 (-1135))))
((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135))))
((*1 *2 *1 *3 *2)
(-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2))
(-4 *2 (-1135))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *3))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3))
(-4 *3 (-1135))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2))
(-4 *2 (-1135)))))
(((*1 *1 *2 *3)
(-12 (-5 *3 (-1082)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1027))
(-4 *4 (-1027))))
((*1 *1 *2)
(-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
(((*1 *2 *1)
(-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
(-4 *1 (-890 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2555 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
- (-5 *3 (-388 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-540 *7 *8)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082)))))
+ (-5 *2 (-973)) (-5 *1 (-287))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
+ (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
+ (-5 *2 (-973)) (-5 *1 (-287)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984))
+ (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-224))))
((*1 *2 *3)
(-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1186)) (-5 *1 (-224)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *3)
(-12 (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360)))))
((*1 *2 *3 *4)
@@ -9840,6 +9232,45 @@
(-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522))
(-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
(-5 *1 (-733 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289))
+ (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5))
+ (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-289)))))
(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
((*1 *2 *1)
(-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099)))))
@@ -9848,10 +9279,10 @@
(-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099)))))
((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2167 *3) (-719)))
+ (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2267 *3) (-719)))
(-14 *6
- (-1 (-110) (-2 (|:| -1910 *4) (|:| -3059 *5))
- (-2 (|:| -1910 *4) (|:| -3059 *5))))
+ (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5))
+ (-2 (|:| -1986 *4) (|:| -3194 *5))))
(-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795))
(-4 *7 (-890 *2 *5 (-806 *3)))))
((*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027))))
@@ -9868,55 +9299,72 @@
((*1 *1 *1 *2)
(-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
(-4 *2 (-795)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3657 *6) (|:| |sol?| (-110))) (-530)
- *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
- (-2 (|:| -2555 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
+ (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
+ (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-867))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-867))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868)))))
+(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
+ (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4))
+ (-4 *4 (-1157 (-530))))))
(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-171)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6))
+ (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-890 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1)))
- (-4 *1 (-1157 *3)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1157 *4)))))
(((*1 *2 *1)
(-12 (-5 *2 (-1022 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1135))))
((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
((*1 *2 *1)
(-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *6 (-221 (-2167 *3) (-719)))
+ (-4 *6 (-221 (-2267 *3) (-719)))
(-14 *7
- (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6))
- (-2 (|:| -1910 *5) (|:| -3059 *6))))
+ (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
+ (-2 (|:| -1986 *5) (|:| -3194 *6))))
(-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8))
(-4 *5 (-795)) (-4 *8 (-890 *4 *6 (-806 *3)))))
((*1 *2 *1)
@@ -9925,14 +9373,6 @@
((*1 *1 *1)
(-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740))
(-4 *4 (-795)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2555 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
- (-2 (|:| -2555 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *1 *2 *3)
(-12 (-5 *2 (-1099)) (-5 *3 (-597 *1)) (-4 *1 (-411 *4))
(-4 *4 (-795))))
@@ -9943,96 +9383,186 @@
((*1 *1 *2 *1 *1)
(-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795))))
((*1 *1 *2 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
+(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795))
+ (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-411 *5))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *5 (-570 $)) $))
+ (-15 -1928 ((-1051 *5 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *5 (-570 $))))))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099))
+ (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186))
- (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-1157 *4)))))
+ (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3))
+ (-4 *3 (-635 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4270)) (-4 *4 (-522)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7))
+ (-4 *9 (-354 *7)) (-5 *2 (-597 *6))
+ (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6))
+ (-4 *10 (-635 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3))
+ (-4 *3 (-635 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
+ (-5 *2 (-597 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+ (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
+ ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))))
+(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))))
+(((*1 *1)
+ (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260)))
+ (-3676 (|has| *1 (-6 -4252)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
+ ((*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-4 *1 (-795))) ((*1 *1) (-5 *1 (-1046))))
(((*1 *2 *2)
(-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
((*1 *2 *3)
(-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344))
- (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-706)))))
(((*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-388 (-530)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-928 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530)))
- (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5))
- (-4 *5 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| -2065 *4) (|:| -1324 *3) (|:| -3304 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| -2065 *3) (|:| -1324 *1) (|:| -3304 *1)))
+ (-4 *1 (-1157 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3))
+ (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
+ (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
(-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3657 *6) (|:| |sol?| (-110))) (-530)
- *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+ (-2 (|:| |done| (-597 *11))
+ (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11))))))
+ (-5 *6 (-719))
+ (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11))))
+ (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
+ (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-597 *11))
+ (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11))))))
+ (-5 *6 (-719))
+ (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11))))
+ (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
+ (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3))
+ (-4 *5 (-607 (-388 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-388 *5))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4))
+ (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
+ (-5 *1 (-555 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5))
+ (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330))
+ (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *3))))
+ (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *1)
(-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
(-5 *2 (-110))))
((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
+(((*1 *1) (-5 *1 (-1012))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2030 (-637 (-388 (-893 *4))))
+ (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -2426 (-719))
+ (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741))
+ (-5 *2
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
+(((*1 *2)
+ (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130))
+ (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-162))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862))))
+ ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3))
+ (-5 *1 (-738 *3)) (-4 *3 (-914))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110))
+ (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4)))
+ (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6))
+ (-4 *6 (-432)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -10049,7 +9579,8 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
(((*1 *1 *1) (-4 *1 (-226)))
((*1 *1 *1)
(-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
@@ -10057,7 +9588,7 @@
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-1476 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
+ (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
(-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135)))))
((*1 *1 *1) (-4 *1 (-453)))
((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
@@ -10066,30 +9597,35 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2555 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099))
- (-4 *2 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2)
+ (-12 (-4 *1 (-330))
+ (-5 *2 (-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530)))
+ (-5 *2 (-637 (-530))) (-5 *1 (-551))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
+ (-5 *1 (-551))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530))))
+ (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4))
+ (-14 *3 (-719)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027))
- (-5 *1 (-830 *4 *2)))))
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2204 *3)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
@@ -10107,56 +9643,114 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344))
- (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)))))
- (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-547 *3) *3 (-1099)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1099)))
- (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7))
- (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432))
- (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3))
- (-5 *1 (-539 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
- (-4 *2 (-13 (-795) (-21))))))
-(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1))
+ (-4 *1 (-363 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-675))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-890 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2))
- (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4))
- (-4 *3 (-390 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4))
- (-4 *4 (-390 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-162))))
+ (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))
+ (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5))
+ (-4 *5 (-1157 (-388 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
+ (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
((*1 *2 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-530)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530)))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6))
+ (-4 *6 (-13 (-27) (-1121) (-411 *5)))
+ (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530)))
+ (-4 *7 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530)))
+ (-4 *3 (-13 (-27) (-1121) (-411 *7)))
+ (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8))
+ (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530)))
+ (-4 *8 (-13 (-27) (-1121) (-411 *7)))
+ (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530))))
+ (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8)))
+ (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-51)) (-5 *1 (-439 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
+ (-4 *3 (-984)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
+ (-4 *3 (-984)) (-4 *1 (-1141 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-719))
+ (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))
+ (-4 *4 (-984)) (-4 *1 (-1162 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3))))
+ (-4 *3 (-984)) (-4 *1 (-1172 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -10173,6 +9767,8 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1099))
(-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
@@ -10210,41 +9806,41 @@
((*1 *1 *2 *3)
(-12 (-5 *2 (-388 (-530))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3))
(-4 *3 (-1141 *4)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-344)) (-5 *1 (-918 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795))
- (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3)))
- (|:| |vals| (-597 *3))))
- (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
- (-4 *2 (-13 (-795) (-21))))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-162))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
+ (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
+ (-4 *4 (-795)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984))
+ (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-5 *1 (-586))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-705)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -10261,48 +9857,92 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3))
- (-4 *3 (-13 (-411 *4) (-941))))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
- (-4 *3 (-13 (-1121) (-29 *5))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4272 "*")))
- (-4 *4 (-984)) (-5 *1 (-966 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862))
- (|has| *4 (-6 (-4272 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245)))
- (-5 *1 (-243))))
+ (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
+ (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 *3))))
+ (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135))))
((*1 *1 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
+ (-12
+ (-5 *2
+ (-2
+ (|:| -3078
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1874
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1080 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1300
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-525))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -3078
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (|:| -1874
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))))
+ (-5 *1 (-751))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6))
- (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6))
- (-5 *1 (-585 *5 *6)))))
+ (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
+ (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
+ (-5 *2
+ (-597
+ (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530))
+ (|:| |radvect| (-597 (-637 (-297 (-530))))))))
+ (-5 *1 (-969)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-624 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
+ (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -10319,50 +9959,81 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
- (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-258 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984))
- (-4 *3 (-522))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795))
+ (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6)))
- (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4))
- (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
+ (-12 (-4 *5 (-344))
+ (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)))))
+ (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
+ (-5 *1 (-1084 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
+ (-14 *4 (-1099)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
+ (-14 *4 *2) (-4 *5 (-162))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
+ (-5 *2 (-862))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3))))
- (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984))
- (-3694 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5))
- (-4 *4 (-572 (-833 *5)))))
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
+ (-5 *2 (-719)) (-5 *1 (-618 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4))
- (-3694 (-4 *3 (-975 (-1099)))) (-3694 (-4 *3 (-984)))
- (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099)))
- (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))))
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719))
+ (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
+ (-4 *3 (-635 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
+ (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984))
+ (-5 *1 (-638 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186))
+ (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -10379,47 +10050,39 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795))
+ (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984))
+ (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
+ (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
+ (-5 *1 (-327 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
(((*1 *2 *3 *1)
(|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-2 (|:| -2940 *3) (|:| -1806 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4))
- (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027))
- (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
- (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
- (-4 *6 (-432))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
- (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
- (-4 *6 (-432)))))
+ (-5 *2 (-2 (|:| -3078 *3) (|:| -1874 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027))
+ (-5 *2 (-597 (-2 (|:| -1874 *3) (|:| -2632 (-719))))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530))
+ (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4))
+ (-4 *4 (-344)) (-4 *4 (-984))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5))
+ (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))))
+(((*1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -10436,12 +10099,16 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3))
+ (|:| |coef2| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-998 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
@@ -10449,32 +10116,21 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| -1981 *4) (|:| -3624 *3) (|:| -3088 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -3624 *1) (|:| -3088 *1))) (-4 *1 (-998 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -1981 *3) (|:| -3624 *1) (|:| -3088 *1)))
- (-4 *1 (-1157 *3)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *1 *2 *3)
(-12 (-5 *2 (-830 *4 *5)) (-5 *3 (-830 *4 *6)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
- (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4))
+ (-14 *4 (-530)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -10491,45 +10147,45 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795))
- (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-411 *5))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1848 ((-1051 *5 (-570 $)) $))
- (-15 -1857 ((-1051 *5 (-570 $)) $))
- (-15 -2258 ($ (-1051 *5 (-570 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-522))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5))
- (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5)))
- (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -3149 (-578 *4 *5)) (|:| -3138 (-388 *5))))
- (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-432)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1157 *3)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
+ (-5 *2 (-597 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-704))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369))
+ (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344))
+ (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
+ (-4 *5 (-1157 *4))
+ (-5 *2 (-2 (|:| -2104 (-388 *5)) (|:| |coeff| (-388 *5))))
+ (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-804))) (-5 *1 (-112))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112))))
((*1 *2 *1)
@@ -10538,17 +10194,15 @@
(-12 (-5 *2 (-1186)) (-5 *1 (-198 *3))
(-4 *3
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $))
- (-15 -1671 (*2 $)))))))
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
+ (-15 -3595 (*2 $)))))))
((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-375))))
((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-375))))
((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480))))
((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-659))))
((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1116))))
((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1116)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -10568,22 +10222,18 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432))
- (-5 *2
- (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530)))))
- (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
(((*1 *1 *1)
(-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
(-4 *4 (-248 *3)) (-4 *5 (-741)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
(-4 *2 (-1027))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *3))
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
(-4 *3 (-1135))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
@@ -10595,27 +10245,25 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
(-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
+(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289))
- (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))))
+ (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
+ (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *6)))
+ (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))))
+(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-144 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-597 (-2 (|:| -3059 (-719)) (|:| -3721 *4) (|:| |num| *4))))
+ (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4))))
(-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-5 *3 (-597 (-893 (-530)))) (-5 *4 (-110)) (-5 *1 (-418))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-5 *3 (-597 (-1099))) (-5 *4 (-110)) (-5 *1 (-418))))
((*1 *2 *1)
(-12 (-5 *2 (-1080 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1135))))
@@ -10635,23 +10283,23 @@
((*1 *1 *2 *3)
(-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027))
(-14 *4
- (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *3))
- (-2 (|:| -1910 *2) (|:| -3059 *3))))))
+ (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3))
+ (-2 (|:| -1986 *2) (|:| -3194 *3))))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -2940 (-1099)) (|:| -1806 *4))))
+ (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4))))
(-4 *4 (-1027)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-597 *5)) (-4 *5 (-13 (-1027) (-33)))
(-5 *2 (-597 (-1064 *3 *5))) (-5 *1 (-1064 *3 *5))
(-4 *3 (-13 (-1027) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2350 *5))))
+ (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2473 *5))))
(-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
(-5 *2 (-597 (-1064 *4 *5))) (-5 *1 (-1064 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2350 *4)))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2473 *4)))
(-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33)))
(-5 *1 (-1064 *3 *4))))
((*1 *1 *2 *3)
@@ -10674,21 +10322,54 @@
(-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530))))
- (-5 *1 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
- (-4 *5 (-432))
- (-5 *2
- (-2 (|:| |gblist| (-597 (-230 *4 *5)))
- (|:| |gvlist| (-597 (-530)))))
- (-5 *1 (-585 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1157 (-159 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5))
+ (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3))
+ (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4))
+ (-14 *6 (-1181 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-862)) (-4 *5 (-984))
+ (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473))))
+ (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330))
+ (-5 *1 (-500 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4))
+ (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1) (-4 *1 (-993))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1510 *3) (|:| -3194 (-719)))) (-5 *1 (-548 *3))
+ (-4 *3 (-515)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -10708,24 +10389,17 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1) (-5 *1 (-208)))
- ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))) ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289))
- (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330))
+ (-5 *1 (-500 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162))))
((*1 *1 *2)
(-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-14 *6 (-1181 (-637 *3)))
@@ -10733,69 +10407,69 @@
((*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1135))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'JINT 'X 'ELAM) (-2268) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'JINT 'X 'ELAM) (-2377) (-647))))
(-5 *1 (-59 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 'XC) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'XC) (-647))))
(-5 *1 (-61 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2268 'X) (-2268) (-647))) (-5 *1 (-62 *3))
+ (-12 (-5 *2 (-320 (-2377 'X) (-2377) (-647))) (-5 *1 (-62 *3))
(-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2268) (-2268 'X 'HESS) (-647))))
+ (-12 (-5 *2 (-637 (-320 (-2377) (-2377 'X 'HESS) (-647))))
(-5 *1 (-63 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2268) (-2268 'XC) (-647))) (-5 *1 (-64 *3))
+ (-12 (-5 *2 (-320 (-2377) (-2377 'XC) (-647))) (-5 *1 (-64 *3))
(-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'X) (-2268 '-4114) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377 '-4126) (-647))))
(-5 *1 (-69 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 'X) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
(-5 *1 (-72 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'X 'EPS) (-2268 '-4114) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'X 'EPS) (-2377 '-4126) (-647))))
(-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099))
(-14 *5 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'EPS) (-2268 'YA 'YB) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'EPS) (-2377 'YA 'YB) (-647))))
(-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099))
(-14 *5 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2268) (-2268 'X) (-647))) (-5 *1 (-75 *3))
+ (-12 (-5 *2 (-320 (-2377) (-2377 'X) (-647))) (-5 *1 (-75 *3))
(-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2268) (-2268 'X) (-647))) (-5 *1 (-76 *3))
+ (-12 (-5 *2 (-320 (-2377) (-2377 'X) (-647))) (-5 *1 (-76 *3))
(-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 'XC) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'XC) (-647))))
(-5 *1 (-77 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 'X) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
(-5 *1 (-78 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268) (-2268 'X) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
(-5 *1 (-79 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'X '-4114) (-2268) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'X '-4126) (-2377) (-647))))
(-5 *1 (-80 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2268 'X '-4114) (-2268) (-647))))
+ (-12 (-5 *2 (-637 (-320 (-2377 'X '-4126) (-2377) (-647))))
(-5 *1 (-81 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2268 'X) (-2268) (-647)))) (-5 *1 (-82 *3))
+ (-12 (-5 *2 (-637 (-320 (-2377 'X) (-2377) (-647)))) (-5 *1 (-82 *3))
(-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'X) (-2268) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377) (-647))))
(-5 *1 (-83 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2268 'X) (-2268 '-4114) (-647))))
+ (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377 '-4126) (-647))))
(-5 *1 (-84 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2268 'XL 'XR 'ELAM) (-2268) (-647))))
+ (-12 (-5 *2 (-637 (-320 (-2377 'XL 'XR 'ELAM) (-2377) (-647))))
(-5 *1 (-85 *3)) (-14 *3 (-1099))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2268 'X) (-2268 '-4114) (-647))) (-5 *1 (-87 *3))
+ (-12 (-5 *2 (-320 (-2377 'X) (-2377 '-4126) (-647))) (-5 *1 (-87 *3))
(-14 *3 (-1099))))
((*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105))))
((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
@@ -10819,8 +10493,8 @@
(-12 (-5 *2 (-597 *3))
(-4 *3
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $))
- (-15 -1671 ((-1186) $)))))
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
+ (-15 -3595 ((-1186) $)))))
(-5 *1 (-198 *3))))
((*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201))))
((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201))))
@@ -10861,14 +10535,14 @@
((*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-4 *1 (-364))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364))))
((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-364))))
((*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-4 *1 (-365))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365))))
((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-365))))
@@ -10878,71 +10552,71 @@
((*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-375))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-4 *1 (-377))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377))))
((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-377))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-530)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-530))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-642)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-647)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-642))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-647))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099))
- (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-597 (-311))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099))
- (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2875 "void")))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
(-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
((*1 *1 *2)
(-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21)))
@@ -10970,14 +10644,14 @@
((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-418))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-4 *1 (-420))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420))))
((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-420))))
((*1 *1 *2) (-12 (-5 *2 (-1181 (-647))) (-4 *1 (-420))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1827 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
(-4 *1 (-421))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421))))
((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-421))))
@@ -11046,18 +10720,18 @@
((*1 *1 *2)
(-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1910 *3) (|:| -3059 *4)))
+ (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4)))
(-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027))
(-14 *5 (-1 (-110) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -1910 *3) (|:| -3059 *4))) (-4 *3 (-795))
+ (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-4 *3 (-795))
(-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2))))
((*1 *2 *1)
(-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -1981 *3) (|:| -3931 *4)))) (-4 *3 (-984))
+ (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-4 *3 (-984))
(-4 *4 (-675)) (-5 *1 (-684 *3 *4))))
((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-712))))
((*1 *1 *2)
@@ -11066,25 +10740,25 @@
(-3
(|:| |nia|
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(|:| |mdnia|
(-2 (|:| |fn| (-297 (-208)))
- (|:| -2902 (-597 (-1022 (-788 (-208)))))
+ (|:| -1300 (-597 (-1022 (-788 (-208)))))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))))
(-5 *1 (-717))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-297 (-208)))
- (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
+ (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(-5 *1 (-717))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(-5 *1 (-717))))
((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-717))))
@@ -11110,23 +10784,23 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
(|:| |lb| (-597 (-788 (-208))))
(|:| |cf| (-597 (-297 (-208))))
(|:| |ub| (-597 (-788 (-208))))))
(|:| |lsa|
(-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3677 (-597 (-208)))))))
+ (|:| -3657 (-597 (-208)))))))
(-5 *1 (-786))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))
+ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
(-5 *1 (-786))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
(|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
(|:| |ub| (-597 (-788 (-208))))))
(-5 *1 (-786))))
@@ -11285,12 +10959,13 @@
(-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
(-5 *1 (-1199 *3 *4))))
((*1 *1 *2) (-12 (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
(-4 *2 (-344))))
((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-208))))
((*1 *1 *1 *1)
- (-1476 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
+ (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
(-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135)))))
((*1 *1 *1 *1) (-4 *1 (-344)))
((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360))))
@@ -11338,8 +11013,6 @@
((*1 *1 *1 *2)
(-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984))
(-4 *3 (-791)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
(((*1 *2 *3 *2 *3)
(-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102))))
((*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102))))
@@ -11352,12 +11025,10 @@
(-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1103))))
((*1 *2 *3 *2 *1)
(-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *1 (-1103)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530))))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -11377,29 +11048,30 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969))
- (-5 *3 (-297 (-530))))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4))
- (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
+ (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1157 (-159 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1157 (-159 *2))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))))
+(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1157 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
((*1 *1 *1 *1) (-5 *1 (-804))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
@@ -11408,8 +11080,8 @@
(-12 (-5 *1 (-198 *2))
(-4 *2
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $))
- (-15 -1671 ((-1186) $)))))))
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
+ (-15 -3595 ((-1186) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135))))
((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135))))
((*1 *1 *1 *1)
@@ -11429,18 +11101,17 @@
((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21))))
((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530)))
- (-5 *1 (-824)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2
- (-597
- (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530))
- (|:| |radvect| (-597 (-637 (-297 (-530))))))))
- (-5 *1 (-969)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162))))
+ ((*1 *1) (-4 *1 (-675))) ((*1 *1) (-5 *1 (-1099))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
