1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
// Copyright (C) 2011, Gabriel Dos Reis.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of OpenAxiom nor the names of its contributors
// may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// --% Author: Gabriel Dos Reis
// --% Description:
// --% Interface and implementation of basic services of the
// --% OpenAxiom Virtual Machine.
#ifndef OPENAXIOM_VM_INCLUDED
#define OPENAXIOM_VM_INCLUDED
#include <open-axiom/storage>
#if HAVE_STDINT_H
# include <stdint.h>
#endif
#include <open-axiom/string-pool>
namespace OpenAxiom {
namespace VM {
// --%
// --% Value representation
// --%
// A far reaching design decision is to provide a uniform
// representation for values. That is all values, irrespective
// of type have fit in a fixed format, i.e. a scalar register.
// This means that values that are more complicated than a scalar,
// that is the vast majority and most interesting values, have to
// be stored in allocated objects and addresses of their container
// objects used in place of the actual values. This is folklore
// in the communities of garbage collected language implementations.
// An unfortunate but widely held belief is that AXIOM-based
// systems (and computer algebra systems in general) are
// Lisp-based systems. Nothing could be further from the truth
// for OpenAxiom. The type system is believed to support
// erasure semantics, at least for values.
//
// However,the current implementation being Lisp-based, it does
// unwittingly make use of some Lisp features that are not
// strictly necessary, but which would take a certain amount
// of effort to get rid of. Consequently, we must cope -- at least
// for now -- with the notion of uniform value representation and
// use runtime predicates to descriminate between values.
// However, we do not want to carry an unduly expensive abstraction
// penalty for perfectly well behaved and well disciplined programs.
// Here are a few constraints:
// 1. Small integers should represent themselves, not allocated.
// Furthermore, the maximum range should be sought.
// 2. Since we have to deal with characters, they should be
// directly represented.
// 3. List values and list manipulation should be efficient.
// Ideally, a pair should not occupy more than what it
// takes to store two values.
// 4. Idealy, pointers to foreign objects (at least) should be
// left unmolested.
//
// * Assumptions:
// (a) the host machine has sizeof(Value) quo 4 = 0.
// (b) allocatd objects can be aligned on sizeof(Value) boundary.
// (c) the host machine has 2's complement arithmetic.
//
// If:
// -- we use a dedicated allocation pool for cons cells
// -- we allocate the first cell in each cons-storage arena
// on a 8-byte boundary
// -- we use exactly 2 * sizeof(Value) to store a cons cell
// therefore realizing constraint (1)
// then:
// each pointer to a cons cell will have its last 3 bits cleared.
//
// Therefore, we can use the last 3 bits to tag a cons value, instead
// of storing the tag inside the cons cell. we can't leave those
// bits cleared for we would not be able to easily and cheaply
// distinguish a pointer to a cons cell from a pointer to other objects.
//
// To meet constraint (1), we must logically use at least one bit
// to distinguish a small integer from a pointer to a cons cell.
// The good news is that we need not need more than that if pointers
// to foreign pointers do not have the last bit set. Which is
// pretty much the case in practice as crystallized in assumption (a).
// Therefore we arrive at the first design:
// I. the value representation of small integer always have the
// the least significant bit set. All other bits are
// significant in representing small integers.
// As a consequence, the last bit of all other values must be cleared.
//
// Next, cons cell values:
// II. Cons cells are represented by their addresses with the
// last 3 bits set to 0b110.
//
// III. Any allocated object obj shall saisfy sizeof obj quo 4 = 0.
// All allocated objects shall have alignment divisible by 4.
// In consequence, the last two bits of object addresses
// are cleared, i.e. 0b00.
// Finally:
// IV. The representation of a character shall have the last two
// bits set to 0b10.
//
// Note: These choices do not satisfy constraint 4. If we could
// restrict pointer to foreign objects to address aligned
// to multiple of 4 boundaries, then we can make different choices
// that represents foreign address directly.
// In the current design, foriegn addresses are allocated.
// -----------
// -- Value --
// -----------
// All VM values fit in a universal value datatype.
typedef uintptr_t Value;
// -------------
// -- Pointer --
// -------------
// Allocated objects are represented by their addresses.
using Memory::Pointer;
const Value ptr_tag = 0x0;
inline bool is_pointer(Value v) {
return (v & 0x3) == ptr_tag;
}
inline Pointer to_pointer(Value v) {
return Pointer(v);
}
inline Value from_pointer(Pointer p) {
return Value(p);
}
// -------------
// -- Fixnum ---
// -------------
// VM integers are divided into classes: small numbers,
// and large numbers. A small number fits entirely in a register.
// A large number is allocated and represented by its address.
typedef intptr_t Fixnum;
const Value fix_tag = 0x1;
inline bool is_fixnum(Value v) {
return (v & 0x1) == fix_tag;
}
inline Fixnum to_fixnum(Value v) {
return Fixnum(v >> 1);
}
inline Value from_fixnum(Fixnum i) {
return (Fixnum(i) << 1 ) | fix_tag;
}
// ---------------
// -- Character --
// ---------------
// This datatype is prepared for Uncode characters even if
// we do not handle UCN characters.
typedef Value Character;
const Value char_tag = 0x2;
inline bool is_character(Value v) {
return (v & 0x3) == char_tag;
}
inline Character to_character(Value v) {
return Character(v >> 2);
}
inline Value from_character(Character c) {
return (Value(c) << 2) | char_tag;
}
// ----------
// -- Pair --
// ----------
struct ConsCell {
Value head;
Value tail;
ConsCell(Value h, Value t) : head(h), tail(t) { }
};
typedef ConsCell* Pair;
const Value pair_tag = 0x6;
inline bool is_pair(Value v) {
return (v & 0x7) == pair_tag;
}
inline Pair to_pair(Value v) {
return Pair(v & ~0x7);
}
inline Value from_pair(Pair p) {
return Value(p) | pair_tag;
}
// If `v' designates a pair, return a pointer to its
// concrete representation.
inline Pair pair_if_can(Value v) {
return is_pair(v) ? to_pair(v) : 0;
}
// --
// -- Builtin Operations
// --
// Types for native implementation of builtin operators.
struct BasicContext;
typedef Value (*NullaryCode)(BasicContext*);
typedef Value (*UnaryCode)(BasicContext*, Value);
typedef Value (*BinaryCode)(BasicContext*, Value, Value);
typedef Value (*TernaryCode)(BasicContext*, Value, Value, Value);
// ------------
// -- Object --
// ------------
template<typename T>
struct Object {
Value dict;
T data;
};
// ------------------
// -- BasicContext --
// ------------------
// Provides basic evaluation services.
struct BasicContext : StringPool {
BasicContext();
Pair make_cons(Value, Value);
protected:
Memory::Factory<ConsCell> conses;
};
};
}
#endif // OPENAXIOM_VM_INCLUDED
|