+ (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11457,32 +11128,39 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-710))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7)))))
+ (-4 *7 (-793))
+ (-4 *8
+ (-13 (-1159 *3 *7) (-344) (-1121)
+ (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
+ (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
+ (-14 *10 (-1099)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
+ (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
+ (-5 *1 (-645)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *1) (-5 *1 (-418))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289))
- (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))))
+ (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-148)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-198 *2))
(-4 *2
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $))
- (-15 -1671 ((-1186) $)))))))
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
+ (-15 -3595 ((-1186) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135))))
((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135))))
((*1 *1 *2 *1)
@@ -11505,14 +11183,28 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-25)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| -3624 *3) (|:| -3088 *3))) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530))))))
-(((*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344))
+ (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
+ (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
+ (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
+ (-4 *2 (-984)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11529,62 +11221,76 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *1 *1 *1) (-5 *1 (-208)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3853 (-597 *1))))
- (-4 *1 (-348 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-433 *3 *4 *5 *6))
- (|:| -3853 (-597 (-433 *3 *4 *5 *6)))))
- (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+ (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-547 *3) *3 (-1099)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1099)))
+ (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7))
+ (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432))
+ (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3))
+ (-5 *1 (-539 *7 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
+ (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5))
+ (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984))
+ (-5 *2 (-637 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344))
+ (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-1181 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
+ (-5 *2 (-1181 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
+ (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3))
- (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))))
-(((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4))
- (-4 *4 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284))))
- ((*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4))
- (-4 *3 (-411 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4))
- (-4 *4 (-13 (-411 *3) (-941) (-1121))))))
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11601,69 +11307,50 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1) (-5 *1 (-311))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *2 *2)
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
(-4 *2 (-411 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
- ((*1 *1 *1) (-4 *1 (-793)))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
- ((*1 *1 *1) (-4 *1 (-993))) ((*1 *1 *1) (-4 *1 (-1063))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3853 (-597 *1))))
- (-4 *1 (-348 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-433 *3 *4 *5 *6))
- (|:| -3853 (-597 (-433 *3 *4 *5 *6)))))
- (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-140)))
- (-5 *2 (-2 (|:| -3648 *3) (|:| -3657 *3))) (-5 *1 (-1151 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
+ (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3220 (-597 *6)))
+ *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-607 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1181 *6) "failed"))
+ (|:| -3220 (-597 (-1181 *6)))))
+ (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
+ (-4 *3 (-908)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
+(((*1 *1 *1) (-4 *1 (-583)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
+(((*1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284))))
- ((*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
+ (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-208)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11684,47 +11371,38 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
- (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
- (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
- (-14 *6 (-1181 (-637 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
- (-14 *6 (-1181 (-637 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862))
- (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-530))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
+ (-5 *1 (-429 *5 *6 *7 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
+ (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741))
+ (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33)))
+ (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-530))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2623 *3) (|:| -4135 (-597 *5))))
- (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11744,38 +11422,36 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099)))
- (-5 *2
- (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
- (-5 *1 (-582 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
- (-5 *2 (-1095 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
+ (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
+ (-5 *2 (-110)) (-5 *1 (-618 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110))
+ (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1082))
+ (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-522))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
((*1 *1 *1 *1) (-5 *1 (-804)))
((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804))
- (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))))
+(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
+ (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))))
(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
@@ -11795,39 +11471,45 @@
((*1 *2 *2)
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-582 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))))
+(((*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
+(((*1 *1 *1) (-4 *1 (-1068))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-707)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-862)) (-5 *1 (-968 *2))
- (-4 *2 (-13 (-1027) (-10 -8 (-15 -2234 ($ $ $))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *2 *1)
+ (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4))
+ (-4 *4 (-162)))))
+(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
+ ((*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -1908 (-597 (-804))) (|:| -3821 (-597 (-804)))
- (|:| |presup| (-597 (-804))) (|:| -1891 (-597 (-804)))
- (|:| |args| (-597 (-804)))))
- (-5 *1 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-530))))
+ (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $)))))
+ (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-862)) (-5 *1 (-968 *2))
+ (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
+ (-4 *3 (-1135))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -11844,97 +11526,90 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-144 *3))
- (-4 *3 (-1135))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3))))
- (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
- (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-706)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
- (-4 *3 (-354 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4)))
- (-5 *1 (-641 *4 *5))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5))
- (-5 *2 (-2 (|:| -2623 *7) (|:| |rh| (-597 (-388 *6)))))
- (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6)))
- (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
- (-4 *3 (-1157 *5)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
+ (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
+ (-4 *3 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-597 *4))
+ (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4))
+ (-4 *4 (-13 (-411 *7) (-27) (-1121)))
+ (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4)))
+ (-4 *4 (-13 (-411 *7) (-27) (-1121)))
+ (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-5 *2 (-110)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *1) (-5 *1 (-996))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
((*1 *1 *1 *1) (-5 *1 (-804)))
((*1 *2 *1 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-110))))
((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
- ((*1 *1 *1) (-4 *1 (-515)))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
- (-4 *2 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1157 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -11951,64 +11626,24 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-33)) (-5 *2 (-719))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
+ (-5 *2 (-360)) (-5 *1 (-249))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719))))
((*1 *2 *1)
(-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
(-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-530))))
((*1 *2 *1)
(-12 (-5 *2 (-719)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
(-4 *4 (-791)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))
- (-5 *4 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3648 *5) (|:| -3657 *5)))) (-5 *1 (-958 *3))
- (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3648 *5) (|:| -3657 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))
- (-5 *4 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3648 *4) (|:| -3657 *4)))) (-5 *1 (-959 *3))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3648 *5) (|:| -3657 *5)))) (-5 *1 (-959 *3))
- (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3648 *5) (|:| -3657 *5))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432))
- (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
- (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
@@ -12020,36 +11655,71 @@
(-12 (-5 *2 (-597 (-597 *5))) (-4 *5 (-984))
(-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5))
(-4 *7 (-221 *3 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-706)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2))
- (-4 *2 (-354 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4))
- (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
- (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+ (-12
+ (-5 *2
+ (-597
+ (-2
+ (|:| -3078
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1874
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1080 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1300
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
+ (-5 *2 (-597 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027))
+ (-4 *3 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432))
+ (-5 *2
+ (-597
+ (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
+ (|:| |eigmult| (-719))
+ (|:| |eigvec| (-597 (-637 (-388 (-893 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4))
- (-4 *4 (-1157 (-530))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -12066,44 +11736,48 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110))
- (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432))
- (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
-(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))))
-(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530)))
- (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
- (-5 *2 (-1095 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3))
- (-4 *3 (-354 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3))
- (-4 *5 (-354 *2)) (-4 *3 (-354 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522))
- (-5 *1 (-641 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3))
- (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5)))
+ (-5 *1 (-1055 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5))))
+ (-5 *1 (-1055 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
+ (-4 *6 (-13 (-27) (-411 *5)))
+ (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
+ (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
+ (-4 *3 (-323 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795))
+ (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
((*1 *1 *1 *1) (-5 *1 (-804)))
((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1135)))))
+(((*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-862)) (-4 *6 (-13 (-522) (-795)))
(-5 *2 (-597 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6))
@@ -12130,10 +11804,7 @@
((*1 *2 *1)
(-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795))
(-4 *4 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))
- (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -12153,54 +11824,55 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5)))
- (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530)))))
- (-14 *6 (-862)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3))
- (-4 *3 (-344)))))
-(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-706)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522))
- (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522))
- (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099))
- (-4 *3 (-984)))))
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3060 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-973)) (-5 *1 (-697)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))))
+ (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-748))
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-973)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
+ (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-1192 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
+ (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1121) (-900))))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027))
+ (-5 *1 (-111 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027))
+ (-5 *1 (-111 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530))))
- (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530))
- (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4))))
- (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
+ (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4))))
+ (-5 *1 (-111 *4)) (-4 *4 (-1027)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -12221,42 +11893,41 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))))
(((*1 *2 *2 *3)
(-12 (-5 *2 (-1099)) (-5 *3 (-597 (-506))) (-5 *1 (-506)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984))
- (-5 *2 (-719)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530))))
+ (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4))
+ (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
+ (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))))
(((*1 *1 *2 *2 *2)
(-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121)))))
((*1 *2 *1 *3 *4 *4)
(-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
- ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -3387 *4) (|:| -3073 (-530)))))
- (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
+ (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
+ (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
(-4 *2 (-13 (-411 *3) (-941)))))
@@ -12277,50 +11948,36 @@
(-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
(-5 *1 (-1086 *3))))
((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -4182 (-399 *3)) (|:| |special| (-399 *3))))
+ (-5 *1 (-676 *5 *3)))))
(((*1 *1) (-5 *1 (-110))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
+ (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7))
+ (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-597 (-906))) (-5 *1 (-106))))
((*1 *2 *1) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530)))))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -4162 (-597 (-2 (|:| |irr| *3) (|:| -3001 (-530)))))))
- (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
+ (-5 *2 (-1095 *3)))))
(((*1 *2 *3 *3)
(-12 (-5 *3 (-719)) (-5 *2 (-1181 (-597 (-530)))) (-5 *1 (-459))))
((*1 *1 *2 *3)
@@ -12328,25 +11985,19 @@
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3))))
((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5))
- (-5 *3 (-388 *5)))))
+(((*1 *1) (-5 *1 (-148))))
(((*1 *1 *1) (-4 *1 (-583)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
(-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -4162 (-597 (-2 (|:| |irr| *10) (|:| -3001 (-530)))))))
- (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289))
- (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741))
- (-5 *2
- (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-597 (-1095 *3)))))
- (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162))
+ (-4 *4 (-221 (-2267 *5) (-719)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *4))
+ (-2 (|:| -1986 *3) (|:| -3194 *4))))
+ (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795))
+ (-4 *7 (-890 *2 *4 (-806 *5))))))
(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432))))
((*1 *1 *1 *1) (-4 *1 (-432)))
((*1 *2 *3)
@@ -12375,24 +12026,16 @@
((*1 *2 *2 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
(-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
- (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *1) (-5 *1 (-1182))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3))
+ (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4))
+ (-4 *4 (-37 (-388 (-530))))
+ (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
(((*1 *2 *1)
(|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741))
(-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6))
@@ -12400,54 +12043,28 @@
((*1 *2 *1)
(-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
(-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
(((*1 *2 *3) (-12 (-5 *3 (-597 (-51))) (-5 *2 (-1186)) (-5 *1 (-805)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))
+ (-5 *1 (-1137)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3))
- (-4 *3 (-1157 (-388 (-530))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6)
- (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4031 *6)))
- (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795))
- (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8))
- (-4 *8 (-890 *3 *7 *6)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))))
+ (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
+ (-4 *1 (-797 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
+(((*1 *1) (-5 *1 (-148))))
(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-805))))
((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-805))))
((*1 *2 *3 *4)
@@ -12455,78 +12072,81 @@
((*1 *2 *3 *1)
(-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1080 *4))
(-4 *4 (-1027)) (-4 *4 (-1135)))))
-(((*1 *2)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
-(((*1 *1 *1) (-4 *1 (-810 *2))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6))
- (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
- (|:| -2623
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-954 *6 *3)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
+ (-5 *2 (-388 (-530))))))
(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740)) (-4 *3 (-162)))))
-(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4))
- (-4 *4 (-810 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110))))
- (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))))
+ (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
+ (-4 *3 (-522))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3))
+ (-4 *3 (-975 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-5 *2
+ (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208)))
+ (|:| |singularities| (-1080 (-208)))))
+ (-5 *1 (-102)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1099))
+ (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-1102)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef2| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-2 (|:| -2204 *1) (|:| |coef2| *1)))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
+ (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
+ (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
+ (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027))
+ (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
(((*1 *1 *1) (-4 *1 (-583)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
(-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027))
- (-4 *2 (-128)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))))
(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432))))
((*1 *1 *1 *1) (-4 *1 (-432))))
(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311))))
@@ -12543,7 +12163,7 @@
((*1 *1 *1) (-4 *1 (-266)))
((*1 *2 *3)
(-12 (-5 *3 (-399 *4)) (-4 *4 (-522))
- (-5 *2 (-597 (-2 (|:| -1981 (-719)) (|:| |logand| *4))))
+ (-5 *2 (-597 (-2 (|:| -2065 (-719)) (|:| |logand| *4))))
(-5 *1 (-301 *4))))
((*1 *1 *1)
(-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
@@ -12563,400 +12183,494 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4))
(-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984))
- (-4 *2 (-1172 *3)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6))
- (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
- (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
- (-5 *1 (-809 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
- (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
- (-5 *1 (-809 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6))
- (|:| -4031 *6)))
- (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-128)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-4 *3 (-522)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
+ (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-597 (-893 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162))
- (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
- (-5 *2 (-388 (-893 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
- (-5 *2 (-388 (-893 *4))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6))
- (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1099))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-597 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1121) (-27) (-411 *8)))
- (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
- (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5))
- (-5 *3 (-388 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128))
- (-4 *3 (-740)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-705)))))
+ (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4))
+ (-5 *3 (-1095 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426))))
- ((*1 *2 *3)
(-12
(-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
- (-5 *1 (-483 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))))
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
+ (|:| |lb| (-597 (-788 (-208))))
+ (|:| |cf| (-597 (-297 (-208))))
+ (|:| |ub| (-597 (-788 (-208))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-597 (-297 (-208))))
+ (|:| -3657 (-597 (-208)))))))
+ (-5 *2 (-597 (-1082))) (-5 *1 (-249)))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1080 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1300
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-973)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
+ (-4 *5 (-827 (-530)))
+ (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
+(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-522)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4)))
+ (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
+ (-5 *3 (-530)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
(((*1 *2 *1)
(-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2)))
(-5 *2 (-833 *3)) (-5 *1 (-1006 *3 *4 *5))
(-4 *5 (-13 (-411 *4) (-827 *3) (-572 *2))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1099))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-597 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2555 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1121) (-27) (-411 *8)))
- (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
- (-5 *3 (-530))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3657 *4) (|:| |sol?| (-110))))
- (-5 *1 (-952 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795))
- (-5 *1 (-569 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984))
- (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-884 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984))
- (-4 *1 (-1060 *4))))
+ (-12 (-5 *2 (-2 (|:| -2291 *1) (|:| -4256 *1) (|:| |associate| *1)))
+ (-4 *1 (-522)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *5 (-522))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *1) (-5 *1 (-525))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135))
+ (-4 *2 (-1135)) (-5 *1 (-56 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269))
+ (-4 *1 (-144 *2)) (-4 *2 (-1135))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
+ (-4 *2 (-1135))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
+ (-4 *2 (-1135))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-984))
+ (-5 *2 (-2 (|:| -3109 (-1095 *4)) (|:| |deg| (-862))))
+ (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719))
+ (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2))
+ (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135))
+ (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027))
+ (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2))))
+ ((*1 *1 *1) (-5 *1 (-473)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135))
+ (-4 *2 (-1135)) (-5 *1 (-595 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984))
+ (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2))
+ (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984))
- (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110))
- (-4 *1 (-1060 *4)) (-4 *4 (-984))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110))
- (-4 *1 (-1060 *4)) (-4 *4 (-984))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3770 *4))) (-5 *5 (-719))
- (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-429 *6 *7 *8 *4)))))
+ (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344))
+ (-4 *3 (-162)) (-4 *1 (-673 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135))
+ (-4 *2 (-1135)) (-5 *1 (-898 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5))
+ (-14 *6 (-597 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984))
+ (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7))
+ (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2))
+ (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135))
+ (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
+ (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741))
+ (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135))
+ (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))))
(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
((*1 *1 *1)
(-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
(-4 *4 (-795))))
((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-795)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-5 *1 (-302 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3362 (-597 (-1099))) (|:| -3372 (-597 (-1099)))))
- (-5 *1 (-1137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121))))
- ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7))
- (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-597 (-719))))))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
- (-5 *1 (-705)))))
+ (-12 (-4 *4 (-13 (-522) (-795)))
+ (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3))
+ (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530))))
+ (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
+(((*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984))
+ (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7))
+ (-4 *6 (-1157 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
+ (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7))
+ (-4 *6 (-1157 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
+ (|:| |cols| (-597 (-530))))))
+ (-5 *1 (-865 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121)))
+ (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7))
+ (-5 *3 (-1095 *6)) (-4 *7 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10))
+ (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795))
+ (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10))
+ (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5))
+ (-5 *3 (-1095 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6))
+ (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-706)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-741))
+ (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522))
+ (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3
+ (-13 (-795)
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
+ (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *6))
+ (-4 *6
+ (-13 (-795)
+ (-10 -8 (-15 -3260 ((-1099) $))
+ (-15 -4007 ((-3 $ "failed") (-1099))))))
+ (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
+ (-4 *2 (-890 (-893 *4) *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5))
+ (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
+ (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5))
+ (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110))
+ (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
+ (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
+ (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110))
+ (-5 *1 (-853 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *3 (-208))
+ (-5 *2 (-973)) (-5 *1 (-697)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027))))
+ ((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
+ (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
+ (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
+(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6))
- (-5 *1 (-302 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-597 (-884 *3))))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-704)))))
+ (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4))
+ (-5 *1 (-967 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
+ ((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
- (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795))
- (-4 *3 (-1027)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
+ (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
+ (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719))
+ (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
+ (-14 *4 (-862)) (-4 *5 (-984))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
+ (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
(((*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140)))
+ (-5 *1 (-380 *3 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1135)) (-5 *2 (-1186)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))))
+(((*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8))
- (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
- (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-530))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
- (-5 *1 (-429 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8)))
+ (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
+ (-5 *2
+ (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8))
+ (|:| |Lfact|
+ (-597 (-2 (|:| -2611 (-1095 *8)) (|:| -3194 (-530)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-691 *6 *7 *8 *9)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-388 (-530))))
+ (-5 *2 (-2 (|:| -2219 (-1080 *4)) (|:| -2231 (-1080 *4))))
+ (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
+ (-5 *1 (-845 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2))
- (-4 *2 (-1027))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795))
- (-5 *1 (-1136 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
(-5 *2
- (-597
- (-2
- (|:| -2940
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1806
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2902
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-597 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5))
- (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-704))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-530))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
- (-5 *1 (-429 *5 *6 *7 *4)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-758 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5))))
+ (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-758 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5))))
+ (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-208))
+ (-5 *2
+ (-2 (|:| |brans| (-597 (-597 (-884 *4))))
+ (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4))))
+ (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862))
+ (-5 *2
+ (-3 (-1095 *4)
+ (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))))
+ (-5 *1 (-327 *4)) (-4 *4 (-330)))))
(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867)))
- (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
(((*1 *2 *1)
(-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *2))
(-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2473 (-1095 *6)) (|:| -3059 (-530)))))
- (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110))
- (-5 *1 (-1136 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-597 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+ (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2)
+ (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1157 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3))
+ (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4269)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530)))))
+ (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
+ (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
(((*1 *2 *3 *1)
(-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795))
(-4 *2 (-162))))
@@ -12967,102 +12681,205 @@
(-4 *2 (-984))))
((*1 *2 *1 *3)
(-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
- (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4270) (-6 -4271))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
- (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4270) (-6 -4271)))))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3372 (-597 *3)) (|:| -3362 (-597 *3))))
- (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2))
+ (-4 *2 (-1157 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344))
+ (-5 *1 (-618 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-344))
+ (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4270))))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270))))
+ (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344))
+ (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793)))
+ (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *5))))
+ (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-793)))
+ (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *4))))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
+ (-15 -1928 ((-1051 *3 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *3 (-570 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
+ (-15 -1928 ((-1051 *4 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *4 (-570 $)))))))
+ (-4 *4 (-522)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 (-570 *2)))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
+ (-15 -1928 ((-1051 *4 (-570 $)) $))
+ (-15 -2366 ($ (-1051 *4 (-570 $)))))))
+ (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530))))
+ (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027))
- (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5))
- (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8))
- (-5 *6 (-597 *8)) (-4 *8 (-411 *7))
- (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
+ (|:| |wcond| (-597 (-893 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
+ (|:| |wcond| (-597 (-893 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
+ (|:| |wcond| (-597 (-893 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))))))
+ (-5 *1 (-865 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7))
+ (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099))))
+ (-4 *8 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
+ (|:| |wcond| (-597 (-893 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *6))))))))))
+ (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
+ (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
+ (|:| |wcond| (-597 (-893 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *6))))))))))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741))
+ (-5 *2
+ (-597
+ (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
+ (|:| |wcond| (-597 (-893 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
+ (-5 *1 (-865 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082))
+ (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082))
+ (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
+ (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8)))
- (-4 *8 (-411 *7)) (-5 *5 (-276 *8))
- (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *3))))
+ (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862))
+ (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3))
- (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
- (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4270) (-6 -4271))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
- (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4270) (-6 -4271)))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
- (-5 *1 (-1136 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
- (-5 *1 (-1136 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
- (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
- (-4 *2 (-795)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
+ (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
+ (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082))
+ (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
+ (-5 *1 (-865 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4))
+ (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-795) (-522))))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1099)) (-5 *1 (-506))))
((*1 *2 *3 *2)
@@ -13075,22 +12892,41 @@
(-12 (-5 *4 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-653 *3))
(-4 *3 (-572 (-506))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4))
- (-5 *1 (-424 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5)))
- (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5))))
+ (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5))
+ (-4 *6 (-607 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4))))
+ (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4))
+ (-4 *6 (-607 (-388 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5))))
+ (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5))
+ (-4 *3 (-607 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4))))
+ (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4))
+ (-4 *3 (-607 (-388 *4))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -4145 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
(-5 *2
- (-597
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *6)))))
+ (-2 (|:| |dpolys| (-597 (-230 *5 *6)))
+ (|:| |coords| (-597 (-530)))))
+ (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
(-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
@@ -13144,44 +12980,107 @@
(-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360)))
(-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208)))
(-5 *1 (-241 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5))))
- (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4271)) (-4 *1 (-949 *3))
- (-4 *3 (-1135)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
- (-4 *2 (-795)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795)))
- (-5 *1 (-1056 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2))
- (-4 *4 (-432)) (-4 *6 (-795)))))
+ (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2))
+ (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2366 ($ *6)) (-15 -1918 (*6 $))
+ (-15 -1928 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
+ (-5 *2 (-1099)) (-5 *1 (-980 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027))
- (-4 *2 (-1135)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
+ (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530)))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5))
+ (-4 *4 (-1027)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344)))
+ (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6))
+ (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
+ (-4 *4 (-1157 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984))
+ (-4 *3 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
+ (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
+ (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
+ (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
+ (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
+ (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719))
+ (-5 *1 (-853 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344))
+ (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4))
+ (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719))
+ (-5 *1 (-957 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208)))
+ (-5 *1 (-287)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
+ (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6))
+ (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
(((*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-107))))
((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719))))
((*1 *2 *3 *1 *2)
@@ -13195,217 +13094,117 @@
(-5 *2 (-530))))
((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)) (-5 *3 (-134))))
((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
- (-5 *1 (-1055 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3770 *3))))
- (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
- (-4 *3 (-522))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
+ (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4))
+ (-5 *2 (-2 (|:| -2605 (-578 *4 *5)) (|:| -1423 (-388 *5))))
+ (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3))
- (-4 *3 (-975 *2)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1135)) (-5 *2 (-1186)))))
-(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))))
+ (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
+ (-14 *3 (-862)) (-4 *4 (-984))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1157 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4020 (-530)) (|:| -3721 (-597 *3))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5)))
- (-5 *1 (-1055 *5))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5))))
- (-5 *1 (-1055 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208))
- (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360)))))
- (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360)))))
- (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8))))
+ (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140)))
+ (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099))))
+ (-4 *10 (-741))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-597
+ (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11))
+ (|:| |wcond| (-597 (-893 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *8))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *8))))))))))
+ (|:| |rgsz| (-530))))
+ (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984))
+ (-5 *1 (-966 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984))
+ (-5 *1 (-966 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099)))
- (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121)))
- (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2))
- (-4 *6 (-13 (-411 *5) (-941) (-1121))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-289))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1898 *1)))
- (-4 *1 (-289)))))
+ (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-767 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
(((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099))
(-5 *1 (-244 *2)) (-4 *2 (-1135))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-51))
(-5 *1 (-245)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-276 (-388 (-893 *4))))
- (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4))))
- (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-388 (-893 *4))))
- (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 *4)))))
- (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-429 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360)))
(-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237))))
@@ -13503,55 +13302,69 @@
((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1183))
(-5 *1 (-242)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
+ (-4 *3 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
- (-4 *3 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5))
- (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
- (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
+ (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
+ (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
+ (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984))
+ (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
+ (-4 *2 (-635 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284))))
((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-112)) (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-795))
(-5 *1 (-570 *5)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *4 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5))
+ (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
+ (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
+ (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
(((*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-349))))
((*1 *2 *3 *3)
(-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
@@ -13559,49 +13372,66 @@
((*1 *2 *1)
(-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027))
(-14 *4
- (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *3))
- (-2 (|:| -1910 *2) (|:| -3059 *3)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984))
- (-4 *4 (-1135))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *5 (-221 (-2167 *3) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1910 *2) (|:| -3059 *5))
- (-2 (|:| -1910 *2) (|:| -3059 *5))))
- (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795))
- (-4 *7 (-890 *4 *5 (-806 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
+ (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3))
+ (-2 (|:| -1986 *2) (|:| -3194 *3)))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
+ (-5 *2 (-637 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530))))
+ ((*1 *1 *1) (-4 *1 (-993))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
- (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
+ (-5 *1 (-1076 *3)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-597
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3))
- (-5 *1 (-738 *3)) (-4 *3 (-914))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110))
- (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))))
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-282)))))
(((*1 *1 *2)
(-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
(-14 *4 (-597 (-1099)))))
@@ -13618,58 +13448,119 @@
(-4 *5 (-162))))
((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1157 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3))
- (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208)))
- (-5 *1 (-287)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6))
+ (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6))
+ (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))))
+(((*1 *1 *2)
(-12
(-5 *2
(-597
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *1 (-429 *4 *5 *6 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
- (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
- (-5 *1 (-559 *4 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+ (-2
+ (|:| -3078
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208))))
+ (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208)))
+ (|:| |g| (-297 (-208))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1874
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360)))))))
+ (-5 *1 (-751)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
+ (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
+ (-5 *1 (-1065 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208))
+ (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
(((*1 *2) (-12 (-5 *2 (-781 (-530))) (-5 *1 (-504))))
((*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099)))
+ (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4)))))
+ (-5 *1 (-482 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2))
+ (-4 *2 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2))
+ (-4 *2 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2))
+ (-4 *2 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
+ (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
+ (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5))
+ (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *1 *1 *1) (-5 *1 (-127))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51))
- (-5 *1 (-944)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-964 (-788 (-530))))
- (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984))
- (-5 *1 (-555 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-27) (-411 *4)))
+ (-4 *4 (-13 (-795) (-522) (-975 (-530))))
+ (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2))
+ (-4 *2 (-323 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *1 *1) (-4 *1 (-993)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-1080 (-208))) (-5 *1 (-176))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2)
(-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
(-4 *3 (-13 (-795) (-522)))))
@@ -13677,37 +13568,38 @@
(-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
(-14 *3 (-597 (-1099))) (-4 *4 (-368))))
((*1 *1) (-5 *1 (-457))) ((*1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530))
+ (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
(((*1 *1 *1) (-5 *1 (-208)))
((*1 *1 *1)
(-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
(-14 *3 (-597 (-1099))) (-4 *4 (-368))))
((*1 *1 *1) (-5 *1 (-360))) ((*1 *1) (-5 *1 (-360))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+ (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
(((*1 *1 *2 *2 *3)
(-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027))
(-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
@@ -13718,33 +13610,56 @@
(-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
(-5 *1 (-1006 *3 *4 *2))
(-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
+ (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
+ (-4 *2 (-635 *3 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
+ (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
+ (-14 *6 (-1181 (-637 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
+ (-14 *6 (-1181 (-637 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862))
+ (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3))
+ (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3))
- (-4 *3 (-914)))))
-(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+ (-5 *2
+ (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3)
+ (-230 *3 (-388 (-530)))))
+ (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6))
+ (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6))
+ (-5 *5 (-1080 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
(-12 (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-289))
@@ -13760,34 +13675,57 @@
(-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4))
(-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4))))
((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
+ (-5 *2 (-110)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3))
+ (-4 *3 (-572 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
+ (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
+ (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2))
+ (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
+ (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795))
+ (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719)))
+ (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2
- (-2 (|:| |solns| (-597 *5))
- (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2361 (-597 *6)) (|:| -2551 (-597 *6)))))))
(((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
(-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
@@ -13804,102 +13742,67 @@
(-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-613 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-675) *3))))
((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2902
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344))
- (-5 *1 (-618 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-344))
- (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4271))))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4271))))
- (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344))
- (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2))))
+ (-12 (-4 *4 (-741))
+ (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522))
+ (-5 *2 (-2 (|:| -3418 (-893 *6)) (|:| -1726 (-893 *6))))
+ (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
+ (-4 *3 (-354 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
- (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741))
- (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1596 (-597 *9))))
- (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9))))
+ (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4)))
+ (-5 *1 (-641 *4 *5))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1596 (-597 *8))))
- (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *2 (-973)) (-5 *1 (-287))))
+ (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *6 (-1157 *5))
+ (-5 *2 (-2 (|:| -2776 *7) (|:| |rh| (-597 (-388 *6)))))
+ (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6)))
+ (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6)))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
+ (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
+ (-4 *3 (-1157 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-984)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5))
+ (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3))))
+ ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4))
+ (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862))
+ (-5 *1 (-500 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
(((*1 *2 *1 *3 *3 *2)
(-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
(-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
@@ -13934,14 +13837,14 @@
(-12 (-5 *3 (-1099)) (-5 *2 (-228 (-1082))) (-5 *1 (-198 *4))
(-4 *4
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ *3)) (-15 -2278 ((-1186) $))
- (-15 -1671 ((-1186) $)))))))
+ (-10 -8 (-15 -1902 ((-1082) $ *3)) (-15 -2388 ((-1186) $))
+ (-15 -3595 ((-1186) $)))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-929)) (-5 *1 (-198 *3))
(-4 *3
(-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 ((-1186) $))
- (-15 -1671 ((-1186) $)))))))
+ (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
+ (-15 -3595 ((-1186) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795))))
@@ -14028,28 +13931,24 @@
((*1 *2 *1 *3)
(-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795))
- (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984))
- (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-540 *5 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3))
+ (-4 *2 (-344))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))
+ (-4 *2 (-13 (-411 *4) (-941) (-1121)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121)))
+ (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
+ (-4 *2 (-13 (-795) (-21))))))
(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
(((*1 *2 *1)
(-12
@@ -14059,7 +13958,7 @@
(-2 (|:| |var| (-1099))
(|:| |arrayIndex| (-597 (-893 (-530))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804))))))
+ (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804))))))
(|:| |arrayAssignmentBranch|
(-2 (|:| |var| (-1099)) (|:| |rand| (-804))
(|:| |ints2Floats?| (-110))))
@@ -14067,126 +13966,114 @@
(-2 (|:| |switch| (-1098)) (|:| |thenClause| (-311))
(|:| |elseClause| (-311))))
(|:| |returnBranch|
- (-2 (|:| -1262 (-110))
- (|:| -3387
- (-2 (|:| |ints2Floats?| (-110)) (|:| -3954 (-804))))))
+ (-2 (|:| -3250 (-110))
+ (|:| -3417
+ (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804))))))
(|:| |blockBranch| (-597 (-311)))
(|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082))
(|:| |forBranch|
- (-2 (|:| -2902 (-1020 (-893 (-530))))
- (|:| |span| (-893 (-530))) (|:| -3912 (-311))))
+ (-2 (|:| -1300 (-1020 (-893 (-530))))
+ (|:| |span| (-893 (-530))) (|:| -3919 (-311))))
(|:| |labelBranch| (-1046))
- (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3912 (-311))))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 (-311))))
(|:| |commonBranch|
- (-2 (|:| -3901 (-1099)) (|:| |contents| (-597 (-1099)))))
+ (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099)))))
(|:| |printBranch| (-597 (-804)))))
(-5 *1 (-311)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6))))
- (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530)))
- (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3853 (-597 *4))))
- (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-703)))))
+ (-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))))
+ (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4))
+ (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4)))
+ (-5 *1 (-1174 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
(((*1 *1 *1) (-4 *1 (-583)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
(-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
- (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182))
- (-5 *1 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
- (-5 *2 (-1182)) (-5 *1 (-1185)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-399 *5)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| -3059 (-719)) (|:| -1981 *5) (|:| |radicand| (-597 *5))))
- (-5 *1 (-301 *5)) (-5 *4 (-719))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208)))
- (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-427 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
- (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448))
- (-5 *1 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
- (-5 *2 (-448)) (-5 *1 (-1185)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
+ (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432))
+ (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344))
+ (-4 *5 (-13 (-344) (-793))))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
- (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5))
- (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530)))
- (-5 *1 (-538))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1))
- (-4 *1 (-850)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-984)))))
+ (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
+ (-4 *4 (-795)) (-5 *1 (-1107 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
+ (-5 *1 (-313))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311))
+ (-5 *1 (-313))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
+ (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9))))
+ (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
+ (-4 *4 (-1003 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
+ (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9))))
+ (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
+ (-4 *4 (-1003 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5))
+ (-14 *4 (-862)) (-4 *5 (-984)))))
+(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-360))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3)))
+ (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7)))
+ (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
+ (-5 *1 (-523 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3))
+ (-4 *3 (-890 *4 *6 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3))
+ (-4 *3 (-1157 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(-5 *2
(-2
@@ -14204,7 +14091,7 @@
(-3 (|:| |str| (-1080 (-208)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2902
+ (|:| -1300
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -14212,99 +14099,121 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-525)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208)))
- (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-583)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719))
- (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5))
- (-5 *1 (-222 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135))
- (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027))
- (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
+ (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530))))
+ ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *3 (-1157 *4)) (-5 *2 (-530))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
+ (-5 *2 (-530)) (-5 *1 (-1042 *4 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135))
- (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3))))
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
+ (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082))
+ (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
+ (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530))
+ (-5 *1 (-1043 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1))))
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6))))
+ (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530))
+ (-5 *1 (-1043 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099))
+ (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850))
- (-5 *2 (-1181 *1)))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *1 *1 *1) (-4 *1 (-453)))
- ((*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824))))
- ((*1 *1 *1) (-5 *1 (-911)))
- ((*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
-(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
-(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-330)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2))
+ (-4 *4 (-432)) (-4 *6 (-795)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *1 (-1084 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984))))
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741))
- (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8)))
- (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8))))
+ (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))
+ (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
+ (-5 *2 (-637 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-411 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
+ (-5 *1 (-891 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
+ (-15 -1928 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4))
+ (-4 *4 (-37 (-388 (-530))))
+ (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
+ (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
+ (-4 *2 (-1172 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
+ (-5 *1 (-1076 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-1157 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))
+ (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-541 *4 *2))
+ (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-597 (-360))) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448))))
@@ -14313,614 +14222,1260 @@
(-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *4)
(-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2)
+ (-12 (-4 *1 (-330))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *1 (-1084 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
+ (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
(-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
(-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344))
- (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
+ (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
- (-4 *2 (-984)))))
-(((*1 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
- (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
- (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1)
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
+ (-4 *3 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027))
+ (-5 *1 (-686 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3))
+ (-4 *3 (-1157 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
(-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6))))
+ (-5 *3 (-388 (-893 *6)))
+ (-4 *6 (-13 (-522) (-975 (-530)) (-140)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-536 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027))
(-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176))))
- ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282))))
- ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *1 (-1084 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522))
- (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2))
- (-4 *6 (-607 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360))))
- (-5 *1 (-287)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984))
- (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6)))
- (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-867))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-867))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
+ (-5 *1 (-868)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-552 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110))
+ (-4 *4 (-13 (-1121) (-29 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-207 *6 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6))
+ (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139))
+ (-4 *6 (-1157 (-388 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-323 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4))
+ (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741))
+ (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
+ (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185))))
((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448))
+ (-5 *1 (-1185))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
+ (-5 *2 (-448)) (-5 *1 (-1185)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4))
+ (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027))
+ (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984))
+ (-5 *2 (-1181 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
+ (-4 *3 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-917 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2 *1 *3)
(|partial| -12 (-5 *3 (-1082)) (-5 *2 (-722)) (-5 *1 (-112))))
((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))))
(((*1 *1)
- (-12 (-4 *1 (-385)) (-3694 (|has| *1 (-6 -4261)))
- (-3694 (|has| *1 (-6 -4253)))))
+ (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260)))
+ (-3676 (|has| *1 (-6 -4252)))))
((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
((*1 *1 *1 *1) (-4 *1 (-795)))
((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
((*1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
- (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
-(((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5))
- (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
- (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741))
- (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
- (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3))
+ (-4 *3 (-673 *4 *2))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099))
+ (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862))
- (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4))
+ (-5 *1 (-274 *4)) (-4 *4 (-432))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
+ (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4))
+ (-4 *4 (-13 (-344) (-793)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099))
+ (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5))
+ (-4 *5 (-13 (-344) (-793)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530))))
+ (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4))
- (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
- (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741))
- (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))))
+ (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099))
+ (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5))
+ (-4 *5 (-13 (-344) (-793))))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530)))
+ (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8))
+ (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
+ (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862))
+ (-14 *4 (-862)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
- (-4 *4 (-984)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
+ (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-998 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
+ (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741))
+ (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8)))
+ (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
+ (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360))
- (-5 *1 (-733 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6))))
- (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6))
- (-5 *1 (-1174 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4))
- (-5 *1 (-400 *4))))
- ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))
- (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))
- (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530)))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
+ (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
+ (-4 *3 (-599 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))))
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
+ (-4 *3 (-599 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984))))
+ ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-868))
+ (-5 *2
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
+ (-5 *2
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3)
(-12
- (-5 *3
- (-597 (-2 (|:| -3648 (-388 (-530))) (|:| -3657 (-388 (-530))))))
- (-5 *2 (-597 (-208))) (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *1 *2)
+ (-5 *2
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208))))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3))
- (|:| |genIdeal| (-482 *3 *4 *5 *6))))
- (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224))))
- ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5))
- (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5))
- (-5 *1 (-1174 *5 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984))
- (-5 *1 (-1084 *4)))))
+ (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
+ (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
+ (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
+ (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-427 *4 *5 *6 *7)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-37 (-388 (-530)))))))
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
+(((*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-719))))
((*1 *2 *1)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5))
- (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2)))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-522) (-795)))
+ (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
+ (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3))
- (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4))
- (-14 *6 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
- (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473))))
- (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330))
- (-5 *1 (-500 *4))))
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4))
- (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162))))
- ((*1 *1 *1) (-4 *1 (-993))))
+ (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
+ (-4 *3 (-635 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
+ (-5 *2 (-719)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
+ (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
+ (-5 *1 (-736)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6))
+ (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4))
+ (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5))
+ (-14 *3 (-719)) (-14 *4 (-719)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
+ ((*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
+ (-4 *2 (-1157 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027))
- (-4 *3 (-1027)))))
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
+ (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3))
+ (-4 *3 (-1135)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-795) (-522))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530))))
- (-5 *1 (-287)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
- (-5 *2 (-394 *4 (-388 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4)))
- (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289))
- (-5 *1 (-394 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-37 (-388 (-530)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
- ((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027))
- (-5 *1 (-627 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2))
- (-4 *2 (-1172 *3)))))
+ (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224))))
+ ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4))
- (-5 *3 (-597 *4))))
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
+ (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-973)) (-5 *1 (-705)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
+ (-14 *4 (-530)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8)))))
+ (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *8 (-998 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-597 *8))
+ (|:| |towers| (-597 (-1070 *5 *6 *7 *8)))))
+ (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3))
+ (-4 *3 (-1003 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1157 (-159 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385))
+ (-5 *2 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
+ (-4 *4 (-1027)) (-4 *5 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
+ (-4 *5 (-795)) (-5 *2 (-893 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4))
- (-5 *3 (-1029 *4))))
+ (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
+ (-4 *5 (-795)) (-5 *2 (-893 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
+ (-5 *2 (-893 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
- ((*1 *1 *1) (-4 *1 (-993))))
+ (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
+ (-5 *2 (-893 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2))
+ (-4 *2 (-1157 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+(((*1 *1) (-5 *1 (-771))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
+ (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-793)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530))
- (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522))
- (-4 *3 (-984)))))
+ (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530)))))))
+ (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 (-159 (-530)))))
+ (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530))))))
+ (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
+ (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5)))
+ (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530)))))
+ (-14 *6 (-862)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7))
+ (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
+ (-4 *5 (-827 (-530)))
+ (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
+ (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063))
+ (-4 *2 (-13 (-27) (-1121) (-411 *5)))
+ (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530)))
+ (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
+ (-5 *1 (-533 *5 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
+ (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))
+ (-5 *1 (-751)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4))
+ (-4 *2 (-1157 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2))
+ (-4 *2 (-1172 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
+ (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2))
+ (-4 *2 (-1172 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
+ (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140)))
+ (-5 *1 (-1076 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7))
+ (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
+ (-4 *7 (-1135)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
+ ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
(((*1 *2 *1)
(-12 (-5 *2 (-1029 (-1029 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
+ (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-578 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110)))
+ (-530) *4))
+ (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
(((*1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
(((*1 *2 *1) (-12 (-5 *2 (-597 (-171))) (-5 *1 (-1044)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7))
+ (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5))
+ (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6))
+ (|:| -4046 *6)))
+ (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
- (-5 *3 (-530)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
+ (-4 *2
+ (-13 (-383)
+ (-10 -7 (-15 -2366 (*2 *4)) (-15 -1905 ((-862) *2))
+ (-15 -3220 ((-1181 *2) (-862))) (-15 -3962 (*2 *2)))))
+ (-5 *1 (-337 *2 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
+ (-5 *1 (-697)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-399 *2)) (-4 *2 (-522)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1099))
+ (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
+ (-5 *2
+ (-2 (|:| -2104 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5)))))
+ (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099))
+ (-4 *4 (-13 (-411 *7) (-27) (-1121)))
+ (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
(-5 *2
- (-2 (|:| -2330 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349))
+ (-4 *3 (-1027)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108))))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
+ (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5))
+ (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530)))
+ (-5 *1 (-538))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1))
+ (-4 *1 (-850)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984))
+ (-4 *2 (-1141 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
+ (-4 *4 (-1157 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3))
+ (-4 *3 (-1135))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
+ (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5))
+ (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984))
+ (-5 *1 (-1084 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
+ (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522)))
+ (-5 *1 (-258 *4 *2)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3060 *4)))
+ (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-719)) (-4 *5 (-162))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-719)) (-4 *5 (-162))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
+ (-230 *4 (-388 (-530)))))
+ (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719))
+ (-5 *1 (-483 *4 *5)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4))
+ (-4 *4 (-1027)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-637 *2)) (-5 *4 (-719))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
+ (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-696)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
- (-5 *1 (-845 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530))))
- ((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311))
- (-5 *1 (-313))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+ (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135))
+ (-5 *1 (-1020 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
+ (-4 *5 (-607 (-388 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3))
+ (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2))
+ (-4 *3 (-607 (-388 *2))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))
+ (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
- (-5 *3 (-530)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2330 *3) (|:| |coef1| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
+ (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
+ (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
+ (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
+ (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *8)))
+ (-5 *1 (-852 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
+ (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
+ (-4 *6 (-323 (-388 (-530)) *4 *5))
+ (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *6)))
+ (-5 *1 (-853 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *1) (-4 *1 (-330)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4))
+ (-4 *4 (-13 (-522) (-795) (-140)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5)))
+ (|:| |prim| (-1095 *5))))
+ (-5 *1 (-413 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-522) (-795) (-140)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3))
+ (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3))))
+ (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530))
+ (|:| |prim| (-1095 *5))))
+ (-5 *1 (-901 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099)))
+ (-4 *5 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *5)))
+ (|:| |prim| (-1095 *5))))
+ (-5 *1 (-901 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099))
+ (-4 *6 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *6)))
+ (|:| |prim| (-1095 *6))))
+ (-5 *1 (-901 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027))
+ (-5 *1 (-100 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099)))
- (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4)))))
- (-5 *1 (-482 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4)))
- (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
- (-5 *1 (-845 *4)))))
-(((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110))))
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110))))
((*1 *2 *3)
(-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-338 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344))
- (-14 *4 (-933 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *1) (|partial| -4 *1 (-671)))
- ((*1 *1 *1) (|partial| -4 *1 (-675)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
- (-4 *2 (-1157 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2330 *3) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4))
- (-4 *4
- (-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $))
- (-15 -1671 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -1832 ((-1082) $ (-1099))) (-15 -2278 (*2 $))
- (-15 -1671 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))))
+ (-5 *1 (-338 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110))
+ (-5 *1 (-500 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3))))
+ (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
+(((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
+ (-4 *4 (-13 (-1027) (-33))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-701)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719))
- (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4))
- (-4 *3 (-411 *4))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515))))
- ((*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4))
- (-4 *3 (-745 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4))
- (-4 *3 (-932 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4))
- (-4 *3 (-936 *4))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951))))
- ((*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))))
-(((*1 *2)
- (-12
+ (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-547 *3)) (-4 *3 (-344)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3))
+ (-4 *3 (-344)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795)))
+ (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
+ (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
+ (-4 *6 (-432))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
+ (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
+ (-4 *6 (-432)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5))
(-5 *2
- (-1181 (-597 (-2 (|:| -3387 (-851 *3)) (|:| -1910 (-1046))))))
- (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046))))))
- (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046))))))
- (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
+ (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -1981 (-388 *5)) (|:| |poly| *3)))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
+ (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6))))
+ (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530)))
+ (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4))
+ (-4 *4 (-330)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522))
+ (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522))
+ (-4 *3 (-984))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099))
+ (-4 *3 (-984)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4))
+ (-5 *1 (-758 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135))
- (-5 *1 (-1020 *4)))))
+ (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984))
+ (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1157 *6))
+ (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432))
+ (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-597 (-208))) (-5 *1 (-188)))))
+(((*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))))
+(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135))
+ (-4 *2 (-795))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270))
+ (-4 *1 (-354 *3)) (-4 *3 (-1135)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))))
+(((*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099))
+ (-4 *5 (-344)) (-5 *1 (-864 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5))
+ (-5 *1 (-864 *4 *5)) (-14 *4 (-1099))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344))
+ (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5))
+ (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-152)))
+ ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
+ (-4 *4 (-791)))))
+(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1)))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
+ (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1063))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804))))
+ ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-984)) (-4 *4 (-162))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))
+ (-4 *3 (-162)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-597
- (-2 (|:| |outval| *4) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 *4))))))
- (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
+ (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
+ (|:| |ub| (-597 (-788 (-208))))))
+ (-5 *1 (-249)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-388 (-530))))
+ (-5 *2 (-2 (|:| -2360 (-1080 *4)) (|:| -2373 (-1080 *4))))
+ (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1099)) (-5 *6 (-110))
+ (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-4 *3 (-13 (-1121) (-900) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))))
(((*1 *2 *1)
(-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
(-4 *4 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
- (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7)))
- (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
+ (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1099))
+ (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
+ (-5 *1 (-448)))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
+ (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *2 (-973)) (-5 *1 (-700)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-984))
+ (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289))
+ (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121)))
+ (-5 *1 (-210 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
+ (-4 *6 (-221 (-2267 *3) (-719)))
+ (-14 *7
+ (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
+ (-2 (|:| -1986 *5) (|:| -3194 *6))))
+ (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795))
+ (-4 *2 (-890 *4 *6 (-806 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-506)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-991))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027))
+ (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-632 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3))
+ (-4 *4 (-354 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *2 (-354 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-669)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522))
+ (-5 *1 (-910 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-991))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4))
+ (-4 *5 (-221 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-4 *2 (-221 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2))
+ (-4 *2 (-890 *3 (-502 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4))
- (-4 *4 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5))
- (-14 *3 (-719)) (-14 *4 (-719)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
(((*1 *2)
(-12 (-5 *2 (-637 (-851 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862))
(-14 *4 (-862))))
@@ -14928,103 +15483,179 @@
(-12 (-5 *2 (-637 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
(-14 *4
(-3 (-1095 *3)
- (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046)))))))))
+ (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))))))
((*1 *2)
(-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
(-14 *4 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110))
- (-5 *1 (-1080 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4))
- (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984))
- (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8))
- (-4 *7 (-1157 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
+ (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
+ (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)) (-4 *2 (-289))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
+ (-4 *2 (-635 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-637 (-297 (-208))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
+ (-5 *1 (-189)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4))))
+ (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
+ (-4 *1 (-348 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
+ (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
+ (-4 *4 (-1157 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-701)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-530)) (-5 *1 (-188)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
+ (-597
+ (-2 (|:| -2426 (-719))
+ (|:| |eqns|
+ (-597
+ (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
+ (|:| |cols| (-597 (-530))))))
+ (|:| |fgb| (-597 *7)))))
+ (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
+ (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289))
+ (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5))
+ (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3))
+ (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))))
+(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
+ (-4 *2 (-162)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3))))
+ ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))))
+(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
+ ((*1 *1 *1) (-5 *1 (-1046))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
+ (-4 *3 (-13 (-411 *6) (-27) (-1121)))
+ (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
- (-14 *4
- (-3 (-1095 *3)
- (-1181 (-597 (-2 (|:| -3387 *3) (|:| -1910 (-1046)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-862)))))
-(((*1 *1) (-5 *1 (-137))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-110)) (|:| -3852 (-719)) (|:| |period| (-719))))
- (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1157 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3))
- (-4 *3 (-673 *4 *2))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4))
- (-5 *1 (-274 *4)) (-4 *4 (-432))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
- (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4))
- (-4 *4 (-13 (-344) (-793)))))
+ (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1157 (-530)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099))
- (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5))
- (-4 *5 (-13 (-344) (-793)))))
+ (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3))
+ (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1157 (-530)))))
((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530))))
- (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099))
- (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5))
- (-4 *5 (-13 (-344) (-793))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7))
- (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5))
- (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-597 (-208))) (-5 *1 (-188)))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3))
+ (-4 *3 (-1157 (-388 (-530))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
+ (-4 *2 (-795)))))
+(((*1 *1) (-5 *1 (-771))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
+ ((*1 *1 *1 *1) (-5 *1 (-1046))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1020 (-788 *3))) (-4 *3 (-13 (-1121) (-900) (-29 *5)))
(-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
@@ -15143,13 +15774,13 @@
(-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-37 (-388 (-530))))
(-4 *3 (-984))))
((*1 *1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
(-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
(-4 *3 (-37 (-388 (-530))))))
(-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2596 ((-597 *2) *3)))
- (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
+ (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
+ (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
((*1 *1 *1 *2)
@@ -15158,838 +15789,315 @@
((*1 *1 *1)
(-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
((*1 *1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
(-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
(-4 *3 (-37 (-388 (-530))))))
(-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2596 ((-597 *2) *3)))
- (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
+ (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
+ (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5))
(-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-1476
+ (-1461
(-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
(-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
(-4 *3 (-37 (-388 (-530))))))
(-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2596 ((-597 *2) *3)))
- (|has| *3 (-15 -1637 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
+ (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
+ (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5))
(-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *1 (-330))
- (-5 *2 (-597 (-2 (|:| -2473 (-530)) (|:| -3059 (-530))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
- (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))))
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984))
- (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7))
- (-4 *6 (-1157 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
- (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7))
- (-4 *6 (-1157 *4)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-2 (|:| -4135 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6))
- (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6))
- (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))))
+ (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5))
+ (-5 *2 (-637 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-4 *3 (-998 *5 *6 *7))
+ (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))
+ (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862))
- (-4 *2 (-13 (-984) (-10 -7 (-6 (-4272 "*"))))) (-5 *1 (-843 *4 *2)))))
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4))
+ (-5 *1 (-1100 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3))
+ (-4 *3 (-984)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
+ (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
- (-4 *3 (-1135)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289))
- (-4 *10 (-890 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-597 (-1095 *10)))
- (|:| |dterm|
- (-597 (-597 (-2 (|:| -1321 (-719)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10))))
- (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6))
- (-5 *5 (-597 *10)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -3853 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3))))
- (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4))))
+ (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
+ (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *1) (-4 *1 (-330))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
- (-4 *3 (-1135)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5))
- (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6))
- (-14 *7 (-862)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-176)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+ (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
+ ((*1 *1 *1 *1) (-5 *1 (-1046))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-411 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
-(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(((*1 *2)
- (-12 (-4 *1 (-330))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2))
- (-4 *2 (-1172 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
- (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2))
- (-4 *2 (-1172 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
- (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1076 *4)))))
+ (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
+ (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
+ (-5 *1 (-891 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
+ (-15 -1928 (*7 $))))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
+ (-4 *4 (-1135)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2350 *4))))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-176)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+ (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3))
+ (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862))
- (-5 *2
- (-3 (-1095 *4)
- (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046)))))))
- (-5 *1 (-327 *4)) (-4 *4 (-330)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186))
- (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-719))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-176)))))
+ (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4)))
+ (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1157 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121)))
- (-5 *1 (-210 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *6 (-221 (-2167 *3) (-719)))
- (-14 *7
- (-1 (-110) (-2 (|:| -1910 *5) (|:| -3059 *6))
- (-2 (|:| -1910 *5) (|:| -3059 *6))))
- (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795))
- (-4 *2 (-890 *4 *6 (-806 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-506)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-991))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-632 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3))
- (-4 *4 (-354 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *2 (-354 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-669)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522))
- (-5 *1 (-910 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-991))))
- ((*1 *1 *1 *1) (-4 *1 (-1039)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4))
- (-4 *5 (-221 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
- (-4 *2 (-221 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2))
- (-4 *2 (-890 *3 (-502 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-862))
- (-5 *2 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))
- (-5 *1 (-327 *4)) (-4 *4 (-330)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *1 *1) (-5 *1 (-360)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *4))))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-637 *2)) (-5 *4 (-530))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3))
- (-4 *3 (-1003 *4 *5 *6 *2)))))
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027))
+ (-4 *2 (-1135)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-795) (-522))))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6)))
+ (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027))
+ (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8))
+ (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-637 *2)) (-5 *4 (-719))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3550 ((-399 $) $)))))
- (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135))
- (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984))
- (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110))
- (-5 *1 (-622 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
- (-5 *2 (-1181 (-597 (-2 (|:| -3387 *4) (|:| -1910 (-1046))))))
- (-5 *1 (-327 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1075))))
+ (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099))
+ (-4 *2 (-13 (-27) (-1121) (-411 *5)))
+ (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *1 (-259 *5 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
- (-5 *2
- (-597
- (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 (-159 *4)))))))
- (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5))
- (-5 *2
- (-597
- (-2 (|:| -3853 (-637 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-637 *6)))))
- (-5 *1 (-476 *5 *6 *7))
- (-5 *3
- (-2 (|:| -3853 (-637 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-637 *6))))
- (-4 *7 (-1157 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
- (-5 *1 (-174)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135))
- (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984))
- (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1 *1) (-5 *1 (-1046))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046)))
- (-5 *1 (-327 *4)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
+ (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-530)))))
- (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3))
- (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6))
- (-4 *6 (-1157 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
- (-5 *1 (-174)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349))
- (-4 *3 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
- (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)) (-4 *2 (-289))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-1095 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
+ (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *9) (|:| |radicand| *9)))
+ (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719))
+ (-4 *9
+ (-13 (-344)
+ (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-719)))))
+ (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2))
+ (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
- (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3))
- (-4 *3 (-998 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3))
- (-4 *3 (-998 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-717))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-735)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |fn| (-297 (-208)))
- (|:| -2902 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))
- (|:| |extra| (-973))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-735)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))
- (|:| |extra| (-973))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-748)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-756))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-756)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3677 (-597 (-208)))))
- (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |fn| (-297 (-208))) (|:| -3677 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-786))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-785))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10))
+ (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8))
+ (-4 *10 (-1036 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-786)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-785))))
+ (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
+ (-5 *1 (-582 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-836)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-2 (|:| -1523 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-839))
+ (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-597 (-1099)))
(-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-838))))
+ (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
+ (-5 *1 (-582 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
+ (-5 *1 (-981 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-839)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -1523 (-360)) (|:| -3901 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-838)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4271)) (-4 *4 (-344)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4271)) (-4 *4 (-522)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7))
- (-4 *9 (-354 *7)) (-5 *2 (-597 *6))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6))
- (-4 *10 (-635 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5))))
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-1003 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
+ (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-597 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
- (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
+ (-4 *1 (-1129 *4 *5 *6 *7)))))
(((*1 *1 *2 *2)
(-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-719)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1135)))))
+(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) ((*1 *1) (-4 *1 (-515)))
+ ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
+ ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
+ ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795))
+ (-4 *4 (-795)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-735)) (-5 *2 (-973))
+ (-5 *3
+ (-2 (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-735)) (-5 *2 (-973))
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208)))))))
+(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-522)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984))
+ (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
+ (-4 *3 (-797 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4))
+ (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
+ (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
+ (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-893 *4)))
+ (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
+ (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4))
- (-4 *4 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530)))
- (-5 *1 (-174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099))
- (-4 *5 (-344)) (-5 *1 (-864 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5))
- (-5 *1 (-864 *4 *5)) (-14 *4 (-1099))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344))
- (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *1) (-5 *1 (-751))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
+ (-5 *2
+ (-2 (|:| -2214 (-719)) (|:| |curves| (-719))
+ (|:| |polygons| (-719)) (|:| |constructs| (-719)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
+ (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795))
- (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741))
+ (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
+ (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
(-5 *2
- (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed"))
- (|:| -3853 (-597 (-1181 (-388 *8))))))
- (-5 *1 (-620 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7))
+ (-3 (-788 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
+ "failed"))
+ (-5 *1 (-590 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082))
+ (-4 *3 (-13 (-27) (-1121) (-411 *6)))
+ (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432))
(-5 *2
- (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8)))))
- (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7))
+ (-3 (-788 (-388 (-893 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
+ (-4 *5 (-432))
(-5 *2
- (-2 (|:| |val| (-597 *8))
- (|:| |towers| (-597 (-1070 *5 *6 *7 *8)))))
- (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *4))
- (-4 *4 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+ (-3 (-788 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
+ "failed"))
+ (-5 *1 (-591 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082))
+ (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3))
+ (-5 *1 (-591 *6)))))
(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
((*1 *2 *1)
(-12 (-4 *3 (-1027))
@@ -16000,60 +16108,88 @@
(-12 (-4 *2 (-1027)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1027)))))
(((*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504))))
((*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-227 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
- (-5 *2 (-110)) (-5 *1 (-618 *5))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
+ (-5 *1 (-119 *3)) (-4 *3 (-795))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121)))
+ (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
+ (-5 *1 (-545 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-547 (-388 (-893 *3))))
+ (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
+ (-5 *1 (-550 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4271))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4271)))) (-5 *2 (-110))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-597 *11))
- (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2350 *11))))))
- (-5 *6 (-719))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2350 *11))))
- (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
- (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-597 *11))
- (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2350 *11))))))
- (-5 *6 (-719))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2350 *11))))
- (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
- (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -4182 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031))
- (-5 *1 (-708))))
+ (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
+ (-5 *3 (-597 (-637 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031))
- (-5 *1 (-708)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
+ (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984))
+ (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
+ (-5 *3 (-597 (-637 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-637 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795))
+ (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
+ (-4 *1 (-411 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795))
+ (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
+ (-4 *1 (-411 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
+ (-4 *1 (-411 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-719))))
+ (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-719))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-4 *7 (-890 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-530))))
+ (-5 *1 (-891 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
+ (-15 -1928 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7))
+ (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
+ (-4 *7 (-1135))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6))
+ (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-984)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
((*1 *2 *1)
(-12 (-4 *3 (-1027))
@@ -16064,504 +16200,519 @@
(-12 (-4 *2 (-1027)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1027)))))
(((*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504))))
((*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-836))
- (-5 *3
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-973)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1121) (-941))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4))
- (-4 *4 (-850)) (-5 *1 (-614 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
- (-5 *2
- (-2 (|:| -3511 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -4176 (-388 *6))
- (|:| |special| (-388 *6))))
- (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6))))
+ (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
+ (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -3648 *3) (|:| -3657 *3))) (-5 *1 (-837 *3 *5))
- (-4 *3 (-1157 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4))
- (-4 *4 (-1157 *2)))))
+ (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4))))
- (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+ (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
+ (-5 *7 (-637 (-530)))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
+ (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
+ (-4 *2 (-635 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-128)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
+ (-14 *4 (-719)) (-4 *5 (-162)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
+ (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
+ (-4 *4 (-635 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-700)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
- (-4 *2 (-607 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5))))
+ (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
(((*1 *1 *1) (-5 *1 (-1098)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1345 (-297 (-360)))
+ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
(|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
(-5 *1 (-1098)))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982))
- (-5 *3 (-530)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
- (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+ (-12 (-4 *4 (-984))
+ (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-862)) (-4 *5 (-984))
+ (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
+ (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
+(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
+(((*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-530))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
+ (-5 *1 (-429 *5 *6 *7 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
+ (-4 *5 (-1157 *4))
+ (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2776 *5))))
+ (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5))
+ (-4 *6 (-607 (-388 *5))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2))
+ (-4 *2 (-1135)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
+ (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
+ (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))
+ (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099))))
+ (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208)))
+ (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
+ (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
+ (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
+ (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
+ (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795))
+ (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984))
+ (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
+ (-4 *4 (-1157 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
+ (-4 *3 (-795)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795))
+ (-4 *2 (-740))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3))
+ (-5 *2 (-530))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
+ (-5 *2 (-388 (-530)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
+ (-5 *2 (-719)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-430 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
+ (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344))
(-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
+ (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6))))
+ (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))))
(((*1 *2 *3)
(-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5))
- (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4))
- (-5 *1 (-956 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
- (-4 *2 (-607 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
+(((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-344) (-140)))
+ (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4))))
+ (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
+ (-1181
+ (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530))
+ (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530))
+ (|:| |axesColor| (-815)) (|:| -1854 (-530))
+ (|:| |unitsColor| (-815)) (|:| |showing| (-530)))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2350 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162))
- (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (|has| *1 (-6 -4271)) (-4 *1 (-1169 *3))
- (-4 *3 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3))
- (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289))
- (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5))))
- (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))))
+ (-2 (|:| -2065 *3) (|:| |gap| (-719)) (|:| -1324 (-730 *3))
+ (|:| -3304 (-730 *3))))
+ (-5 *1 (-730 *3)) (-4 *3 (-984))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2
+ (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1)
+ (|:| -3304 *1)))
+ (-4 *1 (-998 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *2
+ (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1)
+ (|:| -3304 *1)))
+ (-4 *1 (-998 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-719)))))
+(((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))))
+(((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973))
+ (-5 *1 (-699)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110))
+ (-5 *1 (-1080 *4)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1)))
+ (-4 *1 (-1003 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162))
+ (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162))
+ (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
- (-14 *6 *4))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
- (-5 *1 (-830 *4 *5)) (-4 *5 (-1027))))
+ (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
+ (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
+ (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110))
- (-5 *1 (-831 *5 *3)) (-4 *3 (-1135))))
+ (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522))
+ (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2)
- (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862))
+ (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
+ (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
+ (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-733 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795))
+ (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522))
+ (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-733 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
+ (-5 *1 (-302 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
+ (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-624 *4)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1166 *4 *5 *6))
- (|:| |%expon| (-300 *4 *5 *6))
- (|:| |%expTerms|
- (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))))
- (|:| |%type| (-1082))))
- (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3)))
- (-14 *5 (-1099)) (-14 *6 *4))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4135 (-112)) (|:| |arg| (-597 (-833 *3)))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4)))
- (-5 *1 (-833 *4)) (-4 *4 (-1027)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795)))
- (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4))))
- (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-5 *1 (-152)))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1068))))
+ (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719))
+ (-5 *2
+ (-597
+ (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
+ (-230 *4 (-388 (-530))))))
+ (-5 *1 (-483 *4 *5))
+ (-5 *3
+ (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
+ (-230 *4 (-388 (-530))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
+(((*1 *2)
+ (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))))
(((*1 *2 *3 *3 *4)
(-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4))
- (-14 *3 (-597 (-1099))) (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099)))
- (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-221 (-2167 *3) (-719)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4))
- (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2))
- (-4 *2 (-624 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-4 *7 (-1157 (-388 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3403 *3)))
+ (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |answer| (-388 *6)) (|:| -3403 (-388 *6))
+ (|:| |specpart| (-388 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *1 *1) (-5 *1 (-996))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
(((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
- (-5 *2 (-388 (-530))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
+ (-4 *4 (-1027)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
+(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-176)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344))
+ (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4))
+ (-5 *1 (-424 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5)))
+ (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-245))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110))))
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *2 (-1186)) (-5 *1 (-1183))))
((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
(-4 *2 (-411 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
- ((*1 *1 *1) (-4 *1 (-151))))
-(((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-793)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -4162 (-399 *3))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+ ((*1 *1 *1 *1) (-4 *1 (-1063))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183))))
+ ((*1 *1 *1) (-5 *1 (-1183))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4))))
- (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984))
- (-4 *2 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4271)) (-4 *1 (-354 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *1 *1) (-4 *1 (-1068))))
+ (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
- (-5 *2
- (-2 (|:| |dpolys| (-597 (-230 *5 *6)))
- (|:| |coords| (-597 (-530)))))
- (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3))
- (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530))))
+ (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5))
+ (-4 *5 (-890 *4 (-502 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4))
+ (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
@@ -16573,15 +16724,14 @@
((*1 *2 *1)
(-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
(-4 *5 (-221 *3 *2)) (-4 *2 (-984)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3))))
+ (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
(-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -2902 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(-5 *2
(-2
@@ -16599,7 +16749,7 @@
(-3 (|:| |str| (-1080 (-208)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2902
+ (|:| -1300
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -16624,299 +16774,270 @@
(-12 (-5 *3 (-530)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4))
(-4 *4 (-1027))))
((*1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-515)) (-4 *2 (-522)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
- (-5 *1 (-119 *3)) (-4 *3 (-795))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121)))
- (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *1 (-545 *3 *4))))
+(((*1 *2)
+ (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
((*1 *2 *2)
- (-12 (-5 *2 (-547 (-388 (-893 *3))))
- (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *1 (-550 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -4176 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6))
- (-4 *6 (-432)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-530))))
- (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2108 ($ $ $)))))
- (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
+ (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1))
+ (-4 *1 (-310 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-4 *2 (-1157 *3))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2))
- (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2258 ($ *6)) (-15 -1848 (*6 $))
- (-15 -1857 (*6 $)))))))
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
+ (-5 *1 (-500 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
+ (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-1099)) (-5 *1 (-980 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2)
(-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-890 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1)))
+ (-4 *1 (-1157 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6)
+ (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4046 *6)))
+ (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
+ (-5 *1 (-615 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4))
+ (-4 *3 (-795)) (-4 *4 (-162)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
+ (-5 *1 (-1055 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
+ (-4 *5 (-13 (-289) (-795) (-140)))
+ (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
+ (-5 *1 (-1055 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
- (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7))
- (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1157 (-159 *3))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2350 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1139)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2))
- (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2108 ($ $ $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2))
+ (-4 *2 (-1027))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795))
+ (-5 *1 (-1136 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2))
+ (-4 *2 (-599 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *1 *3 *4)
(-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099)))
- (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984))
+ (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
+ (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
+ (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))))
(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+ (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862))
+ (-14 *4 (-862))))
+ ((*1 *2)
+ (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-1095 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-862)))))
(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-231)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
+ (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973))
+ (-5 *1 (-695)))))
+(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135))))
((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3))
- (-4 *4 (-354 *3))))
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135))))
((*1 *1 *1)
- (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
(-12 (-4 *4 (-795))
(-5 *2
(-2 (|:| |f1| (-597 *4)) (|:| |f2| (-597 (-597 (-597 *4))))
(|:| |f3| (-597 (-597 *4))) (|:| |f4| (-597 (-597 (-597 *4))))))
(-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 (-597 *4)))))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741))
+ (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3))
+ (-5 *1 (-442 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-975 (-388 (-530))) (-344)
+ (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
+ (-15 -1928 (*7 $))))))))
(((*1 *2 *3 *3)
(-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))
- (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2693 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -1981 *3) (|:| -3931 *4))))
- (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4))
- (-14 *3 (-719)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *4 (-597 (-862))) (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448))))
- ((*1 *1 *1) (-5 *1 (-448))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1157 (-159 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
+ (-4 *4 (-37 (-388 (-530)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-287))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984))
+ (-4 *3 (-522))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
+ (-4 *2 (-607 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7))
+ (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344)))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6))
- (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862)))))
- ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984))
- (-4 *3 (-795))))
+ (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
+ (-14 *8 (-597 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5))
+ (-14 *9 (-597 *3)) (-14 *10 *3))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804))
+ (-4 *1 (-951))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344)))
+ (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135))
+ (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795))
- (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719))
- (-5 *1 (-853 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344))
- (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4))
- (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719))
- (-5 *1 (-957 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+ (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984))
+ (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-597
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
+ (-5 *1 (-429 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
+ (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
+ (-14 *4 (-719)) (-4 *5 (-162)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793)))
- (-5 *2 (-597 (-2 (|:| -4162 (-597 *3)) (|:| -3906 *5))))
- (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-344) (-793)))
- (-5 *2 (-597 (-2 (|:| -4162 (-597 *3)) (|:| -3906 *4))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
+ (-12 (-5 *3 (-597 (-597 (-884 (-208)))))
+ (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
+ (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
+ (-4 *4 (-984)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3))
+ (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140)))
+ (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))))
+(((*1 *1) (-5 *1 (-418))))
(((*1 *1 *2)
(-12 (-5 *2 (-862)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2)
(-4 *4 (-344)) (-14 *5 (-933 *3 *4)))))
-(((*1 *1 *1) (-4 *1 (-993)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *1 (-970 *2))
- (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-128))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
+(((*1 *1) (-5 *1 (-996))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
+ (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *5))))
+ (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5))
+ (-5 *1 (-200 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-2 (|:| -2611 *5) (|:| -1429 (-530)))))
+ (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5))
+ (-5 *1 (-644 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4))
+ (-4 *4 (-13 (-344) (-793))))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9)))
+ (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719)))
+ (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11))
+ (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12)))
+ (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
+ (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135))))
@@ -16925,75 +17046,92 @@
((*1 *2 *1 *3)
(-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
(-4 *6 (-998 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -1702 *1) (|:| |upper| *1)))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3175 *1) (|:| |upper| *1)))
(-4 *1 (-916 *4 *5 *3 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
+ (-4 *3 (-599 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245)))
- (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4))
- (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+(((*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984))))
+ ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-795))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
+ (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795))
+ (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
+ (-5 *3 (-530)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5))
+ (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530)))
+ (-5 *1 (-824)))))
+(((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-4 *4 (-162)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-5 *1 (-704)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *1 *1) (-5 *1 (-804))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-984))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
+ (-4 *1 (-797 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4))
+ (-14 *3 (-597 (-1099))) (-4 *4 (-984))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
+ (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099)))
+ (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984))
+ (-4 *5 (-221 (-2267 *3) (-719)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5))
- (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33)))
- (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4))
+ (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-941))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
(((*1 *2 *1 *3 *4 *4 *5)
(-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-862))
(-5 *2 (-1186)) (-5 *1 (-448))))
@@ -17002,1178 +17140,1036 @@
((*1 *2 *1 *3 *4 *4 *5)
(-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-862))
(-5 *2 (-1186)) (-5 *1 (-448)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984))
- (-5 *2 (-1181 *4)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349))
- (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6))
- (-5 *3 (-597 (-637 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984))
- (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4))
- (-5 *3 (-597 (-637 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5))
- (-4 *5 (-984))
- (-5 *2 (-2 (|:| -1896 (-637 *5)) (|:| |vec| (-1181 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984))
- (-5 *2 (-637 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
- (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344))
- (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984))
- (-5 *2 (-110)) (-5 *1 (-967 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344))
- (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5))
- (-3694 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5)))
- (-5 *1 (-592 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4270)) (-4 *1 (-218 *3))
- (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-218 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027))
- (-5 *1 (-686 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *1 (-448)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))))
+ (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
+ (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
+(((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))))
+(((*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208)))
+ (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110))
+ (-5 *2 (-973)) (-5 *1 (-703)))))
+(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522))))
+ ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
+ (-5 *2 (-973)) (-5 *1 (-694)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027))
+ (-5 *1 (-830 *4 *2)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
(((*1 *2 *1)
(-12 (-5 *2 (-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))))
(-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530))
- (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4))
- (-4 *4 (-344)) (-4 *4 (-984))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5))
- (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
- (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
- (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
- (-4 *3 (-323 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
- (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
- (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
- (-5 *1 (-1065 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208)))
- (-5 *1 (-448)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-597 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5))
+ (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 *3))))
+ (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6))
+ (-4 *7 (-607 (-388 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-597 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-4 *6 (-1157 *5))
+ (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 (-605 *6 (-388 *6))))))
+ (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
(((*1 *1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1 *1) (-5 *1 (-1046))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289))
- (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))))
+ (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4)))
+ (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
+ (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5))))
+ (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
- (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
- (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
- (-4 *3 (-323 *4 *2 *5))))
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-637 *4))))
((*1 *2)
- (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
- (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
+ (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110))
- (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
- (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))
- ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+ (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
+ (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
(((*1 *1) (-5 *1 (-311))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1) (-5 *1 (-148))))
+(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
(((*1 *1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984))
- (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (-788 *3)
- (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
- "failed"))
- (-5 *1 (-590 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432))
- (-5 *2
- (-3 (-788 (-388 (-893 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")))
- "failed"))
- (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-432))
- (-5 *2
- (-3 (-788 *3)
- (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
- "failed"))
- (-5 *1 (-591 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082))
- (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3))
- (-5 *1 (-591 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139))
- (-4 *6 (-1157 (-388 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-323 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
- (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2)
- (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130))
- (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-162))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862))))
- ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-148))))
+ (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530)))))
+ (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
+ (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795))
+ (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8))
+ (-4 *8 (-890 *3 *7 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
+ (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-530)) (-5 *1 (-188)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5))
+ (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110))
+ (-5 *1 (-622 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3))
+ (-4 *3 (-13 (-411 *7) (-27) (-1121)))
+ (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
+ (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121)))
+ (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121)))
+ (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
(((*1 *1 *2)
(-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3))))
((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984))
- (-5 *1 (-967 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-276 (-781 *3)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6)))
+ (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432))
- (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5))
- (-5 *3 (-388 (-893 *5)))))
+ (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4))
+ (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
- (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5)))
- (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344))
- (-5 *2 (-597 (-893 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *2 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
+ (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3))))
+ (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984))
+ (-3676 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5))
+ (-4 *4 (-572 (-833 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4))
+ (-3676 (-4 *3 (-975 (-1099)))) (-3676 (-4 *3 (-984)))
+ (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
+ (-14 *4 (-597 (-1099)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
+ (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
+ (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
+ (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
+ (-4 *2 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2))
+ (-4 *4 (-1157 (-388 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
+ (-4 *2 (-795)) (-4 *3 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
+ (-4 *4 (-795)) (-4 *2 (-432))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2))
+ (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
+ (|:| |success| (-110))))
+ (-5 *1 (-737)) (-5 *5 (-530)))))
+(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-637 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
+ (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
+ ((*1 *1 *1) (|partial| -4 *1 (-671))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (-5 *1 (-865 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-148))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984))
+ (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8))
+ (-4 *7 (-1157 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
+ (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4))
- (-5 *1 (-967 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-5 *1 (-586))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6))
- (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))))
+ (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
+ (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))))
(((*1 *2 *3)
(-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
(-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
- (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
- (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110))
- (-5 *1 (-865 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4))
- (-5 *1 (-966 *5)) (-4 *5 (-984))))
+ (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5))))
+ (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349))
+ (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6))
+ (-5 *3 (-597 (-637 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4))
- (-4 *4 (-984))))
+ (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984))
+ (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4))
+ (-5 *3 (-597 (-637 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530))
- (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-966 *4)) (-4 *4 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432))
- (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
+ (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
+ (-5 *3 (-597 (-637 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
+ (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
+ (-5 *3 (-597 (-637 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
- ((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
+ (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1121))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
+ (-5 *2 (-973)) (-5 *1 (-701)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4261)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3)))
- (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2))
- (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6))
- (-4 *6 (-323 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3)))
- (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344))
- (-4 *1 (-316 *3 *4 *5 *6)))))
-((-1212 . 726851) (-1213 . 726712) (-1214 . 726494) (-1215 . 726182)
- (-1216 . 726133) (-1217 . 725926) (-1218 . 725825) (-1219 . 725711)
- (-1220 . 725623) (-1221 . 725370) (-1222 . 725241) (-1223 . 724775)
- (-1224 . 724747) (-1225 . 724523) (-1226 . 724422) (-1227 . 724308)
- (-1228 . 724223) (-1229 . 724086) (-1230 . 723963) (-1231 . 723652)
- (-1232 . 723567) (-1233 . 723462) (-1234 . 723434) (-1235 . 723128)
- (-1236 . 723012) (-1237 . 722960) (-1238 . 722846) (-1239 . 722747)
- (-1240 . 722610) (-1241 . 722502) (-1242 . 722150) (-1243 . 721648)
- (-1244 . 721542) (-1245 . 721413) (-1246 . 721385) (-1247 . 721186)
- (-1248 . 720452) (-1249 . 720338) (-1250 . 720239) (-1251 . 720120)
- (-1252 . 720012) (-1253 . 719786) (-1254 . 718476) (-1255 . 718327)
- (-1256 . 718261) (-1257 . 718233) (-1258 . 718119) (-1259 . 718091)
- (-1260 . 717865) (-1261 . 717746) (-1262 . 717441) (-1263 . 717347)
- (-1264 . 717072) (-1265 . 716957) (-1266 . 716817) (-1267 . 716751)
- (-1268 . 716680) (-1269 . 716594) (-1270 . 716480) (-1271 . 716380)
- (-1272 . 716240) (-1273 . 715930) (-1274 . 715818) (-1275 . 715431)
- (-1276 . 715299) (-1277 . 714886) (-1278 . 714766) (-1279 . 714689)
- (-1280 . 714572) (-1281 . 714469) (-1282 . 714382) (-1283 . 713639)
- (-1284 . 713527) (-1285 . 713343) (-1286 . 713024) (-1287 . 712778)
- (-1288 . 712674) (-1289 . 712597) (-1290 . 712519) (-1291 . 712246)
- (-1292 . 712166) (-1293 . 712079) (-1294 . 711902) (-1295 . 711846)
- (-1296 . 711734) (-1297 . 711600) (-1298 . 711345) (-1299 . 710676)
- (-1300 . 710575) (-1301 . 710477) (-1302 . 710399) (-1303 . 710072)
- (-1304 . 709985) (-1305 . 709840) (-1306 . 709769) (-1307 . 709657)
- (-1308 . 709491) (-1309 . 709420) (-1310 . 709267) (-1311 . 709185)
- (-1312 . 707995) (-1313 . 707608) (-1314 . 707313) (-1315 . 707226)
- (-1316 . 707121) (-1317 . 706692) (-1318 . 706580) (-1319 . 706414)
- (-1320 . 706044) (-1321 . 705934) (-1322 . 705852) (-1323 . 705664)
- (-1324 . 705549) (-1325 . 705203) (-1326 . 705130) (-1327 . 704993)
- (-1328 . 704875) (-1329 . 704763) (-1330 . 704629) (-1331 . 704342)
- (-1332 . 704290) (-1333 . 704211) (-1334 . 701964) (-1335 . 701862)
- (-1336 . 701477) (-1337 . 701340) (-1338 . 701242) (-1339 . 701066)
- (-1340 . 700932) (-1341 . 700821) (-1342 . 700769) (-1343 . 700698)
- (-1344 . 700319) (-1345 . 700242) (-1346 . 699980) (-1347 . 699952)
- (-1348 . 699715) (-1349 . 699628) (-1350 . 699142) (-1351 . 699072)
- (-1352 . 698994) (-1353 . 698941) (-1354 . 698807) (-1355 . 698711)
- (-1356 . 698517) (-1357 . 698424) (-1358 . 698353) (-1359 . 697908)
- (-1360 . 697806) (-1361 . 697607) (-1362 . 697520) (-1363 . 697410)
- (-1364 . 697225) (-1365 . 697091) (-1366 . 696995) (-1367 . 696520)
- (-1368 . 696449) (-1369 . 696214) (-1370 . 696009) (-1371 . 695829)
- (-1372 . 695742) (-1373 . 694639) (-1374 . 694581) (-1375 . 694450)
- (-1376 . 693800) (-1377 . 692504) (-1378 . 692414) (-1379 . 692365)
- (-1380 . 691940) (-1381 . 691869) (-1382 . 691619) (-1383 . 691506)
- (-1384 . 691256) (-1385 . 691169) (-1386 . 691137) (-1387 . 691079)
- (-1388 . 690948) (-1389 . 690723) (-1390 . 690674) (-1391 . 690603)
- (-1392 . 690507) (-1393 . 690405) (-1394 . 690350) (-1395 . 690263)
- (-1396 . 690177) (-1397 . 689839) (-1398 . 689708) (-1399 . 689565)
- (-1400 . 689516) (-1401 . 689445) (-1402 . 689365) (-1403 . 689204)
- (-1404 . 689047) (-1405 . 688969) (-1406 . 688882) (-1407 . 688850)
- (-1408 . 688562) (-1409 . 688179) (-1410 . 688083) (-1411 . 688016)
- (-1412 . 687917) (-1413 . 687812) (-1414 . 687657) (-1415 . 687562)
- (-1416 . 687191) (-1417 . 687101) (-1418 . 687015) (-1419 . 686931)
- (-1420 . 686804) (-1421 . 686661) (-1422 . 686458) (-1423 . 686202)
- (-1424 . 685727) (-1425 . 685630) (-1426 . 685570) (-1427 . 685477)
- (-1428 . 685055) (-1429 . 684923) (-1430 . 684795) (-1431 . 684725)
- (-1432 . 684653) (-1433 . 684278) (-1434 . 683827) (-1435 . 683745)
- (-1436 . 683672) (-1437 . 683579) (-1438 . 683157) (-1439 . 683103)
- (-1440 . 683051) (-1441 . 682799) (-1442 . 682592) (-1443 . 682475)
- (-1444 . 682303) (-1445 . 682201) (-1446 . 682082) (-1447 . 681999)
- (-1448 . 681903) (-1449 . 681345) (-1450 . 681290) (-1451 . 681166)
- (-1452 . 680989) (-1453 . 680738) (-1454 . 680622) (-1455 . 680538)
- (-1456 . 680454) (-1457 . 680371) (-1458 . 680321) (-1459 . 679207)
- (-1460 . 679155) (-1461 . 678989) (-1462 . 678737) (-1463 . 678528)
- (-1464 . 678208) (-1465 . 678009) (-1466 . 677507) (-1467 . 677345)
- (-1468 . 677261) (-1469 . 677178) (-1470 . 677128) (-1471 . 675404)
- (-1472 . 675330) (-1473 . 675206) (-1474 . 675029) (-1475 . 674945)
- (-1476 . 674773) (-1477 . 674390) (-1478 . 674306) (-1479 . 674222)
- (-1480 . 674121) (-1481 . 674068) (-1482 . 672495) (-1483 . 672421)
- (-1484 . 672169) (-1485 . 672048) (-1486 . 671964) (-12 . 671792)
- (-1488 . 671364) (-1489 . 671283) (-1490 . 671176) (-1491 . 670866)
- (-1492 . 670782) (-1493 . 670723) (-1494 . 670463) (-1495 . 669663)
- (-1496 . 669580) (-1497 . 669456) (-1498 . 669141) (-1499 . 669080)
- (-1500 . 668982) (-1501 . 668621) (-1502 . 668514) (-1503 . 668204)
- (-1504 . 668120) (-1505 . 667996) (-1506 . 667946) (-1507 . 667445)
- (-1508 . 667362) (-1509 . 667077) (-1510 . 666799) (-1511 . 666410)
- (-1512 . 666310) (-1513 . 666253) (-1514 . 666156) (-1515 . 666032)
- (-1516 . 665998) (-1517 . 665594) (-1518 . 665539) (-1519 . 665266)
- (-1520 . 665060) (-1521 . 664939) (-1522 . 664055) (-1523 . 660770)
- (-1524 . 660698) (-1525 . 660628) (-1526 . 660575) (-1527 . 660510)
- (-1528 . 659856) (-1529 . 659703) (-1530 . 659430) (-1531 . 659303)
- (-1532 . 658724) (-1533 . 658650) (-1534 . 658593) (-1535 . 658484)
- (-1536 . 658414) (-1537 . 658359) (-1538 . 658322) (-1539 . 658250)
- (-1540 . 657952) (-1541 . 657860) (-1542 . 657775) (-1543 . 656960)
- (-1544 . 656865) (-1545 . 656649) (-1546 . 656555) (-1547 . 656220)
- (-1548 . 656083) (-1549 . 656011) (-1550 . 655949) (-1551 . 655847)
- (-1552 . 655755) (-1553 . 655682) (-1554 . 655432) (-1555 . 655239)
- (-1556 . 655023) (-1557 . 654926) (-1558 . 654597) (-1559 . 654359)
- (-1560 . 654317) (-1561 . 654172) (-1562 . 654086) (-1563 . 653993)
- (-1564 . 653743) (-1565 . 653550) (-1566 . 653379) (-1567 . 653327)
- (-1568 . 653243) (-1569 . 653055) (-1570 . 652895) (-1571 . 652449)
- (-1572 . 652308) (-1573 . 652237) (-1574 . 651993) (-1575 . 651922)
- (-1576 . 651706) (-1577 . 651622) (-1578 . 651431) (-1579 . 650887)
- (-1580 . 650441) (-1581 . 650284) (-1582 . 650228) (-1583 . 649984)
- (* . 645461) (-1585 . 645390) (-1586 . 645219) (-1587 . 644728)
- (-1588 . 644561) (-1589 . 644363) (-1590 . 643917) (-1591 . 643751)
- (-1592 . 643695) (-1593 . 643451) (-1594 . 643368) (-1595 . 643197)
- (-1596 . 643140) (-1597 . 642567) (-1598 . 642226) (-1599 . 642009)
- (-1600 . 641484) (-1601 . 641393) (-1602 . 641337) (-1603 . 641218)
- (-1604 . 640974) (-1605 . 640891) (-1606 . 640720) (-1607 . 640667)
- (-1608 . 640457) (-1609 . 640287) (-1610 . 640122) (-1611 . 640032)
- (-1612 . 640004) (-1613 . 639933) (-1614 . 639689) (-1615 . 639564)
- (-1616 . 639393) (-1617 . 639319) (-1618 . 639073) (-1619 . 638664)
- (-1620 . 638571) (-1621 . 638487) (-1622 . 638416) (-1623 . 638172)
- (-1624 . 638039) (-1625 . 637769) (-1626 . 637500) (-1627 . 637170)
- (-1628 . 637000) (-1629 . 636782) (-1630 . 636699) (-1631 . 636582)
- (-1632 . 636530) (-1633 . 636433) (-1634 . 636362) (-1635 . 636118)
- (-1636 . 636035) (-1637 . 629081) (-1638 . 628839) (-1639 . 628643)
- (-1640 . 627558) (-1641 . 627395) (-1642 . 627367) (-1643 . 626888)
- (-1644 . 626807) (-1645 . 626563) (-1646 . 626489) (-1647 . 626242)
- (-1648 . 626032) (-1649 . 625805) (-1650 . 625682) (-1651 . 625568)
- (-1652 . 625516) (-1653 . 625157) (-1654 . 625077) (-1655 . 624961)
- (-1656 . 624793) (-1657 . 624737) (-1658 . 624605) (-1659 . 624431)
- (-1660 . 624336) (-1661 . 624119) (-1662 . 624042) (-1663 . 623815)
- (-1664 . 623649) (-1665 . 623209) (-1666 . 623124) (-1667 . 622268)
- (-1668 . 622116) (-1669 . 621613) (-1670 . 621530) (-1671 . 621108)
- (-1672 . 620978) (-1673 . 619764) (-1674 . 619620) (-1675 . 619532)
- (-1676 . 619501) (-1677 . 619397) (-1678 . 619244) (-1679 . 619017)
- (-1680 . 618887) (-1681 . 618788) (-1682 . 618718) (-1683 . 618418)
- (-1684 . 618070) (-1685 . 617966) (-1686 . 617799) (-1687 . 617528)
- (-1688 . 617367) (-1689 . 617268) (-1690 . 617208) (-1691 . 617138)
- (-1692 . 617107) (-1693 . 617035) (-1694 . 616809) (-1695 . 616724)
- (-1696 . 616557) (-1697 . 616419) (-1698 . 616316) (-1699 . 615975)
- (-1700 . 615905) (-1701 . 615700) (-1702 . 615601) (-1703 . 615229)
- (-1704 . 615130) (-1705 . 614989) (-1706 . 614931) (-1707 . 614851)
- (-1708 . 614661) (-1709 . 614562) (-1710 . 614479) (-1711 . 614361)
- (-1712 . 613884) (-1713 . 613826) (-1714 . 613749) (-1715 . 613656)
- (-1716 . 613557) (-1717 . 611778) (-1718 . 611691) (-1719 . 611567)
- (-1720 . 611444) (-1721 . 611338) (-1722 . 611232) (-1723 . 611165)
- (-1724 . 611047) (-1725 . 610934) (-1726 . 610851) (-1727 . 610705)
- (-1728 . 610519) (-1729 . 610283) (-1730 . 610177) (-1731 . 610017)
- (-1732 . 609964) (-1733 . 609821) (-1734 . 609700) (-1735 . 608635)
- (-1736 . 608413) (-1737 . 608242) (-1738 . 607404) (-1739 . 607297)
- (-1740 . 607230) (-1741 . 607087) (-1742 . 606992) (-1743 . 606799)
- (-1744 . 606673) (-1745 . 606538) (-1746 . 604684) (-1747 . 604549)
- (-1748 . 604465) (-1749 . 604322) (-1750 . 604219) (-1751 . 603888)
- (-1752 . 603744) (-1753 . 603677) (-1754 . 603609) (-1755 . 603474)
- (-1756 . 603391) (-1757 . 603111) (-1758 . 602971) (-1759 . 602818)
- (-1760 . 602732) (-1761 . 602436) (-1762 . 602284) (-1763 . 602216)
- (-1764 . 602148) (-1765 . 602026) (-1766 . 601924) (-1767 . 601628)
- (-1768 . 601466) (-1769 . 601379) (-1770 . 601311) (-1771 . 601213)
- (-1772 . 601013) (-1773 . 600870) (-1774 . 600785) (-1775 . 600677)
- (-1776 . 600367) (-1777 . 600275) (-1778 . 600119) (-1779 . 600032)
- (-1780 . 599964) (-1781 . 599816) (-1782 . 599748) (-1783 . 599663)
- (-1784 . 599555) (-1785 . 599397) (-1786 . 599013) (-1787 . 598696)
- (-1788 . 598502) (-1789 . 598333) (-1790 . 598265) (-1791 . 598167)
- (-1792 . 597919) (-1793 . 597834) (-1794 . 597726) (-1795 . 597597)
- (-1796 . 597283) (-1797 . 597209) (-1798 . 596958) (-1799 . 596873)
- (-1800 . 596594) (-1801 . 596403) (-1802 . 595222) (-1803 . 595078)
- (-1804 . 594896) (-1805 . 594766) (-1806 . 593564) (-1807 . 593316)
- (-1808 . 593214) (-1809 . 593140) (-1810 . 592652) (-1811 . 592285)
- (-1812 . 591819) (-1813 . 591633) (-1814 . 591423) (-1815 . 591175)
- (-1816 . 591087) (-1817 . 590857) (-1818 . 590773) (-1819 . 590493)
- (-1820 . 590113) (-1821 . 589969) (-1822 . 589841) (-1823 . 589630)
- (-1824 . 589562) (-1825 . 589354) (-1826 . 589271) (-1827 . 588090)
- (-1828 . 588021) (-1829 . 587257) (-1830 . 587151) (-1831 . 586961)
- (-1832 . 581764) (-1833 . 581431) (-1834 . 581373) (-1835 . 581293)
- (-1836 . 581259) (-1837 . 580743) (-1838 . 580599) (-1839 . 580459)
- (-1840 . 579876) (-1841 . 578812) (-1842 . 578757) (-1843 . 578677)
- (-1844 . 578646) (-1845 . 578009) (-1846 . 577865) (-1847 . 577734)
- (-1848 . 577035) (-1849 . 576779) (-1850 . 576560) (-1851 . 576472)
- (-1852 . 576392) (-1853 . 576308) (-1854 . 576252) (-1855 . 576087)
- (-1856 . 575974) (-1857 . 575297) (-1858 . 575003) (-1859 . 574920)
- (-1860 . 574809) (-1861 . 574728) (-1862 . 574672) (-1863 . 574575)
- (-1864 . 574337) (-1865 . 574190) (-1866 . 573800) (-1867 . 573503)
- (-1868 . 573429) (-1869 . 573343) (-1870 . 573263) (-1871 . 573201)
- (-1872 . 573080) (-1873 . 572883) (-1874 . 572742) (-1875 . 572604)
- (-1876 . 572304) (-1877 . 572039) (-1878 . 571965) (-1879 . 571819)
- (-1880 . 571723) (-1881 . 571689) (-1882 . 571618) (-1883 . 571584)
- (-1884 . 571437) (-1885 . 571334) (-1886 . 571227) (-1887 . 571097)
- (-1888 . 571023) (-1889 . 570835) (-1890 . 570736) (-1891 . 570702)
- (-1892 . 570628) (-1893 . 570389) (-1894 . 570283) (-1895 . 570150)
- (-1896 . 570046) (-1897 . 569879) (-1898 . 569270) (-1899 . 569202)
- (-1900 . 569168) (-1901 . 568937) (-1902 . 568701) (-1903 . 568592)
- (-1904 . 568456) (-1905 . 568383) (-1906 . 568216) (-1907 . 568167)
- (-1908 . 568133) (-1909 . 567696) (-1910 . 567369) (-1911 . 567130)
- (-1912 . 566823) (-1913 . 566711) (-1914 . 566572) (-1915 . 566504)
- (-1916 . 566319) (-1917 . 565608) (-1918 . 565574) (-1919 . 565490)
- (-1920 . 561428) (-1921 . 561233) (-1922 . 561130) (-1923 . 559845)
- (-1924 . 559622) (-1925 . 559409) (-1926 . 559298) (-1927 . 559074)
- (-1928 . 558426) (-1929 . 555645) (-1930 . 555503) (-1931 . 555380)
- (-1932 . 555271) (-1933 . 554946) (-1934 . 554894) (-1935 . 554770)
- (-1936 . 553955) (-1937 . 553921) (-1938 . 553799) (-1939 . 553719)
- (-1940 . 553515) (-1941 . 553438) (-1942 . 553329) (-1943 . 552948)
- (-1944 . 552427) (-1945 . 552372) (-1946 . 552164) (-1947 . 552081)
- (-1948 . 552047) (-1949 . 551925) (-1950 . 551702) (-1951 . 551587)
- (-1952 . 551474) (-1953 . 551384) (-1954 . 551289) (-1955 . 551185)
- (-1956 . 551151) (-1957 . 551011) (-1958 . 548666) (-1959 . 548427)
- (-1960 . 548318) (-1961 . 548065) (-1962 . 547619) (-1963 . 547498)
- (-1964 . 547411) (-1965 . 547316) (-1966 . 547221) (-1967 . 547187)
- (-1968 . 546994) (-1969 . 546853) (-1970 . 546738) (-1971 . 546442)
- (-1972 . 544591) (-1973 . 544455) (-1974 . 544360) (-1975 . 544303)
- (-1976 . 544206) (-1977 . 544090) (-1978 . 543952) (-1979 . 543822)
- (-1980 . 543526) (-1981 . 543171) (-1982 . 543090) (-1983 . 542992)
- (-1984 . 542918) (-1985 . 542846) (-1986 . 542755) (-1987 . 542494)
- (-1988 . 542355) (-1989 . 542207) (-1990 . 541947) (-1991 . 541842)
- (-1992 . 541088) (-1993 . 540990) (-1994 . 540916) (-1995 . 540859)
- (-1996 . 540768) (-1997 . 540699) (-1998 . 540446) (-1999 . 539910)
- (-2000 . 539830) (-2001 . 539700) (-2002 . 538158) (-2003 . 538103)
- (-2004 . 538048) (-2005 . 537846) (-2006 . 537590) (-2007 . 537448)
- (-2008 . 537361) (-2009 . 537155) (-2010 . 537057) (-2011 . 536998)
- (-2012 . 536943) (-2013 . 536891) (-2014 . 536729) (-2015 . 536569)
- (-2016 . 536420) (-2017 . 536320) (-2018 . 536156) (-2019 . 536073)
- (-2020 . 536007) (-2021 . 535955) (-2022 . 535796) (-2023 . 535642)
- (-2024 . 535520) (-2025 . 535423) (-2026 . 535259) (-2027 . 535064)
- (-2028 . 534998) (-2029 . 534946) (-2030 . 534836) (-2031 . 534595)
- (-2032 . 534489) (-2033 . 534418) (-2034 . 534301) (-2035 . 534138)
- (-2036 . 534042) (-2037 . 533980) (-2038 . 533928) (-2039 . 533877)
- (-2040 . 533672) (-2041 . 533382) (-2042 . 533276) (-2043 . 532476)
- (-2044 . 532338) (-2045 . 532229) (-2046 . 532160) (-2047 . 531641)
- (-2048 . 531460) (-2049 . 531071) (-2050 . 530933) (-2051 . 530824)
- (-2052 . 530753) (-2053 . 530656) (-2054 . 530227) (-2055 . 529707)
- (-2056 . 529548) (-2057 . 529309) (-2058 . 529281) (-2059 . 528613)
- (-2060 . 528476) (-2061 . 528144) (-2062 . 528043) (-2063 . 527869)
- (-2064 . 527596) (-2065 . 527060) (-2066 . 526964) (-2067 . 526788)
- (-2068 . 526679) (-2069 . 526608) (-2070 . 525371) (-2071 . 525258)
- (-2072 . 525171) (-2073 . 525074) (-2074 . 524930) (-2075 . 524851)
- (-2076 . 524662) (-2077 . 524519) (-2078 . 523925) (-2079 . 523897)
- (-2080 . 523715) (-2081 . 523585) (-2082 . 523253) (-2083 . 523225)
- (-2084 . 523111) (-2085 . 522923) (-2086 . 522870) (-2087 . 522528)
- (-2088 . 522494) (-2089 . 522414) (-2090 . 522386) (-2091 . 522210)
- (-2092 . 521878) (-2093 . 521723) (-2094 . 521652) (-2095 . 521542)
- (-2096 . 521483) (-2097 . 521399) (-2098 . 521219) (-2099 . 520908)
- (-2100 . 520853) (-2101 . 520056) (-2102 . 519982) (-2103 . 519800)
- (-2104 . 519525) (-2105 . 519253) (-2106 . 518804) (-2107 . 518704)
- (-2108 . 517604) (-2109 . 517153) (-2110 . 517009) (-2111 . 516832)
- (-2112 . 516517) (-2113 . 515807) (-2114 . 515428) (-2115 . 515305)
- (-2116 . 515126) (-2117 . 514980) (-2118 . 514909) (-2119 . 514881)
- (-2120 . 514679) (-2121 . 513938) (-2122 . 513786) (-2123 . 513655)
- (-2124 . 513340) (-2125 . 513268) (-2126 . 513023) (-2127 . 512844)
- (-2128 . 512642) (-2129 . 512538) (-2130 . 512444) (-2131 . 512364)
- (-2132 . 512276) (-2133 . 511535) (-2134 . 511355) (-2135 . 511215)
- (-2136 . 510706) (-2137 . 510214) (-2138 . 510162) (-2139 . 509975)
- (-2140 . 509872) (-2141 . 509798) (-2142 . 509701) (-2143 . 509528)
- (-2144 . 508840) (-2145 . 508788) (-2146 . 508633) (-2147 . 507628)
- (-2148 . 507360) (-2149 . 506938) (-2150 . 506556) (-2151 . 506403)
- (-2152 . 506329) (-2153 . 506262) (-2154 . 506000) (-2155 . 505424)
- (-2156 . 505245) (-2157 . 505078) (-2158 . 505026) (-2159 . 504586)
- (-2160 . 504407) (-2161 . 504288) (-2162 . 503858) (-2163 . 503787)
- (-2164 . 503734) (-2165 . 503476) (-2166 . 502052) (-2167 . 501736)
- (-2168 . 501569) (-2169 . 500993) (-2170 . 500941) (-2171 . 500270)
- (-2172 . 500039) (-2173 . 499170) (-2174 . 498991) (-2175 . 498863)
- (-2176 . 498521) (-2177 . 498468) (-2178 . 497651) (-2179 . 497515)
- (-2180 . 497029) (-2181 . 496453) (-2182 . 496366) (-2183 . 496288)
- (-2184 . 496021) (-2185 . 495907) (-2186 . 495780) (-2187 . 495593)
- (-2188 . 495496) (-2189 . 495366) (-2190 . 495313) (-2191 . 495142)
- (-2192 . 494456) (-2193 . 494315) (-2194 . 494253) (-2195 . 494094)
- (-2196 . 493964) (-2197 . 493582) (-2198 . 493495) (-2199 . 493350)
- (-2200 . 493291) (-2201 . 493068) (-2202 . 492382) (-2203 . 492151)
- (-2204 . 492064) (-2205 . 491846) (-2206 . 491734) (-2207 . 490738)
- (-2208 . 490651) (-2209 . 490506) (-2210 . 490447) (-2211 . 489698)
- (-2212 . 488794) (-2213 . 488735) (-2214 . 488478) (-2215 . 488320)
- (-2216 . 487912) (-2217 . 487825) (-2218 . 487328) (-2219 . 486951)
- (-2220 . 486377) (-2221 . 485341) (-2222 . 485285) (-2223 . 485218)
- (-2224 . 485104) (-2225 . 484696) (-2226 . 484609) (-2227 . 484259)
- (-2228 . 484206) (-2229 . 484062) (-2230 . 483488) (-2231 . 483432)
- (-2232 . 483335) (-2233 . 483187) (-2234 . 482003) (-2235 . 481885)
- (-2236 . 481798) (-2237 . 481567) (-2238 . 481511) (-2239 . 481367)
- (-2240 . 481237) (-2241 . 480663) (-2242 . 480451) (-2243 . 480354)
- (-2244 . 480271) (-2245 . 479093) (-2246 . 479007) (-2247 . 478847)
- (-2248 . 478754) (-2249 . 478479) (-2250 . 478335) (-2251 . 478193)
- (-2252 . 478034) (-2253 . 477347) (-2254 . 477158) (-2255 . 476672)
- (-2256 . 476589) (-2257 . 474391) (-2258 . 451236) (-2259 . 451091)
- (-2260 . 451004) (-2261 . 450617) (-2262 . 450510) (-2263 . 449823)
- (-2264 . 449616) (-2265 . 449509) (-2266 . 449425) (-2267 . 449318)
- (-2268 . 446566) (-2269 . 446448) (-2270 . 446361) (-2271 . 446118)
- (-2272 . 445519) (-2273 . 445402) (-2274 . 445295) (-2275 . 445097)
- (-2276 . 444410) (-2277 . 444290) (-2278 . 443536) (-2279 . 443414)
- (-2280 . 442993) (-2281 . 442811) (-2282 . 442724) (-2283 . 442481)
- (-2284 . 442432) (-2285 . 442325) (-2286 . 441985) (-2287 . 441410)
- (-2288 . 441267) (-2289 . 441201) (-2290 . 441055) (-2291 . 440631)
- (-2292 . 440544) (-2293 . 440301) (-2294 . 439980) (-2295 . 439873)
- (-2296 . 439778) (-2297 . 439203) (-2298 . 438882) (-2299 . 438809)
- (-2300 . 438154) (-2301 . 438080) (-2302 . 438009) (-2303 . 437922)
- (-2304 . 437679) (-2305 . 437541) (-2306 . 437434) (-2307 . 437339)
- (-2308 . 436764) (-2309 . 436649) (-2310 . 436535) (-2311 . 435830)
- (-2312 . 435564) (-2313 . 435493) (-2314 . 435406) (-2315 . 435175)
- (-2316 . 434984) (-2317 . 434889) (-2318 . 434315) (-2319 . 433970)
- (-2320 . 433717) (-2321 . 433610) (-2322 . 433344) (-2323 . 433159)
- (-2324 . 433079) (-2325 . 432992) (-2326 . 432761) (-2327 . 432639)
- (-2328 . 432065) (-2329 . 431961) (-2330 . 431580) (-2331 . 431461)
- (-2332 . 431403) (-2333 . 431316) (-2334 . 431164) (-2335 . 430906)
- (-2336 . 430776) (-2337 . 430582) (-2338 . 429042) (-2339 . 428468)
- (-2340 . 428364) (-2341 . 427663) (-2342 . 427544) (-2343 . 427457)
- (-2344 . 427273) (-2345 . 427221) (-2346 . 426917) (-2347 . 426541)
- (-2348 . 426379) (-2349 . 425805) (-2350 . 425743) (-2351 . 425629)
- (-2352 . 425570) (-2353 . 425476) (-2354 . 425389) (-2355 . 425284)
- (-2356 . 425232) (-2357 . 425018) (-2358 . 424758) (-2359 . 424022)
- (-2360 . 423949) (-2361 . 423375) (-2362 . 423166) (-2363 . 423092)
- (-2364 . 422998) (-2365 . 422832) (-2366 . 422671) (-2367 . 422391)
- (-2368 . 422318) (-2369 . 422219) (-2370 . 422145) (-2371 . 421855)
- (-2372 . 421688) (-2373 . 421339) (-2374 . 421169) (-2375 . 421043)
- (-2376 . 420800) (-2377 . 420727) (-2378 . 420574) (-2379 . 420495)
- (-2380 . 420373) (-2381 . 420252) (-2382 . 420175) (-2383 . 420005)
- (-2384 . 419656) (-2385 . 419604) (-2386 . 419195) (-2387 . 418865)
- (-2388 . 418227) (-2389 . 418154) (-2390 . 418094) (-2391 . 418038)
- (-2392 . 417847) (-2393 . 417597) (-2394 . 417519) (-2395 . 417467)
- (-2396 . 417303) (-2397 . 416954) (-2398 . 416901) (-2399 . 416838)
- (-2400 . 416488) (-2401 . 416415) (-2402 . 415255) (-2403 . 413125)
- (-2404 . 412969) (-2405 . 412917) (-2406 . 412753) (-2407 . 412368)
- (-2408 . 412223) (-2409 . 412160) (-2410 . 411693) (-2411 . 411579)
- (-2412 . 411506) (-2413 . 411454) (-2414 . 410863) (-2415 . 410689)
- (-2416 . 409289) (-2417 . 409061) (-2418 . 409009) (-2419 . 408910)
- (-2420 . 408525) (-2421 . 408334) (-2422 . 408272) (-2423 . 407786)
- (-2424 . 407663) (-2425 . 406540) (-2426 . 406328) (-2427 . 406276)
- (-2428 . 405685) (-2429 . 404721) (-2430 . 404670) (-2431 . 404618)
- (-2432 . 404427) (-2433 . 404042) (-2434 . 403886) (-2435 . 403683)
- (-2436 . 403510) (-2437 . 402701) (-2438 . 402425) (-2439 . 401024)
- (-2440 . 400777) (-2441 . 400451) (-2442 . 400399) (-2443 . 400328)
- (-2444 . 400225) (-2445 . 399844) (-2446 . 394527) (-2447 . 394445)
- (-2448 . 394142) (-2449 . 394019) (-2450 . 393941) (-2451 . 393582)
- (-2452 . 393281) (-2453 . 393133) (-2454 . 392939) (-2455 . 392207)
- (-2456 . 391988) (-2457 . 391381) (-2458 . 391299) (-2459 . 391118)
- (-2460 . 391032) (-2461 . 389876) (-2462 . 389810) (-2463 . 389485)
- (-2464 . 389299) (-2465 . 389050) (-2466 . 388701) (-2467 . 387630)
- (-2468 . 387500) (-2469 . 387282) (-2470 . 387216) (-2471 . 387149)
- (-2472 . 387016) (-2473 . 381508) (-2474 . 381240) (-2475 . 380939)
- (-2476 . 380700) (-2477 . 380456) (-2478 . 380001) (-2479 . 379418)
- (-2480 . 379390) (-2481 . 379168) (-2482 . 379102) (-2483 . 378996)
- (-2484 . 378929) (-2485 . 378731) (-2486 . 378598) (-2487 . 378210)
- (-2488 . 377909) (-2489 . 377704) (-2490 . 377383) (-2491 . 376956)
- (-2492 . 376640) (-2493 . 376557) (-2494 . 376318) (-2495 . 376160)
- (-2496 . 376094) (-2497 . 376037) (-2498 . 375705) (-2499 . 375252)
- (-2500 . 375224) (-2501 . 374837) (-2502 . 374212) (-2503 . 373874)
- (-2504 . 373784) (-2505 . 373580) (-2506 . 373186) (-2507 . 373120)
- (-2508 . 373042) (-2509 . 372933) (-2510 . 372586) (-2511 . 372558)
- (-2512 . 372358) (-2513 . 371721) (-2514 . 371390) (-2515 . 371310)
- (-2516 . 371230) (-2517 . 371202) (-2518 . 371133) (-2519 . 371067)
- (-2520 . 370999) (-2521 . 370890) (-2522 . 370862) (-2523 . 370599)
- (-2524 . 370209) (-2525 . 369882) (-2526 . 369795) (-2527 . 369725)
- (-2528 . 369659) (-2529 . 369588) (-2530 . 369479) (-2531 . 369451)
- (-2532 . 368910) (-2533 . 368570) (-2534 . 368517) (-2535 . 368457)
- (-2536 . 368338) (-2537 . 368049) (-2538 . 367983) (-2539 . 367912)
- (-2540 . 367803) (-2541 . 367775) (-2542 . 367482) (-2543 . 367092)
- (-2544 . 366962) (-2545 . 366804) (-2546 . 366626) (-2547 . 366560)
- (-2548 . 366494) (-2549 . 366385) (-2550 . 366357) (-2551 . 366221)
- (-2552 . 365881) (-2553 . 365350) (-2554 . 365157) (-2555 . 365102)
- (-2556 . 365036) (-2557 . 364949) (-2558 . 364840) (-2559 . 364812)
- (-2560 . 364567) (-2561 . 364343) (-2562 . 363933) (-2563 . 362768)
- (-2564 . 362283) (-2565 . 362037) (-2566 . 361971) (-2567 . 361899)
- (-2568 . 361790) (-2569 . 361738) (-2570 . 361532) (-2571 . 361004)
- (-2572 . 360949) (-2573 . 360707) (-2574 . 360617) (-2575 . 358998)
- (-2576 . 358932) (-2577 . 358746) (-2578 . 358637) (-2579 . 358544)
- (-2580 . 358435) (-2581 . 358218) (-2582 . 358158) (-2583 . 358103)
- (-2584 . 357835) (-2585 . 357645) (-2586 . 356784) (-2587 . 356718)
- (-2588 . 356548) (-2589 . 356439) (-2590 . 356389) (-2591 . 356286)
- (-2592 . 356069) (-2593 . 355991) (-2594 . 355890) (-2595 . 355817)
- (-2596 . 354450) (-2597 . 354384) (-2598 . 354204) (-2599 . 354095)
- (-2600 . 354026) (-2601 . 353914) (-2602 . 353696) (-2603 . 353619)
- (-2604 . 353536) (-2605 . 353466) (-2606 . 353400) (-2607 . 352800)
- (-2608 . 352691) (-2609 . 352639) (-2610 . 352570) (-2611 . 352458)
- (-2612 . 352279) (-2613 . 352202) (-2614 . 352112) (-2615 . 352014)
- (-2616 . 351931) (-2617 . 351866) (-2618 . 351800) (-2619 . 351636)
- (-2620 . 351527) (-2621 . 351422) (-2622 . 351295) (-2623 . 351139)
- (-2624 . 350921) (-2625 . 350841) (-2626 . 350746) (-2627 . 350676)
- (-2628 . 350621) (-2629 . 350555) (-2630 . 349976) (-2631 . 349867)
- (-2632 . 349496) (-2633 . 349395) (-2634 . 349286) (-2635 . 349107)
- (-2636 . 349012) (-2637 . 348942) (-2638 . 348848) (-2639 . 348782)
- (-2640 . 348705) (-2641 . 348596) (-2642 . 348441) (-2643 . 348335)
- (-2644 . 347943) (-2645 . 347873) (-2646 . 347715) (-2647 . 347407)
- (-2648 . 345579) (-2649 . 345513) (-2650 . 345145) (-2651 . 345036)
- (-2652 . 344881) (-2653 . 344726) (-2654 . 344547) (-2655 . 344452)
- (-2656 . 344355) (-2657 . 344111) (-2658 . 343768) (-2659 . 342267)
- (-2660 . 342201) (-2661 . 342025) (-2662 . 341916) (-2663 . 341711)
- (-2664 . 341578) (-2665 . 341364) (-2666 . 341294) (-2667 . 341170)
- (-2668 . 341096) (-2669 . 341030) (-2670 . 340958) (-2671 . 340849)
- (-2672 . 340727) (-2673 . 340594) (-2674 . 340504) (-2675 . 340409)
- (-2676 . 340350) (-2677 . 340025) (-2678 . 339959) (-2679 . 339819)
- (-2680 . 339710) (-2681 . 339633) (-2682 . 339521) (-2683 . 339431)
- (-2684 . 339361) (-2685 . 339296) (-2686 . 339087) (-2687 . 339021)
- (-2688 . 338831) (-2689 . 338722) (-2690 . 338642) (-2691 . 338524)
- (-2692 . 338430) (-2693 . 337220) (-2694 . 337125) (-2695 . 337063)
- (-2696 . 336978) (-2697 . 336912) (-2698 . 336796) (-2699 . 336687)
- (-2700 . 336571) (-2701 . 336494) (-2702 . 336318) (-2703 . 336231)
- (-2704 . 336161) (-2705 . 336051) (-2706 . 335841) (-2707 . 335756)
- (-2708 . 335690) (-2709 . 335574) (-2710 . 335465) (-2711 . 335370)
- (-2712 . 335290) (-2713 . 335157) (-2714 . 335067) (-2715 . 335012)
- (-2716 . 334902) (-2717 . 334628) (-2718 . 334543) (-2719 . 334477)
- (-2720 . 334361) (-2721 . 334252) (-2722 . 334172) (-2723 . 333957)
- (-2724 . 333821) (-2725 . 333738) (-2726 . 333618) (-2727 . 333523)
- (-2728 . 332949) (-2729 . 332864) (-2730 . 332798) (-2731 . 332646)
- (-2732 . 332537) (-2733 . 332460) (-2734 . 332330) (-2735 . 332139)
- (-2736 . 332084) (-2737 . 331989) (-2738 . 331475) (-2739 . 331390)
- (-2740 . 330735) (-2741 . 330592) (-2742 . 330483) (-2743 . 330403)
- (-2744 . 330291) (-2745 . 330235) (-2746 . 330165) (-2747 . 330020)
- (-2748 . 329935) (-2749 . 329280) (-2750 . 329207) (-2751 . 329098)
- (-2752 . 328975) (-2753 . 328741) (-2754 . 328620) (-2755 . 328537)
- (-2756 . 328503) (-2757 . 328436) (-2758 . 328351) (-2759 . 328223)
- (-2760 . 328138) (-2761 . 327937) (-2762 . 327064) (-2763 . 326908)
- (-2764 . 326795) (-2765 . 326671) (-2766 . 326588) (-2767 . 326370)
- (-2768 . 326287) (-2769 . 326202) (-2770 . 326079) (-2771 . 326006)
- (-2772 . 325693) (-2773 . 325640) (-2774 . 325342) (-2775 . 325239)
- (-2776 . 325156) (-2777 . 325006) (-2778 . 324923) (-2779 . 324838)
- (-2780 . 324715) (-2781 . 324642) (-2782 . 323067) (-2783 . 322952)
- (-2784 . 322796) (-2785 . 322613) (-2786 . 322478) (-2787 . 322144)
- (-2788 . 322014) (-2789 . 321919) (-2790 . 321802) (-2791 . 321700)
- (-2792 . 321615) (-2793 . 321474) (-2794 . 321401) (-2795 . 321244)
- (-2796 . 321149) (-2797 . 321011) (-2798 . 320683) (-2799 . 320510)
- (-2800 . 320375) (-2801 . 320245) (-2802 . 320147) (-2803 . 320073)
- (-2804 . 319988) (-2805 . 319833) (-2806 . 319690) (-2807 . 319550)
- (-2808 . 319427) (-2809 . 319289) (-2810 . 319148) (-2811 . 318950)
- (-2812 . 318826) (-2813 . 318708) (-2814 . 318605) (-2815 . 318522)
- (-2816 . 318452) (-2817 . 318367) (-2818 . 318223) (-2819 . 318071)
- (-2820 . 317929) (-2821 . 317852) (-2822 . 317711) (-2823 . 317538)
- (-2824 . 317417) (-2825 . 317299) (-2826 . 317118) (-2827 . 317015)
- (-2828 . 316941) (-2829 . 316856) (-2830 . 316676) (-2831 . 316502)
- (-2832 . 316297) (-2833 . 316234) (-2834 . 316157) (-2835 . 316075)
- (-2836 . 315957) (-2837 . 315839) (-2838 . 315779) (-2839 . 315619)
- (-2840 . 315401) (-2841 . 315316) (-2842 . 315193) (-2843 . 315041)
- (-2844 . 313087) (-2845 . 313010) (-2846 . 312928) (-2847 . 312701)
- (-2848 . 312574) (-2849 . 312438) (-2850 . 312364) (-2851 . 312261)
- (-2852 . 312048) (-2853 . 311963) (-2854 . 311840) (-2855 . 311688)
- (-2856 . 311561) (-2857 . 311173) (-2858 . 310941) (-2859 . 310677)
- (-2860 . 310550) (-2861 . 310417) (-2862 . 310236) (-2863 . 310151)
- (-2864 . 310050) (-2865 . 309766) (-2866 . 309642) (-2867 . 308892)
- (-2868 . 308771) (-2869 . 308715) (-2870 . 308658) (-2871 . 308498)
- (-2872 . 308446) (-2873 . 308184) (-2874 . 308099) (-2875 . 308070)
- (-2876 . 308014) (-2877 . 307730) (-2878 . 307603) (-2879 . 306601)
- (-2880 . 306465) (-2881 . 306241) (-2882 . 306181) (-2883 . 306018)
- (-2884 . 305966) (-2885 . 305881) (-2886 . 305825) (-2887 . 305416)
- (-2888 . 305192) (-2889 . 305102) (-2890 . 304932) (-2891 . 304876)
- (-2892 . 304481) (-2893 . 304339) (-2894 . 304241) (-2895 . 304156)
- (-2896 . 304100) (-2897 . 303816) (-2898 . 303592) (-2899 . 303422)
- (-2900 . 302900) (-2901 . 302750) (-2902 . 302611) (-2903 . 302526)
- (-2904 . 302470) (-2905 . 302397) (-2906 . 302270) (-2907 . 301658)
- (-2908 . 301605) (-2909 . 301429) (-2910 . 300855) (-2911 . 300578)
- (-2912 . 300448) (-2913 . 300237) (-2914 . 300152) (-2915 . 300093)
- (-2916 . 299944) (-2917 . 299742) (-2918 . 299316) (-2919 . 299231)
- (-2920 . 299160) (-2921 . 299009) (-2922 . 298897) (-2923 . 298767)
- (-2924 . 298665) (-2925 . 298631) (-2926 . 298546) (-2927 . 298482)
- (-2928 . 298376) (-2929 . 298198) (-2930 . 298136) (-2931 . 297820)
- (-2932 . 297541) (-2933 . 297103) (-2934 . 296558) (-2935 . 296411)
- (-2936 . 296309) (-2937 . 296250) (-2938 . 295729) (-2939 . 295630)
- (-2940 . 295476) (-2941 . 295421) (-2942 . 295018) (-2943 . 294847)
- (-2944 . 294617) (-2945 . 294490) (-2946 . 293574) (-2947 . 293476)
- (-2948 . 293406) (-2949 . 293324) (-2950 . 293265) (-2951 . 292744)
- (-2952 . 292092) (-2953 . 291962) (-2954 . 291910) (-2955 . 291663)
- (-2956 . 291458) (-2957 . 291355) (-2958 . 291276) (-2959 . 291104)
- (-2960 . 291015) (-2961 . 290865) (-2962 . 290730) (-2963 . 290451)
- (-2964 . 290392) (-2965 . 290077) (-2966 . 290046) (-2967 . 289842)
- (-2968 . 289660) (-2969 . 289608) (-2970 . 289501) (-2971 . 289370)
- (-2972 . 289198) (-2973 . 289129) (-2974 . 288999) (-2975 . 288940)
- (-2976 . 288524) (-2977 . 288454) (-2978 . 288167) (-2979 . 288044)
- (-2980 . 287995) (-2981 . 287895) (-2982 . 287766) (-2983 . 287594)
- (-2984 . 287522) (-2985 . 287470) (-2986 . 287300) (-2987 . 286779)
- (-2988 . 286700) (-2989 . 286582) (-2990 . 286475) (-2991 . 286227)
- (-2992 . 286104) (-2993 . 285939) (-2994 . 285860) (-2995 . 285688)
- (-2996 . 285455) (-2997 . 285362) (-2998 . 285274) (-2999 . 285090)
- (-3000 . 285038) (-3001 . 284931) (-3002 . 284683) (-3003 . 284539)
- (-3004 . 284391) (-3005 . 284312) (-3006 . 284260) (-3007 . 284163)
- (-3008 . 284051) (-3009 . 284017) (-3010 . 283915) (-3011 . 283773)
- (-3012 . 279252) (-3013 . 279200) (-3014 . 279099) (-3015 . 278800)
- (-3016 . 278630) (-3017 . 278195) (-3018 . 278079) (-3019 . 277950)
- (-3020 . 277895) (-3021 . 277578) (-3022 . 277526) (-3023 . 277425)
- (-3024 . 277373) (-3025 . 276754) (-3026 . 276630) (-3027 . 276501)
- (-3028 . 276398) (-3029 . 276263) (-3030 . 275864) (-3031 . 275833)
- (-3032 . 275654) (-3033 . 275602) (-3034 . 275447) (-3035 . 275394)
- (-3036 . 275293) (-3037 . 274844) (-3038 . 274605) (-3039 . 274437)
- (-3040 . 274331) (-3041 . 274281) (-3042 . 274175) (-3043 . 274123)
- (-3044 . 273979) (-3045 . 273709) (-3046 . 273656) (-3047 . 273543)
- (-3048 . 273464) (-3049 . 273305) (-3050 . 273232) (-3051 . 273144)
- (-3052 . 273015) (-3053 . 272774) (-3054 . 272682) (-3055 . 272526)
- (-3056 . 272382) (-3057 . 271831) (-3058 . 271718) (-3059 . 271237)
- (-3060 . 271089) (-3061 . 270948) (-3062 . 270819) (-3063 . 270471)
- (-3064 . 270309) (-3065 . 270238) (-3066 . 260708) (-3067 . 260657)
- (-3068 . 260599) (-3069 . 259939) (-3070 . 259612) (-3071 . 258978)
- (-3072 . 258853) (-3073 . 258417) (-3074 . 258350) (-3075 . 258163)
- (-3076 . 258001) (-3077 . 257927) (-3078 . 257776) (-3079 . 257727)
- (-3080 . 257669) (-3081 . 257605) (-3082 . 257445) (-3083 . 257288)
- (-3084 . 257163) (-3085 . 256799) (-3086 . 256707) (-3087 . 256515)
- (-3088 . 256309) (-3089 . 256238) (-3090 . 256187) (-3091 . 256117)
- (-3092 . 256067) (-3093 . 255946) (-3094 . 255804) (-3095 . 255413)
- (-3096 . 255273) (-3097 . 255166) (-3098 . 254873) (-3099 . 254686)
- (-3100 . 254633) (-3101 . 254582) (-3102 . 254480) (-3103 . 254345)
- (-3104 . 254282) (-3105 . 254161) (-3106 . 254019) (-3107 . 253970)
- (-3108 . 253852) (-3109 . 253633) (-3110 . 253560) (-3111 . 253404)
- (-3112 . 253333) (-3113 . 253282) (-3114 . 239219) (-3115 . 239084)
- (-3116 . 238481) (-3117 . 238373) (-3118 . 238231) (-3119 . 238179)
- (-3120 . 238054) (-3121 . 237985) (-3122 . 237920) (-3123 . 237761)
- (-3124 . 237708) (-3125 . 237510) (-3126 . 237281) (-3127 . 237221)
- (-3128 . 237113) (-3129 . 236834) (-3130 . 236785) (-3131 . 236627)
- (-3132 . 236568) (-3133 . 236540) (-3134 . 236381) (-3135 . 236328)
- (-3136 . 236185) (-3137 . 235939) (-3138 . 235772) (-3139 . 235613)
- (-3140 . 235389) (-3141 . 235337) (-3142 . 234339) (-3143 . 234256)
- (-3144 . 234206) (-3145 . 234050) (-3146 . 233997) (-3147 . 233883)
- (-3148 . 233700) (-3149 . 233605) (-3150 . 233367) (-3151 . 232839)
- (-3152 . 232707) (-3153 . 232561) (-3154 . 231682) (-3155 . 231403)
- (-3156 . 231292) (-3157 . 229846) (-3158 . 229708) (-3159 . 229655)
- (-3160 . 229534) (-3161 . 229361) (-3162 . 229248) (-3163 . 229080)
- (-3164 . 228863) (-3165 . 228806) (-3166 . 228754) (-3167 . 228376)
- (-3168 . 228310) (-3169 . 227820) (-3170 . 227694) (-3171 . 227641)
- (-3172 . 227523) (-3173 . 222818) (-3174 . 222739) (-3175 . 222655)
- (-3176 . 222533) (-3177 . 222316) (-3178 . 222170) (-3179 . 221892)
- (-3180 . 221477) (-3181 . 221411) (-3182 . 220811) (-3183 . 220685)
- (-3184 . 220632) (-3185 . 220520) (-3186 . 220446) (-3187 . 220331)
- (-3188 . 220092) (-3189 . 219700) (-3190 . 219648) (-3191 . 219274)
- (-3192 . 219200) (-3193 . 219080) (-3194 . 218278) (-3195 . 218225)
- (-3196 . 218099) (-3197 . 217981) (-3198 . 217904) (-3199 . 217747)
- (-3200 . 217653) (-3201 . 217449) (-3202 . 216854) (-3203 . 216675)
- (-3204 . 216529) (-3205 . 216155) (-3206 . 216084) (-3207 . 215480)
- (-3208 . 215427) (-3209 . 215286) (-3210 . 215181) (-3211 . 213029)
- (-3212 . 212872) (-3213 . 212820) (-3214 . 212726) (-3215 . 212515)
- (-3216 . 212301) (-3217 . 212249) (-3218 . 212188) (-3219 . 212036)
- (-3220 . 211637) (-3221 . 210985) (-3222 . 210844) (-3223 . 210791)
- (-3224 . 210708) (-3225 . 210523) (-3226 . 210461) (-3227 . 210272)
- (-3228 . 210079) (-3229 . 209876) (-3230 . 209495) (-3231 . 209193)
- (-3232 . 209141) (-3233 . 208555) (-3234 . 208414) (-3235 . 208361)
- (-3236 . 208257) (-3237 . 208075) (-3238 . 208020) (-3239 . 207744)
- (-3240 . 206881) (-3241 . 206829) (-3242 . 206670) (-3243 . 206496)
- (-3244 . 206437) (-3245 . 206363) (-3246 . 206219) (-3247 . 206166)
- (-3248 . 205203) (-3249 . 205120) (-3250 . 204943) (-3251 . 204754)
- (-3252 . 204581) (-3253 . 204552) (-3254 . 204503) (-3255 . 204172)
- (-3256 . 203929) (-3257 . 203825) (-3258 . 203773) (-3259 . 203025)
- (-3260 . 202972) (-3261 . 202747) (-3262 . 202664) (-3263 . 202607)
- (-3264 . 202484) (-3265 . 202305) (-3266 . 202136) (-3267 . 202084)
- (-3268 . 202013) (-3269 . 201909) (-3270 . 201857) (-3271 . 201804)
- (-3272 . 201642) (-3273 . 201558) (-3274 . 201506) (-3275 . 201450)
- (-3276 . 201377) (-3277 . 201299) (-3278 . 201270) (-3279 . 201221)
- (-3280 . 201150) (-3281 . 201043) (-3282 . 200969) (-3283 . 200916)
- (-3284 . 200729) (-3285 . 200383) (-3286 . 199554) (-3287 . 199498)
- (-3288 . 199425) (-3289 . 199284) (-3290 . 199255) (-3291 . 199203)
- (-3292 . 198992) (-3293 . 198885) (-3294 . 198830) (-3295 . 198671)
- (-3296 . 198600) (-3297 . 198526) (-3298 . 198452) (-3299 . 198332)
- (-3300 . 198129) (-3301 . 198073) (-3302 . 198024) (-3303 . 197817)
- (-3304 . 197710) (-3305 . 197658) (-3306 . 197419) (-3307 . 197348)
- (-3308 . 197250) (-3309 . 197185) (-3310 . 197105) (-3311 . 197032)
- (-3312 . 196888) (-3313 . 196723) (-3314 . 196671) (-3315 . 196298)
- (-3316 . 196191) (-3317 . 196139) (-3318 . 195893) (-3319 . 195821)
- (-3320 . 195747) (-3321 . 195674) (-3322 . 195618) (-3323 . 195545)
- (-3324 . 195295) (-3325 . 195235) (-3326 . 195186) (-3327 . 194656)
- (-3328 . 194628) (-3329 . 194521) (-3330 . 194469) (-3331 . 194223)
- (-3332 . 194151) (-3333 . 194057) (-3334 . 193988) (-3335 . 193915)
- (-3336 . 193597) (-3337 . 192896) (-3338 . 192844) (-3339 . 192290)
- (-3340 . 192193) (-3341 . 191978) (-3342 . 191871) (-3343 . 191801)
- (-3344 . 191588) (-3345 . 191511) (-3346 . 191395) (-3347 . 191321)
- (-3348 . 191101) (-3349 . 190735) (-3350 . 190686) (-3351 . 189494)
- (-3352 . 188940) (-3353 . 188866) (-3354 . 188759) (-3355 . 188308)
- (-3356 . 188170) (-3357 . 188117) (-3358 . 188004) (-3359 . 187671)
- (-3360 . 187588) (-3361 . 187426) (-3362 . 187369) (-3363 . 187303)
- (-3364 . 187178) (-3365 . 187071) (-3366 . 186858) (-3367 . 186645)
- (-3368 . 186592) (-3369 . 186498) (-3370 . 186315) (-3371 . 186109)
- (-3372 . 186052) (-3373 . 185934) (-3374 . 185324) (-3375 . 185217)
- (-3376 . 184946) (-3377 . 184655) (-3378 . 184602) (-3379 . 184508)
- (-3380 . 184392) (-3381 . 184249) (-3382 . 184089) (-3383 . 184012)
- (-3384 . 182832) (-3385 . 182608) (-3386 . 182552) (-3387 . 182241)
- (-3388 . 182134) (-3389 . 181762) (-3390 . 181549) (-3391 . 181496)
- (-3392 . 181403) (-3393 . 181351) (-3394 . 180991) (-3395 . 180918)
- (-3396 . 180858) (-3397 . 180441) (-3398 . 180250) (-3399 . 180143)
- (-3400 . 178679) (-3401 . 178403) (-3402 . 178265) (-3403 . 178212)
- (-3404 . 178119) (-3405 . 177948) (-3406 . 177830) (-3407 . 177712)
- (-3408 . 177604) (-3409 . 175504) (-3410 . 175409) (-3411 . 175302)
- (-3412 . 174986) (-3413 . 174773) (-3414 . 174720) (-3415 . 174627)
- (-3416 . 174456) (-3417 . 174338) (-3418 . 173382) (-3419 . 173216)
- (-3420 . 173070) (-3421 . 173018) (-3422 . 172923) (-3423 . 172816)
- (-3424 . 172603) (-3425 . 172296) (-3426 . 172243) (-3427 . 172155)
- (-3428 . 171896) (-3429 . 171737) (-3430 . 171660) (-3431 . 169408)
- (-3432 . 169222) (-3433 . 169120) (-3434 . 169068) (-3435 . 168995)
- (-3436 . 168888) (-3437 . 168571) (-3438 . 168427) (-3439 . 168374)
- (-3440 . 165959) (-3441 . 165700) (-3442 . 165521) (-3443 . 165467)
- (-3444 . 165193) (-3445 . 164888) (-3446 . 164786) (-3447 . 164721)
- (-3448 . 164614) (-3449 . 164016) (-3450 . 163875) (-3451 . 163822)
- (-3452 . 163754) (-3453 . 163559) (-3454 . 163377) (-3455 . 163061)
- (-3456 . 162905) (-3457 . 162736) (-3458 . 162634) (-3459 . 162527)
- (-3460 . 162387) (-3461 . 162155) (-3462 . 162102) (-3463 . 162048)
- (-3464 . 161853) (-3465 . 161753) (-3466 . 161645) (-3467 . 161497)
- (-3468 . 161328) (-3469 . 161233) (-3470 . 161126) (-3471 . 160912)
- (-3472 . 160621) (-3473 . 160480) (-3474 . 160427) (-3475 . 160302)
- (-3476 . 159678) (-3477 . 159081) (-3478 . 158981) (-3479 . 158878)
- (-3480 . 158730) (-3481 . 158476) (-3482 . 158409) (-3483 . 158302)
- (-3484 . 157994) (-3485 . 157767) (-3486 . 157714) (-3487 . 157650)
- (-3488 . 157590) (-3489 . 157512) (-3490 . 157409) (-3491 . 157306)
- (-3492 . 157083) (-3493 . 156899) (-3494 . 156792) (-3495 . 156707)
- (-3496 . 156285) (-3497 . 156087) (-3498 . 156034) (-3499 . 155909)
- (-3500 . 155762) (-3501 . 155656) (-3502 . 155549) (-3503 . 155415)
- (-3504 . 154777) (-3505 . 154670) (-3506 . 154321) (-3507 . 154162)
- (-3508 . 154109) (-3509 . 153990) (-3510 . 153662) (-3511 . 153606)
- (-3512 . 153481) (-3513 . 153377) (-3514 . 153300) (-3515 . 152004)
- (-3516 . 151897) (-3517 . 151753) (-3518 . 151419) (-3519 . 151367)
- (-3520 . 151248) (-3521 . 150757) (-3522 . 150632) (-3523 . 150479)
- (-3524 . 150402) (-3525 . 149152) (-3526 . 148827) (-3527 . 148665)
- (-3528 . 148613) (-3529 . 148560) (-3530 . 148232) (-3531 . 147988)
- (-3532 . 147497) (-3533 . 147369) (-3534 . 147167) (-3535 . 146887)
- (-3536 . 146750) (-3537 . 145876) (-3538 . 145723) (-3539 . 145484)
- (-3540 . 145322) (-3541 . 145269) (-3542 . 145080) (-3543 . 144992)
- (-3544 . 144748) (-3545 . 144232) (-3546 . 144101) (-3547 . 143408)
- (-3548 . 143186) (-3549 . 143057) (-3550 . 141787) (-3551 . 141428)
- (-3552 . 141303) (-3553 . 141141) (-3554 . 141088) (-3555 . 141024)
- (-3556 . 140956) (-3557 . 140856) (-3558 . 140703) (-3559 . 140574)
- (-3560 . 140472) (-3561 . 140180) (-3562 . 139325) (-3563 . 139201)
- (-3564 . 139027) (-3565 . 138933) (-3566 . 138879) (-3567 . 138805)
- (-3568 . 138777) (-3569 . 138677) (-3570 . 138524) (-3571 . 138398)
- (-3572 . 138275) (-3573 . 137983) (-3574 . 137932) (-3575 . 137769)
- (-3576 . 137623) (-3577 . 137449) (-3578 . 137396) (-3579 . 137287)
- (-3580 . 137213) (-3581 . 137119) (-3582 . 137016) (-3583 . 136863)
- (-3584 . 136737) (-3585 . 136604) (-3586 . 136312) (-3587 . 136261)
- (-3588 . 136164) (-3589 . 136021) (-3590 . 135844) (-3591 . 135816)
- (-3592 . 134450) (-3593 . 134356) (-3594 . 134253) (-3595 . 134100)
- (-3596 . 133974) (-3597 . 133682) (-3598 . 133567) (-3599 . 133208)
- (-3600 . 133180) (-3601 . 133097) (-3602 . 133003) (-3603 . 132838)
- (-3604 . 132685) (-3605 . 132559) (-3606 . 132500) (-3607 . 132403)
- (-3608 . 132375) (-3609 . 132283) (-3610 . 132189) (-3611 . 132024)
- (-3612 . 131635) (-3613 . 131532) (-3614 . 131425) (-3615 . 131171)
- (-3616 . 131143) (-3617 . 131085) (-3618 . 131041) (-3619 . 130947)
- (-3620 . 130754) (-3621 . 130415) (-3622 . 130315) (-3623 . 129887)
- (-3624 . 129637) (-3625 . 129557) (-3626 . 129472) (-3627 . 129401)
- (-3628 . 129315) (-3629 . 129150) (-3630 . 128801) (-3631 . 128704)
- (-3632 . 128541) (-3633 . 128437) (-3634 . 128142) (-3635 . 128082)
- (-3636 . 128005) (-3637 . 127919) (-3638 . 127789) (-3639 . 127590)
- (-3640 . 127470) (-3641 . 127329) (-3642 . 127277) (-3643 . 127158)
- (-3644 . 127073) (-3645 . 126987) (-3646 . 126847) (-3647 . 126819)
- (-3648 . 126482) (-3649 . 126331) (-3650 . 126192) (-3651 . 125848)
- (-3652 . 125796) (-3653 . 125739) (-3654 . 125653) (-3655 . 125510)
- (-3656 . 125454) (-3657 . 125117) (-3658 . 124738) (-3659 . 124635)
- (-3660 . 124494) (-3661 . 123575) (-3662 . 123523) (-3663 . 123382)
- (-3664 . 123296) (-3665 . 123170) (-3666 . 123089) (-3667 . 122848)
- (-3668 . 122745) (-3669 . 122547) (-3670 . 122367) (-3671 . 122293)
- (-3672 . 122164) (-3673 . 122093) (-3674 . 121635) (-3675 . 121538)
- (-3676 . 121340) (-3677 . 121217) (-3678 . 121137) (-3679 . 120982)
- (-3680 . 120877) (-3681 . 120754) (-3682 . 120680) (-3683 . 120367)
- (-3684 . 120308) (-3685 . 120023) (-3686 . 119618) (-3687 . 119463)
- (-3688 . 119237) (-3689 . 119114) (-3690 . 119040) (-3691 . 118435)
- (-3692 . 118094) (-3693 . 117654) (-3694 . 117537) (-3695 . 117175)
- (-3696 . 117071) (-3697 . 116991) (-3698 . 116886) (-3699 . 116855)
- (-3700 . 116755) (-3701 . 116681) (-3702 . 116496) (-3703 . 115905)
- (-3704 . 115828) (-3705 . 115723) (-3706 . 115692) (-3707 . 115475)
- (-3708 . 115196) (-3709 . 115078) (-3710 . 114914) (-3711 . 114371)
- (-3712 . 114266) (-3713 . 114170) (-3714 . 114068) (-3715 . 113851)
- (-3716 . 113820) (-3717 . 113005) (-3718 . 112912) (-3719 . 112700)
- (-3720 . 112486) (-3721 . 112158) (-3722 . 111995) (-3723 . 111816)
- (-3724 . 111739) (-3725 . 111662) (-3726 . 111509) (-3727 . 111478)
- (-3728 . 111219) (-3729 . 111126) (-3730 . 110945) (-3731 . 110781)
- (-3732 . 110559) (-3733 . 110464) (-3734 . 110365) (-3735 . 110209)
- (-3736 . 110178) (-3737 . 109745) (-3738 . 109652) (-3739 . 109483)
- (-3740 . 109313) (-3741 . 109091) (-3742 . 108996) (-3743 . 108917)
- (-3744 . 108761) (-3745 . 108730) (-3746 . 108183) (-3747 . 108112)
- (-3748 . 107889) (-3749 . 107374) (-3750 . 107245) (-3751 . 107023)
- (-3752 . 106928) (-3753 . 106849) (-3754 . 106702) (-3755 . 106572)
- (-3756 . 106541) (-3757 . 106449) (-3758 . 106311) (-3759 . 105853)
- (-3760 . 105711) (-3761 . 105492) (-3762 . 105394) (-3763 . 105320)
- (-3764 . 105226) (-3765 . 105063) (-3766 . 105032) (-3767 . 104758)
- (-3768 . 104596) (-3769 . 104543) (-3770 . 104445) (-3771 . 104226)
- (-3772 . 104121) (-3773 . 104027) (-3774 . 103949) (-3775 . 103770)
- (-3776 . 103742) (-3777 . 103382) (-3778 . 103173) (-3779 . 103139)
- (-3780 . 103030) (-3781 . 102936) (** . 99859) (-3783 . 99640)
- (-3784 . 99517) (-3785 . 99317) (-3786 . 99236) (-3787 . 99125)
- (-3788 . 99010) (-3789 . 98852) (-3790 . 98737) (-3791 . 98621)
- (-3792 . 98402) (-3793 . 98279) (-3794 . 98121) (-3795 . 97964)
- (-3796 . 97853) (-3797 . 97749) (-3798 . 97639) (-3799 . 97570)
- (-3800 . 97473) (-3801 . 97254) (-3802 . 96890) (-3803 . 96732)
- (-3804 . 96651) (-3805 . 96540) (-3806 . 96368) (-3807 . 96313)
- (-3808 . 96284) (-3809 . 96215) (-3810 . 96114) (-3811 . 95895)
- (-3812 . 95773) (-3813 . 95615) (-3814 . 95534) (-3815 . 95423)
- (-3816 . 95344) (-3817 . 95277) (-3818 . 95208) (-3819 . 95111)
- (-3820 . 95080) (-3821 . 94979) (-3822 . 94878) (-3823 . 94436)
- (-3824 . 94278) (-3825 . 94197) (-3826 . 94077) (-3827 . 94007)
- (-3828 . 93930) (-3829 . 93864) (-3830 . 93720) (-3831 . 93665)
- (-3832 . 93304) (-3833 . 93100) (-3834 . 92942) (-3835 . 92837)
- (-3836 . 92702) (-3837 . 92629) (-3838 . 92557) (-3839 . 92432)
- (-3840 . 92161) (-3841 . 92106) (-3842 . 91574) (-3843 . 91416)
- (-3844 . 90570) (-3845 . 90305) (-3846 . 90130) (-3847 . 89955)
- (-3848 . 89823) (-3849 . 89768) (-3850 . 89688) (-3851 . 89471)
- (-3852 . 89409) (-3853 . 88544) (-3854 . 88489) (-3855 . 88412)
- (-3856 . 84802) (-3857 . 84735) (-3858 . 84582) (-3859 . 84450)
- (-3860 . 84377) (-3861 . 84304) (-3862 . 84254) (-3863 . 84095)
- (-3864 . 84040) (-3865 . 83963) (-3866 . 83932) (-3867 . 83774)
- (-3868 . 83621) (-3869 . 83324) (-3870 . 83269) (-3871 . 83196)
- (-3872 . 83125) (-3873 . 82750) (-3874 . 82596) (-3875 . 82501)
- (-3876 . 82343) (-3877 . 82169) (-3878 . 81872) (-3879 . 81515)
- (-3880 . 81442) (-3881 . 81299) (-3882 . 81214) (-3883 . 81137)
- (-3884 . 80845) (-3885 . 80664) (-3886 . 80506) (-3887 . 80314)
- (-3888 . 80188) (-3889 . 79838) (-3890 . 79427) (-3891 . 79355)
- (-3892 . 79272) (-3893 . 79126) (-3894 . 78868) (-3895 . 78770)
- (-3896 . 78612) (-3897 . 78313) (-3898 . 78087) (-3899 . 77932)
- (-3900 . 77860) (-3901 . 77296) (-3902 . 77213) (-3903 . 77064)
- (-3904 . 77036) (-3905 . 76959) (-3906 . 76650) (-3907 . 76492)
- (-3908 . 76297) (-3909 . 76071) (-3910 . 75916) (-3911 . 75843)
- (-3912 . 75791) (-3913 . 75645) (-3914 . 75355) (-3915 . 75305)
- (-3916 . 75210) (-3917 . 74959) (-3918 . 74801) (-3919 . 74686)
- (-3920 . 74575) (-3921 . 74492) (-3922 . 74150) (-3923 . 73478)
- (-3924 . 73426) (-3925 . 73373) (-3926 . 72827) (-3927 . 72732)
- (-3928 . 72574) (-3929 . 72448) (-3930 . 72337) (-3931 . 72064)
- (-3932 . 71909) (-3933 . 71757) (-3934 . 71705) (-3935 . 71586)
- (-3936 . 71107) (-3937 . 70943) (-3938 . 70785) (-3939 . 70706)
- (-3940 . 70393) (-3941 . 70238) (-3942 . 70165) (-3943 . 70048)
- (-3944 . 69956) (-3945 . 69785) (-3946 . 69225) (-3947 . 69151)
- (-3948 . 69019) (-3949 . 68864) (-3950 . 68727) (-3951 . 68654)
- (-3952 . 68522) (-3953 . 68227) (-3954 . 68089) (-3955 . 67899)
- (-3956 . 67703) (-3957 . 67623) (-3958 . 67542) (-3959 . 67468)
- (-3960 . 67156) (-3961 . 66615) (-3962 . 66478) (-3963 . 66405)
- (-3964 . 66126) (-3965 . 65932) (-3966 . 65641) (-3967 . 65578)
- (-3968 . 65498) (-3969 . 65443) (-3970 . 65257) (-3971 . 64928)
- (-3972 . 64791) (-3973 . 64537) (-3974 . 64402) (-3975 . 64214)
- (-3976 . 63813) (-3977 . 63750) (-3978 . 63695) (-3979 . 63150)
- (-3980 . 62951) (-3981 . 62814) (-3982 . 62670) (-3983 . 62614)
- (-3984 . 62469) (-3985 . 61585) (-3986 . 61522) (-3987 . 61467)
- (-3988 . 61247) (-3989 . 61048) (-3990 . 60911) (-3991 . 59571)
- (-3992 . 59515) (-3993 . 59370) (-3994 . 58882) (-3995 . 58542)
- (-3996 . 58489) (-3997 . 58434) (-3998 . 58322) (-3999 . 58145)
- (-4000 . 57946) (-4001 . 57809) (-4002 . 57615) (-4003 . 57556)
- (-4004 . 57266) (-4005 . 57098) (-4006 . 57047) (-4007 . 56976)
- (-4008 . 56806) (-4009 . 56607) (-4010 . 56551) (-4011 . 56399)
- (-4012 . 56340) (-4013 . 55882) (-4014 . 55654) (-4015 . 55460)
- (-4016 . 55304) (-4017 . 55096) (-4018 . 54928) (-4019 . 54829)
- (-4020 . 54715) (-4021 . 54560) (-4022 . 54408) (-4023 . 54352)
- (-4024 . 54318) (-4025 . 54065) (-4026 . 53992) (-4027 . 53888)
- (-4028 . 53789) (-4029 . 53662) (-4030 . 53551) (-4031 . 53479)
- (-4032 . 53279) (-4033 . 53223) (-4034 . 53186) (-4035 . 52835)
- (-4036 . 52753) (-4037 . 52697) (-4038 . 52506) (-4039 . 52433)
- (-4040 . 52319) (-4041 . 52208) (-4042 . 51938) (-4043 . 51741)
- (-4044 . 51704) (-4045 . 50684) (-4046 . 50571) (-4047 . 50519)
- (-4048 . 50423) (-4049 . 50345) (-4050 . 50231) (-4051 . 50163)
- (-4052 . 49965) (-4053 . 49838) (-4054 . 49807) (-4055 . 49770)
- (-4056 . 49456) (-4057 . 49266) (-4058 . 49193) (-4059 . 49111)
- (-4060 . 48974) (-4061 . 48893) (-4062 . 48797) (-4063 . 48687)
- (-4064 . 48658) (-4065 . 48512) (-4066 . 48475) (-4067 . 48263)
- (-4068 . 47890) (-4069 . 47753) (-4070 . 47456) (-4071 . 47360)
- (-4072 . 47257) (-4073 . 47156) (-4074 . 47028) (-4075 . 46994)
- (-4076 . 46423) (-4077 . 46143) (-4078 . 46006) (-4079 . 45953)
- (-4080 . 45854) (-4081 . 45743) (-4082 . 41583) (-4083 . 41482)
- (-4084 . 37494) (-4085 . 37442) (-4086 . 37408) (-4087 . 37355)
- (-4088 . 37151) (-4089 . 36635) (-4090 . 36584) (-4091 . 36455)
- (-4092 . 36387) (-4093 . 36163) (-4094 . 35998) (-4095 . 35792)
- (-4096 . 35344) (-4097 . 35243) (-4098 . 35188) (-4099 . 33426)
- (-4100 . 33375) (-4101 . 33045) (-4102 . 32976) (-4103 . 32860)
- (-4104 . 32626) (-4105 . 32530) (-4106 . 32103) (-4107 . 32002)
- (-4108 . 31928) (-4109 . 31302) (-4110 . 31113) (-4111 . 30641)
- (-4112 . 30571) (-4113 . 29324) (-4114 . 29055) (-4115 . 28625)
- (-4116 . 28509) (-4117 . 28369) (-4118 . 28255) (-4119 . 27635)
- (-4120 . 27534) (-4121 . 27460) (-4122 . 27213) (-4123 . 26609)
- (-4124 . 26490) (-4125 . 25816) (-4126 . 25695) (-4127 . 25600)
- (-4128 . 25484) (-4129 . 25172) (-4130 . 25076) (-4131 . 24574)
- (-4132 . 23967) (-4133 . 23866) (-4134 . 23792) (-4135 . 23714)
- (-4136 . 23656) (-4137 . 23409) (-4138 . 23159) (-4139 . 23130)
- (-4140 . 23061) (-4141 . 22946) (-4142 . 22851) (-4143 . 22506)
- (-4144 . 22356) (-4145 . 22138) (-4146 . 22037) (-4147 . 21958)
- (-4148 . 19050) (-4149 . 18799) (-4150 . 18374) (-4151 . 18237)
- (-4152 . 18115) (-4153 . 18063) (-4154 . 18007) (-4155 . 17881)
- (-4156 . 17550) (-4157 . 17439) (-4158 . 17261) (-4159 . 17160)
- (-4160 . 17105) (-4161 . 17053) (-4162 . 16601) (-4163 . 16547)
- (-4164 . 16495) (-4165 . 16327) (-4166 . 15906) (-4167 . 15689)
- (-4168 . 15425) (-4169 . 15324) (-4170 . 15265) (-4171 . 15210)
- (-4172 . 15112) (-4173 . 14620) (-4174 . 14440) (-4175 . 14370)
- (-4176 . 14293) (-4177 . 14103) (-4178 . 14035) (-4179 . 13731)
- (-4180 . 13317) (-4181 . 13216) (-4182 . 13117) (-4183 . 12757)
- (-4184 . 12696) (-4185 . 12574) (-4186 . 12476) (-4187 . 12265)
- (-4188 . 12197) (-4189 . 11421) (-4190 . 11127) (-4191 . 11012)
- (-4192 . 10913) (-4193 . 10789) (-4194 . 10510) (-4195 . 10219)
- (-4196 . 10035) (-4197 . 9937) (-4198 . 9822) (-4199 . 9754)
- (-4200 . 9173) (-4201 . 8725) (-4202 . 8610) (-4203 . 8511)
- (-4204 . 8150) (-4205 . 7857) (-4206 . 7608) (-4207 . 7493)
- (-4208 . 7432) (-4209 . 7334) (-4210 . 7101) (-4211 . 7004)
- (-4212 . 6509) (-4213 . 6331) (-4214 . 6280) (-4215 . 6181)
- (-4216 . 5888) (-4217 . 5773) (-4218 . 5701) (-4219 . 5560)
- (-4220 . 5400) (-4221 . 5300) (-4222 . 4907) (-4223 . 4790)
- (-4224 . 4691) (-4225 . 4404) (-4226 . 4189) (-4227 . 3813)
- (-4228 . 3658) (-4229 . 3498) (-4230 . 3338) (-4231 . 3238)
- (-4232 . 2840) (-4233 . 2447) (-4234 . 2389) (-4235 . 2290)
- (-4236 . 2006) (-4237 . 1953) (-4238 . 1900) (-4239 . 1660)
- (-4240 . 1507) (-4241 . 1368) (-4242 . 1316) (-4243 . 1119)
- (-4244 . 901) (-4245 . 716) (-4246 . 615) (-4247 . 516) (-4248 . 211)
- (-4249 . 158) (-4250 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
+ (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
+ (-5 *1 (-917 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
+ (-5 *2 (-973)) (-5 *1 (-696)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
+ (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
+ (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+((-1212 . 727115) (-1213 . 727043) (-1214 . 726966) (-1215 . 726838)
+ (-1216 . 726676) (-1217 . 726540) (-1218 . 726431) (-1219 . 725762)
+ (-1220 . 725622) (-1221 . 725508) (-1222 . 725382) (-1223 . 725305)
+ (-1224 . 725164) (-1225 . 725004) (-1226 . 724895) (-1227 . 724508)
+ (-1228 . 724428) (-1229 . 724362) (-1230 . 724290) (-1231 . 724063)
+ (-1232 . 723942) (-1233 . 723772) (-1234 . 723719) (-1235 . 723667)
+ (-1236 . 723568) (-1237 . 723500) (-1238 . 723278) (-1239 . 722687)
+ (-1240 . 722563) (-1241 . 721746) (-1242 . 721041) (-1243 . 720912)
+ (-1244 . 720699) (-1245 . 720314) (-1246 . 719512) (-1247 . 719419)
+ (-1248 . 719276) (-1249 . 719066) (-1250 . 718886) (-1251 . 718683)
+ (-1252 . 718565) (-1253 . 718499) (-1254 . 718447) (-1255 . 718419)
+ (-1256 . 718288) (-1257 . 718029) (-1258 . 717714) (-1259 . 717631)
+ (-1260 . 717572) (-1261 . 717499) (-1262 . 717433) (-1263 . 716917)
+ (-1264 . 716797) (-1265 . 716738) (-1266 . 716683) (-1267 . 716569)
+ (-1268 . 716451) (-1269 . 716328) (-1270 . 716124) (-1271 . 715989)
+ (-1272 . 715936) (-1273 . 715765) (-1274 . 715705) (-1275 . 715634)
+ (-1276 . 715582) (-1277 . 715468) (-1278 . 715141) (-1279 . 715036)
+ (-1280 . 714968) (-1281 . 714861) (-1282 . 714490) (-1283 . 714217)
+ (-1284 . 714132) (-1285 . 713989) (-1286 . 713921) (-1287 . 713890)
+ (-1288 . 713641) (-1289 . 713532) (-1290 . 713437) (-1291 . 713340)
+ (-1292 . 713185) (-1293 . 713055) (-1294 . 712956) (-1295 . 712897)
+ (-1296 . 712826) (-1297 . 712711) (-1298 . 712431) (-1299 . 712322)
+ (-1300 . 712183) (-1301 . 712112) (-1302 . 711977) (-1303 . 711801)
+ (-1304 . 711735) (-1305 . 711648) (-1306 . 711484) (-1307 . 711055)
+ (-1308 . 710715) (-1309 . 710384) (-1310 . 710261) (-1311 . 709949)
+ (-1312 . 709921) (-1313 . 709806) (-1314 . 709778) (-1315 . 709532)
+ (-1316 . 709437) (-1317 . 709384) (-1318 . 709335) (-1319 . 709175)
+ (-1320 . 709067) (-1321 . 708925) (-1322 . 708812) (-1323 . 708576)
+ (-1324 . 708326) (-1325 . 708076) (-1326 . 707300) (-1327 . 707205)
+ (-1328 . 706844) (-1329 . 706466) (-1330 . 706289) (-1331 . 706023)
+ (-1332 . 705679) (-1333 . 705555) (-1334 . 705478) (-1335 . 705173)
+ (-1336 . 704936) (-1337 . 704711) (-1338 . 704532) (-1339 . 704389)
+ (-1340 . 704325) (-1341 . 704272) (-1342 . 703974) (-1343 . 703516)
+ (-1344 . 703443) (-1345 . 703350) (-1346 . 703297) (-1347 . 703127)
+ (-1348 . 703074) (-1349 . 702872) (-1350 . 702813) (-1351 . 702432)
+ (-1352 . 702208) (-1353 . 702109) (-1354 . 701798) (-1355 . 701616)
+ (-1356 . 701533) (-1357 . 701283) (-1358 . 701031) (-1359 . 700656)
+ (-1360 . 700559) (-1361 . 700504) (-1362 . 700260) (-1363 . 700105)
+ (-1364 . 699455) (-1365 . 698159) (-1366 . 698023) (-1367 . 697598)
+ (-1368 . 697285) (-1369 . 697198) (-1370 . 697121) (-1371 . 697065)
+ (-1372 . 696925) (-1373 . 696727) (-1374 . 696484) (-1375 . 695144)
+ (-1376 . 695088) (-1377 . 694835) (-1378 . 694687) (-1379 . 694114)
+ (-1380 . 694063) (-1381 . 693911) (-1382 . 693841) (-1383 . 693762)
+ (-1384 . 693514) (-1385 . 693421) (-1386 . 693272) (-1387 . 693135)
+ (-1388 . 693104) (-1389 . 692653) (-1390 . 692563) (-1391 . 692483)
+ (-1392 . 692381) (-1393 . 692241) (-1394 . 692125) (-1395 . 691840)
+ (-1396 . 691688) (-1397 . 691636) (-1398 . 691287) (-1399 . 691124)
+ (-1400 . 691041) (-1401 . 689187) (-1402 . 689135) (-1403 . 688942)
+ (-1404 . 688782) (-1405 . 688673) (-1406 . 688036) (-1407 . 687987)
+ (-1408 . 687873) (-1409 . 687793) (-1410 . 687708) (-1411 . 687463)
+ (-1412 . 687329) (-1413 . 687235) (-1414 . 687140) (-1415 . 686809)
+ (-1416 . 686530) (-1417 . 686477) (-1418 . 686406) (-1419 . 686295)
+ (-1420 . 685754) (-1421 . 685394) (-1422 . 685314) (-1423 . 685147)
+ (-1424 . 685093) (-1425 . 685009) (-1426 . 684954) (-1427 . 684595)
+ (-1428 . 684511) (-1429 . 682411) (-1430 . 682282) (-1431 . 682173)
+ (-1432 . 682120) (-1433 . 681993) (-1434 . 681699) (-1435 . 681592)
+ (-1436 . 681518) (-1437 . 681418) (-1438 . 681190) (-1439 . 681135)
+ (-1440 . 681012) (-1441 . 680960) (-1442 . 680834) (-1443 . 680578)
+ (-1444 . 680466) (-1445 . 680383) (-1446 . 680317) (-1447 . 680151)
+ (-1448 . 680085) (-1449 . 679998) (-1450 . 679700) (-1451 . 679501)
+ (-1452 . 679423) (-1453 . 679314) (-1454 . 679107) (-1455 . 679021)
+ (-1456 . 678972) (-1457 . 678920) (-1458 . 678864) (-1459 . 678779)
+ (-1460 . 678673) (-1461 . 678501) (-1462 . 678429) (-1463 . 678244)
+ (-1464 . 678119) (-1465 . 677996) (-1466 . 677895) (-1467 . 677797)
+ (-1468 . 677641) (-1469 . 677534) (-1470 . 677131) (-1471 . 677063)
+ (-1472 . 676985) (-1473 . 676768) (-12 . 676596) (-1475 . 676479)
+ (-1476 . 676400) (-1477 . 676293) (-1478 . 675983) (-1479 . 675931)
+ (-1480 . 675881) (-1481 . 675727) (-1482 . 675618) (-1483 . 675516)
+ (-1484 . 675204) (-1485 . 675155) (-1486 . 675103) (-1487 . 674032)
+ (-1488 . 673691) (-1489 . 672588) (-1490 . 672481) (-1491 . 672171)
+ (-1492 . 670861) (-1493 . 670796) (-1494 . 670625) (-1495 . 670520)
+ (-1496 . 670363) (-1497 . 670189) (-1498 . 670161) (-1499 . 670066)
+ (-1500 . 669192) (-1501 . 669032) (-1502 . 668946) (-1503 . 668873)
+ (-1504 . 668589) (-1505 . 668517) (-1506 . 668430) (-1507 . 668360)
+ (-1508 . 667955) (-1509 . 667859) (-1510 . 667616) (-1511 . 667410)
+ (-1512 . 665456) (-1513 . 665369) (-1514 . 665191) (-1515 . 664853)
+ (-1516 . 664715) (-1517 . 664587) (-1518 . 664500) (-1519 . 664286)
+ (-1520 . 664012) (-1521 . 663908) (-1522 . 663700) (-1523 . 663547)
+ (-1524 . 663438) (-1525 . 663294) (-1526 . 663187) (-1527 . 663069)
+ (-1528 . 662932) (-1529 . 662779) (-1530 . 662644) (-1531 . 662607)
+ (-1532 . 662496) (-1533 . 662372) (-1534 . 661767) (-1535 . 661707)
+ (-1536 . 661615) (-1537 . 661232) (-1538 . 661038) (-1539 . 660905)
+ (-1540 . 660849) (-1541 . 660625) (-1542 . 660466) (-1543 . 660324)
+ (-1544 . 660187) (-1545 . 653233) (-1546 . 653171) (-1547 . 653079)
+ (-1548 . 653051) (-1549 . 652956) (-1550 . 652159) (-1551 . 652101)
+ (-1552 . 651965) (-1553 . 651880) (-1554 . 651800) (-1555 . 651685)
+ (-1556 . 651590) (-1557 . 651445) (-1558 . 650955) (-1559 . 650869)
+ (-1560 . 650744) (-1561 . 650352) (-1562 . 650302) (-1563 . 650196)
+ (-1564 . 650144) (-1565 . 650070) (-1566 . 649942) (-1567 . 649865)
+ (-1568 . 649794) (-1569 . 649434) (-1570 . 649204) (-1571 . 648811)
+ (-1572 . 648708) (-1573 . 648429) (-1574 . 647832) (-1575 . 647775)
+ (-1576 . 647632) (-1577 . 647514) (-1578 . 647372) (-1579 . 647341)
+ (-1580 . 647267) (-1581 . 647171) (-1582 . 647018) (-1583 . 646203)
+ (-1584 . 645844) (* . 641321) (-1586 . 641259) (-1587 . 641207)
+ (-1588 . 641090) (-1589 . 641006) (-1590 . 640865) (-1591 . 640738)
+ (-1592 . 640613) (-1593 . 640486) (-1594 . 640379) (-1595 . 640294)
+ (-1596 . 640226) (-1597 . 640123) (-1598 . 640066) (-1599 . 639892)
+ (-1600 . 639787) (-1601 . 639692) (-1602 . 639351) (-1603 . 639196)
+ (-1604 . 638977) (-1605 . 638770) (-1606 . 638651) (-1607 . 638420)
+ (-1608 . 638203) (-1609 . 638044) (-1610 . 637991) (-1611 . 637872)
+ (-1612 . 637646) (-1613 . 637341) (-1614 . 637289) (-1615 . 637206)
+ (-1616 . 637122) (-1617 . 637040) (-1618 . 636909) (-1619 . 636779)
+ (-1620 . 636686) (-1621 . 636297) (-1622 . 636170) (-1623 . 636063)
+ (-1624 . 636011) (-1625 . 635956) (-1626 . 635906) (-1627 . 635698)
+ (-1628 . 635621) (-1629 . 635568) (-1630 . 635467) (-1631 . 635405)
+ (-1632 . 635321) (-1633 . 635264) (-1634 . 635022) (-1635 . 634878)
+ (-1636 . 634618) (-1637 . 634469) (-1638 . 634251) (-1639 . 633937)
+ (-1640 . 633820) (-1641 . 633328) (-1642 . 633272) (-1643 . 633178)
+ (-1644 . 632970) (-1645 . 632839) (-1646 . 632744) (-1647 . 632660)
+ (-1648 . 632587) (-1649 . 632450) (-1650 . 632239) (-1651 . 632155)
+ (-1652 . 632056) (-1653 . 631994) (-1654 . 631673) (-1655 . 631602)
+ (-1656 . 631484) (-1657 . 631404) (-1658 . 631307) (-1659 . 631188)
+ (-1660 . 631006) (-1661 . 630916) (-1662 . 630843) (-1663 . 630322)
+ (-1664 . 630251) (-1665 . 630139) (-1666 . 630087) (-1667 . 630014)
+ (-1668 . 629891) (-1669 . 629818) (-1670 . 629745) (-1671 . 629662)
+ (-1672 . 629391) (-1673 . 629321) (-1674 . 629073) (-1675 . 628979)
+ (-1676 . 628796) (-1677 . 627631) (-1678 . 627519) (-1679 . 627424)
+ (-1680 . 626877) (-1681 . 626653) (-1682 . 626313) (-1683 . 626279)
+ (-1684 . 626006) (-1685 . 625779) (-1686 . 625689) (-1687 . 625563)
+ (-1688 . 625483) (-1689 . 625400) (-1690 . 625314) (-1691 . 625214)
+ (-1692 . 625057) (-1693 . 624869) (-1694 . 624768) (-1695 . 624328)
+ (-1696 . 624201) (-1697 . 624146) (-1698 . 624079) (-1699 . 623888)
+ (-1700 . 623771) (-1701 . 623668) (-1702 . 623560) (-1703 . 623454)
+ (-1704 . 623328) (-1705 . 623156) (-1706 . 623055) (-1707 . 622959)
+ (-1708 . 622471) (-1709 . 622405) (-1710 . 622298) (-1711 . 622109)
+ (-1712 . 622014) (-1713 . 621698) (-1714 . 621459) (-1715 . 621336)
+ (-1716 . 621172) (-1717 . 620946) (-1718 . 620673) (-1719 . 620586)
+ (-1720 . 620396) (-1721 . 620200) (-1722 . 620140) (-1723 . 620084)
+ (-1724 . 619977) (-1725 . 619946) (-1726 . 619877) (-1727 . 619659)
+ (-1728 . 619528) (-1729 . 619441) (-1730 . 619305) (-1731 . 619220)
+ (-1732 . 619099) (-1733 . 619026) (-1734 . 618808) (-1735 . 618753)
+ (-1736 . 618566) (-1737 . 618467) (-1738 . 618302) (-1739 . 618011)
+ (-1740 . 617486) (-1741 . 617386) (-1742 . 616907) (-1743 . 616309)
+ (-1744 . 616219) (-1745 . 615471) (-1746 . 615411) (-1747 . 615284)
+ (-1748 . 615211) (-1749 . 615177) (-1750 . 615004) (-1751 . 614729)
+ (-1752 . 614669) (-1753 . 614526) (-1754 . 614453) (-1755 . 614382)
+ (-1756 . 614330) (-1757 . 613678) (-1758 . 613650) (-1759 . 613566)
+ (-1760 . 613408) (-1761 . 612986) (-1762 . 612934) (-1763 . 612821)
+ (-1764 . 612727) (-1765 . 612625) (-1766 . 612465) (-1767 . 611964)
+ (-1768 . 611770) (-1769 . 611717) (-1770 . 611553) (-1771 . 611281)
+ (-1772 . 611002) (-1773 . 610783) (-1774 . 610597) (-1775 . 610493)
+ (-1776 . 610391) (-1777 . 610134) (-1778 . 610063) (-1779 . 610010)
+ (-1780 . 609888) (-1781 . 609393) (-1782 . 609338) (-1783 . 609222)
+ (-1784 . 609167) (-1785 . 609040) (-1786 . 608970) (-1787 . 608846)
+ (-1788 . 608797) (-1789 . 608486) (-1790 . 608124) (-1791 . 607545)
+ (-1792 . 607450) (-1793 . 607300) (-1794 . 607233) (-1795 . 607066)
+ (-1796 . 606822) (-1797 . 606764) (-1798 . 606627) (-1799 . 606161)
+ (-1800 . 606109) (-1801 . 605705) (-1802 . 604789) (-1803 . 604210)
+ (-1804 . 604155) (-1805 . 603838) (-1806 . 603625) (-1807 . 603482)
+ (-1808 . 603379) (-1809 . 603226) (-1810 . 602982) (-1811 . 602776)
+ (-1812 . 602623) (-1813 . 602324) (-1814 . 601239) (-1815 . 601186)
+ (-1816 . 601134) (-1817 . 600854) (-1818 . 600701) (-1819 . 600571)
+ (-1820 . 600409) (-1821 . 600060) (-1822 . 599843) (-1823 . 599728)
+ (-1824 . 599587) (-1825 . 599489) (-1826 . 598834) (-1827 . 598467)
+ (-1828 . 598385) (-1829 . 598192) (-1830 . 598104) (-1831 . 597878)
+ (-1832 . 597521) (-1833 . 597298) (-1834 . 597089) (-1835 . 596966)
+ (-1836 . 596549) (-1837 . 596406) (-1838 . 596308) (-1839 . 595983)
+ (-1840 . 595895) (-1841 . 595689) (-1842 . 594946) (-1843 . 594790)
+ (-1844 . 594410) (-1845 . 594338) (-1846 . 594116) (-1847 . 594046)
+ (-1848 . 593987) (-1849 . 593907) (-1850 . 593763) (-1851 . 593605)
+ (-1852 . 593507) (-1853 . 593416) (-1854 . 593032) (-1855 . 592828)
+ (-1856 . 592685) (-1857 . 592573) (-1858 . 592127) (-1859 . 591960)
+ (-1860 . 591830) (-1861 . 591760) (-1862 . 591153) (-1863 . 590820)
+ (-1864 . 590769) (-1865 . 590716) (-1866 . 590493) (-1867 . 589127)
+ (-1868 . 589048) (-1869 . 588774) (-1870 . 588630) (-1871 . 588506)
+ (-1872 . 588434) (-1873 . 588357) (-1874 . 587155) (-1875 . 587051)
+ (-1876 . 586873) (-1877 . 586580) (-1878 . 586527) (-1879 . 586404)
+ (-1880 . 586257) (-1881 . 585620) (-1882 . 585568) (-1883 . 585268)
+ (-1884 . 585159) (-1885 . 585038) (-1886 . 584876) (-1887 . 584682)
+ (-1888 . 584564) (-1889 . 584520) (-1890 . 584376) (-1891 . 584267)
+ (-1892 . 583975) (-1893 . 583822) (-1894 . 583659) (-1895 . 583500)
+ (-1896 . 583472) (-1897 . 582291) (-1898 . 582222) (-1899 . 582103)
+ (-1900 . 581572) (-1901 . 581414) (-1902 . 576217) (-1903 . 576143)
+ (-1904 . 576069) (-1905 . 575925) (-1906 . 575867) (-1907 . 575811)
+ (-1908 . 575672) (-1909 . 575475) (-1910 . 575336) (-1911 . 575145)
+ (-1912 . 574276) (-1913 . 574152) (-1914 . 573982) (-1915 . 573909)
+ (-1916 . 573810) (-1917 . 573571) (-1918 . 572872) (-1919 . 572688)
+ (-1920 . 572398) (-1921 . 572240) (-1922 . 572040) (-1923 . 571892)
+ (-1924 . 571759) (-1925 . 570840) (-1926 . 570758) (-1927 . 570660)
+ (-1928 . 569983) (-1929 . 569825) (-1930 . 569707) (-1931 . 569625)
+ (-1932 . 569445) (-1933 . 569349) (-1934 . 569240) (-1935 . 569127)
+ (-1936 . 568131) (-1937 . 567975) (-1938 . 567585) (-1939 . 567440)
+ (-1940 . 567108) (-1941 . 566968) (-1942 . 566806) (-1943 . 566695)
+ (-1944 . 566610) (-1945 . 566413) (-1946 . 566339) (-1947 . 566199)
+ (-1948 . 565934) (-1949 . 565825) (-1950 . 565311) (-1951 . 565123)
+ (-1952 . 565029) (-1953 . 564778) (-1954 . 564726) (-1955 . 564659)
+ (-1956 . 564625) (-1957 . 564467) (-1958 . 563717) (-1959 . 563490)
+ (-1960 . 563383) (-1961 . 563302) (-1962 . 563160) (-1963 . 563094)
+ (-1964 . 562907) (-1965 . 562841) (-1966 . 562531) (-1967 . 561985)
+ (-1968 . 561912) (-1969 . 561782) (-1970 . 561702) (-1971 . 561432)
+ (-1972 . 561259) (-1973 . 561175) (-1974 . 560566) (-1975 . 560356)
+ (-1976 . 559910) (-1977 . 559613) (-1978 . 559526) (-1979 . 559178)
+ (-1980 . 559071) (-1981 . 558892) (-1982 . 558841) (-1983 . 558665)
+ (-1984 . 558445) (-1985 . 558226) (-1986 . 557899) (-1987 . 557706)
+ (-1988 . 557654) (-1989 . 557530) (-1990 . 557223) (-1991 . 556260)
+ (-1992 . 555669) (-1993 . 555490) (-1994 . 555435) (-1995 . 555348)
+ (-1996 . 554999) (-1997 . 550937) (-1998 . 550843) (-1999 . 550806)
+ (-2000 . 550494) (-2001 . 550058) (-2002 . 549987) (-2003 . 549855)
+ (-2004 . 549798) (-2005 . 549687) (-2006 . 549604) (-2007 . 549381)
+ (-2008 . 549212) (-2009 . 549015) (-2010 . 548949) (-2011 . 548875)
+ (-2012 . 548826) (-2013 . 548206) (-2014 . 548112) (-2015 . 548041)
+ (-2016 . 547956) (-2017 . 547672) (-2018 . 547595) (-2019 . 547515)
+ (-2020 . 547456) (-2021 . 547064) (-2022 . 546987) (-2023 . 546904)
+ (-2024 . 546782) (-2025 . 546697) (-2026 . 546276) (-2027 . 545755)
+ (-2028 . 545456) (-2029 . 545275) (-2030 . 545171) (-2031 . 542924)
+ (-2032 . 542851) (-2033 . 542491) (-2034 . 542460) (-2035 . 542181)
+ (-2036 . 542070) (-2037 . 541952) (-2038 . 541900) (-2039 . 541814)
+ (-2040 . 541339) (-2041 . 541266) (-2042 . 538921) (-2043 . 538814)
+ (-2044 . 538564) (-2045 . 538295) (-2046 . 537411) (-2047 . 536965)
+ (-2048 . 536853) (-2049 . 536716) (-2050 . 532556) (-2051 . 532339)
+ (-2052 . 532252) (-2053 . 532122) (-2054 . 531613) (-2055 . 530649)
+ (-2056 . 530303) (-2057 . 529720) (-2058 . 529667) (-2059 . 529610)
+ (-2060 . 529498) (-2061 . 529392) (-2062 . 529294) (-2063 . 529173)
+ (-2064 . 528989) (-2065 . 528634) (-2066 . 528511) (-2067 . 528377)
+ (-2068 . 528274) (-2069 . 528191) (-2070 . 528119) (-2071 . 528020)
+ (-2072 . 527868) (-2073 . 527773) (-2074 . 527620) (-2075 . 527513)
+ (-2076 . 527326) (-2077 . 527249) (-2078 . 527144) (-2079 . 527073)
+ (-2080 . 526918) (-2081 . 526861) (-2082 . 526695) (-2083 . 526643)
+ (-2084 . 526425) (-2085 . 525405) (-2086 . 525301) (-2087 . 525146)
+ (-2088 . 525045) (-2089 . 524946) (-2090 . 524728) (-2091 . 524643)
+ (-2092 . 524277) (-2093 . 524203) (-2094 . 524154) (-2095 . 524021)
+ (-2096 . 523938) (-2097 . 523814) (-2098 . 523701) (-2099 . 523642)
+ (-2100 . 523281) (-2101 . 523050) (-2102 . 522945) (-2103 . 522822)
+ (-2104 . 522767) (-2105 . 522676) (-2106 . 522571) (-2107 . 522455)
+ (-2108 . 522400) (-2109 . 522330) (-2110 . 522222) (-2111 . 522127)
+ (-2112 . 521832) (-2113 . 521653) (-2114 . 521460) (-2115 . 521403)
+ (-2116 . 520970) (-2117 . 520788) (-2118 . 520133) (-2119 . 520005)
+ (-2120 . 519919) (-2121 . 519867) (-2122 . 519643) (-2123 . 518797)
+ (-2124 . 518745) (-2125 . 518439) (-2126 . 518265) (-2127 . 517935)
+ (-2128 . 517497) (-2129 . 517423) (-2130 . 517370) (-2131 . 517277)
+ (-2132 . 517110) (-2133 . 516905) (-2134 . 513295) (-2135 . 513202)
+ (-2136 . 513150) (-2137 . 513122) (-2138 . 513070) (-2139 . 513007)
+ (-2140 . 512847) (-2141 . 512741) (-2142 . 512619) (-2143 . 512479)
+ (-2144 . 512298) (-2145 . 512242) (-2146 . 512143) (-2147 . 512082)
+ (-2148 . 511973) (-2149 . 511335) (-2150 . 511109) (-2151 . 511058)
+ (-2152 . 510987) (-2153 . 510932) (-2154 . 510787) (-2155 . 510470)
+ (-2156 . 510383) (-2157 . 510285) (-2158 . 510211) (-2159 . 509147)
+ (-2160 . 509097) (-2161 . 508698) (-2162 . 508597) (-2163 . 508523)
+ (-2164 . 508365) (-2165 . 508260) (-2166 . 508012) (-2167 . 507850)
+ (-2168 . 506613) (-2169 . 506500) (-2170 . 506413) (-2171 . 506279)
+ (-2172 . 506135) (-2173 . 505931) (-2174 . 505544) (-2175 . 505457)
+ (-2176 . 505400) (-2177 . 505103) (-2178 . 504990) (-2179 . 504813)
+ (-2180 . 503998) (-2181 . 503845) (-2182 . 503789) (-2183 . 503718)
+ (-2184 . 503665) (-2185 . 503560) (-2186 . 503446) (-2187 . 503114)
+ (-2188 . 503086) (-2189 . 503017) (-2190 . 502893) (-2191 . 502750)
+ (-2192 . 502691) (-2193 . 502582) (-2194 . 502499) (-2195 . 502443)
+ (-2196 . 502333) (-2197 . 502259) (-2198 . 502193) (-2199 . 501918)
+ (-2200 . 501828) (-2201 . 501661) (-2202 . 501518) (-2203 . 501489)
+ (-2204 . 500389) (-2205 . 500096) (-2206 . 499952) (-2207 . 499924)
+ (-2208 . 499609) (-2209 . 499515) (-2210 . 499466) (-2211 . 499343)
+ (-2212 . 499004) (-2213 . 498906) (-2214 . 498813) (-2215 . 498726)
+ (-2216 . 498556) (-2217 . 498528) (-2218 . 498360) (-2219 . 497619)
+ (-2220 . 497309) (-2221 . 497139) (-2222 . 497073) (-2223 . 496828)
+ (-2224 . 496643) (-2225 . 496436) (-2226 . 496320) (-2227 . 496213)
+ (-2228 . 496158) (-2229 . 496078) (-2230 . 496023) (-2231 . 495282)
+ (-2232 . 494954) (-2233 . 494866) (-2234 . 494814) (-2235 . 494624)
+ (-2236 . 494554) (-2237 . 494180) (-2238 . 493888) (-2239 . 493794)
+ (-2240 . 493603) (-2241 . 493456) (-2242 . 493382) (-2243 . 493275)
+ (-2244 . 492587) (-2245 . 492521) (-2246 . 491516) (-2247 . 491448)
+ (-2248 . 491180) (-2249 . 490758) (-2250 . 490454) (-2251 . 490122)
+ (-2252 . 489875) (-2253 . 489550) (-2254 . 488974) (-2255 . 488632)
+ (-2256 . 488497) (-2257 . 488330) (-2258 . 488062) (-2259 . 487963)
+ (-2260 . 487904) (-2261 . 486362) (-2262 . 486218) (-2263 . 485788)
+ (-2264 . 485705) (-2265 . 485631) (-2266 . 485579) (-2267 . 485263)
+ (-2268 . 485045) (-2269 . 484469) (-2270 . 484139) (-2271 . 483972)
+ (-2272 . 483741) (-2273 . 483713) (-2274 . 483640) (-2275 . 483496)
+ (-2276 . 483337) (-2277 . 483214) (-2278 . 483180) (-2279 . 482528)
+ (-2280 . 480804) (-2281 . 480228) (-2282 . 480073) (-2283 . 479587)
+ (-2284 . 479500) (-2285 . 479386) (-2286 . 479151) (-2287 . 479025)
+ (-2288 . 478929) (-2289 . 478897) (-2290 . 478828) (-2291 . 478639)
+ (-2292 . 478584) (-2293 . 477898) (-2294 . 477788) (-2295 . 477656)
+ (-2296 . 477604) (-2297 . 477445) (-2298 . 477285) (-2299 . 477116)
+ (-2300 . 477031) (-2301 . 476716) (-2302 . 476607) (-2303 . 476579)
+ (-2304 . 475893) (-2305 . 475735) (-2306 . 475648) (-2307 . 475404)
+ (-2308 . 475259) (-2309 . 475066) (-2310 . 474813) (-2311 . 474758)
+ (-2312 . 474598) (-2313 . 474515) (-2314 . 473766) (-2315 . 473640)
+ (-2316 . 473555) (-2317 . 473400) (-2318 . 473256) (-2319 . 473168)
+ (-2320 . 473073) (-2321 . 472896) (-2322 . 472292) (-2323 . 472049)
+ (-2324 . 471475) (-2325 . 471360) (-2326 . 471246) (-2327 . 471005)
+ (-2328 . 469813) (-2329 . 469558) (-2330 . 469287) (-2331 . 468911)
+ (-2332 . 468809) (-2333 . 468658) (-2334 . 468084) (-2335 . 467867)
+ (-2336 . 467789) (-2337 . 467697) (-2338 . 467175) (-2339 . 465991)
+ (-2340 . 465904) (-2341 . 465876) (-2342 . 465823) (-2343 . 465603)
+ (-2344 . 465481) (-2345 . 464990) (-2346 . 464953) (-2347 . 464379)
+ (-2348 . 464249) (-2349 . 464133) (-2350 . 463937) (-2351 . 462759)
+ (-2352 . 462673) (-2353 . 462573) (-2354 . 462495) (-2355 . 462394)
+ (-2356 . 462342) (-2357 . 462262) (-2358 . 462057) (-2359 . 461732)
+ (-2360 . 461045) (-2361 . 460886) (-2362 . 460852) (-2363 . 460366)
+ (-2364 . 458168) (-2365 . 458095) (-2366 . 434940) (-2367 . 434866)
+ (-2368 . 434718) (-2369 . 434664) (-2370 . 434563) (-2371 . 434498)
+ (-2372 . 434425) (-2373 . 433738) (-2374 . 433682) (-2375 . 433492)
+ (-2376 . 431713) (-2377 . 428961) (-2378 . 428909) (-2379 . 428808)
+ (-2380 . 428597) (-2381 . 428538) (-2382 . 428464) (-2383 . 427865)
+ (-2384 . 427748) (-2385 . 427569) (-2386 . 426882) (-2387 . 426819)
+ (-2388 . 426065) (-2389 . 425851) (-2390 . 425700) (-2391 . 425646)
+ (-2392 . 425274) (-2393 . 424738) (-2394 . 424685) (-2395 . 424512)
+ (-2396 . 424463) (-2397 . 424282) (-2398 . 423707) (-2399 . 423633)
+ (-2400 . 423492) (-2401 . 423419) (-2402 . 423361) (-2403 . 423191)
+ (-2404 . 423045) (-2405 . 422992) (-2406 . 422931) (-2407 . 422610)
+ (-2408 . 422260) (-2409 . 421685) (-2410 . 421601) (-2411 . 421567)
+ (-2412 . 421154) (-2413 . 421039) (-2414 . 420901) (-2415 . 420818)
+ (-2416 . 420673) (-2417 . 420618) (-2418 . 420569) (-2419 . 420462)
+ (-2420 . 420272) (-2421 . 419697) (-2422 . 419071) (-2423 . 418966)
+ (-2424 . 418883) (-2425 . 418739) (-2426 . 417492) (-2427 . 417276)
+ (-2428 . 417089) (-2429 . 416927) (-2430 . 416772) (-2431 . 416695)
+ (-2432 . 416576) (-2433 . 416467) (-2434 . 415893) (-2435 . 415770)
+ (-2436 . 415675) (-2437 . 415463) (-2438 . 415330) (-2439 . 415278)
+ (-2440 . 415204) (-2441 . 412789) (-2442 . 412716) (-2443 . 412512)
+ (-2444 . 412453) (-2445 . 412320) (-2446 . 411746) (-2447 . 411640)
+ (-2448 . 411086) (-2449 . 411030) (-2450 . 410978) (-2451 . 410899)
+ (-2452 . 410840) (-2453 . 410755) (-2454 . 410643) (-2455 . 410521)
+ (-2456 . 410322) (-2457 . 408782) (-2458 . 408667) (-2459 . 408093)
+ (-2460 . 405185) (-2461 . 405111) (-2462 . 404932) (-2463 . 404904)
+ (-2464 . 404759) (-2465 . 404704) (-2466 . 404543) (-2467 . 404429)
+ (-2468 . 404210) (-2469 . 403897) (-2470 . 403751) (-2471 . 403673)
+ (-2472 . 403099) (-2473 . 403037) (-2474 . 402887) (-2475 . 402778)
+ (-2476 . 402604) (-2477 . 402506) (-2478 . 402432) (-2479 . 402107)
+ (-2480 . 402010) (-2481 . 401944) (-2482 . 401891) (-2483 . 401155)
+ (-2484 . 401036) (-2485 . 400462) (-2486 . 400282) (-2487 . 400051)
+ (-2488 . 399317) (-2489 . 398869) (-2490 . 398656) (-2491 . 398627)
+ (-2492 . 398486) (-2493 . 398371) (-2494 . 398210) (-2495 . 398071)
+ (-2496 . 397984) (-2497 . 397862) (-2498 . 397751) (-2499 . 397400)
+ (-2500 . 396600) (-2501 . 396550) (-2502 . 396363) (-2503 . 396265)
+ (-2504 . 395841) (-2505 . 395715) (-2506 . 395596) (-2507 . 395443)
+ (-2508 . 395164) (-2509 . 395108) (-2510 . 395042) (-2511 . 394965)
+ (-2512 . 394899) (-2513 . 394584) (-2514 . 394336) (-2515 . 393452)
+ (-2516 . 393331) (-2517 . 392991) (-2518 . 392963) (-2519 . 392889)
+ (-2520 . 392480) (-2521 . 391842) (-2522 . 391782) (-2523 . 391729)
+ (-2524 . 391588) (-2525 . 391397) (-2526 . 391294) (-2527 . 391157)
+ (-2528 . 391016) (-2529 . 390963) (-2530 . 390784) (-2531 . 390726)
+ (-2532 . 389546) (-2533 . 388386) (-2534 . 387975) (-2535 . 386861)
+ (-2536 . 386790) (-2537 . 384660) (-2538 . 384561) (-2539 . 384487)
+ (-2540 . 384355) (-2541 . 384210) (-2542 . 384069) (-2543 . 383960)
+ (-2544 . 383823) (-2545 . 383756) (-2546 . 383423) (-2547 . 383338)
+ (-2548 . 383224) (-2549 . 383117) (-2550 . 383065) (-2551 . 382891)
+ (-2552 . 381491) (-2553 . 381365) (-2554 . 381232) (-2555 . 380953)
+ (-2556 . 380661) (-2557 . 380480) (-2558 . 380424) (-2559 . 379903)
+ (-2560 . 379841) (-2561 . 379683) (-2562 . 378560) (-2563 . 378348)
+ (-2564 . 378295) (-2565 . 378217) (-2566 . 378166) (-2567 . 378052)
+ (-2568 . 377751) (-2569 . 377492) (-2570 . 377409) (-2571 . 377279)
+ (-2572 . 377157) (-2573 . 377129) (-2574 . 377027) (-2575 . 376857)
+ (-2576 . 376698) (-2577 . 375297) (-2578 . 375185) (-2579 . 374859)
+ (-2580 . 374489) (-2581 . 374418) (-2582 . 374200) (-2583 . 374136)
+ (-2584 . 374067) (-2585 . 368750) (-2586 . 368689) (-2587 . 368198)
+ (-2588 . 368035) (-2589 . 367475) (-2590 . 367378) (-2591 . 367308)
+ (-2592 . 367205) (-2593 . 367075) (-2594 . 367018) (-2595 . 366567)
+ (-2596 . 365688) (-2597 . 365329) (-2598 . 364173) (-2599 . 364074)
+ (-2600 . 363965) (-2601 . 363906) (-2602 . 363851) (-2603 . 363592)
+ (-2604 . 363394) (-2605 . 363299) (-2606 . 362870) (-2607 . 362805)
+ (-2608 . 362606) (-2609 . 362529) (-2610 . 362305) (-2611 . 356797)
+ (-2612 . 356529) (-2613 . 356446) (-2614 . 356280) (-2615 . 356128)
+ (-2616 . 355976) (-2617 . 355846) (-2618 . 355731) (-2619 . 355636)
+ (-2620 . 355607) (-2621 . 355501) (-2622 . 355411) (-2623 . 355221)
+ (-2624 . 355023) (-2625 . 354635) (-2626 . 354512) (-2627 . 354139)
+ (-2628 . 354036) (-2629 . 353964) (-2630 . 353860) (-2631 . 350575)
+ (-2632 . 350336) (-2633 . 350265) (-2634 . 350022) (-2635 . 349901)
+ (-2636 . 349771) (-2637 . 349318) (-2638 . 349244) (-2639 . 349063)
+ (-2640 . 348990) (-2641 . 348908) (-2642 . 348801) (-2643 . 348749)
+ (-2644 . 348664) (-2645 . 348270) (-2646 . 348113) (-2647 . 348061)
+ (-2648 . 348008) (-2649 . 347661) (-2650 . 347554) (-2651 . 347443)
+ (-2652 . 347370) (-2653 . 347252) (-2654 . 346906) (-2655 . 346840)
+ (-2656 . 346812) (-2657 . 346740) (-2658 . 346660) (-2659 . 346546)
+ (-2660 . 346512) (-2661 . 346441) (-2662 . 346283) (-2663 . 346202)
+ (-2664 . 346111) (-2665 . 345920) (-2666 . 345868) (-2667 . 345816)
+ (-2668 . 345758) (-2669 . 345673) (-2670 . 345599) (-2671 . 345444)
+ (-2672 . 345337) (-2673 . 345269) (-2674 . 345080) (-2675 . 344866)
+ (-2676 . 344693) (-2677 . 344522) (-2678 . 344471) (-2679 . 344390)
+ (-2680 . 344303) (-2681 . 344014) (-2682 . 343943) (-2683 . 343738)
+ (-2684 . 343629) (-2685 . 342865) (-2686 . 342772) (-2687 . 342685)
+ (-2688 . 333155) (-2689 . 332892) (-2690 . 332591) (-2691 . 332076)
+ (-2692 . 331922) (-2693 . 331852) (-2694 . 331623) (-2695 . 331339)
+ (-2696 . 331205) (-2697 . 331139) (-2698 . 331021) (-2699 . 330501)
+ (-2700 . 330390) (-2701 . 330094) (-2702 . 329978) (-2703 . 329834)
+ (-2704 . 329644) (-2705 . 329542) (-2706 . 329489) (-2707 . 328275)
+ (-2708 . 327865) (-2709 . 327712) (-2710 . 327603) (-2711 . 327505)
+ (-2712 . 327427) (-2713 . 327396) (-2714 . 327001) (-2715 . 326902)
+ (-2716 . 326795) (-2717 . 326537) (-2718 . 326358) (-2719 . 325813)
+ (-2720 . 325703) (-2721 . 325049) (-2722 . 324997) (-2723 . 324872)
+ (-2724 . 324819) (-2725 . 323200) (-2726 . 323130) (-2727 . 323063)
+ (-2728 . 322964) (-2729 . 322805) (-2730 . 322648) (-2731 . 322410)
+ (-2732 . 321125) (-2733 . 321072) (-2734 . 320727) (-2735 . 319866)
+ (-2736 . 319832) (-2737 . 319759) (-2738 . 319703) (-2739 . 319643)
+ (-2740 . 319314) (-2741 . 319123) (-2742 . 319050) (-2743 . 318965)
+ (-2744 . 318836) (-2745 . 318784) (-2746 . 317417) (-2747 . 317275)
+ (-2748 . 317176) (-2749 . 317075) (-2750 . 316852) (-2751 . 316753)
+ (-2752 . 316588) (-2753 . 315407) (-2754 . 315335) (-2755 . 314735)
+ (-2756 . 314652) (-2757 . 314400) (-2758 . 314201) (-2759 . 314147)
+ (-2760 . 314096) (-2761 . 314025) (-2762 . 313925) (-2763 . 313664)
+ (-2764 . 313522) (-2765 . 313082) (-2766 . 312923) (-2767 . 312833)
+ (-2768 . 312653) (-2769 . 312465) (-2770 . 312378) (-2771 . 312312)
+ (-2772 . 312238) (-2773 . 312057) (-2774 . 311972) (-2775 . 311651)
+ (-2776 . 311495) (-2777 . 311303) (-2778 . 310831) (-2779 . 310631)
+ (-2780 . 310551) (-2781 . 310423) (-2782 . 309852) (-2783 . 309766)
+ (-2784 . 309706) (-2785 . 309605) (-2786 . 309522) (-2787 . 309452)
+ (-2788 . 309331) (-2789 . 309172) (-2790 . 308929) (-2791 . 308876)
+ (-2792 . 308733) (-2793 . 308613) (-2794 . 308581) (-2795 . 308410)
+ (-2796 . 308341) (-2797 . 308313) (-2798 . 308169) (-2799 . 308101)
+ (-2800 . 307995) (-2801 . 307385) (-2802 . 306995) (-2803 . 306873)
+ (-2804 . 306711) (-2805 . 304883) (-2806 . 304670) (-2807 . 304593)
+ (-2808 . 304537) (-2809 . 304407) (-2810 . 304317) (-2811 . 304232)
+ (-2812 . 304164) (-2813 . 304067) (-2814 . 303834) (-2815 . 303686)
+ (-2816 . 303609) (-2817 . 302108) (-2818 . 302052) (-2819 . 301798)
+ (-2820 . 301655) (-2821 . 301453) (-2822 . 301376) (-2823 . 301250)
+ (-2824 . 301051) (-2825 . 299605) (-2826 . 299452) (-2827 . 299320)
+ (-2828 . 299046) (-2829 . 298951) (-2830 . 298898) (-2831 . 298819)
+ (-2832 . 298606) (-2833 . 298313) (-2834 . 298115) (-2835 . 297842)
+ (-2836 . 297451) (-2837 . 297256) (-2838 . 297114) (-2839 . 297064)
+ (-2840 . 296952) (-2841 . 296879) (-2842 . 296351) (-2843 . 296280)
+ (-2844 . 295895) (-2845 . 295637) (-2846 . 295487) (-2847 . 295404)
+ (-2848 . 295330) (-2849 . 295260) (-2850 . 295116) (-2851 . 295064)
+ (-2852 . 294925) (-2853 . 293715) (-2854 . 293657) (-2855 . 293548)
+ (-2856 . 293337) (-2857 . 293128) (-2858 . 293008) (-2859 . 292907)
+ (-2860 . 292669) (-2861 . 292545) (-2862 . 292437) (-2863 . 292378)
+ (-2864 . 292308) (-2865 . 292198) (-2866 . 292052) (-2867 . 291710)
+ (-2868 . 291524) (-2869 . 291445) (-2870 . 291326) (-2871 . 291162)
+ (-2872 . 291009) (-2873 . 290902) (-2874 . 290663) (-2875 . 290553)
+ (-2876 . 290379) (-2877 . 290294) (-2878 . 290180) (-2879 . 290070)
+ (-2880 . 289839) (-2881 . 289751) (-2882 . 289324) (-2883 . 289078)
+ (-2884 . 288981) (-2885 . 288947) (-2886 . 288877) (-2887 . 288783)
+ (-2888 . 288503) (-2889 . 288402) (-2890 . 286150) (-2891 . 285846)
+ (-2892 . 285739) (-2893 . 285609) (-2894 . 285282) (-2895 . 285195)
+ (-2896 . 284907) (-2897 . 284416) (-2898 . 284074) (-2899 . 283880)
+ (-2900 . 283831) (-2901 . 283640) (-2902 . 283503) (-2903 . 283394)
+ (-2904 . 283217) (-2905 . 283023) (-2906 . 282847) (-2907 . 282770)
+ (-2908 . 282647) (-2909 . 282550) (-2910 . 282317) (-2911 . 282213)
+ (-2912 . 282149) (-2913 . 282054) (-2914 . 281957) (-2915 . 281880)
+ (-2916 . 281783) (-2917 . 281686) (-2918 . 280813) (-2919 . 280677)
+ (-2920 . 280564) (-2921 . 280236) (-2922 . 280122) (-2923 . 280070)
+ (-2924 . 280017) (-2925 . 279879) (-2926 . 279661) (-2927 . 279563)
+ (-2928 . 279401) (-2929 . 279348) (-2930 . 279320) (-2931 . 279161)
+ (-2932 . 279013) (-2933 . 278583) (-2934 . 278359) (-2935 . 278232)
+ (-2936 . 278092) (-2937 . 277907) (-2938 . 277752) (-2939 . 277637)
+ (-2940 . 277563) (-2941 . 277489) (-2942 . 277307) (-2943 . 276647)
+ (-2944 . 276189) (-2945 . 276082) (-2946 . 275968) (-2947 . 275648)
+ (-2948 . 275531) (-2949 . 275413) (-2950 . 275275) (-2951 . 275222)
+ (-2952 . 275000) (-2953 . 274871) (-2954 . 274843) (-2955 . 274769)
+ (-2956 . 273345) (-2957 . 273311) (-2958 . 273072) (-2959 . 272972)
+ (-2960 . 272834) (-2961 . 272782) (-2962 . 272466) (-2963 . 272435)
+ (-2964 . 272164) (-2965 . 271945) (-2966 . 271687) (-2967 . 271617)
+ (-2968 . 271416) (-2969 . 271275) (-2970 . 271153) (-2971 . 271076)
+ (-2972 . 271034) (-2973 . 270930) (-2974 . 270516) (-2975 . 270107)
+ (-2976 . 269916) (-2977 . 269813) (-2978 . 269608) (-2979 . 269531)
+ (-2980 . 269394) (-2981 . 269285) (-2982 . 269208) (-2983 . 268990)
+ (-2984 . 268711) (-2985 . 268525) (-2986 . 268039) (-2987 . 267841)
+ (-2988 . 267325) (-2989 . 267257) (-2990 . 267157) (-2991 . 266708)
+ (-2992 . 266631) (-2993 . 266560) (-2994 . 266314) (-2995 . 266203)
+ (-2996 . 266129) (-2997 . 266023) (-2998 . 265898) (-2999 . 265811)
+ (-3000 . 265079) (-3001 . 264696) (-3002 . 264485) (-3003 . 264097)
+ (-3004 . 263813) (-3005 . 263719) (-3006 . 263626) (-3007 . 263510)
+ (-3008 . 263366) (-3009 . 262116) (-3010 . 262063) (-3011 . 261896)
+ (-3012 . 261723) (-3013 . 261615) (-3014 . 261559) (-3015 . 261299)
+ (-3016 . 260651) (-3017 . 260324) (-3018 . 260062) (-3019 . 259955)
+ (-3020 . 259926) (-3021 . 259762) (-3022 . 259646) (-3023 . 258644)
+ (-3024 . 258406) (-3025 . 258351) (-3026 . 258285) (-3027 . 258188)
+ (-3028 . 257520) (-3029 . 257419) (-3030 . 257332) (-3031 . 257184)
+ (-3032 . 257101) (-3033 . 256761) (-3034 . 256705) (-3035 . 256610)
+ (-3036 . 256541) (-3037 . 256486) (-3038 . 255984) (-3039 . 255745)
+ (-3040 . 255660) (-3041 . 254902) (-3042 . 254798) (-3043 . 254654)
+ (-3044 . 254290) (-3045 . 254210) (-3046 . 253733) (-3047 . 253596)
+ (-3048 . 252984) (-3049 . 252956) (-3050 . 252854) (-3051 . 252805)
+ (-3052 . 252514) (-3053 . 252270) (-3054 . 252204) (-3055 . 252083)
+ (-3056 . 251998) (-3057 . 251572) (-3058 . 251182) (-3059 . 251111)
+ (-3060 . 250410) (-3061 . 250308) (-3062 . 250161) (-3063 . 250068)
+ (-3064 . 250034) (-3065 . 249878) (-3066 . 249772) (-3067 . 249664)
+ (-3068 . 249602) (-3069 . 249442) (-3070 . 249354) (-3071 . 248809)
+ (-3072 . 248708) (-3073 . 248585) (-3074 . 248465) (-3075 . 248331)
+ (-3076 . 248238) (-3077 . 248139) (-3078 . 247985) (-3079 . 247768)
+ (-3080 . 247597) (-3081 . 247347) (-3082 . 247077) (-3083 . 247021)
+ (-3084 . 246881) (-3085 . 246783) (-3086 . 246704) (-3087 . 246605)
+ (-3088 . 246553) (-3089 . 246473) (-3090 . 245719) (-3091 . 245539)
+ (-3092 . 245487) (-3093 . 245240) (-3094 . 244606) (-3095 . 244428)
+ (-3096 . 244256) (-3097 . 243601) (-3098 . 243505) (-3099 . 243365)
+ (-3100 . 243306) (-3101 . 243204) (-3102 . 243105) (-3103 . 243074)
+ (-3104 . 242939) (-3105 . 242802) (-3106 . 240021) (-3107 . 239849)
+ (-3108 . 239797) (-3109 . 239699) (-3110 . 239485) (-3111 . 239415)
+ (-3112 . 239125) (-3113 . 239030) (-3114 . 238832) (-3115 . 238660)
+ (-3116 . 238520) (-3117 . 238325) (-3118 . 238127) (-3119 . 238048)
+ (-3120 . 237986) (-3121 . 237882) (-3122 . 237665) (-3123 . 237507)
+ (-3124 . 237395) (-3125 . 237223) (-3126 . 237146) (-3127 . 237072)
+ (-3128 . 237002) (-3129 . 236500) (-3130 . 236403) (-3131 . 236261)
+ (-3132 . 236208) (-3133 . 236075) (-3134 . 235907) (-3135 . 235543)
+ (-3136 . 235425) (-3137 . 235323) (-3138 . 235289) (-3139 . 230768)
+ (-3140 . 230616) (-3141 . 230402) (-3142 . 230185) (-3143 . 230101)
+ (-3144 . 229995) (-3145 . 229879) (-3146 . 229272) (-3147 . 229170)
+ (-3148 . 229118) (-3149 . 229023) (-3150 . 228939) (-3151 . 228886)
+ (-3152 . 228834) (-3153 . 228435) (-3154 . 228272) (-3155 . 228021)
+ (-3156 . 227886) (-3157 . 227794) (-3158 . 227629) (-3159 . 227189)
+ (-3160 . 227010) (-3161 . 226888) (-3162 . 226774) (-3163 . 226650)
+ (-3164 . 226600) (-3165 . 226457) (-3166 . 226187) (-3167 . 226078)
+ (-3168 . 224888) (-3169 . 224836) (-3170 . 224653) (-3171 . 224337)
+ (-3172 . 224212) (-3173 . 224093) (-3174 . 224020) (-3175 . 223921)
+ (-3176 . 223370) (-3177 . 223240) (-3178 . 223132) (-3179 . 222901)
+ (-3180 . 222834) (-3181 . 222761) (-3182 . 222662) (-3183 . 222570)
+ (-3184 . 222498) (-3185 . 222369) (-3186 . 222300) (-3187 . 221913)
+ (-3188 . 221810) (-3189 . 221619) (-3190 . 221463) (-3191 . 221317)
+ (-3192 . 221218) (-3193 . 220635) (-3194 . 220154) (-3195 . 220017)
+ (-3196 . 219925) (-3197 . 219839) (-3198 . 219705) (-3199 . 219620)
+ (-3200 . 219520) (-3201 . 219256) (-3202 . 219140) (-3203 . 219081)
+ (-3204 . 218659) (-3205 . 217363) (-3206 . 217226) (-3207 . 217159)
+ (-3208 . 217057) (-3209 . 216984) (-3210 . 216740) (-3211 . 216688)
+ (-3212 . 216620) (-3213 . 216101) (-3214 . 215909) (-3215 . 215451)
+ (-3216 . 215296) (-3217 . 201233) (-3218 . 201160) (-3219 . 200997)
+ (-3220 . 200132) (-3221 . 200046) (-3222 . 199930) (-3223 . 199829)
+ (-3224 . 199682) (-3225 . 199633) (-3226 . 199496) (-3227 . 199411)
+ (-3228 . 199265) (-3229 . 199196) (-3230 . 199113) (-3231 . 198997)
+ (-3232 . 198893) (-3233 . 198793) (-3234 . 198743) (-3235 . 198648)
+ (-3236 . 198220) (-3237 . 198077) (-3238 . 198024) (-3239 . 197430)
+ (-3240 . 197378) (-3241 . 197283) (-3242 . 197161) (-3243 . 197031)
+ (-3244 . 196896) (-3245 . 196764) (-3246 . 196701) (-3247 . 196536)
+ (-3248 . 196467) (-3249 . 196338) (-3250 . 196033) (-3251 . 195904)
+ (-3252 . 195777) (-3253 . 195725) (-3254 . 195668) (-3255 . 195561)
+ (-3256 . 195497) (-3257 . 195388) (-3258 . 194844) (-3259 . 194472)
+ (-3260 . 189767) (-3261 . 189739) (-3262 . 189633) (-3263 . 189517)
+ (-3264 . 189390) (-3265 . 189177) (-3266 . 188899) (-3267 . 188792)
+ (-3268 . 188474) (-3269 . 188400) (-3270 . 188013) (-3271 . 187875)
+ (-3272 . 186605) (-3273 . 186456) (-3274 . 186308) (-3275 . 186188)
+ (-3276 . 186074) (-3277 . 185778) (-3278 . 185609) (-3279 . 185532)
+ (-3280 . 185189) (-3281 . 185076) (-3282 . 184481) (-3283 . 184380)
+ (-3284 . 184248) (-3285 . 183994) (-3286 . 183898) (-3287 . 183517)
+ (-3288 . 183461) (-3289 . 181309) (-3290 . 181151) (-3291 . 180966)
+ (-3292 . 180787) (-3293 . 180662) (-3294 . 180601) (-3295 . 180212)
+ (-3296 . 180138) (-3297 . 179841) (-3298 . 179768) (-3299 . 179674)
+ (-3300 . 178818) (-3301 . 178737) (-3302 . 178611) (-3303 . 178392)
+ (-3304 . 178186) (-3305 . 177933) (-3306 . 177862) (-3307 . 177464)
+ (-3308 . 177357) (-3309 . 177286) (-3310 . 177174) (-3311 . 177054)
+ (-3312 . 176970) (-3313 . 176908) (-3314 . 176805) (-3315 . 176390)
+ (-3316 . 176335) (-3317 . 176231) (-3318 . 176110) (-3319 . 176006)
+ (-3320 . 175978) (-3321 . 175814) (-3322 . 175519) (-3323 . 175491)
+ (-3324 . 175321) (-3325 . 175191) (-3326 . 175113) (-3327 . 175023)
+ (-3328 . 174789) (-3329 . 174647) (-3330 . 174441) (-3331 . 174389)
+ (-3332 . 174125) (-3333 . 174014) (-3334 . 173700) (-3335 . 173233)
+ (-3336 . 173026) (-3337 . 172924) (-3338 . 172827) (-3339 . 172733)
+ (-3340 . 171904) (-3341 . 171783) (-3342 . 171401) (-3343 . 171042)
+ (-3344 . 170912) (-3345 . 170771) (-3346 . 170718) (-3347 . 170566)
+ (-3348 . 170120) (-3349 . 170021) (-3350 . 169771) (-3351 . 169549)
+ (-3352 . 169483) (-3353 . 169348) (-3354 . 169114) (-3355 . 169032)
+ (-3356 . 168742) (-3357 . 168334) (-3358 . 167949) (-3359 . 167890)
+ (-3360 . 167813) (-3361 . 167685) (-3362 . 167483) (-3363 . 167339)
+ (-3364 . 167145) (-3365 . 166444) (-3366 . 166300) (-3367 . 166231)
+ (-3368 . 166079) (-3369 . 165941) (-3370 . 165230) (-3371 . 165202)
+ (-3372 . 164955) (-3373 . 164838) (-3374 . 164735) (-3375 . 164627)
+ (-3376 . 164543) (-3377 . 164330) (-3378 . 164235) (-3379 . 164154)
+ (-3380 . 164057) (-3381 . 163842) (-3382 . 163771) (-3383 . 163362)
+ (-3384 . 163266) (-3385 . 163171) (-3386 . 163076) (-3387 . 162858)
+ (-3388 . 162477) (-3389 . 162354) (-3390 . 162280) (-3391 . 162196)
+ (-3392 . 162067) (-3393 . 161987) (-3394 . 161693) (-3395 . 161610)
+ (-3396 . 161408) (-3397 . 160887) (-3398 . 160705) (-3399 . 159640)
+ (-3400 . 159458) (-3401 . 159375) (-3402 . 159245) (-3403 . 159067)
+ (-3404 . 158990) (-3405 . 158790) (-3406 . 158762) (-3407 . 158659)
+ (-3408 . 158538) (-3409 . 158453) (-3410 . 158393) (-3411 . 158276)
+ (-3412 . 158111) (-3413 . 158037) (-3414 . 157741) (-3415 . 157668)
+ (-3416 . 157561) (-3417 . 157250) (-3418 . 157149) (-3419 . 156930)
+ (-3420 . 156402) (-3421 . 156336) (-3422 . 156259) (-3423 . 156134)
+ (-3424 . 156005) (-3425 . 155911) (-3426 . 154447) (-3427 . 154379)
+ (-3428 . 154272) (-3429 . 153997) (-3430 . 153604) (-3431 . 153428)
+ (-3432 . 153362) (-3433 . 153277) (-3434 . 153181) (-3435 . 153107)
+ (-3436 . 152804) (-3437 . 152663) (-3438 . 152610) (-3439 . 152452)
+ (-3440 . 152397) (-3441 . 151894) (-3442 . 151706) (-3443 . 151636)
+ (-3444 . 151302) (-3445 . 151145) (-3446 . 151114) (-3447 . 150987)
+ (-3448 . 150868) (-3449 . 150803) (-3450 . 150694) (-3451 . 150584)
+ (-3452 . 150253) (-3453 . 150003) (-3454 . 149836) (-3455 . 149749)
+ (-3456 . 149635) (-3457 . 149442) (-3458 . 149383) (-3459 . 149076)
+ (-3460 . 148502) (-3461 . 148468) (-3462 . 147887) (-3463 . 147836)
+ (-3464 . 147765) (-3465 . 147713) (-3466 . 147592) (-3467 . 147505)
+ (-3468 . 147449) (-3469 . 147297) (-3470 . 147139) (-3471 . 146898)
+ (-3472 . 146815) (-3473 . 146723) (-3474 . 146620) (-3475 . 146455)
+ (-3476 . 146353) (-3477 . 146235) (-3478 . 146013) (-3479 . 145936)
+ (-3480 . 145806) (-3481 . 145645) (-3482 . 145421) (-3483 . 144797)
+ (-3484 . 144660) (-3485 . 144593) (-3486 . 144520) (-3487 . 144465)
+ (-3488 . 144413) (-3489 . 144330) (-3490 . 144256) (-3491 . 144190)
+ (-3492 . 143991) (-3493 . 143740) (-3494 . 143659) (-3495 . 143476)
+ (-3496 . 143373) (-3497 . 143272) (-3498 . 143206) (-3499 . 142740)
+ (-3500 . 142657) (-3501 . 142504) (-3502 . 142437) (-3503 . 142089)
+ (-3504 . 142018) (-3505 . 141950) (-3506 . 141895) (-3507 . 141797)
+ (-3508 . 141631) (-3509 . 141575) (-3510 . 141413) (-3511 . 141304)
+ (-3512 . 141153) (-3513 . 140726) (-3514 . 140674) (-3515 . 140534)
+ (-3516 . 140457) (-3517 . 140391) (-3518 . 140308) (-3519 . 139816)
+ (-3520 . 139732) (-3521 . 139660) (-3522 . 139537) (-3523 . 139422)
+ (-3524 . 139364) (-3525 . 139306) (-3526 . 138917) (-3527 . 138715)
+ (-3528 . 138556) (-3529 . 138155) (-3530 . 138084) (-3531 . 138014)
+ (-3532 . 137680) (-3533 . 137539) (-3534 . 137190) (-3535 . 136991)
+ (-3536 . 136391) (-3537 . 136131) (-3538 . 135438) (-3539 . 135385)
+ (-3540 . 135300) (-3541 . 135218) (-3542 . 135189) (-3543 . 135099)
+ (-3544 . 134654) (-3545 . 134444) (-3546 . 134386) (-3547 . 134349)
+ (-3548 . 134218) (-3549 . 134061) (-3550 . 133977) (-3551 . 133122)
+ (-3552 . 133066) (-3553 . 133016) (-3554 . 132898) (-3555 . 132719)
+ (-3556 . 132691) (-3557 . 132606) (-3558 . 132499) (-3559 . 132396)
+ (-3560 . 132225) (-3561 . 132062) (-3562 . 131944) (-3563 . 131612)
+ (-3564 . 131262) (-3565 . 131161) (-3566 . 131003) (-3567 . 130905)
+ (-3568 . 130752) (-3569 . 130669) (-3570 . 130446) (-3571 . 130349)
+ (-3572 . 129907) (-3573 . 129750) (-3574 . 129690) (-3575 . 129136)
+ (-3576 . 129009) (-3577 . 128804) (-3578 . 128719) (-3579 . 128443)
+ (-3580 . 127852) (-3581 . 127758) (-3582 . 127724) (-3583 . 127497)
+ (-3584 . 127326) (-3585 . 127173) (-3586 . 127120) (-3587 . 127089)
+ (-3588 . 126927) (-3589 . 126683) (-3590 . 126586) (-3591 . 126558)
+ (-3592 . 126326) (-3593 . 126274) (-3594 . 126018) (-3595 . 125596)
+ (-3596 . 125463) (-3597 . 125257) (-3598 . 125156) (-3599 . 124620)
+ (-3600 . 124378) (-3601 . 124262) (-3602 . 124168) (-3603 . 124081)
+ (-3604 . 124028) (-3605 . 123653) (-3606 . 123546) (-3607 . 123322)
+ (-3608 . 123220) (-3609 . 123032) (-3610 . 122966) (-3611 . 122786)
+ (-3612 . 122698) (-3613 . 122601) (-3614 . 122489) (-3615 . 122325)
+ (-3616 . 122239) (-3617 . 122159) (-3618 . 122060) (-3619 . 121994)
+ (-3620 . 121931) (-3621 . 121828) (-3622 . 121658) (-3623 . 121539)
+ (-3624 . 121434) (-3625 . 121381) (-3626 . 121315) (-3627 . 121201)
+ (-3628 . 120864) (-3629 . 120669) (-3630 . 120558) (-3631 . 120209)
+ (-3632 . 119635) (-3633 . 119403) (-3634 . 119263) (-3635 . 119047)
+ (-3636 . 118995) (-3637 . 118687) (-3638 . 118350) (-3639 . 118122)
+ (-3640 . 117924) (-3641 . 117539) (-3642 . 117411) (-3643 . 117167)
+ (-3644 . 117115) (-3645 . 116959) (-3646 . 116766) (-3647 . 116696)
+ (-3648 . 115858) (-3649 . 115654) (-3650 . 115539) (-3651 . 115442)
+ (-3652 . 115341) (-3653 . 114798) (-3654 . 113935) (-3655 . 113751)
+ (-3656 . 113632) (-3657 . 113509) (-3658 . 113300) (-3659 . 113142)
+ (-3660 . 112986) (-3661 . 112791) (-3662 . 112623) (-3663 . 112174)
+ (-3664 . 112100) (-3665 . 111975) (-3666 . 111879) (-3667 . 111738)
+ (-3668 . 111208) (-3669 . 110946) (-3670 . 110810) (-3671 . 110727)
+ (-3672 . 110382) (-3673 . 110264) (-3674 . 110193) (-3675 . 110035)
+ (-3676 . 109918) (-3677 . 109748) (-3678 . 109369) (-3679 . 109301)
+ (-3680 . 109219) (-3681 . 109166) (-3682 . 109113) (-3683 . 108581)
+ (-3684 . 108521) (-3685 . 108440) (-3686 . 108149) (-3687 . 108076)
+ (-3688 . 107857) (-3689 . 107804) (-3690 . 107745) (-3691 . 107551)
+ (-3692 . 107488) (-3693 . 107439) (-3694 . 107144) (-3695 . 107006)
+ (-3696 . 106008) (-3697 . 105951) (-3698 . 105786) (-3699 . 105638)
+ (-3700 . 105585) (-3701 . 105430) (-3702 . 104615) (-3703 . 104537)
+ (-3704 . 104325) (-3705 . 103997) (-3706 . 103666) (-3707 . 103601)
+ (-3708 . 103546) (-3709 . 103494) (-3710 . 103423) (-3711 . 103282)
+ (-3712 . 103215) (-3713 . 103086) (-3714 . 103030) (-3715 . 102874)
+ (-3716 . 102649) (-3717 . 102520) (-3718 . 102422) (-3719 . 102264)
+ (-3720 . 101977) (-3721 . 101525) (-3722 . 101459) (-3723 . 101347)
+ (-3724 . 100899) (-3725 . 100614) (-3726 . 100455) (-3727 . 100314)
+ (-3728 . 100248) (-3729 . 100050) (-3730 . 99845) (-3731 . 99727)
+ (-3732 . 99656) (-3733 . 99551) (-3734 . 99348) (-3735 . 99145)
+ (-3736 . 99042) (-3737 . 98863) (-3738 . 98756) (-3739 . 98661)
+ (-3740 . 98546) (-3741 . 98316) (-3742 . 98222) (-3743 . 97932)
+ (-3744 . 97879) (-3745 . 97823) (-3746 . 97767) (-3747 . 97629)
+ (-3748 . 97337) (-3749 . 97254) (-3750 . 97201) (-3751 . 96793)
+ (-3752 . 96655) (-3753 . 96575) (-3754 . 96501) (-3755 . 96262)
+ (-3756 . 96162) (-3757 . 95909) (-3758 . 95709) (-3759 . 95547)
+ (-3760 . 95371) (-3761 . 95194) (-3762 . 95141) (-3763 . 94706)
+ (-3764 . 94335) (-3765 . 94269) (-3766 . 94111) (-3767 . 93981)
+ (-3768 . 93896) (-3769 . 93803) (-3770 . 93661) (-3771 . 93452)
+ (-3772 . 93418) (-3773 . 93390) (-3774 . 93311) (-3775 . 93229)
+ (** . 90152) (-3777 . 90056) (-3778 . 89982) (-3779 . 89763)
+ (-3780 . 89594) (-3781 . 89491) (-3782 . 89424) (-3783 . 89339)
+ (-3784 . 88923) (-3785 . 88747) (-3786 . 88634) (-3787 . 88471)
+ (-3788 . 88209) (-3789 . 87909) (-3790 . 87812) (-3791 . 87705)
+ (-3792 . 87479) (-3793 . 87310) (-3794 . 87158) (-3795 . 86808)
+ (-3796 . 86517) (-3797 . 86331) (-3798 . 86244) (-3799 . 86173)
+ (-3800 . 86090) (-3801 . 86019) (-3802 . 85941) (-3803 . 85853)
+ (-3804 . 85738) (-3805 . 85566) (-3806 . 85377) (-3807 . 85343)
+ (-3808 . 85089) (-3809 . 84989) (-3810 . 84845) (-3811 . 84774)
+ (-3812 . 84590) (-3813 . 84422) (-3814 . 84267) (-3815 . 84114)
+ (-3816 . 84018) (-3817 . 83885) (-3818 . 83784) (-3819 . 83543)
+ (-3820 . 83512) (-3821 . 83309) (-3822 . 83257) (-3823 . 83170)
+ (-3824 . 82996) (-3825 . 82893) (-3826 . 82784) (-3827 . 82416)
+ (-3828 . 82362) (-3829 . 81983) (-3830 . 81882) (-3831 . 81829)
+ (-3832 . 81750) (-3833 . 81663) (-3834 . 81550) (-3835 . 81426)
+ (-3836 . 81347) (-3837 . 81215) (-3838 . 81164) (-3839 . 80980)
+ (-3840 . 80724) (-3841 . 80578) (-3842 . 80449) (-3843 . 80394)
+ (-3844 . 80289) (-3845 . 80205) (-3846 . 80034) (-3847 . 79819)
+ (-3848 . 79644) (-3849 . 79379) (-3850 . 77806) (-3851 . 77700)
+ (-3852 . 77319) (-3853 . 77257) (-3854 . 77161) (-3855 . 76971)
+ (-3856 . 76861) (-3857 . 76810) (-3858 . 76701) (-3859 . 76366)
+ (-3860 . 75915) (-3861 . 75808) (-3862 . 75727) (-3863 . 75483)
+ (-3864 . 75374) (-3865 . 75300) (-3866 . 75206) (-3867 . 74727)
+ (-3868 . 74649) (-3869 . 74618) (-3870 . 74565) (-3871 . 74509)
+ (-3872 . 74334) (-3873 . 74145) (-3874 . 74079) (-3875 . 74012)
+ (-3876 . 73527) (-3877 . 73424) (-3878 . 73148) (-3879 . 73096)
+ (-3880 . 73025) (-3881 . 72738) (-3882 . 72615) (-3883 . 72532)
+ (-3884 . 72475) (-3885 . 72389) (-3886 . 72216) (-3887 . 72139)
+ (-3888 . 72071) (-3889 . 71947) (-3890 . 71860) (-3891 . 71647)
+ (-3892 . 71579) (-3893 . 71453) (-3894 . 71157) (-3895 . 71090)
+ (-3896 . 70813) (-3897 . 70694) (-3898 . 70582) (-3899 . 70554)
+ (-3900 . 70475) (-3901 . 70446) (-3902 . 70291) (-3903 . 69990)
+ (-3904 . 69888) (-3905 . 69815) (-3906 . 69752) (-3907 . 69188)
+ (-3908 . 68814) (-3909 . 68570) (-3910 . 68484) (-3911 . 68433)
+ (-3912 . 68011) (-3913 . 67702) (-3914 . 67622) (-3915 . 67534)
+ (-3916 . 67425) (-3917 . 67322) (-3918 . 67267) (-3919 . 67215)
+ (-3920 . 66657) (-3921 . 66605) (-3922 . 66359) (-3923 . 66269)
+ (-3924 . 66166) (-3925 . 65915) (-3926 . 65887) (-3927 . 65752)
+ (-3928 . 65578) (-3929 . 65486) (-3930 . 65049) (-3931 . 64377)
+ (-3932 . 64306) (-3933 . 64159) (-3934 . 63662) (-3935 . 63631)
+ (-3936 . 63334) (-3937 . 63282) (-3938 . 63156) (-3939 . 63038)
+ (-3940 . 62765) (-3941 . 62692) (-3942 . 62217) (-3943 . 62059)
+ (-3944 . 62004) (-3945 . 61895) (-3946 . 61716) (-3947 . 61436)
+ (-3948 . 61352) (-3949 . 61278) (-3950 . 61012) (-3951 . 60693)
+ (-3952 . 59893) (-3953 . 59823) (-3954 . 59657) (-3955 . 59628)
+ (-3956 . 59482) (-3957 . 59401) (-3958 . 59025) (-3959 . 58902)
+ (-3960 . 58725) (-3961 . 58609) (-3962 . 58307) (-3963 . 58161)
+ (-3964 . 58023) (-3965 . 57955) (-3966 . 57875) (-3967 . 57534)
+ (-3968 . 57396) (-3969 . 57287) (-3970 . 57206) (-3971 . 57035)
+ (-3972 . 57001) (-3973 . 56928) (-3974 . 56845) (-3975 . 56734)
+ (-3976 . 56682) (-3977 . 56354) (-3978 . 56108) (-3979 . 56028)
+ (-3980 . 55994) (-3981 . 55751) (-3982 . 55614) (-3983 . 53763)
+ (-3984 . 53631) (-3985 . 53565) (-3986 . 53419) (-3987 . 52610)
+ (-3988 . 52415) (-3989 . 52250) (-3990 . 52179) (-3991 . 51797)
+ (-3992 . 51699) (-3993 . 51183) (-3994 . 51028) (-3995 . 50872)
+ (-3996 . 50789) (-3997 . 50718) (-3998 . 50681) (-3999 . 50394)
+ (-4000 . 50305) (-4001 . 50220) (-4002 . 50003) (-4003 . 49905)
+ (-4004 . 49798) (-4005 . 49743) (-4006 . 49688) (-4007 . 49200)
+ (-4008 . 49113) (-4009 . 49042) (-4010 . 48947) (-4011 . 48874)
+ (-4012 . 48635) (-4013 . 48418) (-4014 . 46656) (-4015 . 46526)
+ (-4016 . 46429) (-4017 . 46091) (-4018 . 45714) (-4019 . 45614)
+ (-4020 . 45530) (-4021 . 45345) (-4022 . 45266) (-4023 . 45214)
+ (-4024 . 45058) (-4025 . 44913) (-4026 . 44841) (-4027 . 44679)
+ (-4028 . 44523) (-4029 . 44428) (-4030 . 44369) (-4031 . 44201)
+ (-4032 . 44033) (-4033 . 43077) (-4034 . 42980) (-4035 . 42741)
+ (-4036 . 42667) (-4037 . 42586) (-4038 . 42440) (-4039 . 42360)
+ (-4040 . 42116) (-4041 . 42067) (-4042 . 41774) (-4043 . 41636)
+ (-4044 . 41033) (-4045 . 40892) (-4046 . 40820) (-4047 . 40735)
+ (-4048 . 40610) (-4049 . 40480) (-4050 . 40163) (-4051 . 40056)
+ (-4052 . 40000) (-4053 . 39840) (-4054 . 39588) (-4055 . 39335)
+ (-4056 . 39220) (-4057 . 39154) (-4058 . 39019) (-4059 . 38949)
+ (-4060 . 38853) (-4061 . 38800) (-4062 . 38748) (-4063 . 38626)
+ (-4064 . 38490) (-4065 . 38435) (-4066 . 38189) (-4067 . 38080)
+ (-4068 . 38049) (-4069 . 37773) (-4070 . 37493) (-4071 . 37427)
+ (-4072 . 37257) (-4073 . 37192) (-4074 . 37110) (-4075 . 36955)
+ (-4076 . 36245) (-4077 . 36009) (-4078 . 35838) (-4079 . 35234)
+ (-4080 . 35133) (-4081 . 34784) (-4082 . 34634) (-4083 . 34562)
+ (-4084 . 34531) (-4085 . 32956) (-4086 . 32904) (-4087 . 32759)
+ (-4088 . 32635) (-4089 . 32453) (-4090 . 32237) (-4091 . 32133)
+ (-4092 . 31987) (-4093 . 31739) (-4094 . 31686) (-4095 . 31609)
+ (-4096 . 31301) (-4097 . 31176) (-4098 . 27188) (-4099 . 27103)
+ (-4100 . 27050) (-4101 . 26846) (-4102 . 26634) (-4103 . 26582)
+ (-4104 . 26512) (-4105 . 26432) (-4106 . 26208) (-4107 . 26067)
+ (-4108 . 25936) (-4109 . 25265) (-4110 . 25054) (-4111 . 25003)
+ (-4112 . 24924) (-4113 . 24819) (-4114 . 24333) (-4115 . 24259)
+ (-4116 . 23907) (-4117 . 23663) (-4118 . 23497) (-4119 . 23230)
+ (-4120 . 23044) (-4121 . 22900) (-4122 . 22789) (-4123 . 22658)
+ (-4124 . 21622) (-4125 . 21527) (-4126 . 21258) (-4127 . 21135)
+ (-4128 . 20714) (-4129 . 20614) (-4130 . 20554) (-4131 . 20442)
+ (-4132 . 20290) (-4133 . 20043) (-4134 . 19883) (-4135 . 19789)
+ (-4136 . 19115) (-4137 . 19041) (-4138 . 18933) (-4139 . 18877)
+ (-4140 . 18804) (-4141 . 18302) (-4142 . 18222) (-4143 . 18170)
+ (-4144 . 18102) (-4145 . 18024) (-4146 . 17966) (-4147 . 17883)
+ (-4148 . 17765) (-4149 . 17731) (-4150 . 17638) (-4151 . 17569)
+ (-4152 . 17448) (-4153 . 17353) (-4154 . 17244) (-4155 . 17064)
+ (-4156 . 16639) (-4157 . 16535) (-4158 . 16463) (-4159 . 16432)
+ (-4160 . 16297) (-4161 . 16244) (-4162 . 16065) (-4163 . 15686)
+ (-4164 . 15100) (-4165 . 14942) (-4166 . 14879) (-4167 . 14702)
+ (-4168 . 14624) (-4169 . 14527) (-4170 . 14328) (-4171 . 14208)
+ (-4172 . 14052) (-4173 . 13959) (-4174 . 13853) (-4175 . 13749)
+ (-4176 . 13651) (-4177 . 13462) (-4178 . 13236) (-4179 . 13031)
+ (-4180 . 12997) (-4181 . 12912) (-4182 . 12835) (-4183 . 12669)
+ (-4184 . 12589) (-4185 . 12379) (-4186 . 12215) (-4187 . 12103)
+ (-4188 . 12030) (-4189 . 11936) (-4190 . 11864) (-4191 . 11735)
+ (-4192 . 11650) (-4193 . 11543) (-4194 . 11316) (-4195 . 10412)
+ (-4196 . 10328) (-4197 . 10012) (-4198 . 9827) (-4199 . 9749)
+ (-4200 . 9662) (-4201 . 9440) (-4202 . 9110) (-4203 . 9023)
+ (-4204 . 8662) (-4205 . 8412) (-4206 . 8343) (-4207 . 8094)
+ (-4208 . 7475) (-4209 . 7304) (-4210 . 7224) (-4211 . 6769)
+ (-4212 . 6623) (-4213 . 6510) (-4214 . 6425) (-4215 . 6373)
+ (-4216 . 6317) (-4217 . 5944) (-4218 . 5803) (-4219 . 5556)
+ (-4220 . 5264) (-4221 . 4639) (-4222 . 4546) (-4223 . 4217)
+ (-4224 . 4106) (-4225 . 4054) (-4226 . 3911) (-4227 . 3796)
+ (-4228 . 3641) (-4229 . 3100) (-4230 . 3013) (-4231 . 2861)
+ (-4232 . 2778) (-4233 . 2709) (-4234 . 2570) (-4235 . 2444)
+ (-4236 . 2295) (-4237 . 1982) (-4238 . 1742) (-4239 . 1686)
+ (-4240 . 1500) (-4241 . 1448) (-4242 . 1209) (-4243 . 1157)
+ (-4244 . 879) (-4245 . 764) (-4246 . 623) (-4247 . 195) (-4248 . 101)
+ (-4249 . 30)) \ No newline at end of file